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Abstract

Systems where the present rate of change of state depends on the past values
of the higher rates of changes of state are described by so-called advanced func-
tional differential equations (AFDEs). In an AFDE, the highest derivative of the
state-space coordinate appears with delayed argument only. The corresponding lin-
earized equations are always unstable with infinitely many unstable poles, and are
rarely related to practical applications due to their inherently implicit nature. In
this paper, one of the simplest AFDEs, a linear scalar first order system is consid-
ered with delayed feedback of the second derivative of the state in the presence of
sampling in the feedback loop (i.e., in the case of digital control). It is shown that
sampling of the feedback may stabilize the originally infinitely unstable system for
certain parameter combinations. The result explains the stable behavior of certain
dynamical systems with feedback delay in the highest derivative.

Keywords: functional differential equations, advanced argument, sampling, stability,
delay.

1 Introduction

Functional differential equations (FDEs) are often used to describe hereditary systems in
different fields of science and engineering. FDEs can be categorized into retarded, neutral
and advanced types (see, e.g., Èl’sgol’c, 1964, or Kolmanovskii and Myshkis, 1999). If the
rate of change of the state depends on the past states of the system, then the corresponding
mathematical model is a retarded functional differential equation (RFDE). If the rate of
change of the state depends on its own past values as well, then the corresponding equation
is called neutral functional differential equation (NFDE). If the rate of change of the state
depends on the past values of higher derivatives of the state, then the system is described
by an advanced functional differential equation (AFDE). Note that these equations are
also referred to as FDEs of retarded, neutral or advanced type.

The reason for the phrase “advanced” can be is demonstrated by the following example.
Consider the simple AFDE

ẋ(t) = ẍ(t − τ) . (1)
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By a τ -shift transformation in time, and by using the new variable z = ẋ, this equation
can be written in the form

ż(t) = z(t + τ) . (2)

Here, the rate of change of state is determined by the future values of the state, i.e. an
advanced state determines the present rate of change of state.

As opposed to RFDEs and NFDEs, AFDEs are rarely used in practical applications
due to their inverted causality explained by (2). Furthermore, the solutions of AFDEs, in
general, lose their initial smoothness, and the method of successive integration shows that
the solution may not even exist, while the two-sided solutions do exist (Wiener, 1994).
Forward solution of AFDEs corresponds to the backward solution of RFDEs that may not
exist either. While linear autonomous RFDEs have infinitely many poles on the left half
of the complex plane, linear autonomous AFDEs have infinitely many poles on the right
half of the complex plane. In this sense, linear autonomous AFDEs are always strongly
or infinitely unstable.

The literature of FDEs is quite extensive, we refer the interested reader for example
to the texts by Kolmanovskii and Nosov (1986), Stepan (1989), Hale and Lunel (1993),
Niculescu (2001), Hu and Wang (2002) or Michiels and Niculescu (2007), just to men-
tion a few. However, these works mostly deal with RFDEs and NFDEs, and AFDEs are
not considered since they are said to have no practical significance. Some basic prop-
erties of AFDEs together with some special cases are described in the books Èl’sgol’c
(1964), Wiener (1994) and Kolmanovskii and Myshkis (1999). Oscillatory conditions for
some special AFDEs are discussed in the basic paper by Ladas and Stavroulakis (1982).
Shah and Wiener (1982) and Song et al. (2005) analyzed systems with piecewise con-
stant advanced arguments. FDEs with alternately advanced and retarded arguments were
analyzed by Filho (1997), by Rodrigues (1997) and by Lv et al. (2007).

In this paper, a linear first order scalar AFDE is considered with piecewise constant
argument in the advanced term. The investigation of this system is motivated by an
engineering example of a digital control system with the delayed feedback of a derivative
higher than that of the present state. The piecewise constant argument corresponds to
the sampling effect (zero order hold, ZOH) in the digital control. It is shown that the
system can be exponentially stable, although the continuous counterpart, the autonomous
AFDE with continuous argument in the advanced term, is unstable with infinitely many
unstable poles.

2 Motivation

The motivation of the current study arose during the analysis of a simple stick balancing
problem via feedback control that uses accelerometers to determine the stick’s angular
position. The mechanical model can be seen in figure 1. The equation of motion reads

Jϕ̈ − Hmg sin ϕ = Q, (3)

where ϕ is the angular position of the pinned stick, m is the mass, H is the distance
between the suspension point O and the centre of gravity C, J is the mass moment of
inertia with respect to the axis normal to the plane of the figure through point O, and
Q is the control torque. This model, also called stiffness control, is used to describe self
balancing of humans in the sagittal plane (Winter, et al., 1998, Stepan, 2009).
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Figure 1: One-DoF model of stick balancing, and the mechanical model of the accelerom-
eter.

In figure 1, the enlarged insert represents the mechanical model of the piezo-accelerometer
attached to the stick at point A. This accelerometer operates normal to the stick as a
mass m0 attached to a spring of stiffness k modeling the piezo crystal. The accelerome-
ter’s output y is proportional to the displacement q of the mass: y = KAq with KA [V/m]
being the characteristic constant of the accelerometer. The displacement q of the mass
depends on the angular position ϕ of the rod. If the rod is standing still in an oblique
position, then

q =
m0g

k
sin ϕ. (4)

In an ideal linear case, the output is proportional to the angular position: y = Kϕ, where
K = KAm0g/k [V/rad]. Using the sensor’s output y as input in a PD controller with
feedback delay τ , the control torque is obtained as

Q = Py(t− τ) + Dẏ(t − τ) = PKϕ(t− τ) + DKϕ̇(t − τ), (5)

where P [N/V] and D [Ns/V] are the proportional and the differential control gains. In
this case, the linearized equation of motion reads

Jϕ̈(t) − Hmgϕ(t) = PKϕ(t − τ) + DKϕ̇(t − τ), (6)

This equation is one of the basic examples of RFDEs. The corresponding stability proper-
ties are well known and are presented in several textbooks (see, for example, Kolmanovskii
and Nosov, 1986, or Stepan, 1989).

If the dynamic effects, namely, the angular acceleration of the rod are also taken into
account, then the displacement of the accelerometer reads

q =
m0g

k
sin ϕ − m0L

k
ϕ̈. (7)

In this case, the linearized output is

y = Kϕ − K1ϕ̈ (8)

where K1 = KAm0L/k [Vs2/rad] and K is the same as above. For this model, a PD
controller with feedback delay τ results in the control torque

Q = Py(t− τ) + Dẏ(t − τ)

= PKϕ(t − τ) − PK1ϕ̈(t − τ) + DKϕ̇(t − τ) − DK1

...
ϕ(t − τ). (9)
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Figure 2: Sampling effect as time-periodic delay.

In this case, the linearized equation of motion reads

Jϕ̈(t) − Hmgϕ(t) = PKϕ(t − τ) − PK1ϕ̈(t − τ) + DKϕ̇(t − τ) − DK1

...
ϕ(t − τ). (10)

This equation is now an AFDE, since the highest (third) derivative appears with a delayed
argument only.

In this example, the advanced nature of the system comes from the fact that the
accelerometer’s signal is affected by the angular acceleration of the rod. Similarly to the
previous example, mechanical systems occur that are governed by AFDEs via feeding
back the acceleration signal using a PD controller with feedback delay, or by feeding back
the jerk in a P controller with feedback delay. Note that a similar case was investigated by
Vyhĺıdal et al. (2009), where the velocity and the acceleration was fed back proportionally
with feedback delay resulting in a NFDE.

A kind of philosophical question is that how such systems can be interpreted in prac-
tical applications, when the describing mathematical system is non-causal? Possible an-
swers can be found in the small modeling inaccuracies that are neglected in the model,
but they may have important qualitative effects on the behavior of the system. Such a
phenomenon is the sampling of digital control, which was not considered in (9) and (10).
In digital control, the feedback is held constant for each sampling period h (zero order
hold, ZOH), i.e., the control torque reads

Q = Py(tj − rh) + Dẏ(tj − rh) = PKϕ(tj − rh) − PK1ϕ̈(tj − rh)

+ DKϕ̇(tj − rh) − DK1

...
ϕ(tj − rh), t ∈ [tj , tj+1), (11)

where tj = jh, j ∈ Z and h is the sampling period such that τ = rh with r being an
integer. Note that the sampled output can also be represented in the form

y(tj − rh) = y(t − σ(t)), t ∈ [tj, tj+1) (12)

where
σ(t) = τ − tj + t, t ∈ [tj, tj+1). (13)

is a time-periodic time delay shown in figure 2. In fact, the sampling effect introduces a
periodic parametric excitation at the time delay according to (13). It can be seen that
the time-periodic time delay σ(t) tends to the constant delay τ as the sampling period h
tends to 0.

Note that the sampling effect presented above is equivalent to the zeroth order semi-
discretization method of RFDEs (see Insperger et al., 2008). Semi-discretization is a dis-
cretization technique, where only the terms with delayed arguments are discretized while
the other non-delayed terms are left in their original form. It is known that discretization
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Figure 3: Left: stability chart for the RFDE (14) for τ = 1. Right: stability charts for
the sampled RFDE (15) for τ = 1 and for different sampling periods h.

techniques preserve exponential stability for RFDEs (Győri et al., 1998), however, for
NFDEs, this is not true in general, as it was shown by Fabiano and Turi (1999). Preser-
vation of exponential stability of NFDEs under delay perturbations was also analyzed by
Győri and Hartung (2001). Here, it will be shown for AFDEs that the discretized (or
sampled) system can be stable in spite of the fact that the original AFDE is unstable
with infinitely many unstable poles.

3 Delayed, neutral and advanced FDEs

In this section, first order FDEs of delayed, neutral and advanced type are considered
with and without sampling effect in the delayed term. Stability properties with respect
to the system parameters are analyzed.

3.1 First order delay differential equation

Consider the first order delay differential equation

ẋ(t) = ax(t) + bx(t − τ). (14)

This equation is a special type of Cushing’s equation (Cushing, 1977) and it is often
referred to as one of the simplest basic examples for a delayed system (see, e.g., Hale
and Lunel, 1993, Stepan, 1989 or Michiels et al., 2002). The stability condition for the
parameters a and b was first presented by Hayes (1950). The corresponding stability chart
can be seen in the left panel of figure 3.

Equation (14) can also be considered as a control system with delayed feedback of the
state, where a is the system parameter, b is the control gain and τ is the feedback delay.
In case of digital control, zero order hold arises in the feedback loop, thus, the argument
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of the delayed term becomes piecewise constant. The corresponding equation reads

ẋ(t) = ax(t) + bx(tj − rh), t ∈ [tj , tj+1), (15)

where h is the sampling period, tj = jh and j, r ∈ Z such that rh = τ . Due to the
piecewise constant argument of the delayed term, (15) can be solved over each sampling
period [tj , tj+1), and the finite dimensional discrete map can be constructed

yj+1 = Φyj, (16)

where

yj =

⎛
⎜⎜⎜⎜⎜⎝

x(tj)
x(tj−1)
x(tj−2)

...
x(tj−r)

⎞
⎟⎟⎟⎟⎟⎠

and Φ =

⎛
⎜⎜⎜⎜⎜⎝

eah 0 . . . 0 b
a
( eah − 1)

1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠

. (17)

The system is asymptotically stable if the eigenvalues of the monodromy matrix Φ are
in modulus less than one. The corresponding stability charts can be seen in the right
panel of figure 3 for τ = 1 and for different sampling periods. It can be seen that
by decreasing the sampling period h while keeping rh = τ = 1 constant, the stability
boundaries converge to that of (14). This is due to the fact that equation (15) is the
zeroth order semi-discretization of equation (14) according to Insperger et al. (2008).
Since semi-discretization preserves asymptotic stability of the original equation (14) (see
Hartung et al., 2006), it can be used to obtain approximations of the stability charts, as
it is demonstrated in figure 3.

3.2 First order differential equation of neutral type

Consider the first order differential equation of neutral type

ẋ(t) = ax(t) + bẋ(t − τ). (18)

This equation can be considered as a control system with delayed feedback of the state’s
derivative. The condition for asymptotic stability is a < 0 and |b| < 1 (see Kolmanovskii
and Nosov, 1986). The corresponding stability chart can be seen in the left panel of figure
4.

The sampled counterpart of equation (18) reads

ẋ(t) = ax(t) + bẋ(tj − rh), t ∈ [tj , tj+1). (19)

Similarly to equation (15), equation (19) can be transformed into a discrete map of the
form

zj+1 = Ψzj , (20)

where

zj =

⎛
⎜⎜⎜⎜⎜⎝

x(tj)
ẋ(tj)

ẋ(tj−1)
...

ẋ(tj−r)

⎞
⎟⎟⎟⎟⎟⎠

and Ψ =

⎛
⎜⎜⎜⎜⎜⎝

eah 0 . . . 0 b
a
( eah − 1)

a eah 0 . . . 0 b eah

0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠

. (21)
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Figure 4: Left: stability chart for the NFDE (18) for τ = 1. Right: stability charts for
the sampled NFDE (19) for τ = 1 and for different sampling periods h.

The system is asymptotically stable if the eigenvalues of the monodromy matrix Ψ are
in modulus less than one. The corresponding stability charts can be seen in the right
panel of figure 4 for τ = 1 and for different sampling periods. The stability boundaries
of the sampled system (19) seem to converge to that of the original (non-sampled) one
(19). Note that, although the stability charts of the sampled system in figure 4 seem
to converge to the chart of equation (18), the above discretization does not necessarily
preserves exponential stability for NFDEs generally (Fabiano and Turi, 1999).

3.3 First order differential equation of advanced type

Consider the first order differential equation of advanced type

ẋ(t) = ax(t) + bẍ(t − τ). (22)

This system is asymptotically stable for b = 0 and a < 0, and is unstable for any other
parameter combinations (see, for example, Èl’sgol’c, 1964). If b �= 0, then the system has
infinitely many unstable poles (i.e., roots of the characteristic equation with positive real
parts).

The sampled counterpart of equation (22) reads

ẋ(t) = ax(t) + bẍ(tj − rh), t ∈ [tj , tj+1). (23)

This is an equation of advanced type, again, however, the argument of the advanced term
is piecewise constant. Another form of equation (23) is

ẋ(t) = ax(t) + bẍ(t − σ(t)), (24)

where σ(t) is a time-periodic time delay defined in (13) and presented in figure 2. Similarly
to the previous RFDE and NFDE cases, a discrete map can be constructed by step-by-step
solution in the form

wj+1 = Θwj, (25)
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Figure 5: Left: stability chart for the AFDE (22) for τ = 1. Right: stability charts for
the sampled AFDE (23) for τ = 1 and for different sampling periods h.

where

wj =

⎛
⎜⎜⎜⎜⎜⎝

x(tj)
ẍ(tj)

ẍ(tj−1)
...

ẍ(tj−r)

⎞
⎟⎟⎟⎟⎟⎠

and Θ =

⎛
⎜⎜⎜⎜⎜⎝

eah 0 . . . 0 b
a
( eah − 1)

a2 eah 0 . . . 0 ab eah

0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠

. (26)

Again, this system is asymptotically stable if the eigenvalues of the monodromy matrix
Θ are in modulus less than one. The corresponding stability charts can be seen in the
right panel of figure 5 for τ = 1 and for different sampling periods. It can be seen that
while the original equation (22) is always unstable for b �= 0 with infinitely many unstable
roots, the sampled system can be stable even for b �= 0. Furthermore, it can be seen that
the stability boundaries do not converge to the boundaries of the non-sampled system.

4 AFDE stability diagrams

In order to obtain an insight to the stability properties of equation (23), the eigenvalues
of the corresponding monodromy matrix Θ should be analyzed in detail. For a given
sampling period h, the matrix Θ has r + 2 = τ/h + 2 eigenvalues that can be computed
numerically. The magnitude |µ1| of the critical (maximum in modulus) eigenvalue µ1 char-
acterizes the decay of the system’s oscillations for perturbations, i.e., ‖wj+1‖ ≤ |µ1|‖wj‖.
Figure 6 shows the contour plots of the maximum eigenvalues for different sampling pe-
riods. Stability boundaries are denoted by the contour lines where |µ1| = 1 (these are
denoted by thick lines). It can be seen that the stable domains in the stability diagrams
do not disappear as the sampling period is decreasing, however, the magnitude of the
critical eigenvalue within the domain of stability approaches 1 (see the contour lines and
the associated modulus numbers).
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Figure 6: Contour plots for the critical eigenvalues of the sampled AFDE (23) for τ = 1
and for different sampling periods h.

Figure 7 shows the number of unstable poles for system (23). The stable domains are
denoted by 0. It can be seen that as the sampling period h is decreasing, i.e., as the size
of the monodromy matrix is increasing, the number of unstable poles is increasing in the
unstable domains. The number of unstable poles are in the range of τ/h = r.

5 Numerical analysis of the transition h → 0

In order to analyze the transition between the sampled AFDE (23) and the original
AFDE (22), stability diagrams in the plane of h and b are constructed for fixed negative
a. These diagrams can be determined numerically by increasing the parameter b step-
by-step until the magnitude of the critical eigenvalue gets larger than 1. This gives the
stability boundaries for positive b. Similarly, the stability boundaries for negative b are
obtained by decreasing b step-by-step. Figure 8 presents these diagrams for a = −1, −2,
−5 and −10. These numerical results show that the stability domain does not disappear
as the sampling period h tends to zero. Furthermore, they suggest that the critical
value of b converges to ±1/a. This latter feature can easily be confirmed by writing the
characteristic equation of the monodromy matrix Θ in the form

(
µ − eah

) (
µr+1 − ab eah

)
= ab eah

(
eah − 1

)
. (27)

For small sampling period h, the roots can be approximated as

µ1 ≈ 1 + ah and µl ≈ (ab(1 + ah))
1

r+1 ei 2lπ
r+1 , l = 2, 3, ..., r + 2. (28)

The condition for asymptotic stability in this case is a < 0 with |ab(1 + ah)| < 1. This
confirms that as h tends to zero, the stability boundaries in the plane (a, b) tend to
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Figure 7: Number of unstable eigenvalues of the sampled AFDE (23) for τ = 1 and for
different sampling periods h.

b = ±1/a with a < 0. On the other hand, the transition h → 0 corresponds to the
original AFDE, i.e., in this case the system has infinitely many unstable poles if h = 0
and b �= 0. This shows that as h → 0, the system is stable if |b| < −1/a with a < 0, but
in the limit case, i.e., when h = 0, “suddenly”, infinitely many poles become unstable.
This phenomenon is presented in figure 9.

The approximations in equation (28) show that as the sampling period h gets smaller
and smaller, one pole (µ1) approaches to 1, while the other (r + 1) poles cluster round
the circle of radius ab in the complex plane. This phenomenon is presented in figure 10
for some special parameter combinations. Three special cases are considered:

• a = −1, b = 2.5: The system is unstable for any sampling periods h. The number
of unstable poles is increasing as h is decreasing. For h < 0.2, the magnitude of the
critical eigenvalue is decreasing, the poles approaches the unit circle from outside.

• a = −1, b = 1.5: The system is stable for h = 1 but unstable for any other h < 1.
The number of unstable poles is increasing as h is decreasing. The magnitude of the
critical eigenvalue is decreasing, the poles approaches the unit circle from outside.

• a = −1, b = 0.5: The system is stable for all h > 0. The number of stable poles is
increasing as h is decreasing. The magnitude of the critical eigenvalue is increasing,
the poles approaches the unit circle from inside.

The magnitude |µ1| of the critical eigenvalue is given for each plots. These diagrams
demonstrate how the jump of infinitely many poles outside the unit circle appears as
h → 0.
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Figure 10: Location of the poles for different parameter combinations. The unit circle is
denoted by grey line.

6 Conclusion

In this paper, the AFDE (22) and its sampled counterpart (23) or, in other form, (24),
were analyzed. It was shown that the sampled AFDE (23) is asymptotically stable for
certain parameter combinations while the original AFDE (22) is always unstable with
infinitely many unstable poles (if b �= 0). The transition h → 0 was analyzed and it
was found that the stable parameter domains of the sampled AFDE do not disappear as
h → 0, in spite of the fact that in the limit case when h = 0, the system has infinitely
many unstable poles. This unusual phenomenon, namely, that infinitely many unstable
poles appear for an infinitesimal change in the system’s parameters is not unique for
FDEs, see, for example, the case of a delayed follower force in Example 3.7 in Stepan
(1989).

From practical point of view, this strange transition between the sampled and the
continuous cases is not very interesting, since as h → 0, more and more eigenvalues get
closer and closer to the unit circle. For instance, a system with many critical poles of real
parts ln 0.99, can be considered practically unstable, since the decay of the oscillations
are extremely slow compared to the dynamics of the system.

However, the interesting point is that an advanced system with delayed feedback of
the highest derivative (which is known as infinitely unstable) can be stabilized by periodic
sampling of the feedback, i.e., by making the argument of the delayed term piecewise con-
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stant. This phenomenon is somewhat similar to the delayed Mathieu equation (Insperger
and Stepan, 2002), where a parametric excitation in the stiffness stabilizes the delayed
system. In the current case, sampling can be considered as a kind of parametric excitation
in the delay as it was shown by equation (24) with (13) (see also figure 2). In this case,
parametric excitation in the delay stabilizes the otherwise infinitely unstable system.

In the current analysis, one of the simplest AFDE was considered, however, similar
equations may appear in many realistic problems, like in case of the stick balancing
problem introduced in Section 2. In general, equations with advanced terms can typically
arise in controlled mechanical systems, since the output may easily be affected by the
acceleration or by the jerk of the system. This effect is often considered to be a kind of
noise in the output, and is therefore often neglected, however, it may have an important
role in the system’s dynamics. Consider the output of a general system in the form

y(t) = f(t, x(t − τ), ε1ẋ(t − τ), ε2ẍ(t − τ)), (29)

where y ∈ R
m is the output, x ∈ R

n is the state, and ε1 and ε2 are small, but nonzero
parameters. Usually, such effects are neglected, i.e., ε1 and ε2 are considered to be zero.
However, if they are not neglected, then the linearized equation has the form

ẋ(t) = Ax(t) + B0x(t − τ) + ε1B1ẋ(t − τ) + ε2B2ẍ(t − τ) (30)

with A, B0, B1 and B2 being appropriate matrices obtained during the linearization. If
the parameter ε2 is nonzero, then this equation is an AFDE, and the system is unstable
with infinitely many unstable poles, independently of the exact value of ε2. While the
effect of higher order derivatives is rarely modeled in practical applications, a system’s
unexpected instability or its other weird behavior are often referred to as the consequence
of “unmodeled system dynamics”. If the system works properly then it is often attributed
to the robustness of the controller and often no detailed explanation is given. In this work,
it was shown that one explanation for the stable operation of such systems may be the
sampling effect of digital control.
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