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Abstract 

In this study, we analyze the stability of a path-tracking controller designed for a four-wheel steering vehicle, 

incorporating the effects of the reference path curvature. By employing a simplified kinematic model of the 

vehicle with steerable front and rear wheels, we derive analytical expressions for the stability regions and 

optimal control gains specific to different four-wheel steering strategies. To simplify our calculations, we 

keep the rear steering angle 𝛿r proportional to the front steering angle 𝛿f by using the constant parameter 𝑎, 

i.e., 𝛿r = 𝑎𝛿f, where 𝛿f is calculated from a control law having both feedforward and feedback terms. 

Our findings, supported by stability charts and numerical simulations, indicate that for high velocities and 

paths of small curvatures, the appropriately tuned four-wheel steering controller significantly reduces lateral 

acceleration and enhances path-tracking performance when compared to using only front-wheel steering. 

Furthermore, for low velocities and large curvatures, the using negative 𝑎 values (i.e., steering the rear 

wheels in the opposite direction than the front wheels) allows for a reduced turning radius, increasing the 

vehicle's capability to perform sharp turns in confined spaces like in parking lots or on narrow roads. 
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1 Introduction 

The automotive industry continues to enhance safety and driving performance through ongoing technological 

innovations. Among these advancements, the four-wheel steering (4WS) system has emerged as a pivotal 

technology that can significantly improve vehicles’ handling capabilities [1]. By controlling the steering 

angles of both the front and rear wheels, the 4WS system enhances vehicle stability, steering responsiveness 

and maneuverability at both low and high speeds [2]-[4]. This system may be particularly beneficial for 

improving stability during high-speed driving and for enhancing maneuverability during low speed driving 

[5], [6], making it versatile across various driving conditions. This contributes to the safety of both the driver 

and passengers, while it can also reduce the vehicle’s turning radius, making parking and maneuvering in 

tight spaces easier, which is an advantage in urban environments. The purpose of this study is to analyze the 
key features of 4WS and highlight the performance improvements they offer for automotive systems.
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2 Vehicle model 

In this section, a kinematic bicycle model of a 

vehicle is derived, considering both the front and 

rear steering angles. We assume constant 

longitudinal velocity V and assigned steering 

angles for both the front and rear wheels, while the 

roll, pitch, vertical and tire dynamics are neglected. 

The vehicle parameters contain the wheelbase f, the 

distance d between the center of gravity G and the 

rear axle center point R, as shown in Fig. 1. 

 

Figure 1: Schematic of a kinematic bicycle vehicle 

model with four-wheel steering.  

2.1 Vehicle model in the global 

reference frame 

In the global reference frame, the coordinates 𝑥R 

and 𝑦R of point R, along with the yaw angle 𝜓, are 

used as generalized coordinates to describe the 

vehicle’s position and orientation. Since the tire 

dynamics are neglected, tire slip does not occur and 

the directions of the velocity vectors at the wheel 

center points F and R align with the directions of 

the wheels. The three kinematic constraints of the 

4WS vehicle model can be expressed as 

 

{

𝐯F × 𝝆1 = 𝟎,
𝐯R × 𝝆2 = 𝟎,
𝐯R ∙ 𝝆2 = 𝑉,

 (1) 

where 

𝐯F = 𝐯R +𝛚× 𝐫RF, (2) 

𝝆1 = [
cos(𝜓 + 𝛿f)

sin(𝜓 + 𝛿f)
0

] , 𝝆2 = [
cos(𝜓 + 𝛿r)

sin(𝜓 + 𝛿r)
0

],  (3) 

𝐯R = [
�̇�R
�̇�R
0
] , 𝐯F = [

�̇�R − 𝑓�̇�sin𝜓

�̇�R + 𝑓�̇�cos𝜓
0

]. (4) 

 

Here 𝐯F and 𝐯R are the velocity vectors at points F 

and R, respectively, while 𝝆1  and 𝝆2  are the 

direction vectors of the front and rear wheels, 

respectively. Also, 𝐫RF = [𝑓 cos𝜓 𝑓 sin𝜓 0]T 

is the vector pointing from R to F, while 

𝛚 = [0 0 �̇�]
T

 is the angular velocity vector. 

Then the constraint equations can be simplified to 

 

(�̇�R − 𝑓�̇�sin𝜓) sin(𝜓 + 𝛿f) − 

(�̇�R + 𝑓�̇�cos𝜓) cos(𝜓 + 𝛿f) = 0, 
(5) 

�̇�R sin(𝜓 + 𝛿r)− �̇�R cos(𝜓 + 𝛿r) = 0, (6) 

�̇�R cos(𝜓 + 𝛿r)+ �̇�R sin(𝜓 + 𝛿r)− 𝑉 = 0. (7) 

 

From these equations the time derivatives of the 

generalized coordinates can be expressed as  

 

�̇�R = 𝑉cos(𝜓 + 𝛿r), (8) 

�̇�R = 𝑉sin(𝜓 + 𝛿r), (9) 

�̇� =
𝑉sin(𝛿f − 𝛿r)

𝑓cos𝛿f
. (10) 

 

The velocity of the center of gravity G can be 

expressed using the transport formula: 

 

𝐯G = 𝐯R +𝛚× 𝐫RG, (11) 

 

where 𝐫RG = [𝑑 cos𝜓 𝑑 sin𝜓 0]T is the vector 

pointing from R to point G. By differentiating 

equation (11), the acceleration vector of the center 

of mass G can be calculated as 

 

𝒂G = [

𝑎G𝑥
𝑎G𝑦
0
] =                                                (12) 

[

−𝑉(�̇�+ �̇�r)sin(𝜓 + 𝛿r) − 𝑑�̇�
2
cos𝜓− 𝑑�̈� sin𝜓

   𝑉(�̇�+ �̇�r)cos(𝜓 + 𝛿r) − 𝑑�̇�
2
sin𝜓+ 𝑑�̈� cos𝜓

0

]. 
 

Therefore, the lateral acceleration at point G is  

 

𝑎G
lat = −𝑎G𝑥 sin𝜓+ 𝑎G𝑦 cos𝜓 

      = 𝑉(�̇�+ �̇�r)cos𝛿r + 𝑑�̈�. 

(13) 

2.2 Transformation to the path-

reference frame 

To design the path-tracking controller, the absolute 

position and orientation (𝑥R, 𝑦R, 𝜓) expressed in 

the Earth-fixed frame are converted to the relative 

position and orientation (𝑠C, 𝑒C, 𝜃C) with respect to 

the path, where point C is the closest point of the 

reference path to point R (see Fig. 1), 𝑠C  is the 

arclength coordinate, while 𝑒C  and 𝜃C  are the 

lateral and angle errors at point C. The coordinate 

transformation for an arbitrary point in differential 

form can be expressed as in [7]: 
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�̇�C =
�̇�R cos𝜓C + �̇�R sin𝜓C

1 − 𝜅C𝑒C
, (14) 

�̇�C = −�̇�R sin𝜓C + �̇�R cos𝜓C, (15) 

�̇�C = 𝜅C
�̇�R cos𝜓C+ �̇�R sin𝜓C

1 − 𝜅C𝑒C
+ �̇�, (16) 

 

where the angle 𝜓C represents the direction of the 

tangential vector 𝐭C, we used 𝜃C =  𝜓 − 𝜓C, while 

𝜅C denotes the curvature of the path at point C. By 

substituting equations (8), (9), and (10) into 

equations (14), (15), and (16), the transformed 

vehicle model becomes 

 

�̇�C =
cos(𝜃C + 𝛿r)

1 − 𝜅C𝑒C
, (17) 

�̇�C = 𝑉 sin(𝜃C + 𝛿r), (18) 

�̇�C = −
𝜅C𝑉 cos(𝜃C + 𝛿r)

1 − 𝜅C𝑒C
+
𝑉sin(𝛿f − 𝛿r)

𝑓cos 𝛿f
, (19) 

 

where the first equation describes the longitudinal 

motion of point C along the path, while the last two 

equations give the evolution of lateral deviation 

and relative yaw angle with respect to the path. In 

the following, the transformed equations will be 

used to design a path-tracking controller. 

3 Path-tracking controller design 

In this section, path-tracking controllers are 

designed to ensure that the point R follows the 

desired path on the road. In order to simplify the 

analysis, a straight reference path along the x-axis 

is considered first, using equations (8), (9), and 

(10). Next, a controller for a reference path with 

varying curvature is designed using equations (17), 

(18), and (19). 

3.1 Straight path-tracking controller 

Our path-tracking controller uses a simple linear 

feedback control law to determine the steering 

angles for the front and rear wheels, guiding the 

rear axle center point R along a specified path 

while maintaining a zero relative yaw angle. The 

control law is as follows: 

 

𝛿f
FB = −𝑘1𝑦R − 𝑘2𝜓, (20) 

𝛿r
FB = −𝑘3𝑦R − 𝑘4𝜓, (21) 

 

and the resulting closed-loop lateral dynamics are 

 

�̇�R = 𝑉(𝜓 − 𝑘3𝑦R − 𝑘4𝜓),                       (22) 

�̇� =
𝑉

𝑓
((−𝑘1 + 𝑘3)𝑦R + (−𝑘2 + 𝑘4)𝜓), (23) 

 

where 𝑘1  and 𝑘2  are the feedback gains for the 

front steering angle, 𝑘3 = 𝑎𝑘1  and 𝑘4 = 𝑎𝑘2  are 

feedback gains for the rear steering angle, and 𝑎 is 

a proportional parameter. Note that if 𝑎 = 0, the 

system reduces to a front wheel steering vehicle. 

3.2 Curved path-tracking controller 

In this section, both feedback and feedforward 

controllers are designed to ensure that the rear axle 

center point R follows the desired path on the road. 

The feedforward controller can accurately predict 

the steering angle for a given curvature in steady-

state conditions but cannot correct errors caused by 

the initial state or disturbances. The feedback 

controller adjusts the steering angle based on real-

time measurements to correct these errors. By 

combining these two control strategies, precise 

path tracking is achieved, enhancing the overall 

stability and performance of the vehicle. Based on 

this, we chose 

 

𝛿f = 𝛿f
FF + 𝛿f

FB, (24)  

𝛿r = 𝛿r
FF + 𝛿r

FB, (25) 

 

where 𝛿f
FF and 𝛿f

FB are the front feedforward and 

feedback steering angles, while 𝛿r
FF  and 𝛿r

FB  are 

the rear feedforward and feedback steering angles. 

When the lateral deviation and the relative yaw 

angle become zero, point R moves on the path, and 

the feedforward term can be determined using 

equations (18) and (19) yielding 

 

𝛿f
FF = tan−1(𝜅C𝑓), (26) 

𝛿r
FF = 0. (27) 

 

The feedback controller is designed using 

proportional terms for the error terms 𝑒C and 𝜃C, 

similarly to equations (20) and (21): 

 

𝛿f
FB = −𝑘1𝑒C − 𝑘2𝜃C, (28) 

𝛿r
FB = −𝑘3𝑒C − 𝑘4𝜃C, (29) 

 

where 𝑘1 and 𝑘2 are feedback gains for the front 

steering angle, while 𝑘3 = 𝑎𝑘1  and 𝑘4 = 𝑎𝑘2 are 

feedback gains for the rear steering angle. 

4 Stability analysis 

In this section, the linear stability of the proposed 

controller is analyzed. The steady state solutions of 

𝑒C  and 𝜃C  are 𝑒C
∗ = 0  and 𝜃C

∗ = 0 , respectively, 

which correspond to following the path perfectly. 
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4.1 Stability of the linearized system 

By defining the state perturbations 

 
�̃�C = 𝑒C − 𝑒C

∗ , (30) 

�̃�C = 𝜃C − 𝜃C
∗ , (31) 

 

we linearize the system about the steady state 

resulting in 

 

�̇�(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡), (32)  

 

where the state and input vectors are 𝐱 = [�̃�C 𝜃C]
T 

and 𝐮 = [𝛿f 𝛿r]
T, respectively, and the feedback 

law can be formulated as 𝐮 = 𝐊𝐱. The matrices are 

 

𝐀 = [
0 𝑉

−𝑉𝜅C
2 0

] , 𝐁 = [

0 𝑉
𝑉

𝑓
−
𝑉

𝑓
],  

   𝐊 = [
−𝑘1 −𝑘2
−𝑘3 −𝑘4

], 

(33) 

 

The characteristic equation of the linear system is  

 

𝐷(𝜆) = det(𝜆𝐈 − 𝐀 − 𝐁𝐊) 

        = 𝜆2 +
𝑉

𝑓
(𝑓𝑎𝑘1 + (1 − 𝑎)𝑘2)𝜆 

+ 
𝑉2

𝑓
((1 − 𝑎)𝑘1 + (1 − 𝑎𝑘2)𝑓𝜅C

2) 

= 0. 

(34) 

 

For a dynamical system to be stable, all 

characteristic roots must be located in the left half 

complex plane. In other words, the real parts of all 

characteristic roots must be negative, i.e., ℜ(𝜆) <
0 for all 𝜆 ∈ ℂ . By applying the Routh-Hurwitz 

criteria, we obtain the stability conditions  

 
𝑉

𝑓
(𝑓𝑎𝑘1 + (1 − 𝑎)𝑘2) > 0, (35) 

𝑉2

𝑓
((1 − 𝑎)𝑘1 + (1 − 𝑎𝑘2)𝑓𝜅C

2) > 0. (36) 

 

From these conditions the stability boundaries in 

the (𝑘1, 𝑘2) plane can be calculated as 

 

{
 

 𝑘1 =
(𝑎𝑘2 − 1)𝑓𝜅C

2

1 − 𝑎
  

𝑘2 = −
𝑓𝑎𝑘1
1 − 𝑎

             

  if 𝑎 ≠ 1, (37) 

{
𝑘1 = 0
𝑘2 ∈ ℝ

                             if 𝑎 = 1. (38) 

 

When 𝑎 = 1, the front and rear steering angles are 

identical, leading to zero yaw error. As a result, the 

system is independent of the yaw feedback gain 𝑘2, 

allowing 𝑘2 to take any real value. 

4.2 Pole placement design 

To achieve desired control performance, we select 

the control gains using the pole placement method. 

We consider the case when the characteristic 

equation has a double real root at λ = 𝜆0 . 

Correspondingly, the characteristic equation has 

the desired form (λ − 𝜆0)
2 = λ2 − 2λ0λ + λ0

2 = 0. 

By comparing this with the coefficients in equation 

(34) yields  

 

−2𝜆0 =
𝑉

𝑓
(𝑓𝑎𝑘1 + (1 − 𝑎)𝑘2), (39) 

𝜆0
2 =

𝑉2

𝑓
((1 − 𝑎)𝑘1 + (1 − 𝑎𝑘2)𝑓𝜅C

2), (40) 

 

which can be solved explicitly for the control gains 

𝑘1 and 𝑘2. This approach ensures that the system 

exhibits the desired stability and dynamic 

performance. For a straight road where 𝜅C = 0, the 

the control gains are  

 

{
 
 

 
 𝑘1 =

𝑓𝜆0
2

𝑉2(1 − 𝑎)
                              

𝑘2 =
−𝜆0𝑓 

𝑉(1− 𝑎)
(2 +

𝜆0𝑎𝑓 

𝑉(1− 𝑎)
)

 if 𝑎 ≠ 1, (41) 

{
𝑘1 =

−2𝜆0
𝑓

𝑘2 ∈ ℝ       

                                         if 𝑎 = 1. (42) 

 

On the other hand, the control gains for a curved 

road are  

 

{
𝑘1 = 𝐾1
𝑘2 = 𝐾2

                         if 𝑎 ≠ 0, (43) 

{
 
 

 
 𝑘1 = 𝑓 (

𝜆0
2

𝑉2
− 𝜅C

2)

𝑘2 =
−2𝜆0𝑓

𝑉
       

         if 𝑎 = 0, (44) 

 

where 

 

𝐾1 = −
2𝜆0

𝑉𝑎
                                                             

+
𝑉2𝑎𝑓𝜅C

2 − 2𝑉𝜆0(1 − 𝑎) − 𝑎𝑓𝜆0
2

𝑉2(𝑎2𝑓2𝜅C
2 + (1 − 𝑎)2)

(1 −
1

𝑎
), 

(45) 

          

𝐾2 =
𝑓(𝑉2𝑎𝑓𝜅C

2 − 2𝑉𝜆0(1 − 𝑎 ) − 𝑎𝑓𝜆0
2)

𝑉2(𝑎2𝑓2𝜅C
2 + (1 − 𝑎)2)

. 
(46) 

4.3 Analysis of stable regions for 

different vehicle parameters 

The stable regions are illustrated for the parameters 

f = 2.7 [m], d = 1.35 [m], for both a low velocity of 
V = 5 [m/s] and a high velocity of V = 20 [m/s].  
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Figure2: The stable domain of control gains for different values of the parameter 𝑎 and velocity V at zero path curvature 

𝜅C = 0. (a) for parameters 𝑎 = −1.5, −1, −0.5, 0 and V = 5 [m/s], (b) for parameters 𝑎 = −1.5, −1, −0.5 and V = 20 [m/s], 

(c) for parameters 𝑎 = 0, 0.5, 1, 1.5 and V = 20 [m/s]. 

 

 
Figure 3: The stable domain of control gains for different values of the parameter 𝑎 at different path curvature 𝜅C when 

V = 5 [m/s]. (a) for parameter 𝑎 = −1.5, (b) for parameter 𝑎 = −1, (c) for parameter 𝑎 = −0.5, (d) for parameter 𝑎 = 0, 

(e) for parameter 𝑎 = 0.5, (f) for parameter 𝑎 = 1, (g) for parameter 𝑎 = 1.5. 

 

 
Figure 4: The stable domain of control gains for different values of the parameter 𝑎 at different path curvatures 𝜅C when 

V = 20 [m/s]. (a) for parameter 𝑎 = −1.5, (b) for parameter 𝑎 = −1, (c) for parameter 𝑎 = −0.5, (d) for parameter 𝑎 = 0, 

(e) for parameter 𝑎 = 0.5, (f) for parameter 𝑎 = 1, (g) for parameter 𝑎 = 1.5. 
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Note that the stability boundaries themselves are 

not influenced by the vehicle's velocity V; only the 

position of the optimal gains is affected, see 

equations (37)-(38) and (41)-(46).  

The stability charts for straight path (i. e., 𝜅C = 0) 

are shown in Fig. 2 for different values of 

parameters 𝑎 and V. Positive values of a cause the 

rear steering to rotate in the same direction as the 

front steering, while negative values of a cause 

rotations in the opposite direction. As the value of 

a changes from  −1.5 to 1.5 , the stable region 

extends to the right while 𝑘1 = 0 remains the left 

boundary. Note that when 𝑎 is larger than 1, the 

stable region extends to the left half plane and it is 

bounded by the green dashed line.  

To avoid the use of large control gains, we consider 

the case 𝜆0 = −1  which can be achieved using 

gains smaller than 1. In the case of low velocity, 

this occurs for negative values of a, i.e., the rear 

wheels have to be steered in the opposite direction 

than the front ones to achieve fast manoeuvring. 

Note that the case 𝑎 = 0 (front wheel steering) is 

outside this range, but it is shown for comparison. 

For non-zero path curvature, the stability charts for 

different values of parameter 𝑎  and curvature 𝜅C 

are shown in Fig. 3 for low velocity and in Fig. 4 

for high velocity. The control gains for each value 

of 𝑎 are in the range where 𝑘1 and 𝑘2 are between 

−1 and 1. Note that although the stability 

boundaries do not depend on V, at higher speeds 

smaller control gains are sufficient to achieve the 

error decay rate specified by the same 𝜆0. 

 
Figure 5: (a)-(b) Simulation results for maximum lateral 

acceleration for different values of a when V = 5 [m/s]. 

(a) straight road with a feedback controller, (b) curved 

road with a feedback+feedforward controller. (c)-(d) 

Simulation results for maximum lateral acceleration for 

different values of a when V = 20 [m/s]. (c) straight road 

with a feedback controller, (d) curved road with a 

feedback+feedforward controller. 

In order to account for passenger comfort, the 

vehicle’s lateral acceleration at point G can be used 

as an evaluation metric when determining the 

control gains within the stable region. Fig. 5(a) and 

(b) show the lateral acceleration for different 

values of a at low velocity while using different 

controllers: a feedback controller for the straight 

road and a feedback+feedforward controller for the 

curved road of curvature 𝜅C = 1/10 [1/m] . 

Similarly, Fig. 5(c) and (d) show the lateral 

acceleration for different values of a at high 

velocity using the same set of controllers and the 

curved road of curvature of 𝜅C = 1/100 [1/m]. 
For the straight road, the initial position is 
(𝑥R(0), 𝑦R(0)) = (0, 2 m). For the curved road at 

low velocity the initial position is 
(𝑥R(0), 𝑦R(0)) = (0,−5 m), and at high velocity 

it is (𝑥R(0), 𝑦R(0)) = (0,−10 m) . The initial 

angle errors are zeros for all cases. For high 

velocity the double root values −1, −2, and −3 

are used for 𝜆0, while for low velocity the values 

−1 and −2 are used. Larger (in magnitude) double 

roots are not considered due to excessive lateral 

acceleration. The maximum lateral acceleration 

results show that 𝜆0 = −1  yields reasonably 

matches the actual vehicle’s accelerations. 

Therefore, the rest of the simulations are conducted 

using the control gains corresponding to this case. 

5 Numerical simulations 

In this section, simulation results using the selected 

double root 𝜆0 = −1  are presented for various 

values of parameter 𝑎 . These simulations 

demonstrate scenarios on a straight road using a 

feedback controller and on a curved road using a 

feedback+feedforward controller.  

 
Figure 6: Simulation results for a straight road when 

𝜆0 = −1 and V = 5 [m/s]. (a) lateral position, (b) lateral 

acceleration, (c) front steering angle, (d) rear steering 

angle. 
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In this section we only consider cases where the 

ratio of the rear steering angle to the front steering 

angle is between −1 and 1. Therefore, only values 

𝑎 = −1,−0.5, 0, 0.5 and 1 are considered. 

Figs. 6 and 7 present the simulation results for a 

straight road and for a curved road of curvature 𝜅C 

= 1/10 [1/m], respectively, when V = 5 [m/s]. Fig. 

6(a) and (b) present the simulation results for the 

vehicle’s lateral position and lateral acceleration, 

while Fig. 6(c) and 6 (d) present the front and rear 

steering angles. Fig. 7(a) and Fig. 7 (b) present the 

simulation results of the vehicle’s lateral deviation 

and relative yaw angle, Fig. 7(c) shows the 

resulting trajectory, Fig. 7(d) and (e) present the 

front and rear steering angles, and Fig. 7(f) displays 

the lateral acceleration. Using only a feedback 

controller for a curved road results in a steady-state 

error in the lateral deviation and relative yaw angle, 

leading to degraded path-tracking performance. 

However, including feedforward control allows the 

errors to converge to zero, as shown in Fig. 7. For 

low velocity and large curvature, using a negative 

a parameter allows for a smaller turning radius, 

demonstrating the possibility of performing 

maneuvers such as sharp turns in confined spaces 

like parking lots and narrow roads.  

Figs. 8 and 9 show the simulation results for a 

straight road and for a curved road with curvature 

of 𝜅C  = 1/100 [1/m], respectively, when V = 20 

[m/s]. For such high velocity and small curvature, 

using a = 0.5 or a = 1 show faster convergence of 

compared to using only front-wheel steering (a = 0) 

on both straight and curved roads. However, for a 

= 1, the acceleration value is greater than for a = 0. 

Therefore, to achieve rapid steering for path 

tracking, the parameter 𝑎  can be set close to 1, 

while for driving focused on ride comfort, it can be 

set close to 0.5. However, for low velocity and 

small curvature, although the lateral acceleration or 

lateral deviation is not smaller compared to a front-

wheel steering vehicle, having a negative value for 

a can result in a smaller turning radius.  

 
Figure 8: Simulation results for a straight road when 

𝜆0 = −1 and V = 20 [m/s]: (a) lateral position, (b) lateral 

acceleration, (c) front steering angle, (d) rear steering 

angle. 

 

 

 

 

 
Figure 7: Simulation results for a curved road with a feedback+feedforward controller when 𝜆0 = −1 and V = 5 

[m/s]. (a) lateral error, (b) yaw angle error, (c) vehicle trajectory in the global reference frame, (d) front steering 

angle, (e) rear steering angle, (f) lateral acceleration. 
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6 Conclusion 

In this paper, the stability analysis of a path 

tracking controller for a four-wheel steering 

vehicle was performed, with the consideration of 

the curvature of the reference path. Using a simple 

kinematic vehicle model, analytical expressions 

for the stability boundaries and optimal control 

gains for a linear feedback controller were derived. 

Numerical simulations show that adjusting the 

rear-wheel steering controller at high speeds with 

small curvature improves path-tracking and 

reduces lateral accelerations. At low speeds with 

large curvature, it allows for a smaller turning 

radius, enabling maneuvering in confined spaces. 
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Figure 9: Simulation results for a curved road with a feedback+feedforward controller when 𝜆0 = −1 and V = 20 

[m/s]. (a) lateral error, (b) yaw angle error, (c) vehicle trajectory in the global reference frame, (d) front steering 

angle, (e) rear steering angle, (f) lateral acceleration. 
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