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Chapter 1

Introduction

Time delays are inherently present in feedback systems due to control-loop latency, and

they are considered to be a source of poor performance and instability [55, 101, 22, 75].

Stabilization of unstable plants by means of delayed state feedback is limited by the

admissible size of the feedback delay, which is often described by the concept of delay

margin or critical delay. The delay margin is the maximum admissible delay for a

fixed combination of control gains for which the system is still stable [32, 111, 100, 67].

For different control gain combinations the delay margin is different. In contrast, the

critical delay is the maximum admissible delay without any constraints on the control

gains [97, 99, 102, 18]. Therefore, the critical delay is the maximum of the delay

margins over the space of control gains.

The critical delay sets strong limitations on stabilizability, which can be demon-

strated through the inverted pendulum paradigm. A short pendulum falls faster and,

therefore, requires faster control action than a long pendulum. Nevertheless, the feed-

back delay cannot be reduced arbitrarily due to physical limits. Extending the admis-

sible delay by employing different control laws is, therefore, an important task. The

concept of critical delay is spectacularly manifested in human stick balancing. The

typical human reaction time is about 230 ms, and human subjects typically cannot

balance a stick shorter than 40 cm on their fingertip [26, 79]. Establishing the relation

between human reaction time and the shortest stick length can help in understanding

the control mechanism behind human balancing [72, 47, 118].

Finding the critical delay for feedback systems is a challenging task. This typ-

ically requires the exploration of multidimensional parameter spaces, which can be

implemented by numerical optimization techniques, e.g., direct search technique [60],

gradient sampling algorithm [23] or particle swarm optimization [92]. A combined

1



2 CHAPTER 1. INTRODUCTION

analytical-graphical technique can be applied if the number of tunable parameters is

reasonable. Closed-form formulas can usually be derived only for low-order systems

[99, 21, 18]. The dissertation aims at generalizing some of the existing concepts and

results while keeping the applications in mind.

Time delay and fractional derivatives are both used to model the memory and

hereditary properties of materials and processes. In engineering or biological control

systems, different sensory inputs require different processing times, which can be mod-

eled by different discrete delays. If the dynamics of the system depend on the values

of a time-dependent variable over a finite or infinite time interval, then usually, a dis-

tributed delay term appears in the mathematical model. A similar dependency can

also be expressed by fractional derivatives of the time-dependent function since they

depend on the time history of the function. In this dissertation, different discrete delays

and fractional derivatives will be considered.

The inverted pendulum is the simplest unstable system in Newtonian (second-order)

dynamics. Many complex dynamical systems that have one unstable manifold can be

reduced to the linearized model equation of the inverted pendulum. Stabilization of

objects around unstable periodic orbits, control of walking robots and one-wheeled

vehicles, or human balancing tasks can be mentioned as examples.

The dissertation consists of seven chapters. Chapter 1 contains the motivation, the

goals and the outline of the dissertation.

Chapter 2 demonstrates the concept of stabilizability through the example of the

inverted pendulum subject to delayed proportional-derivative feedback of the pendulum

angle. Then, stabilizability is discussed in a more general setting that is applicable in

the case of retarded, neutral and fractional-order delay differential equation. This

chapter also introduces some other concepts and notations that are used throughout

the dissertation.

In Chapter 3, general integer-order single-delay single-input systems are investi-

gated. Sufficient and necessary conditions are derived in order to determine the stabi-

lizable delay intervals. These conditions are applied in the case of real-rooted open-loop

systems.

In Chapter 4, the effects of acceleration feedback and multiple delays are inves-

tigated. The delays are considered to be the sum of a single delay and some delay

detunings.

Chapter 5 explores delayed fractional-order feedback with multiple delays. Special

attention is given to the connection between the geometry of the stability boundaries

and the roots of the characteristic function at the limit of stabilizability.
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In Chapter 6, the inverted pendulum is subjected to fractional-order dynamics.

Human control action is modeled as fractional-order delayed proportional-derivative

feedback, and the corresponding stabilizability limits are derived. The results of vir-

tual stick balancing measurements are compared with theoretical stabilizibility limits.

Nonlinear regression is carried out in order to determine the parameters in the feedback

model.

Finally, Chapter 7 summarizes the results of the dissertation.





Chapter 2

Theoretical background

In many engineering applications, such as feedback control systems, regenerative ma-

chine tool chatter and dynamics of towed elastic wheels [51], the rate of change of the

state depends on past values of the state or past values of the rate of change itself.

These systems can usually be described by retarded or neutral delay differential equa-

tions. Fractional-order differential equations capture another aspect of the memory

effect: the rate of change is replaced by a fractional-order derivative that is defined

in a non-local manner such that it gives a transition between (local) integer-order

derivatives. Fractional-order differential equations are often used to model viscoelas-

tic materials, acoustic wave propagation and biological controls systems [88], just to

mention a few.

The theory of delay differential equations [40, 101, 75] and the theory of fractional-

order differential equations [88, 33] are well-established in the literature. The com-

bination of these, that is, the theory of fractional-order delay differential equations,

has been started to develop only recently. This chapter introduces those concepts and

properties that will be used throughout the dissertation. A complete theoretical for-

mulation will not be presented here; however, the key ingredients for the stability and

stabilizability analysis of linear feedback systems are included.

2.1 Benchmark problem: the inverted pendulum

Balancing an inverted pendulum in the presence of feedback delay is a frequently cited

example in dynamics and control theory [2, 98]. Different control methods are often

implemented in simple inverted pendulum systems [39, 116, 93]. The inverted pendu-

lum is also a basic concept in human balancing models [70, 78, 83, 48]. The equation of

5



6 CHAPTER 2. THEORETICAL BACKGROUND

jHtL

g

C

m, JA

A

TcHtL

Figure 2.1: Pinned inverted pendulum.

motion of a pinned inverted pendulum subject to torque control (see Figure 2.1) reads

JAφ̈(t)−mglAC sinφ(t) = −Tc(t) , (2.1)

where φ(t) is the angular displacement of the pendulum measured from the vertically

upward position, φ̈(t) is its second derivative, JA is the moment of inertia about the

support axis, m is the mass of the pendulum, g is the gravitational acceleration, lAC

is the distance between the support point A and the center of gravity C, and Tc(t) is

the control torque. In case of a homogeneous pendulum of length l, JA = ml2/3 and

lAC = l/2. After linearization around the upper equilibrium position, the equation of

motion can be written as

φ̈(t) + a0φ(t) = u(t) , (2.2)

where a0 = −3g/(2l) < 0 is the plant parameter, and u(t) = −3Tc(t)/(ml2) is the

control action.

In case of a delayed proportional-derivative (PD) controller, u(t) reads

u(t) = −b0φ(t− τ)− b1φ̇(t− τ) , (2.3)

where b0 and b1 are control gains, and τ > 0 is the closed-loop feedback delay. The

characteristic function corresponding to (2.2) and (2.3) is

D(s) = s2 + a0 + e−sτ (b0 + b1s) . (2.4)
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(a)

1 2 3 4
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1
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(b)

1 2 3 4
b0

1

2

3

4

b1

Τ = 0.75

(c)

1 2 3 4
b0
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2

3

4
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Figure 2.2: Stability charts of (2.4) for different values of τ with a0 = −2.

Note that the open-loop characteristic function P (s) = s2 + a0 has real roots ±
√
−a0

since a0 < 0. This property proves to be useful in Chapter 3.

Stability charts for (2.4) can be determined using the D-subdivision method [86].

Substituting s = 0 and s = iω into (2.4) and solving for b0 and b1 give the so-called

D-curves

s = 0 : b0 = −a0 , b1 ∈ R , (2.5)

s = ±iω, ω > 0 :


b0 = (ω2 − a0) cos(ωτ) ,

b1 =
(ω2 − a0) sin(ωτ)

ω
.

(2.6)

These curves split the parameter plane (b0, b1) into domains where the number of

unstable roots is constant. The number of unstable roots can be determined, for

instance, via root tendency along the D-curves [51], by using the Stépán–Hassard

formula [101, 42], or by numerical testing integrals based on the argument principle

[112]. Figure 2.2 shows some stability charts. As it can be seen, the stable domain

shrinks as the delay is increased. At a critical value τcrit, the stable domain disappears,

and the system cannot be stabilized if τ is larger than τcrit.

The critical delay of system (2.4) is well known from the literature [97, 101, 102]:

τcrit =

√
− 2

a0
. (2.7)

The trivial solution of system (2.2)–(2.3) can be asymptotically stable if and only if

τ < τcrit. Next, we will demonstrate that the critical delay (2.7) can be obtained by
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studying the multiple roots of the characteristic function D(s).

Assume that D(s) has a real root s0 with algebraic multiplicity at least degP (s) +

1 = 3. Then, D(s0) = 0, D′(s0) = 0 and D′′(s0) = 0 give the system of equations

s20 + a0 + e−s0τ (b0 + b1s0) = 0 ,

2s0 + e−s0τ (−τ(b0 + b1s0) + b1) = 0 ,

2 + e−s0τ (τ 2(b0 + b1s0)− 2τb1) = 0 ,

 (2.8)

which is linear in b0 and b1 and nonlinear in s0 and τ . For a given τ , the solution of

(2.8) is

b0 = es0τ
(
τs30 + s20 + a0τs0 − a0

)
,

b1 = −es0τ
(
τs20 + 2s0 + a0τ

)
,

s0 =
−2±

√
2− a0τ 2

τ
=: s0,± .


(2.9)

It can be shown that the triple root s0,+ is negative and dominant (rightmost) for every

0 < τ < τcrit, and therefore system (2.2) with (2.3) is asymptotically stable. Hence, the

solution (b0, b1) corresponding to s0,+ lies inside the stable region (see the blue dots in

Figure 2.2). In particular, at the upper bound τ = τcrit the triple root is s0,+ = 0 and

it is the dominant root of (2.4) with control coefficients b0 = −a0 and b1 = −a0τcrit.

Alternatively, for a given s0 = γ < 0, (2.8) can be solved for b0, b1 and τ . The

smallest positive solution for τ is the critical delay τcrit(γ) associated with γ-stability.

The dominancy of s0,+ may be shown by using the argument principle (see, for instance,

[17, 19]). In Chapter 3, we use a different method based on an integral representation

of the characteristic function.

2.2 Retarded delay differential equations

Let us consider the multiple-input linear time-invariant state equation

ẋ(t) = Ax(t) +Bu(t) , (2.10)

where A ∈ Rn×n and B ∈ Rn×m are constant matrices, x(t) : R 7→ Rn is the state

vector and u(t) : R 7→ Rm is the input (or control) vector. If we apply a multiple-delay

state feedback

u(t) =
r∑

i=1

Kix(t− τi) (2.11)
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with Ki ∈ Rm×n and τi > 0, then we obtain a retarded delay differential equation of

the form

ẋ(t) = Ax(t) +
r∑

i=1

BKix(t− τi) . (2.12)

The matrices Ki contain the control parameters that are used to achieve the desired

dynamics.

Stability of (2.12) can be assessed by investigating its characteristic function

D(s) = det
(
sI−A−

r∑
i=1

BKie
−sτi
)
. (2.13)

The trivial solution of (2.12) is exponentially stable if and only if all the roots of D(s)

have negative real part [75]. In general, (2.13) takes the form

D(s) = sn + dn−1(s)s
n−1 + ...+ d0(s) , (2.14)

where each function dk(s) is a polynomial in e−sτi , i = 1, 2, ... , r [42].

However, if (2.10) is a single-input state equation with m = 1, B ∈ Rn×1 and

u(t) : R 7→ R and we apply a single-delay state feedback u(t) = Kx(t − τ) with

K ∈ R1×n, then (2.13) can be simplified using the matrix determinant lemma [44, 109]

as
D(s) = det

(
sI−A−BKe−sτ

)
= det (sI−A)−K adj(sI−A)Be−sτ

= P (s) +Q(s)e−sτ ,

(2.15)

where
P (s) = ans

n + an−1s
n−1 + ...+ a0 ,

Q(s) = bn−1s
n−1 + bn−2s

n−2 + ...+ b0
(2.16)

and an = 1. Furthermore, if the pair (A,B) is controllable, then the coefficients bk

in Q(s) can be adjusted independently using the feedback matrix K. Characteristic

functions of the form (2.15)–(2.16) will be analyzed in Chapter 3.

2.2.1 The concept of stabilizability

With delayed feedback stabilization (2.10)–(2.11) in mind, we may define stabilizability

in a more general setting. For any system S with a real parameter vector p ∈ Rn, we

may divide p into system parameters ps ∈ Rns and control parameters pc ∈ Rnc with
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n = ns+nc. With any notion of stability, S(ps,pc) is said to be stabilizable for a given

ps if there exist control parameters pc such that S(ps,pc) is stable.

The stable region of S is a subset of the n-dimensional space Rn, while the stabi-

lizable region is a subset of Rns . In fact, if we project the stable region onto the space

of the system parameters, we obtain precisely the stabilizable region. This gives the

geometric interpretation of stabilizability.

We may also fix some of the system parameters during the analysis and divide

ps further into p̃s ∈ Rñs and ps,f ∈ Rns,f with ns = ñs + ns,f . In this case, the

stabilizable region of S(p̃s,pc;ps,f) can be given while the fixed parameter vector ps,f

is held constant. These stabilizable regions are cross-sections of the stabilizable region

of S(ps,pc).

On the other hand, the fixed parameter vector can also consist of some of the

control parameters pc, that is, p̃c ∈ Rñc and pc,f ∈ Rnc,f with nc = ñc + nc,f . In this

case, we can determine the stabilizable region of S(ps,pc) by taking the union of the

stabilizable regions of S(ps, p̃c;pc,f) for all possible values of pc,f .

In this dissertation, delays are considered system parameters in Chapter 3 and

Chapter 6, but they can also be considered control parameters as in Chapter 4 and

Chapter 5. In the example of Section 2.1, p̃s = (τ), ps,f = (a0) and pc = (b0, b1), and

the upper endpoint of the single stablizable interval is τcrit.

2.2.2 Multiplicity of characteristic roots

Assume that the stable region is bounded by a (continuously differentiable) function

g(ps,pc) = 0 and there is only a single control parameter. Figure 2.3 illustrates the

projection of the stable region onto the plane of the system parameters if ps = (p1, p2)

and pc = (p3). In this case, projections of vertical cross-sections are line segments on

the plane (p1, p2). As can be seen in Figure 2.3, the partial derivative ∂g/∂p3 is zero at

the points that project to the endpoints of these line segments. Therefore, ∂g/∂p3 = 0

holds along with g = 0 at the boundary of the stabilizable region.

In general, the stabilizable region may be constructed by successive projections.

Let a ∈ Rn1 , b ∈ Rn2 and c ∈ Rn3 . If a region in the space of a and b is bounded by a

continuously differentiable g(a,b, c) = 0 with g : Rn1+n2+n3 7→ Rn3+1, then conditions

of the form det(Jg,(bi,c)) = 0 appear at the boundary of the projection of that region to

the space of a. Here, Jg,(bi,c) denotes the Jacobian matrix of g with respect to (bi, c),

and bi is the ith element in the parameter vector b.

In the case of time-delay systems of the form (2.13), the stable region can be
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p3

p2

p1

P

P'

g(p1, p2, p3)

p*1

g(p*1, p2, p3)

∂g 
∂p3

 
= 0

Figure 2.3: Projection of a stable region onto the plane of system parameters (p1, p2).
The boundary of a cross-section for a fixed p1 is shown by red line. At the boundary
of the projection, ∂g/∂p3 = 0.

bounded by two different types of stability boundaries according to D-subdivision. At

the connections of the boundaries D(0;p) and D(iω;p), the stable region has edges

where the boundary is not differentiable. These kinds of edges (or vertices) usually

project to the boundary of the stablilizable region, and they correspond to purely

imaginary characteristic roots (including the zero root) with higher algebraic multi-

plicity. However, turning points satisfying equations of the form det(J) = 0 were also

observed in [75].

Even though the characteristic function (2.13) has infinitely many roots, the number

of real spectral values (and hence the multiplicity of zero) is limited by the Pólya–Szegő

bound [90]. We may rewrite (2.14) as

D(s) =
M∑
i=1

pi(s)e
−ϑis , (2.17)

where ϑ1 < ϑ2 < ... < ϑM are real numbers, pi(s) are polynomials of degree ni,

p1(s) and pM(s) are not identically zero and
∑M

i=1 ni = N . Then, the upper bound

for the number of real roots of (2.17) is N + M − 1, which is equal to the degree of

the quasipolynomial (2.17). This is a sharp bound, which can be reached if pi(s) are

general polynomials with arbitrary coefficients. However, if they are polynomials with

constraints on the coefficients (such as sparse polynomials with some coefficients equal

to zero), then it may not be possible to reach the Pólya–Szegő bound [16].
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The characteristic root with the largest real part is usually called the dominant root

or rightmost root. For some classes of time-delay systems, a real root with maximal

multiplicity is necessarily dominant. This so-called multiplicity-induced dominancy

(MID) was observed and proved in several recent works for low-order time-delay systems

[21, 18].

2.2.3 Spectral abscissa and γ-stabilizabilty

The real part of the dominant root is the spectral abscissa, which gives the exponential

decay rate of the time-domain solutions. Therefore, if we want to achieve faster-

decaying solutions (and better performance), we need to minimize the spectral abscissa

with respect to some control parameters. In order to do so, we may consider γ-stability

instead of stability: a system is said to be γ-stable if the roots of its characteristic

equation have real parts smaller than γ. We can also define γ-stabilizability following

the general concept of Subsection 2.2.1. Then, the system parameters ps are at the

boundary of the γ-stabilizable region if and only if the minimum of the spectral abscissa

is γ with respect to the control parameters pc. Consider the single-input single-delay

system (2.15) with varying K and fixed A, B and τ . If the spectral abscissa has a

local minimum for K = K0 and the minimum value is γ0, then (2.15) has at least n+1

characteristic roots with real part equal to γ0 for K = K0 [75].

There is a connection between multiple characteristic roots and the minimum of

the spectral abscissa even in the case of delay-free systems. In [37], the damped har-

monic oscillator D(s) = det
(
Ms2 +Ds+S

)
with n-by-n real symmetric matrices was

investigated if M and S are positive definite. The matrices M and S were considered

system parameters and the damping matrix D was considered control parameter, and

it was shown that the spectral abscissa attains its minimum if D(s) has a real root

with (algebraic) multiplicity 2n.

2.3 Neutral delay differential equations

If we consider the state equation (2.10) and apply a multiple-delay state and state

derivative feedback

u(t) =
r∑

i=1

Kix(t− τi) +
r∑

i=1

Liẋ(t− τi) (2.18)
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with Ki,Li ∈ Rm×n and τi > 0, then we obtain a neutral delay differential equation of

the form

ẋ(t)−
r∑

i=1

BLiẋ(t− τi) = Ax(t) +
r∑

i=1

BKix(t− τi) . (2.19)

The characteristic function of (2.19) can be written as

D(s) = det

(
s
(
I−

r∑
i=1

BLie
−sτi
)
−A−

r∑
i=1

BKie
−sτi

)
. (2.20)

The trivial solution of (2.19) is exponentially stable if and only if all the roots of D(s)

have negative real part and are bounded away from the imaginary axis [75]. The latter

condition means that there are no chains of roots asymptotic to the imaginary axis. In

general, (2.20) takes the form

D(s) = dn(s)s
n + dn−1(s)s

n−1 + ...+ d0(s) , (2.21)

where each function dk(s) is a polynomial in e−sτi , i = 1, 2, ... , r. Note that (2.21) is

almost identical to (2.14), but in this case dn(s) ̸≡ 1.

Let Hi = BLi. Then, the delay-difference equation associated with (2.19) is

x(t)−
r∑

i=1

Hix(t− τi) = 0 . (2.22)

The exponential stability of the trivial solution of (2.22) is a necessary condition for

the exponential stability of the trivial solution of (2.19) [75].

Exponential stability of (2.22) may be sensitive to small delay perturbations. The

trivial solution of (2.22) is said to be strongly exponentially stable if it remains ex-

ponentially stable when subjected to small variations in the delays [41, 75]. Let us

define

ρ0 = max
θj∈[0,2π]

ρ
( r∑

j=1

Hje
iθj
)
, (2.23)

where ρ(X) is the spectral radius of X. Then, (2.22) is strongly exponentially stable

if and only if ρ0 < 1. If ρ0 > 1, then the neutral delay differential equation (2.19)

may be exponentially stable, but exponential stability is lost in case of infinitesimal

perturbations of the delays [75]. If there is only a single nonzero matrixHi in the delay-

difference equation (2.22), then strong exponential stability and exponential stability

of (2.22) coincide.
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An example for neutral delay differential equations is

φ̈(t) + a0φ(t) = −b0φ(t− τ)− b1φ̇(t− τ)− b2φ̈(t− τ) , (2.24)

which is a model for the inverted pendulum subject to delayed proportional-derivative-

acceleration (PDA) feedback. We may rewrite (2.24) in the form of (2.19) as[
ẋ1(t)

ẋ2(t)

]
−

[
0

1

] [
0 −b2

] [ẋ1(t− τ)

ẋ2(t− τ)

]
=

[
0 1

−a0 0

][
x1(t)

x2(t)

]
+

[
0

1

] [
−b0 −b1

] [x1(t− τ)

x2(t− τ)

]
(2.25)

with x1(t) = φ(t) and x2(t) = φ̇(t). The associated delay-difference equation reads[
x1(t)

x2(t)

]
−

[
0 0

0 −b2

][
x1(t− τ)

x2(t− τ)

]
=

[
0

0

]
, (2.26)

which is exponentially stable if and only if |b2| < 1. Hence, |b2| < 1 is a necessary

condition for the stability of (2.24).

2.4 Fractional-order systems

There are many different definitions for the fractional derivative based on different

generalizations of integer-order differentiation and integration. In this dissertation, we

usually apply the Caputo fractional derivative defined as

t
t0
Dα

∗ f(t) =
1

Γ(ν − α)

∫ t

t0

(t− ϑ)ν−α−1f (ν)(ϑ)dϑ, ν − 1 < α < ν ∈ N+ , (2.27)

where Γ(·) is the gamma function, t0 is the lower limit of the fractional derivative and

α is the (noninteger) order [88]. The integer-order limiting cases are

lim
α→ν

t
t0
Dα

∗ f(t) = f (ν)(t) (2.28)

and

lim
α→ν−1

t
t0
Dα

∗ f(t) = f (ν−1)(t)− f (ν−1)(t0) . (2.29)

The lower limit t0 is usually chosen to be t0 = 0. If we take the Laplace transform
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of (2.27) with t0 = 0, then we obtain

L
( t
0
Dα

∗ f(t)
)
= sαF (s)−

ν−1∑
k=0

sα−k−1f (k)(0) , (2.30)

where F (s) is the Laplace transform of f(t) [88]. Fractional-order differential equations

based on the Caputo fractional derivative require integer-order initial values, which can

be easily determined using the measured values of physical variables. Moreover, the

Caputo fractional derivative of a constant is equal to zero. These properties make this

definition favorable in many applications [33].

Other commonly used definitions are the Riemann–Liouville fractional derivative

and the Grünwald–Letnikov fractional derivative [88]. The Grünwald–Letnikov frac-

tional derivative is defined as

t
t0
Dαx(t) = lim

h→0

1

hα

t−t0
h∑

k=0

wα
kx(t− kh) , (2.31)

where α ≥ 0, the limit is taken such that (t − t0)/h is an integer, and the weights in

the sum are related to the (generalized) binomial coefficients

wα
k = (−1)k

(
α

k

)
= (−1)k

Γ(α + 1)

k!Γ(α− k + 1)
. (2.32)

These weights can also be obtained by the recurrence relation

wα
0 = 1 , (2.33)

wα
k =

(
1− α + 1

k

)
wα

k−1 , k > 0 . (2.34)

This formulation can easily be combined with other discretization techniques. There-

fore, the Grünwald–Letnikov fractional derivative will be used for numerical calcula-

tions in this dissertation.

2.4.1 Fractional-order state equation with delayed feedback

Let us consider the multiple-input linear time-invariant state equation of fractional-

order
t
t0
Dα

∗x(t) = Ax(t) +Bu(t) , (2.35)
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where A ∈ Rn×n and B ∈ Rn×m are constant matrices, x(t) : R 7→ Rn is the state

vector, u(t) : R 7→ Rm is the input (or control) vector and 0 < α ≤ 1. Applying

the multiple-delay state feedback (2.11), we obtain a retarded fractional-order delay

differential equation of the form

t
t0
Dα

∗x(t) = Ax(t) +
r∑

i=1

BKix(t− τi) . (2.36)

Consider the scalar fractional-order differential equation

t
t0
Dαk

∗ x(t) = f
(
t, t

t0
Dα1

∗ x(t), t
t0
Dα2

∗ x(t), ... , t
t0
Dαk−1

∗ x(t)
)

(2.37)

of Caputo type with rational derivative orders 0 ≤ α1 < α2 < ... < αk. By defining

x1(t) = x(t), (2.37) can be written in the form of a system of fractional-order differential

equations of order α as

t
t0
Dα

∗ x1(t) = x2(t) ,

t
t0
Dα

∗ x2(t) = x3(t) ,

...

t
t0
Dα

∗ xn−1(t) = xn(t) ,

t
t0
Dα

∗ xn(t) = f
(
t, xα1

α
+1(t), xα2

α
+1(t), ... , xαk−1

α
+1(t)

)
,

(2.38)

where α = 1/q, n = qαk and q is the least common multiple of the denominators of

αi [33]. This shows that the elements of the state vector x(t) are usually fractional

derivatives of a scalar function x(t). Therefore, the delayed state feedback can also

contain fractional derivatives in equation (2.36).

2.4.2 Stability of fractional-order differential equations

The characteristic function of (2.36) can be written as

D(s) = det

(
sα I−A−

r∑
i=1

BKie
−sτi

)
(2.39)

and takes the form

D(s) = snα + dn−1(s)s
(n−1)α + ...+ d0(s) , (2.40)
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where each function dk(s) is a polynomial in e−sτi , i = 1, 2, ... , r. In (2.39), sα indicates

the principle value of the complex power function, that is, we consider the first Riemann

sheet with a branch cut along the negative real axis. The exact relations between the

roots of (2.39) and the asymptotic stability of the trivial solution of (2.36) is still not

known in the general case; however, some recent results are available for the following

special cases.

If B = 0 and t0 = 0 in (2.35), then (2.36) takes the form

t
0D

α
∗x(t) = Ax(t) . (2.41)

The trivial solution of (2.41) is asymptotically stable if and only if | arg(λi)| > απ/2,

i = 1, 2, ... , n, where λi denotes the eigenvalues of A [69]. These eigenvalues correspond

to the characteristic function (2.39) with B = 0 and λ = sα. If we consider directly

the roots si of (2.39) with B = 0, then asymptotic stability holds if and only if si have

negative real parts [82]. The solutions of (2.41) can be expressed in terms of the one-

parameter Mittag-Leffler function. In the case of asymptotic stability, the solutions

decay towards 0 like a power function if α ̸= 1: |x(t)| ∼ c t−α as t → ∞, where c is a

positive real constant [69, 33].

The equation
t
0D

α
∗x(t) = Ax(t− τ) (2.42)

with a single delay (and without a delay-free term on the right-hand side) was consid-

ered in [28]. It was found that, for any α > 0, the trivial solution is asymptotically

stable if and only if the characteristic function of (2.42) has roots with negative real

parts only. The same authors investigated the scalar equation

t
0D

α
∗ x(t) = ax(t) + bx(t− τ) (2.43)

with 0 < α < 1 [27] and 1 < α < 2 [29]. In both cases, asymptotic stability holds if

and only if the corresponding characteristic function has roots with negative real parts

only.

We may also consider bounded-input bounded-output (BIBO) stability of fractional-

order time-delay systems of the form

t
t0
Dα

∗x(t) = Ax(t) +
r∑

i=1

BKie(t− τi) (2.44)

with an error signal e(t) = x(t)− ur(t), where ur(t) is the reference input.
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If (2.44) is a single-input system with a controllable pair (A,B) and α = 1/q,

q ∈ Z+, then it can be written in controllable canonical form such that

x(t) =
[
x(t) t

t0
Dα

∗ x(t) . . . t
t0
D

(n−1)α
∗ x(t)

]T
. (2.45)

In accordance with (2.45), let the reference input be

ur(t) =
[
ur(t)

t
t0
Dα

∗ ur(t) . . . t
t0
D

(n−1)α
∗ ur(t)

]T
. (2.46)

In this case, (2.44) reduces to a scalar differential equation for x(t) and ur(t), and the

corresponding transfer function has the form

X(s)

Ur(s)
=

∑r2
i=0 qi(s)e

−ηis∑r1
i=0 pi(s)e

−ϑis
, (2.47)

where 0 = ϑ0 < ϑ1 < ... < ϑr1 , 0 ≤ η0 < η1 < ... < ηr2 , pi(s) =
∑li

k=0 ci,ks
αi,k , αi,k ≥ 0,

qi(s) =
∑mi

k=0 di,ks
βi,k , βi,k ≥ 0 with deg p0 > deg pi, i = 1, ... , r1 and deg p0 > deg qi,

i = 0, ... , r2. It was shown in [12] that systems with transfer function (2.47) are

BIBO stable if and only if (2.47) has no poles in the closed right half of the complex

plane. Note that, under the same conditions, the denominator of (2.47) is equal to the

characteristic function (2.39).

An example for fractional-order delay differential equations is

φ̈(t) + a0φ(t) = −b0e(t− τ)− b1
t
t0
Dµ

∗ e(t− τ) , (2.48)

which is a model for the inverted pendulum subject to delayed fractional-order proportional-

derivative (PDµ) feedback with e(t) = φ(t)−ur(t). Stability of (2.48) will be analyzed

in Chapter 5.



Chapter 3

Conditions for stabilizability of

time-delay systems

In this chapter, we analyze the general nth-order single-input linear time-invariant

dynamical system with a single delay. Relying on the multiplicity-induced dominancy

(MID) property, we propose a unified methodology to assess the critical delay associated

with γ-stabilizability based on the integral representation of quasipolynomials as in

the works [21, 17, 20]. Furthermore, we extend the idea of [18] to nth-order setting

in exploiting the root location of the open-loop characteristic polynomial in order to

have the MID property of the overall system. In particular, we analyze real-rooted

open-loop systems. Such systems arise in many biological applications. Trivial cases

are given by first-order scalar systems, for example, in the description of the control

of blood cell dynamics [68], the pupil light reflex [66] or simple models of human

postural sway [34]. Real-rooted systems typically arise when a mechanical system is

set to its completely unstable position, that is, the number of unstable characteristic

roots is N for an N -degree-of-freedom system. Human balancing can be mentioned

as example, where single, double or even multiple-link inverted pendulum models are

used to describe human standing, walking or running [77, 103, 83, 119]. Balancing

on rolling or pinned balance board is another example where the governing equation

resembles that of a double inverted pendulum [30, 81]. The ball-and-beam balancing

task can also be mentioned as a special case: actually s = 0 is a double root of the

open-loops system [24].

The chapter is organized as follows. The problem is stated in Section 3.1. Sec-

tion 3.2 collects some preliminary results. Subsection 3.2.1 provides the main ingre-

dient of the dominancy proof, which consists in writing a quasipolynomial function

19
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with a multiple ((n+ 1)-fold) real root as an integral operator. Subsection 3.2.2 gives

a similar result for an at least n-fold real root. Subsection 3.2.3 reviews a necessary

condition for γ-stabilizability. In Section 3.3, sufficient conditions for the dominancy

of a multiple real root and necessary conditions for γ-stabilizability are provided for

real-rooted plants. The results are illustrated through the stabilization of an N -link

inverted pendulum in Section 3.4.

3.1 Problem statement

We consider delayed feedback systems whose characteristic function is a quasipolyno-

mial of the form

D(s) = P (s) + e−sτQ(s) , (3.1)

where τ > 0, and the degrees of polynomials P (s) andQ(s) are n and n−1, respectively:

P (s) = ans
n + an−1s

n−1 + ...+ a0 ,

Q(s) = bn−1s
n−1 + bn−2s

n−2 + ...+ b0 .
(3.2)

Assume that the plant parameters ai are known and fixed such that an > 0. Further-

more, assume that coefficients bi in Q(s) can be considered as independently adjustable

control parameters. The problem we are focusing on can be summarized as follows:

for what values of τ is system (3.1) γ-stabilizable (i.e., there exist bi(a0, a1, ..., an, τ),

i = 0, 1, ..., n− 1 for which the real parts of all roots of (3.1) are less than γ for some

given γ). To give a sufficient condition for γ-stabilizability, we utilize the MID prop-

erty: the control parameters bi are tuned in a way that the characteristic function D(s)

has a real root s0 with multiplicity n+ 1.

3.2 Preliminary results for arbitrary plants

In this section, some preliminary results are discussed for arbitrary plants without

restriction to real-rootedness. First, factorization and a sufficient condition for domi-

nancy are derived in the case of a real spectral value with multiplicity at least n and,

similarly, with multiplicity at least n+1. Then, a necessary condition for stabilizability

is given.

3.2.1 Factorization and a sufficient condition for dominancy

Let us define the family of polynomials Rk(s; τ) as
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Rk(s; τ) =
k∑

i=0

(
k

i

)
P (i)(s)τ k−i, k ∈ Z+

0 . (3.3)

Using this notation, we have the following result.

Proposition 3.1. If the quasipolynomial (3.1) has a real root s0 with multiplicity at

least n, then it can be written as

D(s) = (s− s0)
n

(
an +

∫ 1

0

e−(s−s0)τt
τRn−1(s0; τt)

(n− 1)!
dt

)
. (3.4)

Proof. The quasipolynomial D(s) has a root s0 with algebraic multiplicity at least n if

and only if D(k)(s0) = 0, k = 0, 1, ..., n− 1:

P (s0) + e−s0τQ(s0) = 0 ,

P ′(s0) + e−s0τ
(
(−τ)Q(s0) +Q′(s0)

)
= 0 ,
...

P (k)(s0) + e−s0τ

k∑
i=0

(
k

i

)
Q(i)(s0)(−τ)k−i = 0 ,

...

P (n−1)(s0) + e−s0τ

n−1∑
i=0

(
n− 1

i

)
Q(i)(s0)(−τ)n−1−i = 0 .



(3.5)

Equation (3.5) gives a linear system of equations for the control coefficients. Solving

(3.5) for bi enables the integral factorization of the form (3.4). The system of equations

(3.5) is equivalent to the following system of equations:

es0τP (s0) +Q(s0) = 0 ,

es0τ
(
τP (s0) + P ′(s0)

)
+Q′(s0) = 0 ,

...

es0τ
k∑

i=0

(
k

i

)
P (i)(s0)τ

k−i +Q(k)(s0) = 0 ,

...

es0τ
n−1∑
i=0

(
n− 1

i

)
P (i)(s0)τ

n−1−i +Q(n−1)(s0) = 0 .



(3.6)
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The system of equations (3.6) can be written as

1 s0 s20 ... sn−1
0

0 1 2s0 ... (n− 1)sn−2
0

0 0 2 ... (n− 1)(n− 2)sn−3
0

...
...

...
...

0 0 0 ... (n− 1)!


´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=:S(s0)



b0

b1

b2
...

bn−1


´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

=:b

= −es0τ



R0(s0; τ)

R1(s0; τ)

R2(s0; τ)
...

Rn−1(s0; τ)


´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=:R(s0;τ)

. (3.7)

Since S(s0) is an upper triangular matrix with nonzero diagonal elements, the unique

solution of (3.7) is

b = −es0τS−1(s0)R(s0; τ) . (3.8)

With the control coefficients (3.8), the polynomial Q(s) and the characteristic func-

tion D(s) in (3.1) have the form

Q(s) =
[
1 s s2 . . . sn−1

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=:sT

b , (3.9)

and

D(s) = P (s)+Q(s)e−sτ = P (s)+sTbe−sτ = P (s)−sTS−1(s0)R(s0; τ)e
−(s−s0)τ . (3.10)

It can be proved by induction that if

wT =
[
w0 w1 . . . wn−1

]
:= sTS−1(s0) , (3.11)

then

wk =
1

k!
(s− s0)

k , k = 0, 1, ..., n− 1 . (3.12)

Since Rk(s0; 0) = P (k)(s0),

sTS−1(s0)R(s0; 0) =
n−1∑
k=0

1

k!
(s− s0)

kP (k)(s0) = P (s)− 1

n!
(s− s0)

nP (n)(s0)

= P (s)− an(s− s0)
n .

(3.13)
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From (3.10) and (3.13) it can be seen that

D(s) =an(s− s0)
n + sTS−1(s0)R(s0; 0)− sTS−1(s0)R(s0; τ)e

−(s−s0)τ

=an(s− s0)
n −

[
sTS−1(s0)R(s0; τt)e

−(s−s0)τt
]t=1

t=0
.

(3.14)

Let

F (t) := sTS−1(s0)R(s0; τt)e
−(s−s0)τt . (3.15)

The derivative of the function F (t) can be written in the form

dF (t)

dt
= sTS−1(s0)G(t)e−(s−s0)τt , (3.16)

where

G(t) =
dR(s0; τt)

dt
− (s− s0)τR(s0; τt) . (3.17)

For k ∈ Z+, direct calculation gives

∂Rk(s; τ)

∂τ
=

k−1∑
i=0

(
k

i

)
P (i)(s)(k− i)τ k−i−1 = k

k−1∑
i=0

(
k − 1

i

)
P (i)(s)τ k−1−i = kRk−1(s; τ) .

(3.18)

Hence, the elements Gk(t), k = 0, 1, ... , n− 1 of G(t) are

G0(t) = −(s− s0)τR0(s0; τt) ,

Gk(t) = kτRk−1(s0; τt)− (s− s0)τRk(s0; τt) , k = 1, 2, ... , n− 1 .
(3.19)

Using equations (3.16), (3.12) and (3.19), the derivative of F (t) can be expanded as

dF (t)

dt
=

n−1∑
k=1

1

(k − 1)!
(s− s0)

kτRk−1(s0; τt)−
n−1∑
k=0

1

k!
(s− s0)

k+1τRk(s0; τt)

 e−(s−s0)τt

=

n−2∑
k=0

1

k!
(s− s0)

k+1τRk(s0; τt)−
n−1∑
k=0

1

k!
(s− s0)

k+1τRk(s0; τt)

 e−(s−s0)τt

= − 1

(n− 1)!
(s− s0)

nτRn−1(s0; τt)e
−(s−s0)τt .

(3.20)
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Finally, using equations (3.14) and (3.20), we arrive at the desired integral factorization

D(s) = an(s− s0)
n −

[
F (t)

]t=1

t=0
= an(s− s0)

n −
∫ 1

0

dF (t)

dt
dt

= (s− s0)
n

(
an +

∫ 1

0

e−(s−s0)τt
τRn−1(s0; τt)

(n− 1)!
dt

)
.

(3.21)

Remark 3.1. If D(s) has a real root s0 with multiplicity at least n+1, then (3.4) holds

and, in addition, D(n)(s0) = 0:

D(n)(s0) = n!

(
an +

∫ 1

0

τRn−1(s0; τt)

(n− 1)!
dt

)
= Rn(s0; τ) = 0 . (3.22)

In this case, D(s) can be factorized as

D(s) =
1

n!
(s− s0)

n+1

∫ 1

0

e−(s−s0)τtτRn(s0; τt)dt . (3.23)

Proposition 3.2. Let s0 be a real root of the quasipolynomial (3.1) with multiplicity

at least n+1. If Rn−1(s0; τt) ≤ 0, ∀t, 0 < t ≤ 1, then s0 is the dominant root of (3.1).

Proof. Due to Proposition 3.1, (3.1) can be written in the form of (3.4). To prove that

there exists no root s1 = γ1 + iω1 of (3.4) such that γ1 > s0, substitute s1 into (3.4).

Then, since s1 − s0 ̸= 0, D(s1) = 0 gives

an +

∫ 1

0

e−(s1−s0)τt
τ

(n− 1)!
Rn−1(s0; τt)dt = 0 . (3.24)

Since an > 0, one can obtain that

an =

∣∣∣∣∣
∫ 1

0

e−(s1−s0)τt
τ

(n− 1)!
Rn−1(s0; τt)dt

∣∣∣∣∣ ≤
∫ 1

0

∣∣∣∣e−(s1−s0)τt
τ

(n− 1)!
Rn−1(s0; τt)

∣∣∣∣ dt
=

∫ 1

0

e−(γ1−s0)τt
τ

(n− 1)!

∣∣Rn−1(s0; τt)
∣∣ dt .

(3.25)

Using the condition Rn−1(s0; τt) ≤ 0, ∀t, 0 < t ≤ 1, (3.25) can be written as

an ≤ −
∫ 1

0

e−(γ1−s0)τt
τ

(n− 1)!
Rn−1(s0; τt)dt =: f(γ1) . (3.26)
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For γ1 = s0 the function f(γ1) takes the value

f(γ1 = s0) = −
∫ 1

0

τ

(n− 1)!
Rn−1(s0; τt)dt = −

∫ 1

0

1

n!

dRn(s0; τt)

dt
dt

= − 1

n!

[
Rn(s0; τt)

]t=1

t=0
= − 1

n!

Rn(s0; τ)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

−Rn(s0; 0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ann!

 = an .

(3.27)

For γ1 > s0 the value of the integral in (3.26) is f(γ1) < an since 0 < e−(γ1−s0)τt < 1

for γ1 > s0, τ > 0, 0 < t ≤ 1. Therefore, from (3.26) we obtain an < an, which proves

the inconsistency of the hypothesis that the characteristic function (3.4) has a root

s1 = γ1 + iω1 with γ1 > s0. Consequently, (3.1) has no root of the form s1 = γ1 + iω1

with γ1 > s0.

3.2.2 Sufficient condition for the dominancy of a real root with

multiplicity at least n

Similarly to Proposition 3.2, we can give a sufficient condition for the dominancy of a

real root s0 with multiplicity at least n.

Proposition 3.3. Let s0 be a real root of (3.1) with multiplicity at least n, and let

Rn−1(s0;ϑ) have k sign changes in the interval 0 < ϑ < τ at τ1 < τ2 < ... < τk.

Furthermore, let us use the notations τ0 = 0, τk+1 = τ and c(s0) := sgnRn−1(s0;ϑ) for

0 < ϑ < τ1. If

c(s0)

n!

k∑
i=0

(−1)i
[
Rn(s0;ϑ)

]ϑ=τi+1

ϑ=τi
≤ an , (3.28)

then s0 is the dominant root of (3.1).

Proof. Since s0 is a root with multiplicity at least n, (3.1) can be written as

D(s) = (s− s0)
n

(
an +

∫ τ

0

e−(s−s0)ϑ
Rn−1(s0;ϑ)

(n− 1)!
dϑ

)
(3.29)

by Proposition 3.1. To prove that there exists no root s1 = γ1+iω1 of (3.29) such that
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Figure 3.1: Illustration of the sufficient condition for the MID property in the sense of
Proposition 3.3 (gray shading) and necessary condition for stabilizability according to
Remark 3.4 for the plant P (s) = (s− 2)(s− (2− 10i))(s− (2 + 10i))(s− 4).

γ1 > s0, substitute s1 into (3.29). Since an > 0, one can obtain that

an =

∣∣∣∣∫ τ

0

e−(s1−s0)ϑ
1

(n− 1)!
Rn−1(s0;ϑ)dϑ

∣∣∣∣ ≤ ∫ τ

0

∣∣∣∣e−(s1−s0)ϑ
1

(n− 1)!
Rn−1(s0;ϑ)

∣∣∣∣ dϑ
=

∫ τ

0

e−(γ1−s0)ϑ
1

(n− 1)!

∣∣Rn−1(s0;ϑ)
∣∣ dϑ <

∫ τ

0

1

(n− 1)!

∣∣Rn−1(s0;ϑ)
∣∣ dϑ

=
c(s0)

(n− 1)!

k∑
i=0

(−1)i
∫ τi+1

τi

Rn−1(s0;ϑ)dϑ =
c(s0)

n!

k∑
i=0

(−1)i
∫ τi+1

τi

dRn(s0;ϑ)

dϑ
dϑ

=
c(s0)

n!

k∑
i=0

(−1)i
[
Rn(s0;ϑ)

]ϑ=τi+1

ϑ=τi
≤ an .

(3.30)

From (3.30) we obtain an < an, which proves the inconsistency of the hypothesis that

the characteristic function (3.29) has a root s1 = γ1 + iω1 with γ1 > s0. Therefore,

(3.1) has no root of the form s1 = γ1 + iω1 with γ1 > s0.

Remark 3.2. c(s0) = 1 for s0 > sa and c(s0) = −1 for s0 < sa, where sa is the average

of the roots of P (s).

Figure 3.1 demonstrates the MID property for a plant of degree n = 4. Gray shading

indicates the pairs (s0, τ) that satisfies the sufficient condition of Proposition 3.3. In

this region s0 is the dominant root.



3.3. SYSTEMS WITH REAL-ROOTED PLANT 27

3.2.3 Necessary condition for stabilizability

In this subsection, the necessary condition for the stabilizability of system (3.1) is

discussed. We start with a lemma from [53] and [84].

Lemma 3.1. Consider the quasipolynomial

h(s) =
n∑

i=0

r∑
j=1

hijs
n−ieτjs (3.31)

such that τ1 < τ2 < ... < τr, with main term h0r ̸= 0, and τ1 + τr > 0. If h(s) is stable

(i.e., the roots of h(s) = 0 are located in the open left half of the complex plane), then

h′(s) is also a stable quasipolynomial.

Remark 3.3. Lemma 3.1 can be generalized to γ-stability by applying a shift z = s−s0

with s0 = γ.

We can give a necessary condition for the γ-stability of (3.1) by the successive

application of Lemma 3.1 and Remark 3.3 to the quasipolynomial P (s)esτ +Q(s).

Proposition 3.4. If the quasipolynomial (3.1) is γ-stable, then the polynomial Rn(s; τ)

is γ-stable.

Proof. If (3.1) is γ-stable, then P (s)esτ + Q(s) is γ-stable, and by Lemma 3.1 and

Remark 3.3 the nth derivative of P (s)esτ +Q(s) is also γ-stable.

Remark 3.4. Rn(s; τ) is independent of the control coefficients bi; therefore, Proposi-

tion 3.4 also gives a necessary condition for the γ-stabilizability of (3.1).

Figure 3.1 also demonstrates the necessary condition for stabilizability (i.e., γ = 0).

If τ > 0.6202, then the system cannot be stabilized.

3.3 Systems with real-rooted plant

In this section, we assume that the polynomial P (s) corresponding to the open-loop

system has only real roots. In this case, P (s) has the form P (s) = an
∏n

i=1(s − si),

si ∈ R, sn ≤ sn−1 ≤ ... ≤ s1. To apply the sufficient condition in Proposition 3.2 and

the necessary condition in Proposition 3.4, first, we need to characterize the properties

of polynomials Rk(s; τ). These properties are outlined and discussed in the forthcoming

subsections.
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3.3.1 Interlacing property of polynomials Rk(s; τ )

The two-variable polynomials Rk(s; τ), k ∈ Z+ have the following properties:

Rk(s; τ) = τRk−1(s; τ) +
∂Rk−1(s; τ)

∂s
, (3.32)

∂Rk(s; τ)

∂τ
= kRk−1(s; τ) . (3.33)

Property (3.32) allows us to say that, for a fixed τ , the roots of polynomials Rk(s; τ)

and Rk−1(s; τ) interlace and Rk(s; τ) has only real roots for s, since R0(s; τ) = P (s)

has only real roots [35]. Polynomials Rn(s; τ) and Rn−1(s; τ) have n distinct real roots

for s if τ ̸= 0. Let s0,k, k = 1, 2, ..., n denote the roots of Rn(s; τ), τ ̸= 0 with

s0,n < s0,n−1 < ... < s0,1.

It can also be shown that, for a fixed s, the polynomial Rn(s; τ) has only real roots

for τ [91]. Moreover, as direct consequences of property (3.33) and Rolle’s theorem,

Rk(s; τ), k = 1, 2, ..., n − 1 has only real roots for τ , and the roots of Rk(s; τ) and

Rk−1(s; τ) interlace.

3.3.2 Monotonicity

In the (τ, s) plane the algebraic curve Rn(s; τ) = 0 has distinct branches, and every

branch is strictly increasing since the derivative of the implicit function Rn(s; τ) = 0

in a point (s, τ) reads

ds

dτ
= −

∂Rn(s;τ)
∂τ

∂Rn(s;τ)
∂s

= −nRn−1(s; τ)

Rn+1(s; τ)
> 0 . (3.34)

The fraction Rn−1(s;τ)
Rn+1(s;τ)

is negative since, for a fixed τ ̸= 0, at a root s of the polynomial

Rn(s; τ), the function values Rn−1(s; τ) and Rn+1(s; τ) are nonzero and have different

signs because of the interlacing property.

A similar property holds for the algebraic curve Rn−1(s; τ) = 0. If P (s) has at

least two distinct roots, then Rn−1(s; τ) = 0 has distinct branches, and every branch is

strictly increasing. If P (s) has one root s1 with multiplicity n (i.e., P (s) = an(s−s1)
n),

then one branch is constant and all the other branches are strictly increasing as a

function of τ .
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3.3.3 Asymptotic properties

If τ → ∞ (or τ → −∞), then the roots of Rk(s; τ) for s approach the roots of P (s)

(i.e., sn ≤ sn−1 ≤ ... ≤ s1). Similarly, if s → ∞ or s → −∞, then the roots of Rk(s; τ)

for τ approach the roots of τ k = 0 (i.e., 0 with multiplicity k).

3.3.4 Roots of Rk(s; 0)

If τ = 0, then Rk(s; τ) = Rk(s; 0) = P (k)(s). Therefore, if k = n, then Rn(s; 0) = n!an

has no roots for s. If k = n− 1, then Rn−1(s; 0) =
n!
1!
ans+

(n−1)!
0!

an−1 has one root for s:

sa = − 1

n

an−1

an
=

1

n

n∑
i=1

si , (3.35)

which is the average of the roots of P (s) according to Vieta’s formulas.

3.3.5 Sufficient and necessary conditions for dominancy and

stabilizability

Let τ0 denote the smallest positive root of Rn(0; τ) = 0 for τ . For τ > 0 the first

branch of the algebraic curve Rn(s; τ) = 0 corresponds to the greatest s values and

takes values in the interval ]−∞, s1[. Therefore, if s1 > 0, then τ0 corresponds to the

first branch of Rn(s; τ) = 0. If s1 ≤ 0, then Rn(0; τ) = 0 has no positive roots: in this

case we set τ0 = ∞.

Furthermore, let τa denote the smallest positive root of Rn(sa; τ) = 0 for τ . If

P (s) ̸= an(s− s1)
n, that is, P (s) has at least two distinct roots, then τa corresponds to

the first branch of Rn(s; τ) = 0 since sn < sa < s1. If P (s) = an(s− s1)
n, then sa = s1

and Rn(sa; τ) = 0 has no roots: in this case we set τa = ∞.

The curve Rn(s; τ) = 0 gives a connection between the delay τ and the possible

values of the real root s0 with multiplicity n + 1, while the curve Rn−1(s; τ) = 0 is

needed to analyze the sufficient condition given in Proposition 3.2. It is clear that the

condition Rn−1(s0,k; τt) ≤ 0, ∀t, 0 < t ≤ 1 can be satisfied if and only if k = 1 and

0 < τ ≤ τa (i.e., for the greatest s0 and in a certain delay interval).

These observations are summarized in the following theorems.

Theorem 3.1. Let P (s) be real-rooted, and consider the case sa ≥ 0. Then,

1. τ0 ≤ τa,
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Figure 3.2: Illustration of the sufficient condition for the MID property (gray shading)
and the necessary and sufficient condition for stabilizability based on the roots of the
polynomials Rn(s; τ) and Rn−1(s; τ) in the (τ, s) plane for the plant P (s) = (s−2)(s−
1)(s+ 2) according to Theorem 3.1 (case sa ≥ 0).

2. s0,1 is the dominant root of system (3.4) if 0 < τ ≤ τa,

3. system (3.1) is stabilizable if and only if 0 < τ < τ0.

Proof. If sa > 0, then there is at least 1 positive root s1 of P (s); therefore, there is

a finite τ0 corresponding to the first branch of Rn(s; τ) = 0. Then, item 1. follows

from the monotonicity of the curve Rn(s; τ) = 0. If sa = 0, then τ0 = τa. Item 2.

follows from the sufficient condition in Proposition 3.2. If 0 < τ < τ0, then s0,1 < 0,

which gives the sufficient condition for the stabilizability of system (3.1) in item 3. For

τ ≥ τ0, Rn(s; τ) has a root in the closed right half of the complex plane; therefore, by

Propostion 3.4, system (3.1) cannot be stabilized. This gives the necessary condition

in item 3.

Figure 3.2 shows the branches of the algebraic curves Rn(s; τ) = 0 and Rn−1(s; τ) =

0 corresponding to the interlacing and asymptotic properties for a plant of degree n = 3.

The roots of the open-loop system are s1 = 2, s2 = 1, s3 = −2, thus sa = 1/3 > 0

hence Theorem 3.1 applies. The horizontal asymptotes corresponding to the roots of

P (s) are indicated with dashed lines. In the gray shaded region Rn−1(s0; τ) ≤ 0 hence

Proposition 3.2 applies. In this example, the numerical values are τ0 = 0.532 and

τa = 0.735 and the critical delay is τcrit = τ0.
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Figure 3.3: Illustration of the sufficient condition for the MID property (gray shading)
and the sufficient and necessary conditions for stabilizability based on the roots of the
polynomials Rn(s; τ) and Rn−1(s; τ) in the (τ, s) plane for the plant P (s) = (s−2)(s+
3)(s+ 6) according to Theorem 3.2 (case sa < 0).

Theorem 3.2. Let P (s) be real-rooted, and consider the case sa < 0. Then,

1. τ0 ≥ τa,

2. s0,1 is the dominant root of system (3.4) if 0 < τ ≤ τa,

3. system (3.1) is stabilizable if 0 < τ ≤ τa and cannot be stabilized for τ ≥ τ0.

Proof. The proof follows the same lines as the proof of Theorem 3.1.

Figure 3.3 shows the branches of the algebraic curves Rn(s; τ) = 0 and Rn−1(s; τ) =

0 for a plant of degree n = 3, when the roots of the open-loop system are s1 = 2,

s2 = −3, s3 = −6. In this case sa = −7/3 < 0 hence Theorem 3.2 applies. Again, the

horizontal asymptotes corresponding to the roots of P (s) are indicated with dashed

lines and in the gray shaded region Rn−1(s0; τ) ≤ 0 hence Proposition 3.2 applies.

Here, the numerical values are τa = 0.337 and τ0 = 1.145. We may also investigate the

proposed controller design (s0 with multiplicity n+ 1) numerically. For a given τ , the

n possible values of the (n + 1)-fold real characteristic roots can be determined using

equation (3.22). Then, the corresponding values of s0 and τ can be substituted into

the factorized characteristic function (3.23). The number of unstable characteristic
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roots can be calculated using a numerical testing integral [112, 117]. Using evenly-

spaced grid points over the interval 0 < τ ≤ 2, the numerical analysis shows that we

can stabilize the system if τ < τ̂ = 0.977, that is, τa < τ̂ < τ0. If we apply a shift

s = z+ s0+ ε in (3.23), then the same technique can be used to determine the number

of characteristic roots with real part larger than s0+ ε. Using a sufficiently small value

of ε, we can decide if the characteristic root s0 is dominant. With ε = 0.01, it was

found that s0 is the dominant root if τ < 0.831.

Remark 3.5. Let P (s) be real-rooted, and let s0 be a real root of (3.1) with multiplicity

at least n+1. Then, D(n+1)(s0) = Rn+1(s0; τ) ̸= 0 because of the interlacing property;

therefore, the maximal multiplicity of a real root s0 is n+ 1.

Remark 3.6. It can be seen by applying Proposition 3.4 that the real root s0,1 gives

a lower bound on the spectral abscissa of the quasipolynomial (3.1), and this lower

bound is independent of the control parameters bi. Thus, if s0,1 is dominant, then it

gives the minimum of the spectral abscissa with respect to the control parameters.

This remark implies the following proposition.

Proposition 3.5. Let P (s) be real-rooted, and assume that γ ≤ sa. Then, system

(3.1) is γ-stabilizable if and only if τ ∈]0, τγ[, where τγ is the smallest positive real root

of Rn(γ; τ) for τ .

3.4 Multi-degree-of-freedom mechanical example

Consider an N -link inverted pinned pendulum with rods of equal mass m and length

l moving in the vertical plane. The control torque is applied at the first (lowest) rod:

Tc(t) = −
N∑
i=1

piφi(t− τ)−
N∑
i=1

diφ̇i(t− τ) . (3.36)

3.4.1 Derivation of the equation of motion

The equation of motion can be determined using the Euler–Lagrange equations. The

generalized coordinates are chosen to be the absolute pendulum angles φi(t) (i.e., an-

gular displacement of the rods from the vertically upward position). The equation of

motion linearized around the unstable equilibrium has the form

Mq̈(t) + Sq(t) = Q(t) , (3.37)



3.4. MULTI-DEGREE-OF-FREEDOM MECHANICAL EXAMPLE 33

where the mass matrix M = [mij] and the stiffness matrix S = [sij] can be written as

M =
1

6
ml2



6(N − 1) + 2 6(N − 2) + 3 ... 21 15 9 3

6(N − 2) + 3 6(N − 2) + 2 ... 21 15 9 3
...

...
...

...
...

...

21 21 ... 20 15 9 3

15 15 ... 15 14 9 3

9 9 ... 9 9 8 3

3 3 ... 3 3 3 2


, (3.38)

S = −1

2
mgl



2(N − 1) + 1 0 ... 0 0 0 0

0 2(N − 2) + 1 ... 0 0 0 0
...

...
...

...
...

...

0 0 ... 7 0 0 0

0 0 ... 0 5 0 0

0 0 ... 0 0 3 0

0 0 ... 0 0 0 1


, (3.39)

that is,

mij =
1

6
ml2(6(N − j) + 3), i < j ,

mij =
1

6
ml2(6(N − i) + 2), i = j ,

mij =
1

6
ml2(6(N − i) + 3), i > j ,

(3.40)

and

sij = −1

2
mgl(2(N − i) + 1), i = j ,

sij = 0, i ̸= j .
(3.41)

For more details, see Appendix A.1. The generalized force Q(t) reads

Q(t) = −


p1 p2 ... pN

0 0 ... 0
...

...
...

0 0 ... 0

q(t− τ)−


d1 d2 ... dN

0 0 ... 0
...

...
...

0 0 ... 0

 q̇(t− τ) . (3.42)
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Figure 3.4: Critical delay τcrit(N, γ) of an N -link inverted pendulum if 3g/l = 1 (a).
Representation of the points (N, τcrit) on a logarithmic scale suggests a hyperbolic
convergence of τcrit to 0 as N approaches infinity (b).

Therefore, the characteristic function has the form (3.1) where the open-loop charac-

teristic function P (s) reads

P (s) = det
(
s2M+ S

)
. (3.43)

3.4.2 Stabilizable delay interval

The mass matrix M is positive definite and the stiffness matrix S is negative definite;

therefore, P (s) has only real roots. Furthermore, the roots occur in real pairs ±si,

i = 1, ..., N ; therefore, the average of the roots is sa = 0. Thus, we can apply the results

of Theorem 3.1: system (3.37) is stabilizable if and only if 0 < τ < τ0, where τ0 can

be calculated if the system parameters are known. Figure 3.4 shows the critical delay

τcrit(N) = τ0 as a function of N if 3g/l = 1. The case N = 1 gives the single inverted

pendulum, when τcrit(1) = 2 (see Section 2.1). This figure also shows the largest delays

for which we can reach a given spectral abscissa γ. That is, we use a slightly generalized

notion of the critical delay: τcrit(N, γ) denotes the critical delay corresponding to a given

degree of freedom N and spectral abscissa γ (with τcrit(N) = τcrit(N, 0) corresponding

to stabilizability). An illustration of the root location is shown in Figure 3.5.
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Figure 3.5: Illustration of the root location of the characteristic function if N = 2,
3g/l = 1 and τ = τcrit(N, s0) with quintuple roots s0 = 0 and s0 = −1 yielding γ = 0
and γ = −1, respectively.

3.5 Conclusion

Sufficient conditions were given for the MID property in the case of a real root s0 with

multiplicity at least n + 1 and with multiplicity at least n. Necessary condition for

γ-stabilizability was investigated based on [53] and [84]. As a main result, sufficient

and necessary conditions for the MID property and γ-stabilizability were derived for

systems with real-rooted open-loop characteristic function. The results were applied to

an N -link inverted pendulum subjected to delayed state feedback. One advantage of

the results is that only roots of polynomials should be found in order to check sufficient

and necessary conditions for γ-stabilizability.

Although the main results were derived for systems with real-rooted open-loop

characteristic function, they can be generalized to systems with P (s) having not only

real roots. If Rn(s; τ) and Rn−1(s; τ) have single dominant real roots s0,1(τ) and s̃0,1(τ)

for τ > 0, respectively, such that s̃0,1(τ) > s0,1(τ), and s0,1(τ) and s̃0,1(τ) are increasing

as a function of τ and, furthermore, Rn−1(s(τ); τ) ̸= 0 for s0,1(τ) < s(τ) < s̃0,1(τ), then

similar statements can be made.

If the coefficients ai of an arbitrary plant are known, root location of polynomials

Rn(s; τ) and Rn−1(s; τ) can be accessed easily using numerical techniques; hence, the

results in Section 3.2 can be applied. Nevertheless, in general, it is difficult to para-

metrically characterize the root location of these polynomials. However, it could be

done by exploiting the structure of the open-loop characteristic polynomial, as we saw

in the case of real-rooted plants in Section 3.3.
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3.6 Main results

Consider delayed feedback systems whose characteristic function is a quasipolynomial

of the form

D(s) = P (s) + e−sτQ(s) ,

where τ > 0, and the degrees of polynomials P (s) andQ(s) are n and n−1, respectively:

P (s) = ans
n + an−1s

n−1 + ...+ a0 ,

Q(s) = bn−1s
n−1 + bn−2s

n−2 + ...+ b0 .

Assume that the plant parameters ai are known and fixed such that an > 0, and

assume that coefficients bi in Q(s) are independently adjustable control parameters.

The quasipolynomial D(s) is said to be γ-stabilizable for a given τ if there exists a set

of control gains bi, i = 0, 1, ... , n − 1 for which the real parts of all roots of D(s) are

less than γ. Furthermore, define the family of polynomials Rk(s; τ) as

Rk(s; τ) =
k∑

i=0

(
k

i

)
P (i)(s)τ k−i, k ∈ Z+

0 .

Contribution 1

Let s0 be a real root of D(s) with multiplicity at least n, and let Rn−1(s0;ϑ) have k

sign changes in the interval 0 < ϑ < τ at τ1 < τ2 < ... < τk. Furthermore, let us use

the notations τ0 = 0, τk+1 = τ and c(s0) := sgnRn−1(s0;ϑ) for 0 < ϑ < τ1. If

c(s0)

n!

k∑
i=0

(−1)i
[
Rn(s0;ϑ)

]ϑ=τi+1

ϑ=τi
≤ an ,

then s0 is the dominant root of D(s).

Related publications: [8, 3].

Contribution 2

Let P (s) be real-rooted, and assume that γ ≤ sa, where sa is the average of the roots

of P (s). Then, D(s) is γ-stabilizable if and only if τ ∈]0, τγ[, where τγ is the smallest

positive real root of Rn(γ; τ) for τ .

Related publications: [8, 80, 3].



Chapter 4

Inverted pendulum subject to

detuned PDA feedback

As mentioned in the introduction, constraints of stabilizability of delayed feedback

systems can be observed in human stick balancing. Because of the reaction time,

human subjects cannot balance a stick shorter than some critical stick length, which

is about 40 cm on average. A possible concept for human balancing is the feedback of

acceleration in addition to position and velocity feedback [63, 114, 49, 121]. The benefit

of acceleration feedback is revealed both in terms of critical delay and robustness to

sensory uncertainties [49, 57]. The operation of human sensory system suggests that

different terms are fed back with different delays [14, 61]. It is known that additional

delay can improve stability properties [2, 46]. The concept of either feeding back the

acceleration or employing multiple delays in the feedback loop has been investigated

in engineering applications [110, 45, 87]. Different delays can also show up in feedback

systems due to the elasticity of the plant [54, 120].

4.1 Problem statement

Motivated by the above applications, in this chapter we analyze a second-order unstable

plant with proportional-derivative-acceleration (PDA) feedback governed by

φ̈(t) + a0φ(t) = −kpφ(t− τp)− kdφ̇(t− τd)− kaφ̈(t− τa) , (4.1)

where a0 is fixed, and a0 < 0, τp > 0, τd > 0, τa > 0. System (4.1) is said to be

stabilizable for given delays τp, τd and τa if there exist some kp, kd and ka for which

(4.1) is stable.

37



38 CHAPTER 4. DETUNED PDA FEEDBACK

Following [99] one can also think of (4.1) as a control system with a single control-

loop latency τ and some additional delays (or delay detunings) δp ≥ 0, δd ≥ 0 and

δa ≥ 0 in all three terms. These additional delays are introduced in hopes of improving

the stabilizability of the original system with a single delay τ . This concept leads to

φ̈(t) + a0φ(t) = u(t− τ) , (4.2)

where

u(t) = −kpφ(t− δp)− kdφ̇(t− δd)− kaφ̈(t− δa) (4.3)

with δp ≥ 0, δd ≥ 0 and δa ≥ 0. In this sense, the system is stabilizable for a given τ

if there exist some kp, kd, ka and δp, δd, δa for which (4.2) with (4.3) is stable. In the

following, we refer to (4.2)–(4.3) as detuned PDA feedback.

The goal of this chapter is to determine the critical delay τcrit for the detuned PDA

feedback (4.2)–(4.3) such that if τ < τcrit, then (4.2) can be stabilized by (4.3) with

an appropriate choice of the control parameters kp, kd, ka and δp, δd, δa ≥ 0. The

same problem can be posed in terms of parameters in (4.1) as: we are looking for the

critical delay τcrit as the maximum of min{τp, τd, τa} such that (4.1) is still stabilizable.

Therefore, the stabilizable region of (4.1) in the (τp, τd, τa) space will be investigated.

For the sake of simplicity of notation, the analytical and numerical results are derived

in terms of τp, τd and τa instead of τ , δp, δd and δa throughout the chapter.

Special cases of (4.1) involve delayed PD feedback (ka = 0, τp = τd), detuned PD

feedback (ka = 0) and delayed PDA feedback (τp = τd = τa). The critical delay for

delayed PD feedback was derived by Schürer [97] as

τPDcrit =

√
− 2

a0
; (4.4)

see also Section 2.1. This value is used as reference in this chapter. For detuned PD

and delayed PDA feedback, the critical delay was given by Sieber and Krauskopf [99]

as

τdPDcrit =

√
6 + 4

√
3

3

√
− 1

a0
≈ 1.47 τPDcrit (4.5)

and

τPDA
crit =

√
− 4

a0
≈ 1.41 τPDcrit , (4.6)

respectively.

The rest of the chapter is organized as follows. In Section 4.2, detuned PDA feed-
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back is investigated and the critical point where the region of stabilizability collapses

to a single point is determined. In Section 4.3, the location of the characteristic roots

is determined at the critical point. Finally, the results are discussed in Section 4.4.

4.2 Stabilization with detuned PDA feedback

The characteristic function of (4.1) reads

D(s) = s2 + a0 + kpe
−sτp + kdse

−sτd + kas
2e−sτa . (4.7)

Equation (4.1) is a neutral delay differential equation (NDDE); therefore, strong sta-

bility requires that

|ka| < 1 . (4.8)

Substitution of s = iω into D(s) = 0 gives the D-curves

if ω = 0 : kp = −a0 , kd ∈ R , (4.9)

if ω ̸= 0 :


kp(ω) =

(
ω2 − a0

)
cos(τdω) + kaω

2 cos
(
(τa − τd)ω

)
cos
(
(τd − τp)ω

) ,

kd(ω) =

(
ω2 − a0

)
sin(τpω)− kaω

2 sin
(
(τa − τp)ω

)
ω cos

(
(τd − τp)ω

) .

(4.10)

Stable parameter regions in the plane (kp, kd) are bounded by the D-curves. The

stable region changes with the control gain ka and the delays τp, τd and τa. Sample

D-curves are shown in Figure 4.1 for some specific parameter combinations. Loss

of stabilizability can happen in many different ways corresponding to different root

locations of the characteristic function. In the following, the notation ms0 = k will be

used to indicate that the characteristic function has a root s0 with multiplicity k.

In the next subsections, stabilizability of (4.7) is investigated. First, the critical

point associated with a zero root with multiplicity 5 and with ka = −1 is determined

in Section 4.2.1. Then, it is shown in Section 4.2.2 that there exists a stabilizable

region in the space (τp, τd, τa) connecting the critical point and the origin (τp, τd, τa) =

(0, 0, 0). Finally, in Section 4.2.3, the stabilizability boundaries in the space (τp, τd, τa)

are depicted in the neighborhood of the critical point.
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Figure 4.1: Stability charts of (4.1) if a0 = −2, τd = 1.2, τa = 3.4, ka = −0.27 for
τp = 2.18 (a) and τp = 2.22 (b). The stable region is indicated by gray shading (a).
The stable region shrinks to a single point (b).

4.2.1 Critical point: m0 = 5, ka = −1

Consider the quasipolynomial (4.7) with fixed a0 < 0, and τp > 0, τd > 0, τa > 0. We

are looking for the critical delay defined as

τcrit = sup
{
min{τp, τd, τa}|D(s; τp, τd, τa) is stabilizable

}
. (4.11)

In order to find the critical parameters corresponding to the critical delay, first, we

investigate the maximal multiplicity of the characteristic root s = 0. This idea is

motivated by the multiplicity-induced dominancy (MID) property [21, 18, 3]. It can

be shown that the root s = 0 of the quasipolynomial (4.7) cannot have a multiplicity

greater than or equal to 6 if |ka| < 1. To see this, the system of equations D(i)(0) = 0,

i = 0, 1, ..., 5 should be solved for kp, kd, ka, τp, τd and τa. This gives two solutions

for ka: ka,1 = 12.1362 and ka,2 = −7.9621, hence in both cases the strong stability

condition |ka| < 1 is violated. Therefore, these parameter combinations cannot be on

the stabilizability boundary.

A similar analysis shows that multiplicity 5 of s = 0 cannot occur if 0 ≤ ka ≤ 1.

However, if −1 ≤ ka < 0, then multiplicity 5 can be reached: the corresponding

parameters are shown by solid black line in Figure 4.2. The curve m0 = 5 can be

parameterized by ka. When ka → 0, then the curve approaches an asymptote at

τd = τdPDcrit shown by dashed line. The minimum of the delays is maximal for ka = −1
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Figure 4.2: The region of feedback delays (τp, τd, τa) that can be stabilized by a real
root s0 with multiplicity ms0 = 5 if a0 = −2.

as shown by a black point in Figure 4.2. Therefore, we focus on the case ka = −1.

In this case, the control parameters and the delays satisfy the conditions D(i)(0) = 0,

i = 0, 1, ..., 4 and ka = −1. This system of equations gives a unique solution satisfying

τp, τd, τa > 0:

kp = −a0 , kd = 2
√
−6a0 , ka = −1 ,

τp = 2

√
− 6

a0
, τd =

√
− 6

a0
, τa = 2

√
− 6

a0
.

(4.12)

With parameters (4.12) and z =
√
6s/

√
−a0, the quasipolynomial (4.7) has an equiv-

alent form

D̃(z) =

(
z2

6
− 1

)
sinh z + z . (4.13)

In Section 4.3, we will show that (4.13) has only purely imaginary roots (including the

zero root with multiplicity 5).

4.2.2 Stabilization for τd <
√
−6/a0

In order to stabilize (4.7), we choose the control parameters in a way that a real

root s0 has multiplicity 5, i.e. D(i)(s0) = 0, i = 0, 1, .., 4. The first three equations

(D(i)(s0) = 0, i = 0, 1, 2) are linear in kp, kd and ka, and the gains can be given as

explicit functions of s0, τp, τd and τa. Substitution into the remaining two equations
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Figure 4.3: Stabilizability boundaries (colored lines) and the region of feedback delays
that can be stabilized by a real root s0 = −ε = −0.001 with multiplicity 2 (blueish
dotted region) if a0 = −2 and τa = 2

√
3. The black dot corresponds to (τp, τd) =

(2
√
3,
√
3), i.e., to the critical point m0 = 5, ka = −1.

(D(i)(s0) = 0, i = 3, 4) gives two polynomial equations for s0, τp, τd and τa. For a fixed

pair (τd, τa), one can find s0 and τp numerically. Among the possible solutions only the

ones should be considered where s0 < 0 and τp > 0. Then, one can check the stability

of (4.7) by the condition |ka| < 1 and by calculating the number of unstable roots

according to the numerical method [117, 115]. The results are shown in Figure 4.2.

Figure 4.2 shows that for every 0 < τd <
√
−6/a0 we can find τp, τa > τd for which

(4.7) is stabilizable. That is, we can use a detuned PDA controller to stabilize the

unstable open-loop system P (s) = s2 + a0 if the control-loop latency τ is smaller than√
−6/a0. Thus, we can increase the critical delay by introducing additional delays in

the proportional and acceleration terms. The critical delay for detuned PDA feedback

is therefore

τdPDA
crit =

√
− 6

a0
≈ 1.73 τPDcrit . (4.14)

4.2.3 Stabilizability boundaries in the space (τp, τd, τa)

Stabilizability in the space (τp, τd, τa) is represented by stabilizability diagrams in the

plane (τp, τd) for fixed τa, as shown in Figure 4.3 and Figure 4.4. Considering the

multiplicity of zero and the multiplicity of purely imaginary roots iωk, ωk > 0 along

with the limits of strong stability ka = 1 and ka = −1, there are 17 algebraically
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Table 4.1: Stabilizability boundaries.

Conditions Reduced equation

(i) m0 = 4 3τa
(
2− a0τp(τp − 2τd)

)
+ a0τp

(
τ 2p − 3τ 2d

)
= 0

(ii) m0 = 3, ka = 1 4 + 2a0τpτd − a0τ
2
p = 0

(iii) m0 = 3, ka = −1 τp − 2τd = 0

(iv)
m0 = 2, miω1 = 1,

detJ = 0
-

(v)
m0 = 2, miω1 = 1,

miω2 = 1
-

possible (one-dimensional) stabilizability boundaries in a plane (τp, τd) with fixed τa.

Out of the 17 cases only 4 are relevant close to the critical parameter combinations,

namely cases (i), (ii), (iii) and (v) in Table 4.1, which are shown by green, black,

gray and blue lines in Figure 4.3 and Figure 4.4, respectively. Note that other types

of stabilizability boundaries out of the 17 ones may be relevant for other τa values.

Furthermore, additional stabilizability boundaries may arise due to local parameter

optimization. Such a boundary is given in case (iv) shown by red line in Figure 4.3

and Figure 4.4.

The conditions and equations corresponding to the stabilizability boundaries are

summarized in Table 4.1. Note that stabilizability boundaries (ii) and (iii) are inde-

pendent of τa. In the case of boundary (iv), the conditions are as follows: D(0) = 0,

D′(0) = 0, ReD(iω1) = 0, ImD(iω1) = 0 and the Jacobian determinant of the previous

four equations with respect to (kp, kd, ka, ω1) is zero:

J =


1 0 0 0

−τp 1 0 0

cos(ω1τp) ω1 sin(ω1τd) −ω2
1 cos(ω1τa)

∂ReD(iω1)
∂ω1

− sin(ω1τp) ω1 cos(ω1τd) ω2
1 sin(ω1τa)

∂ImD(iω1)
∂ω1

 (4.15)

and

detJ = −ω2
1

(
cos(ω1τa)

∂ImD(iω1)

∂ω1

+ sin(ω1τa)
∂ReD(iω1)

∂ω1

)
. (4.16)

The singularity of the Jacobian matrix corresponds to a local maximum or minimum

of τp (turning point); see [75] for a similar type of stabilizability boundary.

The stabilizability boundaries in Figure 4.3 and Figure 4.4 have been verified nu-
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Figure 4.4: Stabilizability boundaries (colored lines) and the region of feedback delays
that can be stabilized by a real root s0 = −ε = −0.001 with multiplicity 2 (blueish
dotted region) if a0 = −2 and τa is approaching the critical value. The black dot
corresponds to the special point (τp, τd) = (τa, τa/2). If τa < 2

√
3, then there is a finite

region of stabilizability in the vicinity of the special point in the plane (τp, τd) (a,b). If
τa = 2

√
3, then the region of stabilizability shrinks to the critical point (c).

merically as follows. The equations D(i)(−ε) = 0, i = 0, 1 yield unique solutions for

kp and kd. The control gain ka is changed between 1 and −1 with step size 0.01 until

stability is achieved (if possible). With a0 = −2 and fixed τp, τd and τa, the stability

of (4.7) is checked by the numerical method [117, 115]. Stabilizable parameter points

are indicated by blueish dotted regions, where each dot corresponds to the numerically

investigated parameter combination. Figure 4.4 shows how the region of stabilizabil-

ity changes with increasing τa and how the region of stabilizability disappears at the

critical point.

The boundary τp = 2τd associated with m0 = 3 and ka = −1 (gray line in Figure 4.3

and Figure 4.4) includes a special point indicated by black dots where τp = τa. In the

critical case τa = 2
√

−6/a0, this special point gives the critical point. The root location

at this point is further analyzed in Section 4.3.

4.3 Special points with zero spectral abscissa

In this section, we show that for every τd <
√

−6/a0 we can choose the control gains

kp, kd, ka and delays τp, τa in a way that the spectral abscissa of (4.7) is equal to zero

such that τp, τa > τd. This gives another aspect of the stabilizability of (4.2)–(4.3) for

τ <
√

−6/a0, which was shown numerically in Section 4.2.2. If D(i)(0) = 0, i = 0, 1, 2,
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ka = −1, then kp = −a0, kd = −a0τp and τp = 2τd. Assume, in addition, that τp = τa.

Set τ := τd. Then, with z = sτ and a = −a0τ
2 > 0, the quasipolynomial (4.7) has an

equivalent form

D̃(z) =

(
z2

a
− 1

)
sinh z + z . (4.17)

Proposition 4.1. (4.17) has roots only on the imaginary axis (D̃(zi) = 0 ⇒ Re zi = 0)

if 0 < a ≤ 6.

Proof. After the change of variables z = ui, we analyze

D̂(u) = −

(
u2

a
+ 1

)
sinu+ u . (4.18)

First, we show that (4.18) has the same number of roots (counted with multiplicity) as

f := −

(
u2

a
+ 1

)
sinu (4.19)

in the open disks C = {u ∈ C : |u| <
(
n+ 1

2

)
π} with closed contours ∂C = {u ∈

C : |u| =
(
n+ 1

2

)
π}, n ∈ Z+ if n > N(a) for some N(a). Let us use the notation

rn :=
(
n+ 1

2

)
π. On the closed contours ∂C

|f | =

∣∣∣∣∣u2

a
+ 1

∣∣∣∣∣|sinu| ≥
∣∣∣∣∣|u|2a − 1

∣∣∣∣∣|sinu| =
(
r2n
a

− 1

)
|sinu| ≥ r2n

a
− 1 (4.20)

since |sinu| ≥ 1 on ∂C (see Lemma 4.1 below). In order to use Rouché’s theorem, set

g := D̂− f = u. On ∂C we have |g| = rn. Therefore f and D̂(u) = f + g has the same

number of roots in C if
r2n
a

− 1 > rn , (4.21)

which is true if n is large enough. More precisely if

rn >
a+

√
a2 + 4a

2
(4.22)

or equivalently

n >
a+

√
a2 + 4a

2π
− 1

2
=: N(a) , (4.23)
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then (4.21) holds. Note that N(0) = −0.5, N(6) ≈ 1.6877, and N(a) is strictly

increasing with a.

Next, we show that the number of roots of f is equal to the number of real roots

of D̂(u) in regions C, and therefore D̂(u) has only real roots. On the one hand, the

roots of f are ±i
√
a and the roots of sinu: kπ, k ∈ Z. Since

√
a ≤

√
6 < 3π/2, the

number of roots of f in |u| < rn, n ≥ 1 is 2n+ 3. On the other hand, it can be shown

that D̂(r2k) < 0 and D̂(r2k−1) > 0 if 0 < a ≤ 6 and k ≥ 1 (see Lemma 4.2 below).

Therefore, D̂(u) has a root in every interval ]rn, rn+1[, n ≥ 1 by Bolzano’s theorem.

Moreover, 0 is a root with multiplicity 3 if 0 < a < 6, and with multiplicity 5 if a = 6.

If 0 < a < 6, then there is an additional root in ]0, r1[ since D̂(3)(0) = 1 − 6/a < 0.

Since D̂(u) is an odd function, this gives 2n+ 3 real roots in |u| < rn, n ≥ 1.

We can also show that it is necessary to assume that a ≤ 6.

Proposition 4.2. If a > 6, then (4.17) has a pair of real roots ±γ, γ ̸= 0.

Proof. If a > 6, then D̃(3)(0) = −1+6/a < 0. Furthermore, lim
x→∞

D̃(x) = ∞. Therefore,

D̃(z) has at least one positive real root γ. Since D̃(z) is an odd function, it also has a

negative real root −γ.

Remark 4.1. In the critical case a = 6, (4.17) has infinitely many roots on the imag-

inary axis (including a real root γ = 0 with multiplicity 5). Numerical analysis in

Section 4.2.3 shows that if a ≤ 6, then there is a neighborhood of the special point

in the space of parameters (kp, kd, ka, τp, τd, τa) where all the infinitely many roots of

(4.7) have negative real parts (see the blueish dotted regions in Figure 4.4a and Fig-

ure 4.4b). In these narrow regions, however, the system may be sensitive to parameter

uncertainties.

The following two lemmas have been used in the proof of Proposition 4.1.

Lemma 4.1. |sinu| ≥ 1 on ∂C = {u ∈ C : |u| = rn}, rn =
(
n+ 1

2

)
π, n ∈ Z+.

Proof. With z = reiφ and r, φ ∈ R, r > 0

|sin z|2 = 1

2

(
cosh(2r sinφ)− cos(2r cosφ)

)
(4.24)

and
∂|sin z|2

∂φ
= r

(
cosφ sinh(2r sinφ)− sinφ sin(2r cosφ)

)
. (4.25)
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Since (4.24) is even and π-periodic in φ, it is enough to consider the interval 0 ≤ φ ≤
π/2. If 0 < φ < π/2, then sinφ > 0 and cosφ > 0. Using sinx < x and sinhx > x for

x > 0, x ∈ R, we have
∂|sin z|2

∂φ
> 0 , 0 < φ < π/2 . (4.26)

Therefore, for a given r, (4.24) has a global minimum at φ = 0, and the minimum value

is sin2 r. Thus, |sin z|2 ≥ sin2 r. With r = rn =
(
n+ 1

2

)
π we have |sin z|2 ≥ 1.

Lemma 4.2. D̂(r2k) < 0 and D̂(r2k−1) > 0 if 0 < a ≤ 6 and k ≥ 1.

Proof. If rn < r2n
a
+ 1 and n = 2k, then

D̂(r2k) = (−1)2k+1

(
r22k
a

+ 1

)
+ r2k <

(
1 + (−1)2k+1

)(r22k
a

+ 1

)
= 0 . (4.27)

The condition rn < r2n
a
+ 1 holds for 0 < a ≤ 6 and n ≥ 2. For n = 2k − 1 we have

D̂(r2k−1) = (−1)2k

(
r22k−1

a
+ 1

)
+ r2k−1 > 0 . (4.28)

4.4 Conclusion

The critical delay and the corresponding critical parameters (feedback delays τp, τd, τa

and control gains kp, kd, ka) are summarized in Table 4.2 for PD, detuned PD, PDA

and detuned PDA feedbacks. Detuning the feedback terms in PD feedback increases

the achievable feedback delay by 47% [99]. Adding acceleration feedback increases the

critical delay by 41% (by a factor of
√
2) [99]. Here, we have shown that the critical

delay can further be increased, up to 73% (by a factor of
√
3) via employing detuned

PDA feedback. This improved stabilizability can be exploited by assigning a negative

real root with multiplicity 5. That is, this way we can always construct a stabilizing

controller for any feedback delay smaller than the critical delay.

Two interesting features can be observed in Table 4.2. First, for both detuned PD

and detuned PDA feedback the critical delay is limited by the delay τd in the derivative

term. This observation suggests that it is more crucial to decrease the feedback delay

in the derivative term than in the proportional and the acceleration terms. Second, for

detuned PDA feedback, the acceleration control gain at the critical point is ka = −1,
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Table 4.2: Critical parameters for a0 = −2

PD detuned PD PDA detuned PDA

τp
√
− 2

a0
= 1

√
6 + 4

√
3
√

− 1
a0

= 2.54 2√
−a0

= 1.41 2
√

− 6
a0

= 3.46

τd
√
− 2

a0
= 1

√
6+4

√
3

3

√
− 1

a0
= 1.47 2√

−a0
= 1.41

√
− 6

a0
= 1.73

τa - - 2√
−a0

= 1.41 2
√

− 6
a0

= 3.46

kp −a0 = 2 −a0 = 2 −a0 = 2 −a0 = 2

kd
√
−2a0 = 2

√
6 + 4

√
3
√
−a0 = 5.08 2

√
−a0 = 2.83 2

√
−6a0 = 6.93

ka - - 1 −1

τcrit
√
− 2

a0
= 1

√
6+4

√
3

3

√
− 1

a0
= 1.47 2√

−a0
= 1.41

√
− 6

a0
= 1.73

which is just the opposite of ka = 1 corresponding to the critical delay for the single-

delay PDA feedback. Such an inverse control logic might seem unnatural, still there is

a consequent conception behind: the acceleration signal is typically in antiphase to the

position; hence, negative feedback of the acceleration contributes as a kind of positive

position feedback.

It should be mentioned that τ < τPDcrit and τ < τPDA
crit for PD and PDA feedback

both give necessary and sufficient conditions for stabilizability. However, for detuned

PD and PDA feedback, the conditions τ < τdPDcrit and τ < τdPDA
crit are “only” sufficient,

and necessity has not been proved yet (to the best of the author’s knowledge). Hence,

further extension of the critical delay might be possible. Complete characterization

of the stabilizable region and the stabilizability boundaries in the (τp, τd, τa) space is,

however, a more complex problem. Here, only some sample stabilizability diagrams

were shown for fixed values of τa in the neighborhood of the critical point. It was already

observed that the special points discussed in Section 4.3 are sources of different types

of stabilizability boundaries associated with different root locations.
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4.5 Main results

It has been shown that the critical delay for the delayed feedback control of the inverted

pendulum can be extended by using detuned proportional-derivative-acceleration feed-

back. The corresponding critical delay is significantly larger than that of proportional-

derivative feedback, proportional-derivative-acceleration feedback and detuned proportional-

derivative feedback.

Contribution 3

Consider the delayed feedback system

φ̈(t) + a0φ(t) = u(t− τ)

with detuned proportional-derivative-acceleration feedback

u(t) = −kpφ(t− δp)− kdφ̇(t− δd)− kaφ̈(t− δa) ,

where a0 < 0 is the fixed plant parameter, τ > 0 is the feedback delay, kp, kd, ka are

the control gains, and δp ≥ 0, δd ≥ 0, δa ≥ 0 are delay detunings. The system can be

stabilized using an appropriate choice of the control parameters kp, kd, ka and δp, δd,

δa if τ is smaller than the critical delay

τdPDA
crit =

√
− 6

a0
.

This value is larger by a factor of
√
3 than the critical delay of the proportional-

derivative feedback with a single delay.

Related publications: [10].





Chapter 5

Inverted pendulum subject to

fractional-order PD feedback

As was shown in Chapter 4, the critical delay for delayed feedback control of the

inverted pendulum can be extended by detuning the delays. In this chapter, the effect

of delay detuning is investigated for fractional-order proportional-derivative feedback.

Introducing fractional-order derivative in the feedback loop allows us to exploit the

time history starting from some initial time to the current time instant. This can be

seen from the most frequently used definitions of fractional derivative: the Riemann–

Liouville fractional derivative, the Caputo fractional derivative and the Grünwald–

Letnikov fractional derivative. All of these definitions of the fractional derivative

resembles a distributed delay term. Implementation of fractional-order feedback is,

therefore, computationally challenging.

The different delays originate in the different sensory systems used for the percep-

tion of position and velocity. In engineering applications, the operation of position

and velocity sensors is different; therefore, they typically result in different delays in

the feedback loop. In human postural balance, as a biological application, position

and velocity information are obtained by the static and dynamic receptors of the inner

ear, which induces that the corresponding delays are different. When the velocity is

calculated as a discrete difference of the position, then signal processing introduces an

extra delay.

51
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5.1 Problem statement

We consider the PDµ control of an inverted pendulum with different delays in the

proportional and the fractional derivative terms. The characteristic function of the

system under investigation reads

D(s) = s2 + a0 + kpe
−sτp + kds

µe−sτd , (5.1)

where a0 < 0 is the plant parameter, τp > 0 and τd > 0 are the feedback delays,

and 0 < µ < 2 is the order of the fractional derivative term. System (5.1) is said to

be stabilizable for given delays τp and τd if there exist some control gains kp, kd and

derivative order µ for which (5.1) is stable (i.e., (5.1) has roots with negative real parts

only). The goal of this chapter is to determine the critical delay τcrit as the maximum

of min{τp, τd} such that (5.1) is still stabilizable.

Similarly to Chapter 4, one can also think of (5.1) as a control system with a single

control-loop latency τ and some additional delays (or delay detunings) δp and δd. This

concept leads to

D(s) = s2 + a0 + kpe
−s(τ+δp) + kds

µe−s(τ+δd) (5.2)

with δp ≥ 0 and δd ≥ 0. In this sense, the system is stabilizable for a given τ if there

exist some kp, kd, µ, and δp, δd for which (5.2) is stable. In the following, we refer to

(5.2) as detuned PDµ feedback. The goal can be rephrased as follows. We are looking

for the critical delay τcrit for the detuned PDµ feedback (5.2) such that if τ < τcrit, then

(5.2) can be stabilized with an appropriate choice of kp, kd, µ and δp, δd ≥ 0.

The chapter is organized as follows. After some preliminary thoughts, some spe-

cial cases are discussed in Section 5.3. In Section 5.4, stabilizability diagrams are

constructed and their change is analyzed with respect to the order of the fractional

derivative in order to find the critical delay.

5.2 Preliminaries

Stability of controllable single-input linear time-invariant fractional-order time-delay

systems can be investigated using their characteristic function: the system is BIBO

(bounded-input bounded-output) stable if and only if the roots of the characteristic

function have negative real part on the first Riemann sheet [69, 12, 82]. Consequently,

the D-subdivision method can be applied to (5.1) as follows.
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Substitution of s = 0 and s = ±iω, ω > 0 into D(s) = 0 gives the D-curves

s = 0 : kp = −a0 , kd ∈ R , (5.3)

s = ±iω :


kp =

(
ω2 − a0

) sin(µπ
2
− τdω)

sin
(
µπ
2
− (τd − τp)ω

) ,

kd =
(
ω2 − a0

) sin(τpω)

ωµ sin
(
µπ
2
− (τd − τp)ω

) .

(5.4)

The D-curves bound the parameter regions in the plane (kp, kd) where the number of

unstable characteristic roots is constant. Stable regions (zero unstable characteristic

roots) can be determined by the argument principle [112, 74]. When the delays in-

crease, then the stable regions typically shrink and disappear. There is a critical delay

τdPD
µ

crit : if min{τp, τd} > τdPD
µ

crit , then the system (5.1) cannot be stabilized by any triplet

(kp, kd, µ). The goal is to determine the stabilizability boundaries in the plane (τp, τd)

and to find τdPD
µ

crit .

5.3 Special cases

Special cases can be defined either by setting the fractional order µ to integer or by

setting τp = τd.

5.3.1 Integer-order controllers: µ = 0, µ = 1 and µ = 2

Special cases µ = 0 and µ = 1 were already analyzed in [99]. If µ = 0 and τp ̸= τd

then one gets the proportional minus delay (PMD) controller of [99]. In this case,

a non-semisimple triple-zero eigenvalue occurs at the limit of stabilizability, which

corresponds to the parameter combinations

kp = − a0τd
τd − τp

, kd =
a0τp

τd − τp
, τd = − 2

a0τp
. (5.5)

Equation (5.5) gives a hyperbolic relation between the delays (see Figure 5.1a). Note

that τd is a strictly decreasing function of τp, therefore min{τp, τd} is maximal if τp

approaches τd. The limit case τp → τd would give the critical delay τPMD
crit =

√
−2/a0 =

τPDcrit . However, at the limit case τp = τd, the control gains kp and kd are singular.

This limit case corresponds to a proportional feedback with a single delay τ = τp = τd,

which cannot stabilize the inverted pendulum as explained below. Due to the necessary
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Figure 5.1: The stabilizability boundaries and multiplicity conditions in the plane
(τp, τd) if µ = 0 (a), µ = 1 (b) and µ = 2 (c) with a0 = −2.

condition in [53], if the quasipolynomial f(s) = esτ (s2+a0)+kp is stable, then f ′(s) =

esτ (τs2 + 2s + a0τ) should also be stable. However, this is not true, since a0 < 0 and

τ > 0. Hence, f(s) cannot be stable. Alternatively, it can be seen that the inverted

pendulum cannot be stabilized by delayed PD feedback if kd = 0 since kd > −a0τ is a

necessary condition for stabilization [102, 48].

The case µ = 1 corresponds to the detuned PD (dPD) controller in [99], where it was

shown that the critical delay can be extended to τdPDcrit ≈ 1.47 τPDcrit . The stabilizability

boundaries for this case were given in [10] and are shown in Figure 5.1b. The critical

parameter combination is indicated by a red dot, where there is a root s = 0 with

multiplicity 4 (m0 = 4). At this point, the ratio of the delays is τp/τd =
√
3. This

critical point is given as the intersection of two parametric curves indicated by black

and blue lines in Figure 5.1b. The black curve is associated with a triple root s = 0

(m0 = 3), and the blue curve is associated with a combination of a double root s = 0

(m0 = 2) and a pair of purely imaginary roots (mi ω1 = 1). For further details on this

case, see [10].

The case µ = 2 corresponds to a detuned proportional-acceleration (dPA) feedback,

i.e., a detuned PDA feedback with kd = 0. If τp = τd, then the system cannot be

stabilized similarly to the case µ = 0. If delay detuning is allowed, then the system can

be stabilized and the critical delay is τdPAcrit ≈ 0.32 τPDcrit . The stabilizability boundary

shown in Figure 5.1c was derived using the methods explained later in Subsection 5.4.1.

A special combination of the cases µ = 1 and µ = 2 gives the detuned PDA feedback,

which was investigated in Chapter 4. The idea of integer-order delayed proportional-

derivative and derivative-acceleration controllers was also addressed in [113] in the case
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Figure 5.2: Stabilizable region of (5.1) if τp = τd = τ with a = −a0τ
2 (a). The

stabilizability boundaries and multiplicity conditions in the plane (µ, τ) if a0 = −2 (b).

of the damped harmonic oscillator.

5.3.2 PDµ controller with a single delay

In the special case τp = τd = τ , the stabilizable region can be derived in the plane of the

dimensionless parameters a = −a0τ
2 and µ (see Figure 5.2a). Using the D-subdivision

technique, one can observe four types of loss of stabilizability. These geometric condi-

tions can directly be translated into the multiplicity conditions shown in Figure 5.2b.

The stabilizability boundary consist of three segments:

1. There is a single zero root (s = 0) and a single pair of purely imaginary roots

(s = ±iω1, ω1 > 0) with an additional condition

detJ1 = 0 , (5.6)

where J1 is the Jacobian matrix of equations

D(0) = 0, ReD(iω1) = 0, ImD(iω1) = 0 (5.7)

with respect to kp, kd, and ω1 (for more details, see Appendix A.2). Thus,

equation (5.6) represents the singularity of the Jacobian matrix J1. The geometric

interpretation of this condition is the tangency of the D-curves at the critical point

similarly to the case shown in Figure 5.3a. This segment is indicated by red line
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in Figure 5.2b. A similar type of stabilizability boundary can be seen in [75]

(where this phenomenon is referred to as a turning point).

2. There is a double pair of purely imaginary roots shown by blue line in Figure 5.2b.

The corresponding geometric interpretation is a loop-cusp transition of the stable

region similarly to the case shown in Figure 5.3c.

3. There are two pairs of purely imaginary roots (s = ±iω1, ω1 > 0 and s = ±iω2,

ω2 > 0) with an additional condition

detJ2 = 0 , (5.8)

where J2 is the Jacobian matrix of equations

ReD(iω1) = 0 , ImD(iω1) = 0 ,

ReD(iω2) = 0 , ImD(iω2) = 0
(5.9)

with respect to kp, kd, ω1, and ω2. In this case, the stable region disappears as the

complex root boundary crosses itself tangentially similarly to the case shown in

Figure 5.3f. This stabilitability boundary is shown by green line in Figure 5.2b.

At the connection point of segments 1 and 2, there is a triple zero root (s = 0) similarly

to the case shown in Figure 5.3b.

5.4 Stabilizability analysis

The main goal is to determine the stabilizable region in the plane (τp, τd) for the general

case (0 < µ < 2). Then, the critical delay for (5.2) can also be obtained by analyzing

the changes of the stabilizability boundaries for varying µ.

5.4.1 Constructing stabilizability diagrams in the plane (τp, τd)

Stabilizability can be investigated by observing the change of the stable parameter

region with respect to the change of some other parameters. Figure 5.4 shows an

example how the stable region in the parameter plane (kp, kd) (bounded by the loop

of (5.4)) changes as parameter τp is increased if µ = 1.2 and τd = 0.58 with a0 =

−2. The stable region shrinks to a single point if τp ≈ 1.19. At this critical point,

the characteristic function has two distinct pairs of purely imaginary roots since the
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Figure 5.3: Stability charts: types of loss of stabilizability and the corresponding
multiplicity conditions. Here, J̃1 is the Jacobian matrix of (5.7) with respect to kp, kd,
and ω1.

complex root boundary (5.4) touches itself. The tangency at the critical point imposes

another condition, namely, det J̃2 = 0. Here, J̃2 is the Jacobian matrix of (5.9) with

respect to kp, kd, ω1, and ω2.

The multiplicity conditions in Subsection 5.3.2 give a uniform description of the

stabilizability boundaries. Furthermore, the techniques in Subsection 5.3.2 can also be

applied if τp ̸= τd. That is, the stabilizability boundaries can be obtained following the

steps below.

1. Geometric conditions at the limit of stabilizability should be detected by D-

subdivision as shown in Figure 5.4. Different parameter regions exhibit different

types of loss of stabilizability. Here, six different geometric conditions are distin-

guished, which are represented in Figure 5.3.

2. Geometric conditions should be translated into multiplicity conditions. The mul-
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Figure 5.4: Stability charts of (5.1) if µ = 1.2 and τd = 0.58 with a0 = −2. The critical
point corresponds to miω1 = 1, miω2 = 1 and det J̃2 = 0.

tiplicity conditions corresponding to the critical points are also shown in Fig-

ure 5.3. Note that multiplicity condition miω1 = 1, miω2 = 1, miω3 = 1 is also

possible algebraically, but was not found to be relevant.

3. Each multiplicity condition gives a nonlinear system of M + 3 equations for

variables kp, kd, τp, τd, µ and ωi, i = 1, ... ,M for some M that could also be 0.

If µ and τp or τd are fixed, then this system of equations could be solved for the

rest of the variables. These nonlinear systems of equations are linear in kp and

kd, therefore reduced systems of equations can be obtained by solving two of the

equations for kp and kd. Then, only the remaining equations have to be solved

numerically.

4. A solution can be represented by a point in the plane (τp, τd) for a fixed µ. In

order to find an initial solution, a critical point and the corresponding parameter

values (obtained by D-subdivision) can be used as an initial guess. If the reduced

system of equations consists of less than three equations, then contour plots of

these equations also give insight into the possible initial solutions. Then, such an

(initial) point can be extended to a curve (that is, to a stabilizability boundary)

by using numerical continuation. Pseudo-arclength continuation allows us to

follow the solution curve even if the tangent is vertical (or horizontal).

An example for the stabilizability boundaries is shown in Figure 5.5 for µ = 1.2.

Two types of loss of stabilizability may show up: a pair of purely imaginary roots with

multiplicity two indicated by blue line; and two distinct pairs of purely imaginary roots

with and additional condition det(J̃2) = 0 indicated by green line.
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Figure 5.5: The stabilizability boundaries and multiplicity conditions in the plane
(τp, τd) if µ = 1.2 with a0 = −2.

5.4.2 Changes in stabilizability for varying µ

Figure 5.6 shows the stabilizability boundaries in the plane (τp, τd) for different values

of µ in the neighborhood of µ = 1. The stabilizable region can be extended compared

to the detuned PD controller (µ = 1) by choosing an appropriate value of the fractional

order µ. The line τd = τp/
√
3 passes through the critical point of the case µ = 1 and

separates the plane (τp, τd) into two regions. If τd < τp/
√
3, then it can be beneficial to

use a fractional derivative of order less than 1. On the other hand, if τd > τp/
√
3, then

the fractional-order derivatives of order greater than 1 may show better stabilizability

properties.

5.4.3 Critical delay in the sense of detuned fractional-order

PD feedback

We can draw more conclusions from the stabilizability diagrams. For every µ, we can

find a point in the stabilizable region where the minimum of τp and τd is maximal.

The path of this point is shown by red line in Figure 5.7a if µ ≤ 1. In Figure 5.7b, the

critical delay (related to the detuned fractional-order PD feedback (5.2)) is shown as

a function of µ in the left neighborhood of µ = 1.

The largest admissible delay is obtained for µ = 0.999637. In this case, the critical

delay is

τdPD
µ

crit = 1.479τPDcrit , (5.10)
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Figure 5.7: The path of the critical point in the plane (τp, τd) if µ ≤ 1 (a) and the
critical delay for 0.99 ≤ µ ≤ 1 (b) with a0 = −2.

where τPDcrit is the critical delay for single-delay PD feedback. Since τdPDcrit = 1.468τPDcrit ,

the extension caused by employing fractional-order PD feedback is not significant:

τdPD
µ

crit = 1.00778τdPDcrit .
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Table 5.1: Critical delays for a0 = −2.

PD detuned PD PDµ detuned PDµ

τcrit 1 1.468 1.120 1.479

5.5 Conclusion

Table 5.1 shows how the numerical values of the critical delay compare to each other

in the case of the PD, detuned PD, fractional-order PD and detuned fractional-order

PD controllers. As can be seen, the critical delay for the detuned PDµ controller is

slightly larger than that of the detuned PD controller, namely, by a factor of 1.00778.

Although this gain in the critical delay is practically insignificant, there are some cases

when fractional-order feedback may still be beneficial. If there are some constraints on

the delays τp and τd, then fractional-order feedback may stabilize a system that cannot

be stabilized by integer-order feedback. This can be seen by the extended stabilizable

region for different derivative orders µ in Figure 5.6.

Stability of fractional-order systems can also be analyzed using numerical tech-

niques. If time delay is also present in the system, then the combination of fractional-

order dynamics with the infinite-dimensional state space generated by the delay turns

the stability analysis into a more challenging task. The semi-discretization method,

which has been established in [50, 51], can be adapted to control systems with de-

layed fractional-order feedback [6]. Exponential approximation of the weights in the

Grünwald–Letnikov derivative allows us to obtain infinite memory effect using a dis-

cretization scheme of finite size [95, 6].
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5.6 Main results

It has been shown that the critical delay for the delayed feedback control of the inverted

pendulum can be extended by using detuned fractional-order proportional-derivative

feedback. The corresponding critical delay is slightly larger than that of detuned

proportional-derivative feedback.

Contribution 4

Consider the characteristic function

D(s) = s2 + a0 + kpe
−s(τ+δp) + kds

µe−s(τ+δd)

corresponding to a second-order unstable plant subject to detuned fractional-order

proportional-derivative feedback, where a0 < 0 is the fixed plant parameter, τ > 0 is

the feedback delay, kp, kd are the control gains, δp ≥ 0, δd ≥ 0 are delay detunings, and

0 < µ < 2 is the order of the fractional-order feedback. The system can be stabilized

using an appropriate choice of the control parameters kp, kd, δp, δd and µ if τ is smaller

than the critical delay

τdPD
µ

crit ≈
√

−4.377

a0
.

Without delay detuning, that is, if δp = δd = 0, the critical delay is

τPD
µ

crit ≈
√
−2.507

a0
.

Related publications: [5, 4, 7, 6].



Chapter 6

Human performance in virtual

stabilization of a fractional-order

system with reaction delay

The mechanism of human motion control is still not entirely understood in the sense

that the underlying control model is a subject of debate. Whether it is state- or

noise-dependent [25, 11], whether it is intermittent-time or continuous-time [38, 47],

whether it is direct state feedback or internal-model-based predictor feedback [52, 72,

85], whether it utilizes the stable manifold of the open-loop system [118], whether it

is optimal [104, 64], whether it can be described by a single-loop process or within a

hierarchical control framework [65, 106, 105]. In any case, the human reaction time

plays an important role in cortically-mediated motor control, which is well reflected in

human stick balancing [48]. Shorter sticks move faster than longer ones and may fall if

the control action is not fast enough. Indeed, human subjects typically cannot balance

a stick shorter than 40 cm.

Stick balancing corresponds to the stabilization of the inverted pendulum. An

inverted pendulum attached to a linearly driven cart can be stabilized by delayed

proportional-derivative (PD) feedback if and only if the length of the pendulum is

larger than some critical length. If the mass of the cart is significantly larger than the

mass of the pendulum, then the critical length is

lPDcrit =
3

4
gτ 2, (6.1)

where g is the gravitational acceleration and τ is the feedback delay [102, 48]. Thus,

the critical length is proportional to τ 2.

63
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The effect of feedback delay can be investigated in virtual balancing tasks where

additional delays can be introduced in the overall control loop by artificially delaying

visual feedback on the computer screen [13, 36, 59]. The dynamics can also be altered

artificially, i.e., Aristotelian dynamics can be employed instead of the Newtonian one

[58], or an artificial coupling can be introduced with an adjustable gain [94, 62]. In [59],

it was shown that the length of the shortest stick that human subjects can balance for

a given artificially added delay is indeed approximately proportional to τ 2 as equation

(6.1) suggests. In [58], Aristotelian dynamics (Peripatetic dynamics, that is, first-

order dynamics where force is proportional to velocity) has also been employed in

addition to Newtonian dynamics (second-order dynamics where force is proportional

to acceleration). It was shown that for Aristotelian dynamics the theoretical critical

length is proportional to τ , which was partially verified by measurements. In this

chapter, a fractional-order dynamics is employed in the virtual environment, where it

is assumed that the force is proportional to the fractional derivative of the displacement

with derivative order α, 1 ≤ α ≤ 2 [107]. Although fractional dynamics has no clear

physical meaning, it can be implemented computationally in virtual environment.

Even though fractional calculus is as old as classical calculus (and hence classical

mechanics), there is no universal way of defining fractional mechanics. We may replace

the second-order derivative of the position in Newton’s second law of motion with

a fractional-order derivative, generalize the force (or force field), or use a fractional-

order generalization of Euler–Lagrange equations [107, 96]. Furthermore, there are

many different definitions for the fractional derivative itself. Here, we use the Caputo

fractional derivative defined as (2.27).

In this chapter, the virtual environment is used to assess the shortest stick length

that human subjects can balance for a given fractional-order dynamics. The shortest

stick length is then compared with the critical length of the underlying theoretical

model with different feedback laws. It is assumed that human subjects employ delayed

fractional-order control, namely delayed PDµ feedback with 0 ≤ µ ≤ 1. The special

case µ = 1 gives the traditional delayed PD feedback with critical length (6.1). The

special case µ = 0 gives the delayed P feedback. The case 0 < µ < 1 gives a transition

between P and PD feedback. PDµ feedback can be considered a modified PD feedback

where the parameter µ is used to fit the feedback model to the experimental data. It

is known that fractional-order derivatives can be used to model motor control systems,

e.g., the control of eye movement by motor and premotor neurons [1, 88].

The chapter is organized as follows. The problem is stated in Section 6.1. In

Section 6.2, the theoretical value of the critical pendulum length is determined in
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the case of fractional-order dynamics and delayed PDµ feedback. The measurement

setup and protocol are detailed in Section 6.3. The theory and the measurements are

compared in Section 6.4. Finally, Section 6.5 summarizes the results.

6.1 Problem statement

In this section, the governing equation of the inverted pendulum subject to fractional-

order dynamics is derived. Then, we consider the system subject to fractional-order

delayed PD feedback and obtain the characteristic function to be investigated through-

out this chapter.

6.1.1 The inverted pendulum with fractional-order dynamics

In case of Newtonian dynamics, the equation of motion of an inverted pendulum on a

cart (see Figure 6.1) can be given as

1

3
ml2φ̈(t) +

1

2
ml cosφ(t) ẍ(t)− 1

2
mgl sinφ(t) = 0 , (6.2)

1

2
ml cosφ(t) φ̈(t)− 1

2
ml
(
φ̇(t)

)2
sinφ(t) + (m+mc) ẍ(t) = F (t) , (6.3)

where φ(t) is the angular displacement of the pendulum from the vertically upward

position, x(t) is the displacement of the cart, F (t) is the horizontal force acting on the

cart, g is the gravitational acceleration, l and m are the length and the mass of the

pendulum, and mc is the mass of the cart. We assume that mc ≫ m as this is the

case for real stick balancing due to the inertia of human subjects’ arm. In this case,

equation (6.3) simplifies to

mcẍ(t) = F (t) . (6.4)

For more details on the derivation of equations (6.2)–(6.4), see Appendix A.3.

It is assumed that the force acting on a point mass is proportional to the fractional

derivative of the point mass’s position with derivative order α. The case α = 2 gives the

second-order Newtonian dynamics, and the case α = 1 gives the first-order, so-called

Aristotelian dynamics [107, 58]. Here we consider general fractional-order cases with

1 ≤ α ≤ 2. The corresponding fractional-order governing equations can be obtained

from (6.2) and (6.4) by formally replacing the second-order derivatives with fractional-
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Figure 6.1: Inverted pendulum on a cart.

order ones as

1

3
ml2 t

0D
α
∗φ(t) +

1

2
ml cosφ(t) t

0D
α
∗ x(t)−

1

2
mglκ sinφ(t) = 0 , (6.5)

mc
t
0D

α
∗ x(t) = κF (t) , (6.6)

where t
0D

α
∗ denotes the Caputo fractional derivative with lower limit 0 according to

(2.27), and κ = 1 s2−α is a factor introduced in order to ensure the dimensional cor-

rectness of equations (6.5)–(6.6).

6.1.2 Delayed PDµ feedback

After eliminating t
0D

α
∗ x(t), equations (6.5)–(6.6) can be written as

t
0D

α
∗φ(t)−

3gκ

2l
sinφ(t) = − 3κ

2lmc

cosφ(t)F (t) . (6.7)

If we linearize (6.7) around the unstable equilibrium φ(t) ≡ 0, then we obtain

t
0D

α
∗φ(t)−

3gκ

2l
φ(t) = − 3κ

2lmc

F (t) . (6.8)

It should be noted that F (t) is a virtual force within the fractional-order virtual en-

vironment that is proportional to t
0D

α
∗ x(t) according to (6.6). We assume that the

virtual force F (t) can be given as a delayed PDµ feedback of the angular position of

the pendulum φ(t). In this case, (6.8) takes the form
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t
0D

α
∗φ(t) + a0 φ(t) = −kp e(t− τ)− kd

t
0D

µ
∗ e(t− τ) , (6.9)

where a0 = −3gκ/(2l) < 0 is the plant parameter, kp and kd are the (scaled) propor-

tional and derivative control gains, τ > 0 is the feedback delay, 1 ≤ α ≤ 2 is the order

of the fractional-order dynamics, and 0 ≤ µ ≤ 1 is the order of the fractional-order

feedback. The function e(t) = φ(t)−ur(t) is the error signal, where ur(t) is the reference

input. In this chapter, we consider the stability of system (6.9) in the bounded-input

bounded-output (BIBO) sense with an input ur(t) and an output φ(t).

The characteristic function of (6.9) reads

D(s) = sα + a0 +
(
kp + kds

µ
)
e−sτ . (6.10)

If we introduce the dimensionless variable z = sτ , we can rewrite (6.10) as

D(z) = zα − a+ (p+ dzµ) e−z (6.11)

with a = −a0τ
α > 0, p = kpτ

α, and d = kdτ
α−µ.

System (6.11) is said to be stabilizable for given a, α, and µ if there exist some

control gains p and d for which (6.11) is stable (i.e., (6.11) has roots with negative real

parts only).

6.2 Stability and stabilizability

In this section, stability and stabilizability analysis is performed in terms of the critical

pendulum length that can be compared with the shortest stick lengths that human

subjects can balance.

6.2.1 Stability analysis with D-subdivision

The D-subdivision method can be applied to (6.11) as follows. If 0 < µ ≤ 1, then

substitution of z = 0 and z = ±iy, y > 0 into D(z) = 0 gives the D-curves

z = 0 : p = a , d ∈ R , (6.12)

z = ±iy, y > 0 :


p =

1

sin
(
µπ

2

) (a sin (µπ
2
− y
)
+ yα sin

(
(α− µ) π

2
+ y
))

,

d =
1

sin
(
µπ

2

) (ay−µ sin (y)− yα−µ sin
(
απ

2
+ y
))

.

(6.13)
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Equations (6.12)–(6.13) give the boundaries of the regions in the space (a, α, µ, p, d)

where the number of unstable characteristic roots is constant. These boundaries can

be visualized in the two-dimensional (p, d) plane for fixed values of a, α, and µ. The

number of unstable characteristic roots can be determined by a testing integral based

on the argument principle [112, 74].

In the special case µ = 1, the D-curves are shown in Figure 6.2. In this case, (6.13)

gives (p, d) = (a, a) for 1 < α ≤ 2 and (p, d) = (a, a− 1) for α = 1 if the dimensionless

vibration frequency y approaches 0. This corresponds to a double zero characteristic

root of the characteristic function (6.11). Figure 6.2 shows that if α is fixed, then the

stable region (with zero unstable roots) shrinks as a increases and it disappears when

a reaches a critical value. This implies that if we project the stable region of α, a, p,

and d onto the plane (α, a), then we obtain a region bounded by a function aPDcrit(α). If

0 ≤ µ < 1, then there is a similar boundary aPD
µ

crit (α).

6.2.2 Stabilizability analysis

Stabilizability properties are discussed for the cases µ = 1, µ = 0, and 0 < µ < 1

separately.

The case µ = 1.

The critical values aPDcrit(α) for α = 1 and α = 2 are already known from the litera-

ture. In both cases, the characteristic function (6.11) has a zero root with multiplicity

m0 = 3 at the limit of stabilizability. If α = 1, then (6.9) is a neutral delay differential

equation and the critical value of a was derived as aPDcrit(1) = 2 in [71]. The case α = 2

gives a retarded delay differential equation, and aPDcrit(2) = 2 (see, for example, [102]).

Thus, Figure 6.2 shows the limit of stabilizability for both α = 1 and α = 2 with a = 2.

If 1 < α < 2, then the loss of stabilizability occurs at a loop-cusp transition of

(6.13) as it is demonstrated in Figure 6.2 with α = 1.5. This implies a double pair of

purely imaginary roots, that is, the multiplicity of the root z = iy is miy = 2. The

condition miy = 2 corresponds to four (real) equations that are linear in a, p, and d and

nonlinear in α and y. After the elimination of a, p, and d, a single equation remains

for α and y, which can be handled using standard numerical techniques. The obtained

function aPDcrit(α) is shown in Figure 6.3a in the plane (α, a).

The case µ = 0.

In this case, the characteristic function takes the form

D(z) = zα − a+ p̃e−z , (6.14)
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Figure 6.2: Stability charts of (6.11) for µ = 1 and different values of α and a.

where p̃ = p + d. This corresponds to a fractional-order generalization of the Hayes

equation with 1 ≤ α ≤ 2. If α = 1, then we get the integer-order Hayes equation, and

the critical value of a is aPcrit(1) = 1 [43]. The inverted pendulum (α = 2) cannot be

stabilized by delayed P feedback [102]; thus, aPcrit(2) = 0. If 1 < α < 2, then the stability

and stabilizability of (6.14) can be investigated using the same techniques as in the

case µ = 1 [29]. It was found that the characteristic function has a single pair of purely

imaginary roots at the limit of stabilizability (miy = 1), and an additional condition

det (J) = 0 holds, where J is the 2-by-2 Jacobian matrix of ReD(iy) and ImD(iy) with

respect to p and y. The corresponding function aPcrit(α) is shown in Figure 6.3a.

The case 0 < µ < 1.

The case 0 < µ < 1 and α = 1 (that is, a first-order unstable plant with a delayed
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Figure 6.3: Stabilizability diagram of (6.11) in the plane (α, a) (a). The system is
stabilizable in the shaded regions. Critical pendulum length according to (6.18) as a
function of α for different values of µ in the case τ = 0.35 s (b).

fractional-order PD controller) was investigated in [31] using D-subdivision; however,

stabilizability was analyzed in a slightly different sense. The stabilizability limit for

the case 0 < µ < 1 and α = 2 was given in [4].

Loss of stabilizability can be assessed by investigating the D-curves in the (p, d)

plane for different a, α, and µ values. Numerical analysis shows that stabilizability

is typically lost such that the parametric D-curve (6.13) is tangent to the vertical

line p = a (see Figure 6.4). This corresponds to the coexistence of a zero root with

multiplicity m0 = 1 and a pair of purely imaginary roots (miy = 1) such that an

additional condition det (J) = 0 holds, where J is the 3-by-3 Jacobian matrix of D(0),

ReD(iy), and ImD(iy) with respect to p, d, and y. These conditions correspond to the

four (real) equations

D(0) = 0, ReD(iy) = 0, ImD(iy) = 0, det (J) = 0 , (6.15)

which can be expanded as

−a+ p = 0 ,

yα cos
(
απ

2

)
− a+ p cos (y) + dyµ cos

(
µπ

2
− y
)
= 0 ,

yα sin
(
απ

2

)
− p sin (y) + dyµ sin

(
µπ

2
− y
)
= 0 ,

yµ
(
αyα−1 sin

(
(α− µ) π

2
+ y
)
− p cos

(
µπ

2

)
− dyµ

)
= 0 .


(6.16)
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Figure 6.4: Stability charts of (6.11) for α = 1.5, µ = 0.5 and different values of a.

Equations (6.16) are linear in a, p, and d and nonlinear in α, µ, and y. After the

elimination of a, p, and d, a single equation remains for α, µ, and y. For fixed α and µ,

this equation can be solved numerically and the critical dimensionless plant parameter

can be determined.

For certain µ values, other types of loss of stabilizability may occur. Namely, the

stable region may disappear at a loop-cusp transition if µ is close to 1. The condition

for a loop-cusp transition is that there exists a double pair of purely imaginary roots

(miy = 2), that is,

ReD(iy) = 0, ImD(iy) = 0, ReD′(iy) = 0, ImD′(iy) = 0 . (6.17)

This system of equations is also linear in a, p, and d and nonlinear in α, µ, and y. A

loop-cusp transition occurs for some fixed α and µ if (6.17) has a solution for a, p, d

and y with a > 0 and y > 0. Furthermore, it can represent a loss of stabilizability

only if p ≥ a. Numerical analysis shows that such a solution exists only if µ is greater

than some µ0(α). At the limit case, when p = a, the system of equations (6.17) should

be extended with an additional equation D(0) = 0. Solving D(0) = 0 together with

(6.17) gives the function µ0(α), which is shown in Figure 6.5. The function µ0(α) is

minimal for α̃ = 1.215, and the minimum value is µ̃ = 0.940. If 0 < µ < µ0(α), then

the stable region disappears such that the parametric D-curve (6.13) is tangent to the

vertical line p = a, that is, equation (6.15) holds. If µ0(α) < µ < 1, then a loop-cusp

transition occurs for a smaller a value than the one obtained from (6.15); hence, the

loop-cusp transition may correspond to the loss of stabilizability. However, other types

of loss of stabilizability also occur, which are not investigated here in detail. If µ = 1,

then the stable region disappears at a loop-cusp transition for any 1 < α < 2 as it was

shown above. Figure 6.3a shows some sample stabilizability boundaries: the critical

dimensionless plant parameter is shown as a function of α for different µ values.
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Figure 6.5: Set of points (α, µ0(α)) corresponding to a zero root and a double pair of
purely imaginary roots of the characteristic function (6.11). If 0 < µ < µ0(α), then the
stable region disappears such that the two D-curves (6.12)–(6.13) are tangent to each
other. Note that µ0(1) = µ0(2) = 1.

Using the relation between the pendulum length l and the dimensionless plant

parameter a, the critical pendulum length for a given delay τ and fractional derivative

orders α and µ can be given as

lPD
µ

crit =
3gκ

2aPD
µ

crit (α)
τα , (6.18)

where the critical dimensionless plant parameter aPD
µ

crit (α) is illustrated in Figure 6.3a.

If α = 2 and µ = 1, then (6.18) gives (6.1). Note that the critical length is proportional

to τα for any control law that can be written as a linear combination of integer- or

fractional-order derivatives of φ(t − τ). This property is originated from the dimen-

sionless parameter a = −a0τ
α in (6.11). The critical length is shown in Figure 6.3b as

a function of α.

6.3 Measurement setup

The critical length of the stick was measured experimentally using the virtual balanc-

ing environment [58] with governing equation (6.5). In the framework of a student

project, eighteen subjects were recruited. All the participants provided consent for

all research testing and were given the opportunity to withdraw from the study at

any time. The research was carried out following the Declaration of Helsinki. Human

subjects performed balancing tests as described below.
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Figure 6.6: Virtual balancing environment (a). Time signals from blank-out tests (b)–
(c).

6.3.1 Virtual balancing tests

Virtual balancing tests were implemented in Java. The computer program developed

originally for Newtonian dynamics [59, 56, 58] was modified to accommodate fractional-

order dynamics. The actual position of the stick is displayed on the screen, and only this

visual feedback is available for the subjects (see Figure 6.6a). The horizontal position

of the lower endpoint of the stick can be changed by moving the computer mouse. In

this way, human input affects directly the displacement of the cart x(t). This is related

to the control force F (t) in the theoretical model according to equation (6.6).

6.3.2 Implementing the fractional-order governing equation

The fractional-order governing equation (6.5) was implemented using the discretization

scheme developed in [73]. This numerical method assumes that the initial values apart

from y(0) are equal to zero, i.e., y(i)(0) = 0, i = 1, 2, ..., ⌈α⌉ − 1. During the virtual

balancing tests, the pendulum starts from rest, so the discretization scheme in [73] can

be applied and provides an adequately fast solution of the fractional-order differential

equation (6.5).

When applying this method, we also need to take the fractional derivative of dis-

placement of the cart x(t) in equation (6.5). To this end, the Grünwald–Letnikov

definition of the fractional derivative was used. If we assume continuity of x(t), i.e.,

x(t) ∈ C⌈α⌉[t], then the Grünwald–Letnikov and the Riemann–Liouville definitions are

equivalent. Furthermore, the Riemann–Liouville and Caputo fractional derivatives are

also equal since x(i)(0) = 0, i = 0, 1, 2, ..., ⌈α⌉ − 1 [88].



74 CHAPTER 6. HUMAN PERFORMANCE IN VIRTUAL STABILIZATION

6.3.3 Measuring the delay

In order to determine the delay parameter in the model, human reaction time was

assessed by two different approaches: instant reaction time tests and blank-out tests.

During the instant reaction time tests, the subjects were asked to click on a button

after 10 randomly occurring red flashes on the screen as fast as possible. In this way,

the reaction time could be measured independently of the balancing task. A feasible

time delay interval of 0.1–0.7 s was used during the evaluation of the instant reaction

time tests to eliminate extreme outliers. The remaining data were averaged to get the

reaction time τr.

During the blank-out tests, the subjects chose a constant stick length with which

they could comfortably balance. Then, after they started to balance, the stick disap-

peared from the screen at a random time instant for 0.5 s (see the shaded period in

Figure 6.6b and Figure 6.6c). The subjects were asked to keep on balancing despite

the loss of visual feedback. After the return of the visual feedback, subjects typically

employed a sudden corrective action in order to prevent the stick from falling.

Blank-out tests require the estimation of reaction times by detecting sudden jumps

in the time signals preceded by a resting period. In order to eliminate erroneous

detection of jumps by automatic processing, the plots of the pendulum angle and cart

acceleration were inspected visually. If there were any jumps in the cart acceleration

within 0.1 to 0.7 s after the end of the blank-out period, then the time elapsed between

the end of the blank-out period and the start of the jump was recorded (see Figure 6.6c).

Otherwise, no time delay was recorded. Subjects performed 10 blank-out tests during

a session. Time delays from the evaluable blank-out tests were averaged to get the

reaction time τBr .

6.3.4 Measurement protocol

The goal of the virtual balancing tests was to determine the shortest pendulum that

a subject could balance for a given fractional derivative order α. Subjects performed

a series of balancing sessions with α = 1, 1.2, 1.4, 1.6, 1.8, and 2. The order of the six

values of α was randomized under the condition that the absolute difference of the

fractional derivative orders is greater than or equal to 0.4 between successive sessions.

Randomized orders allow us to separate the effects of different dynamics and learning

throughout the sessions. Each subject was assigned a unique order of the six α values.

A single balancing session was constructed as follows.
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1. At the beginning of each session, an instant reaction time test was performed.

2. The fractional derivative order was set to a constant value of αk during the kth

session according to the assigned order.

3. The measured critical stick length lmeas
crit (αk) was determined as follows. Subjects

started with an initial length l1 that they were able to balance for 10 s during

preliminary practice without any difficulty. For the first trial, the stick length

was gradually decreased by a given step size ∆l1 = 0.2 m in every second, which

resulted in an increasing difficulty in the task. Subjects were allowed to perform

the trial with the same l1 and ∆l1 = 0.2 m a maximum number of five times. If

the balancing time was longer than 10 s for any of the five trials, then the falling

length l1,fall was assessed as the length at the time instant when |φ| just exceeded
20◦. If none of the five trials lasted at least 10 s, then the falling length was set

to l1,fall = l1. After the first round of trials, the initial stick length was set to

l2 = l1,fall + 10∆l1. The second round of (maximum five) balancing trials was

started with a step size ∆l2 = ∆l1/2, and the falling length was recorded as l2,fall.

The round of trails was repeated with li+1 = li,fall + 10∆li and ∆li+1 = ∆li/2 for

i = 2, 3, 4, 5. The critical length associated with αk was assessed as the falling

length in the 6th round of trials: lmeas
crit (αk) = l6,fall.

4. Finally, the subjects were instructed to perform 10 blank-out tests.

The overall session took approximately 15 min to complete. The above session was

repeated a total of 6 times with different fractional orders α = αk, k = 1, 2, . . . , 6 on

different days. Instant reaction time tests and blank-out tests were performed during

every session. Since the instant reaction time test does not depend on the value of

α (and therefore did not change throughout the sessions), the measured delays τr can

serve as a control for the delays τBr from blank-out tests.

6.4 Measurement results

In this section, we evaluate the instant reaction time and blank out tests and compare

the measured critical lengths with the theoretical ones.
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Figure 6.7: Instant reaction time τr for the subjects (a) and for the sessions (c). Reac-
tion time obtained from the blank-out tests τBr for the subjects (b) and for the sessions
(d). Red central mark: median; blue box: interquartile range (IQR); black dashed
whiskers: min–max values not considered outliers; red + marks: outliers.

6.4.1 Instant reaction time and blank-out tests

The box plots of the instant reaction time and blank-out tests are shown in Figure 6.7

for individual subjects and for different sessions. As can be seen, the variation of

the median of the reaction times among the subjects is larger than that among the

sessions. The delays τBr show a slightly decreasing tendency during the sessions (see

Figure 6.7d), which suggests that learning may have a small but still negligible effect.

The instant reaction time test measures the response time to a visual input, while
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the blank-out test measures the response time to a perturbation during virtual stick

balancing, which gives the overall closed-loop delay including the machine processing

delay and the time of human decision-making. Therefore, we estimate the delay for a

subject as the average of delays from the blank-out tests over the different sessions (or

different fractional derivative orders), i.e., τ = τ̄Br .

6.4.2 Measured critical lengths and comparison with theoret-

ical limits

Critical stick lengths for a given fractional derivative order α were recorded during the

virtual balancing tests (see Subsection 6.3.1 and Subsection 6.3.4). The results for each

subject (S1, S2, ... , S18) and each α (blue dots or crosses) are shown in Figure 6.8. As

it was shown in Subsection 6.2.2, the critical stick length can be expressed as a power

function of the delay. If we substitute τ = τ̄Br into equation (6.18), then we obtain the

theoretical limit corresponding to a given subject as a function of α. These theoretical

limits of l are also shown by solid gray and black lines for µ = 0 and µ = 1, respectively.

Most of the measured critical lengths lmeas
crit are between the theoretical limits lPcrit and

lPDcrit.

The results for all the subjects can be summarized in a single diagram with di-

mensionless parameters. Figure 6.9a shows the critical dimensionless plant parameters

determined as

ameas
crit =

3gκτα

2lmeas
crit

, (6.19)

where τ = τ̄Br is substituted for each subject. Theoretical stabilizability limits for

different µ values are also shown.

Comparison of the data points and the theoretical curves in Figure 6.9a suggests

that a feedback law with a fractional derivative of fixed order µmay have been employed

for all plant orders α. This is also supported by the observation that the biological

processes behind human motion control can be described by fractional-order models

of neurons and muscles corresponding to fractional differentiators and integrators [1].

Hence, the order of the fractional-order feedback might be determined by these bio-

logical processes. Furthermore, we assume that the control gains kp, kd (or p, d) can

be set to their optimal values precisely and quickly. Under these assumptions, the

best-fitting fractional order µ can be determined by comparing the measured and the

theoretical critical dimensionless plant parameters. Root mean square error (RMSE)

analysis gives that PDµ feedback with µ = 0.475 is the best-fitting control law. This µ
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Figure 6.8: Measured critical lengths for different fractional derivative orders α. Data
points that lie outside of the range of the plot are indicated by crosses. The theoretical
limits are also shown for delayed PD (solid black line) and delayed P (solid gray line)
feedback for reference. The theoretical limits are different for each individual subject
because of the different delays.

value describes the typical behavior of a human subject.

The RMSE analysis can also be applied to the individual subjects separately. For

the best-fitting µ values, the RMSE is minimal and the coefficient of determination R2

is maximal. For six out of the eighteen subjects (S1, S4, S6, S11, S14, S18), the maximal

coefficient of determination is negative, which reflects that these subjects cannot be

modeled well with PDµ feedback. For the remaining twelve subjects, the best-fitting

fractional order is µ = 0.542± 0.191 (mean ± standard deviation). The corresponding

coefficient of determination for these twelve subjects is R2 = 0.674± 0.233.

6.5 Conclusion

Virtual balancing tasks were performed by eighteen human subjects such that the

virtual dynamics was of fractional order α. The critical stick length that subjects were

able to balance for different α values was experimentally determined and used as a

measure of human balancing performance. As opposed to [59, 58], no artificial delay

was added. The overall closed-loop delay was measured by blank-out tests for each
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subject. Theoretical stabilizability limits for the delayed PDµ controller with different µ

values were fitted to the measured data points. The best fit was obtained for µ = 0.475,

which is surprisingly close to µ = 1/2. Half-order fractional derivatives naturally arise

in mechanical optimization problems. A generalized version of the tautochrone problem

leads to Abel’s integral equation which contains a Caputo fractional derivative of order

1/2 [89, 88]. In [108], the Riemann–Liouville fractional derivative of order 3/2 was used

to construct an initial value problem in order to find the shapes of neutrally floating

objects.

While stabilizability limits for fixed 0 ≤ µ ≤ 1 can be fitted to the measured data

points, they cannot directly explain data points that lie under the limit aPcrit(α). These

data points can appear because subjects may not tune the control gains to their optimal

values. If a is smaller than aPD
µ

crit (α) corresponding to a given µ, then there is a finite

region of stabilizing control gains. Practical loss of stabilizability might be related to a

finite stable region rather than the disappearance of the stable region. This implies a

kind of robust stabilizability condition which is related to the size of the stable region.

Note that only a single data point lies above the limit aPD
0.9

crit (α), and none of them is

above aPDcrit(α). Therefore, in terms of robust stabilitability, simple PD feedback can

still be a good model for the human feedback mechanism.



80 CHAPTER 6. HUMAN PERFORMANCE IN VIRTUAL STABILIZATION

In this chapter, we considered fractional derivative orders 0 ≤ µ ≤ 1 and 1 ≤ α ≤ 2.

We may also consider PDµ feedback with 1 < µ ≤ 2. In [4], it was shown that

the critical dimensionless plant parameter acrit can be slightly increased for α = 2 if

1 < µ < 2; however, acrit approaches 0 as µ approaches 2. Furthermore, fractional-

order dynamics with orders 2 < α ≤ 3 could be investigated as in [107]. This would

result in a higher-order dynamics and a motion that is more difficult to control. In the

computer environment, we may also change the value of the gravitational acceleration,

which would change the critical length according to (6.1).
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6.6 Main results

The dynamics of human stick balancing can be generalized using fractional-order

derivatives, which can be implemented in a virtual environment. Reaction delay sets

a strong limitation on the length of the shortest stick that human subjects can bal-

ance. Human processing of visual input also exhibits a memory effect that can be mod-

eled by fractional-order derivatives. Therefore, a delayed fractional-order proportional-

derivative control of the unstable fractional-order plant was hypothesized. The result-

ing equation of motion was investigated in a dimensionless framework, and stabiliz-

ability limits were determined as a function of the dynamics’s order α.

Contribution 5

Consider the fractional-order inverted pendulum subject to delayed fractional-order

proportional-derivative feedback described by the dimensionless characteristic function

D(z) = zα − a+ (p+ dzµ) e−z ,

where a > 0 is the plant parameter, p and d are the proportional and derivative control

gains, 1 < α < 2 is the order of the fractional-order dynamics, and 0 < µ ≤ 1 is the

order of the fractional-order feedback. For 0 < µ < µ̃ ≈ 0.940, the loss of stabilizability

occurs such that the characteristic function has a zero root z = 0 and a pair of purely

imaginary roots z = ±iy, and an additional condition det (J) = 0 holds, where J is the

3-by-3 Jacobian matrix of D(0), ReD(iy), and ImD(iy) with respect to p, d, and y. For

µ = 1, which corresponds to integer-order proportional-derivative feedback, the loss of
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stabilizability occurs at a loop-cusp transition of one of the D-curves, which implies a

pair of purely imaginary roots with multiplicity 2. In both cases, the system can be

stabilized using an appropriate choice of the control parameters p and d if a is smaller

than the critical value aPD
µ

crit (α) that is shown in the figure.

Related publications: [9].

The theoretical limits were compared with the results of a systematic series of

virtual balancing tests performed by eighteen subjects. The critical stick lengths that

subjects were able to balance for different α values were experimentally determined.

The overall closed-loop delay was measured by blank-out tests for each subject. The

comparison showed that the theoretical stabilizability limits for controllers with fixed

fractional order correspond to the measured data points (α, acrit), where acrit is the

critical dimensionless plant parameter that can be calculated from the critical stick

length, the overall closed-loop delay and the fractional order of the dynamics.

Contribution 6

Virtual stick balancing tasks were performed by eighteen human subjects such that the

virtual dynamics was of fractional order 1 ≤ α ≤ 2. Human control action was modeled

by delayed fractional-order proportional-derivative feedback of order 0 ≤ µ ≤ 1, and

the fractional order µ was assumed to be fixed for a given subject. The corresponding

theoretical stabilizability limits for fixed µ values describe the decreasing tendency and

order of magnitude of the measured critical dimensionless plant parameters well as

a function of α. Nonlinear regression of the measured data points showed that the

coefficient of determination R2 for the best fit was positive for twelve of the eighteen

subjects with R2 = 0.674±0.233 (mean ± standard deviation for these twelve subjects).

For these twelve subjects, the corresponding fractional order was µ = 0.542± 0.191.

Related publications: [9].



Chapter 7

Summary

The critical delay of time-delay systems can be investigated through the more general

concept of stabilizability. In the case of single-input linear time-invariant dynami-

cal systems with a single-delay state feedback, the stablizable delay intervals can be

assessed using sufficient conditions for the dominancy of a multiple real root and a

necessary condition for stability. These polynomial conditions can be evaluated nu-

merically if the coefficients of the plant are known. However, it might be enough to

know the structure of the open-loop characteristic polynomial: if the plant has only

real roots and the average of the roots is nonnegative, then the critical delay can be

expressed as the smallest positive real root of a polynomial. Such a structure occurs in

the case of the inverted pendulum subject to delayed proportional-derivative feedback

and in many other applications related to balancing.

The critical delay of the inverted pendulum depends on the associated control law.

The critical delay can be extended by applying acceleration feedback, detuning the

delays, or including fractional derivative terms. The greatest increase was obtained

for detuned proportional-derivative-acceleration feedback; hence, this control strategy

might be favorable in engineering applications. However, despite the smaller increase in

the critical delay and the higher complexity of the controller, delayed fractional-order

proportional-derivative feedback can be used to model human motion control in case

of visual sensory input.

Human stick balancing measurements were performed in a virtual environment such

that the stick followed fractional-order dynamics. The critical lengths and reaction

times of the eighteen subjects were analyzed in a dimensionless framework. It was found

that delayed fractional-order proportional-derivative feedback with a fixed fractional

order describes the human control action well for most of the subjects. That is, such a
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fractional-order control law was found to be independent of the fractional order of the

dynamics. The best-fitting fractional order of the control law showed only a moderate

variation between different subjects.

The presented research might be continued in many different directions. As for

single-input linear time-invariant dynamical systems with a single-delay state feedback,

it would be worth investigating the connection between the root location of the plant

and the root location of the characteristic function at the limit of stabilizability. Recent

articles covered the case of the general second-order plant [76]. It might also be possible

to approach such a problem using the advanced algebraic tools of computer algebra

systems. A software package exploiting the results of Chapter 3 and other recent works

was developed in [15]. Stability of fractional-order time-delay systems could also be

investigated numerically. The semi-discretization method can be applied along with

the exponential approximation of the weights in the Grünwald–Letnikov fractional

derivative [6]. It could be worth developing the theory behind [6] such that it could

be applicable to the general fractional-order state equation of Caputo type. Finally, it

was found in Chapter 6 that the human control action can be modeled as fractional-

order proportional-derivative feedback with a fixed order during virtual stick balancing.

Further measurements could help us decide if the same holds true for other types of

balancing tasks or if the fixed fractional order is related to the biological processing of

visual input.



Appendices

A.1 N -link inverted pendulum: equation of motion

The position and the velocity of the center of mass of the kth rod (k = 1, 2, ..., N) can

be written as

rCk
=

 l
∑k

i=1 sinφi − l
2
sinφk

l
∑k

i=1 cosφi − l
2
cosφk

0

 , (A.1)

vCk
= l


∑k

i=1 cosφiφ̇i − 1
2
cosφkφ̇k

−
∑k

i=1 sinφiφ̇i +
1
2
sinφkφ̇k

0

 . (A.2)

Using (A.1) and (A.2) the kinetic energy is

T =
N∑
k=1

(
1

2
mv2

Ck
+

1

2

(
1

12
ml2
)
φ̇2
k

)
=

1

2
ml2

N∑
k=1

 φ̇2
k

3
+

k−1∑
j=1

k∑
i=1

cos(φi − φj)φ̇iφ̇j

 ,

(A.3)

and the potential energy is

U =
N∑
k=1

mgrCk,y = mgl

 N∑
k=1

k∑
i=1

cosφi −
1

2

N∑
k=1

cosφk

 . (A.4)

From (A.3) and (A.4) we obtain the matrix elements (3.40) and (3.41) by

mαβ =
∂2T

∂φ̇αφ̇β

(φi = 0, φ̇i = 0) ,

sαβ =
∂2U

∂φαφβ

(φi = 0, φ̇i = 0) .

(A.5)
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A.2 Jacobian matrices and determinants

The Jacobian matrix of (5.7) with respect to kp, kd, ω1 can be given as

J̃1 =

 1 0 0

cos(τpω1) ωµ
1 cos(

µπ
2
− τdω1)

∂ReD(iω1)
∂ω1

− sin(τpω1) ωµ
1 sin(

µπ
2
− τdω1)

∂ImD(iω1)
∂ω1

 , (A.6)

where

∂ReD(iω1)

∂ω1

=− 2ω1 − kpτp sin
(
τpω1

)
+ kdµω

µ−1
1 cos

(
µπ

2
− τdω1

)
+ kdτdω

µ
1 sin

(
µπ

2
− τdω1

)
,

(A.7)

∂ImD(iω1)

∂ω1

=− kpτp cos
(
τpω1

)
− kdτdω

µ
1 cos

(
µπ

2
− τdω1

)
+ kdµω

µ−1
1 sin

(
µπ

2
− τdω1

)
.

(A.8)

Taking the determinant of (A.6) gives

det(J̃1) = −ωµ
1

(
kpτp cos

(
µπ

2
+ ω1

(
τp − τd

))
+ kdω

µ
1 τd − 2ω1 sin

(
µπ

2
− ω1τd

))
.

(A.9)

By setting τp = τd = τ , we obtain det(J1) from (A.9) as

det(J1) = −ωµ
1

(
kpτ cos

(
µπ

2

)
+ kdω

µ
1 τ − 2ω1 sin

(
µπ

2
− ω1τ

))
. (A.10)

Determinants det(J̃2) and det(J2) can be derived similarly.

A.3 Inverted pendulum on a cart: equation of

motion

The inverted pendulum on a cart is shown in Figure 6.1. The position and the velocity

of the center of mass of the pendulum are

rC =

x+ l
2
sinφ

l
2
cosφ

0

 , (A.11)
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vC =

ẋ+ l
2
φ̇ cosφ

− l
2
φ̇ sinφ

0

 . (A.12)

Using equations (A.11)–(A.12), the kinetic energy

T =
1

2
mv2

C +
1

2
JCφ̇

2 +
1

2
mcẋ

2

=
1

2
m

(
l2

4
φ̇2 + lφ̇ẋ cosφ+ ẋ2

)
+

1

2

1

12
ml2φ̇2 +

1

2
mcẋ

2

=
1

6
ml2φ̇2 +

1

2
mlφ̇ẋ cosφ+

1

2
(m+mc) ẋ

2

(A.13)

and the potential energy

U = mgrC,y = mg
l

2
cosφ (A.14)

can be calculated. Then, equations (6.2)–(6.3) can be obtained using Lagrange’s equa-

tions of the second kind.
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[91] G. Pólya and G. Szegő. Problems and theorems in analysis II: Theory of func-

tions, zeros, polynomials, determinants, number theory, geometry. Springer, 1976.

[92] Z. Qi, Q. Shi, and H. Zhang. Tuning of digital PID controllers using particle

swarm optimization algorithm for a CAN-based DC motor subject to stochastic

delays. IEEE Transactions on Industrial Electronics, 67(7):5637–5646, 2020.

[93] Z.-C. Qin, X. Li, S. Zhong, and J.-Q. Sun. Control experiments on time-delayed

dynamical systems. Journal of Vibration and Control, 20(6):827–837, 2014.

[94] R. S. Razavian, M. Sadeghi, S. Bazzi, R. Nayeem, and D. Sternad. Body mechan-

ics, optimality, and sensory feedback in the human control of complex objects.

Neural Computation, 35(5):853–895, 2023.

[95] I. T. Rekanos and T. V. Yioultsis. Approximation of Grünwald–Letnikov frac-

tional derivative for FDTD modeling of Cole–Cole media. IEEE Transactions on

Magnetics, 50(2):181–184, 2014.

[96] F. Riewe. Nonconservative Lagrangian and Hamiltonian mechanics. Physical

Review E, 53(2):1890–1899, 1996.



98 BIBLIOGRAPHY
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