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Abstract— In this paper, we demonstrate how the network
latency, the longitudinal velocity and the path curvature affect
performance of the teleoperated driving (ToD). The perfor-
mance of a ToD system is studied analytically through stability
analysis of a dimensionless vehicle dynamics model with a
scaled delay, which integrates the end-to-end (E2E) latency
and the longitudinal velocity of the vehicle. We also establish a
numerical simulation framework for ToD while incorporating
a stochastic latency in the control loop arising from vehicle-to-
network-to-vehicle (V2N2V) communication through a wireless
network. The stochasticity of the latency mostly comes from the
network scalability challenges to support high video bitrates,
which also leads to packet drops. We provide simulation results
of teleoperating a vehicle in a realistic parking lot scenario
and demonstrate the effects of speed, curvature and stochastic
latency on the maneuver performance.

Index Terms— teleoperated driving, network latency, vehicle
dynamics and control

I. INTRODUCTION

As a supplement to automated driving [1], where vehicles
control their motion using on-board computation units; tele-
operated driving (ToD) has control commands given through
a communication network [2], [3]. With ToD, the vehicles
can offload the expensive computation units to reduce cost,
while still enjoy the same (or even more) computational
power, as well as the automated features provided by the re-
mote operator center. Moreover, under emergency situations,
such as system failure of the autonomous vehicle or medical
emergency of the human driver, teleoperated vehicles allow
the remote operator (either automated or human operated) to
take over and ensure safety.

The architecture of a ToD control loop is presented in
Fig. 1. The teleoperated vehicle sends the information of
the surrounding environment to the remote controller via
the uplink communication channel, and the remote center
sends instructions back to the vehicle via the downlink
communication channel for execution. One of the biggest
challenges introduced by such a communication structure is
the latency [4]–[6]. According to the standard SAE J3016 [7],
depending on the type of instructions sent by the remote
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center and the autonomy level of the vehicle, the types of
ToD can be categorized into three levels [8]: strategic level,
tactical level, and operational level. In this paper, we focus
on the operational level where the actual commands, such as
velocity and steering angle, are sent to the vehicle instead of
the high-level plans. One of the applications is valet parking,
where the remote operator drives the vehicle in a parking lot
at low speeds. This type of operation does not require high
autonomy from the teleoperated vehicles, but it is sensitive
to the latency experienced in the control loop.

The end-to-end (E2E) latency originates from multiple
sources: (i) Time needed to send and receive data packets [5],
[9]; (ii) Processing time of the remote operator [10]–[12];
(iii) Actuation delay of the vehicle [13], [14]. In addition,
the increase of the latency can result in packet loss that
strongly impacts the ToD service performance [5], [15].
While researchers and engineers have been working on
designing low-latency communication networks and on re-
ducing latency in video streaming [16], [17], the E2E latency
cannot be eliminated due to the latency sources (ii)-(iii). For
example, an automated vehicle can have a non-negligible de-
lay in the longitudinal dynamics of around 0.6 seconds [18].
The E2E latency in the control loop also varies in time, due
to the packet loss in the communication network and the
zero-order-hold implementation of the control commands [5],
[15]. The stochasticity in latency can sometimes lead to
unstable behaviors even though the system is stable under
its average latency [19]. It is crucial to account for the E2E
latency when evaluating the controller’s performance [20].

The contributions of this work are summarized as follows.
First, we show that the E2E latency and the longitudinal
velocity have the same fundamental effect on stability, which
can be characterized by a scaled delay using a dimensionless
vehicle dynamics model. Second, we derive the stability
boundaries in closed form for different scaled delay and
path curvature values, providing performance bounds for a
given controller under different scenarios. Third, we consider
stochastic network latencies in numerical simulations of
realistic driving scenarios using a wireless network under
different ToD network traffic conditions.

The rest of the paper is organized as follows. In Section II,
we introduce the vehicle model and the control algorithm,
and conduct stability analysis on the linearized and nondi-
mensionalized vehicle dynamics model with constant E2E
latency. Then, in Section III, we introduce a more realistic
communication latency model and provide simulation results
for ToD scenarios in a parking lot. We conclude the results
and provide future directions in Section IV.
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Fig. 1. Latency components in the control loop of teleoperated driving:
δtul and δtdl are the minimum sampling times in the uplink and downlink,
respectively; τul and τdl are the travel times in the uplink and downlink,
respectively; δtp is the processing time of the remote controller; δta is the
minimum sampling time of the actuator; and τa is the actuation delay.

II. STABILITY ANALYSIS WITH CONSTANT LATENCY

The stability of the lateral vehicle dynamics when follow-
ing a straight path with time delay was studied in [21] for
both linear and nonlinear systems. In this work, we focus on
the case of following a curved path. In this section, we estab-
lish the closed-loop dynamics of a vehicle model with time
delay in the control loop while utilizing path coordinates, and
analyze the stability of the linearized, nondimensionalized
system.

A. Closed-loop Time Delay System

Consider the bicycle model of a vehicle [22] in Fig. 2,
where v is the longitudinal velocity and l is the wheelbase.
The center of the rear axle R has the coordinates (xR, yR),
while the orientation of the vehicle is given by the yaw angle
ψ, and γ denotes the steering angle. The dynamics of the
vehicle is given by the differential equations

ẋR = v cosψ,

ẏR = v sinψ, (1)

ψ̇ =
v

l
tan γ,

where the dot represents the derivative with respect to time t.
The closest point to R along the path is point C, which

is located at (xC, yC) and has the tangential angle ψC and
the curvature κ. Thus, the lateral deviation from the path is
defined as

ε = −(xR − xC) sinψC + (yR − yC) cosψC, (2)

and the relative yaw angle is defined as

θ = ψ − ψC. (3)

With these coordinates, the model (1) can be formulated as

ṡ =
v cos θ

1− κ ε
,

ε̇ = v sin θ, (4)

θ̇ =
v

l
tan γ − v κ cos θ

1− κ ε
,

where s is the arclength at point C.
Inspired by the controller in [23], we use the controller

γd = arctan
(
l κ− k1

(
θ + arctan(k2ε)

))
, (5)

to assign the desired steering angle, where k1, k2 are the
control gains.
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Fig. 2. Bicycle model of the vehicle represented in path coordinate system

In real-world implementations, the velocity and steering
angle commands may not be achieved immediately due
to the communication latency and neglected dynamics in
acceleration and steering rate. Therefore time delays should
be considered in the inputs. We assume that the vehicle can
realize the desired velocity vd and steering command γd
with some delay, that is, v(t) = vd(t− τ), γ(t) = γd(t−τ).
Then the closed-loop system can be represented by the delay
differential equations

ṡ(t) =
vd(t−τ) cos θ(t)
1− κ(t) ε(t)

,

ε̇(t) =vd(t−τ) sin θ(t), (6)

θ̇(t) =− vd(t−τ)κ(t) cos θ(t)
1− κ(t) ε(t)

+
vd(t−τ)

l

(
l κ(t−τ)

− k1

(
θ(t−τ) + arctan

(
k2ε(t−τ)

)))
.

Note that the curvature κ(t) is time-varying because point C
travels along the path as the vehicle moves. Moreover, the
latency τ can also be a function of time. We will consider
these factors in the numerical simulations in Section III.

B. Stability Analysis

For the stability analysis, we assume that the vehicle is
running at a constant velocity v(t) ≡ v∗ while trying to
approach a circular reference path of constant curvature
κ(t) ≡ κ∗. The system (6) has a desired steady-state solution

s∗(t) = v∗t, ε∗(t) ≡ 0, θ∗(t) ≡ 0. (7)

By defining the perturbations s̃ = s− s∗, ε̃ = ε− ε∗,
θ̃ = θ − θ∗, we can obtain the linearized system

˙̃s(t) =v∗κ∗ε̃(t),

˙̃ε(t) =v∗θ̃(t), (8)

˙̃
θ(t) =− v∗κ

2
∗ε̃(t)−

v∗k1k2
l

ε̃(t− τ)− v∗k1
l
θ̃(t− τ).

This can be nondimensionalized by using the scaled quanti-
ties t̂ = tv∗/l, τ̂ = τv∗/l, ŝ = s̃/l, ε̂ = ε̃/l, θ̂ = θ̃:

ŝ′(t̂) =l κ∗ε̂(t̂),

ε̂′(t̂) =θ̂(t̂), (9)

θ̂′(t̂) =− l2κ2∗ε̂(t̂)− k1k2 l ε̂(t̂− τ̂)− k1θ̂(t̂− τ̂),
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Fig. 3. (a)-(b) Stability charts for curvatures κ∗ = 0 m−1 and
κ∗ = 0.2 m−1. (c)-(d) Simulations when following a straight path
(κ∗ = 0 m−1) under different scaled delays. (e)-(f) Simulations when
following a circular path (κ∗ = 0.2 m−1) under different scaled delays.

where the prime represents the derivative with respect to
the nondimensional time t̂. Assuming exponential solutions
results in the characteristic equation

λ2 + k1λe
−λτ̂ + k1k2 l e

−λτ̂ + l2κ2∗ = 0. (10)

The linear system (9) is stable if and only if all char-
acteristic roots of (10) have negative real parts, i.e.,
Re(λi) < 0, i = 1, 2, . . .. Substituting λ = 0 yields the sta-
bility boundary

k1k2l = −l2κ2∗, (11)

while using λ = jω, ω > 0, results in the stability boundary

k1 = (ω2 − l2κ2∗)
sin(ωτ̂)

ω
,

k1k2l = (ω2 − l2κ2∗) cos(ωτ̂).
(12)

which is parameterized by the angular frequency ω. Recall
that the longitudinal velocity v∗ is integrated with the latency
τ in the scaled (dimensionless) delay τ̂ = τv∗/l.

The stability boundaries of different scaled delays are
plotted in Fig. 3(a) and (b) for curvatures κ∗ = 0 m−1

and κ∗ = 0.2 m−1, respectively. The stable region shrinks

as the scaled delay increases and increasing the curvature
shifts the stable region downwards. In panels (c)-(f), we
show the numerical simulations of the original nonlinear sys-
tem (6) with gains k1 = 1, k1k2l = 0.45, latency τ = 0.5 s,
and wheelbase l = 2.73 m while following a straight path
(κ∗ = 0 m−1) and a 5-meter-radius circle (κ∗ = 0.2 m−1).
The initial position and the orientation of the vehicle are
visualized using black arrows. By choosing different veloc-
ities v∗ = 2.73 m/s and v∗ = 5.46 m/s, the scaled delays
are τ̂ = 0.5 and τ̂ = 1, respectively. For τ̂ = 0.5 the control
gains are located within the stability boundary in panels (a)-
(b) and the trajectories converge to the desired paths in panels
(c) and (e). For zero curvature, as the scaled delay increases
to τ̂ = 1, the stability boundary gets close to the selected
gains while still enclosing them in panel (a). This results in
the oscillatory (but still stable) motion in panel (d). That is,
increasing the scaled delay leads to performance degradation.
For nonzero curvature, the same gains fall outside the stable
region in panel (b) and simulations in panel (f) show that the
system no longer converges to the circular path.

The performance of the controller is largely affected by
the scaled delay, i.e., the longitudinal velocity and the E2E
latency in the loop. The path curvature can also limit the
performance in the presence of the latency. The stability
analysis provides insights about the behavior of the original
nonlinear system and informs us about the performance of a
given controller for different maneuvers.

III. NUMERICAL SIMULATION WITH STOCHASTIC
TIME-VARYING LATENCY

In this section, we consider stochastic network latency in
the control loop and use numerical simulations to examine
the performance when teleoperating a vehicle which follows
a curved path with a prescribed velocity profile. The E2E
latency, the longitudinal velocity, and the path curvature are
all time-varying in this scenario.

A. Model of Stochastic Time-varying Latency

We model different latencies in the control loop which
constitute the E2E latency. We account for latencies arising
from the transmission of the packets through the uplink and
downlink channels of a mobile wireless network, from the
processing time of the teleoperating center, and from the
actuation time of the vehicle; see Fig. 1.

We consider a scenario where the ToD service is supported
by a wireless network. In this case, the packets are sent from
the vehicle to the remote center along the uplink every δtul
(corresponding to the maximum sampling rate) and the travel
time of each packet between the vehicle and remote center is
τul, see top of Fig. 4(a). The controller in the remote center
has a processing delay δtp. This is fixed such that it covers
the time of converting the latest received images/information
into the states of the system and the time of computing the
control commands. During the processing time, the controller
is not taking new information arriving at the remote center.
A zero-order-hold (ZOH) is used to convert the command
generated by the controller from discrete time to continuous
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Fig. 4. (a) Age of information arising in the uplink due to the sampling
time δtul, travel time τul, packet drops, and zero-order-hold in the controller.
(b) The cumulative distribution function (CDF) of the travel time τul in the
uplink. (c) The realizations of stochastically varying E2E latency profiles.

Case Vehicle
density

Image
quality

Average uplink & downlink
latencies ⟨τul⟩& ⟨τdl⟩

Packet
drop ratio

I Low1 Low3 9.90 ms & 8.41 ms < 0.1%

II Low High4 12.90 ms & 8.41 ms 0.2%

III High2 Low 17.00 ms & 8.42 ms 42.3%

IV High High 24.14 ms & 8.42 ms 89.8%

1 1 veh/km/lane 2 2 veh/km/lane 3 4.5 Mbps 4 32 Mbps

TABLE I
CHARACTERISTICS OF THE NETWORK LATENCY IN FOUR CASES

time, that is, the control inputs are held constant between two
consecutive commands. This results in a linearly increasing
latency until a new command is generated [24].

We define the age of information for the nth command as

∆tage(tC,n) = tC,n − tP,m, (13)

where tC,n is the time when the controller takes in the
information, and tP,m is the time when the mth packet is
sent from the vehicle. Here, the mth packet is the latest
packet received at tC,n, i.e., m can be viewed as a function
of n. In Fig. 4(a), the controller is taking information
every δtp and tC,n = nδtp, n = 0, 1, 2, . . .. The packets are
sent at tP,m = −τul +mδtp,m = 0, 1, 2, . . . via the uplink,
so the first arrived packet triggers the controller at t = 0.
Some packets are lost in the uplink, therefore one value
of m could be associated to multiple values of n. The
corresponding function m(n) is stochastic and depends on
the latency and packet drop ratio experienced in the uplink of
the wireless network (modeled by the probabilistic network
latency model). The age of information grows linearly with
slope 1 between the generation of two commands. When the
controller issues a new command, ∆tage(t) drops back to

a lower value given by the time when the latest received
packet was generated. This leads to the irregular saw-tooth-
shape of the time-varying latency as shown in Fig 4(c) for
four different cases.

After a control command is generated, it is sent through
the downlink with minimum sampling time δtdl. The travel
time in the downlink is τdl. The control commands are not
dropped in the downlink since these are very small packets
(compared to the video frames transmitted in the uplink),
and thus, generate a small load on the network [5]. Once
the vehicle receives the control command it executes it with
minimum sampling time δta and subject to actuator delay
τa associated with the vehicle dynamics. Here, we assume
that δtp is the largest among δtul, δtp, δtdl, δta, i.e., the
control commands are generated at a slower rate than other
components. Consequently, the commands can always be
sent immediately after generation and executed immediately
after arriving at the vehicle. Therefore, the time at which the
nth command is realized at the teleoperated vehicle is

tn = tC,n + δtp + τdl + τa = (n+ 1)δtp + τdl + τa, (14)

and the E2E latency in control loop at tn is

τ(tn) = tn − tP,m(n). (15)

In general for t ∈ (tn, tn+1), the E2E latency is given by

τ(t) = t− tn + τ(tn). (16)

Considering the stochasticity of the communication net-
works, we use the probabilistic model [25] developed for
four common scenarios defined based on the ToD service
requirements established by 5GAA [26]. More details can be
found in [6]. Figure 4(b) depicts the cumulative distribution
function (CDF) of latency experienced in the uplink when
packets are transmitted from the vehicle to the remote
controller through the wireless network. Note that because
some packets are dropped, the CDF does not always reach
1. The average uplink and downlink latencies and the packet
drop ratios under these four different cases are collected in
Table I.

To obtain the realistic latency profile as a function
of time, we generate a sequence of packets at times
tP,m = −τul +mδtul and use the probabilistic model to
determine the latency for each packet and whether the packet
is delivered or not. The uplink packet sequence will record
the latest arrived packet number m versus time t. Thus, at
time tC,n, one can obtain the corresponding index m and the
sending time of mth packet tP,m = mδtul. Every time when
a command based a new packet is generated, we use the
probabilistic network latency model to obtain the downlink
latency τdl.

We use δtul = δtdl = δta = 20 ms [25], δtp = 100 ms,
τa = 100 ms as constants, and τul, τdl as random variables
whose values are sampled from the network latency model.
The E2E latency profiles as a function of time can then be
generated using (14)-(16). The realizations of latency profiles
in four common cases are shown in Fig. 4(c) with their
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Fig. 5. Simulation results for different latency profiles and velocity plans. (a) Two latency profiles generated based on Case IV, τave = 0.46 s.
(b) Reference path (blue solid curve) and the simulation of the ToD without any latency. (c) The curvature function along the reference path with
|κmax| = 0.1245 m−1. (d) Two velocity plans along the given path with vmax = 3 m/s or vmax = 6 m/s. (e) Stability chart for κ∗ = 0.1245 m−1,
τ = 0.46 s, v∗ = 3 m/s ⇒ τ̂ = 0.5, and τ = 0.46 s, v∗ = 6 m/s ⇒ τ̂ = 1. (f)-(i) Simulation results for the different velocity plans, with latency profiles
τ1(t) (red) and τ2(t) (green) respectively.

average values τave highlighted. When the packet drop ratio
is low, the stochasticity in τul, τdl does not contribute much to
the E2E latency. In these cases, the saw-tooth-shape profiles
are more regular and can be approximated as a constant by
taking the average of the latency. When the packet drop ratio
is high, information loss can happen frequently in the uplink
which affects the generation of new commands. Due to the
stochasticity, the realizations of the E2E latency profiles
can look very different for the same packet drop ratio, see
Fig. 5(a).

B. Simulation Results

We present simulation results of ToD under stochastic
time-varying latency for a parking lot scenario. The map
of the parking lot is generated from measurements of a real
lot. Here the vehicle’s goal is to go from one parking spot
to another following a given curved path, see Fig. 5. This
case can be generalized to many low-speed maneuvers with
predefined curvatures and velocity plans along the desired
paths. The two stochastic latency profiles shown in panel
(a) are generated for Case IV network configuration with
average E2E latency τave = 0.46 s. This case is chosen since
the effects of the stochastic latency are more pronounced due
to the high packet drop ratio. We also conducted numerical
simulations under other stochastic latency profiles generated
for Cases I-III. In those cases the simulations are very similar
to the simulations generated when using the average E2E
latency as a deterministic delay. The vehicle starts from
standstill at a spot on the right and terminates its motion
at the spot on the left following the blue path in panel

(b), with two different velocity plans. The desired path
is determined by a continuous curvature function shown
in panel (c), using the 3-clothoid method [27], [28]. The
maximum curvature of the path is κmax = 0.1245 m−1

and the maximum velocities for the two velocity plans are
vmax = 3 m/s and vmax = 6 m/s, as depicted in panel (d).
When there is no latency in the teleoperated control loop,
the vehicle can follow the path perfectly for both velocity
profiles, see the light blue simulation in the panel (b).

The stability boundaries for constant curvature
κ∗ = 0.1245 m−1, constant scaled delays τ̂ = 0.5 and τ̂ = 1
are shown in panel (e). The two scaled delays correspond
to the same latency τ = 0.46 s, wheelbase l = 2.73 m,
but different velocities v∗ = 3 m/s and v∗ = 6 m/s. We
choose the control gains k1 = 1.5, k1k2l = 0.5 in the
controller (5) as indicated by blue diamond, which is inside
the stable region for τ̂ = 0.5 but outside the stable region
of τ̂ = 1. We simulate the nonlinear closed-loop system (6)
with time-varying τ(t), v(t) and κ(t). The simulation
results for vmax = 3 m/s are shown in panels (f) and
(g), with the latency profiles τ1(t) and τ2(t), respectively.
The difference between the vehicle trajectories is small
in these two simulations. On the contrary, the simulations
for the larger velocity vmax = 6 m/s look very different
in panels (h) and (i), which means that this maneuver is
more sensitive to the stochasticity in the latency profiles.
The linear stability analysis for the constant parameters
(E2E latency, longitudinal velocity and path curvature) still
provides useful insights regarding the qualitative results of
the nonlinear simulations with time-varying parameters.

1845



IV. CONCLUSION

We presented the effects of network latency, longitudinal
velocity and path curvature on the performance of teleop-
erated driving (ToD) through both analytical investigation
and numerical simulations. By rescaling the corresponding
equations of motion, we derived the scaled delay parameter
which captures the effects of both delay and speed on the
stability of ToD. We showed how the scaled delay and the
path curvature fundamentally change the stability of the
ToD model. In the numerical simulations, we considered
low-speed parking lot maneuvers where the teleoperated
vehicle’s goal was to move from one parking space to
another. We accounted for the stochastic nature of wireless
communication and obtained time-varying latency profiles
by generating sequential packets using a realistic network
latency model. Paths with larger curvature and higher speed
profiles are more sensitive to the stochasticity of the network
latency and the performance degrades as the average latency,
the speed, or the curvature increases. The results based on
the scaled delay also suggest that the remote operator shall
lower the velocity if large latency is observed.

In this study, the perception and planning units were
lumped into the controller with one processing delay. As
a future direction, it is important to consider the effects of
network latency on the accuracy of the state observations and
the effects on the remote human operator’s driving behaviors.
Moreover, we plan to establish other metrics for evaluating
the performance of ToD under network latency, considering
the deviation from the path and the safety with respect to the
surrounding environment. More sophisticated planning and
control methods can be developed based on such evaluation.
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