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Abstract 
Self-excited nonlinear vibrations occurring in the machining processes are investigated in this paper. Our 
treatment applies analytical techniques to a one degree of freedom but strongly nonlinear mechanical model 
of the turning process. This tool enables us to describe and analyse the highly nonlinear dynamics of the 
appearing periodic and more complicated motions. Using normal form calculations for the delay-differential 
equation model, we prove that the low-amplitude vibrations are unstable all along the stability lobes due to the 
subcriticality of Hopf bifurcations. This means that self-excited vibrations of the machine tool may occur below 
the stability boundaries predicted by the linear theory. Zones of bi-stability are presented in the traditional 
stability lobe diagram.  
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1 INTRODUCTION 
Nowadays, high speed cutting comes to the front due to 
high quality and economic requirements. The 
corresponding machine tools are expensive compared to 
the usual machines because of their complex structure. 
The so-called regenerative chatter is not just harmful for 
these machines, but it also has a negative effect on the 
machined surface quality. The regenerative effect is a 
kind of self-excited high-frequency vibration originated in 
the chip formation process [11, 12].  
The stability of the regenerative vibrations has been 
studied extensively during the last decades [1, 7]. The 
study of the corresponding nonlinear vibrations started in 
the last ten years only [3, 8, 9]. These results led to the 
final conclusion that unstable vibrations exist in the 
vicinity of the otherwise stable stationary cutting in the 
stable parameter regions. 
The parameter region where this situation can occur will 
be called region of bistability. The explanation of this 
terminology is that the unstable vibration separates two 
attractors in the sense of dynamical systems. Apart of the 
stable stationary cutting there must exist another 
attractor, that is, a large amplitude stable oscillation 
outside the unstable vibration. This large amplitude 
nonlinear vibration is stable in dynamical sense, but it is 
often called instability by the community of researchers 
working in production technology. Actually, these 
vibrations are of little interest from technology view-point.  
However, the width of the bistable region is important: it 
defines that region in the stable parameter domain where 
the stable cutting process is more or less sensitive for 
perturbations like non-homogeneous work-piece material.  
In this paper, we prove the existence of the unstable 
vibrations for a large set of cutting force characteristics. 
Also, the bistable domain is constructed in the parameter 
space of the technological parameters like cutting speed 
and chip width.  
 
2 MODEL CONSTRUCTION 
In order to investigate the fundamental effect of 
nonlinearity during cutting, we have to apply as simple 
Sixth
model as possible. Our one degree of freedom (DOF) 
orthogonal cutting model (Figure 1) might be far from the 
real cutting conditions, but it will help to follow analytically 
the influence of the cutting parameters on the dynamical 
behaviour. The desired chip thickness h0 equals to the 
feed per revolution and the chip width w corresponds to 
the depth of cut. 

 
Figure 1: Orthogonal cutting with regenerative effect. 

We disregard the geometric nonlinearities of the machine 
tool structure since their influences are far smaller than 
those of cutting force characteristics that exist on very 
small scale. Thus, the equation of motion of the chosen 
model assumes the form: 
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where ωn and κ   are the natural angular frequency and the 
damping ratio of the essential vibration mode described by 
the general coordinate q that refers to the tool position. 
We can express these parameters with the modal mass m, 
stiffness k and the damping factor b.  
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Fx(t) is the essential component of the actual cutting force. 
Dot refers to time derivative.   
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2.1 Cutting force characteristics 
To build up the dynamical model, we need a simple 
expression of the cutting force characteristics. There are 
a number of traditional, empirical formulas for the cutting 
force depending on the chip width and thickness. The 
most popular and generally applied one is the power-law 
[10] 
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K and ν   are empirical parameters. The exponent ν  may 
vary from 2/5 [4] through 3/4 [5] to 4/5 [11]. The origin of 
these power-law expressions is in the linear optimisation 
techniques in the parameter space of the logarithms of 
the cutting parameters w and h.  
There is a less frequently used expression of the cutting 
force which is essentially a cubic polynomial curve fitted 
on the experimental data [6] 
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(e.g., zC  = 4, ρ 1= 6.1096 ⋅ 109 [N/m2], ρ 2 = –5.41416 ⋅ 1013 

[N/m3], ρ  3= 2.03769 ⋅ 1017 [N/m4]; [6]). Originally, these 
measurement data were obtained for full immersion 
milling with a face mill with even number (z  =  24) of teeth. 
For this case, the cutting process nearly corresponds to 
the orthogonal cutting since the parametric excitation can 
be averaged in the system. 

 
Figure 2: (a) and (b) show the curves of the power-law 

and the Tobias cubic curve cutting force characteristics. 
From dynamical view-point, there are essential 
differences between the presented empirical 
interpretations of the cutting forces. The  
power-law in Figure 2 (a) has a vertical tangent at the 
origin, where the tool just touches the surface of the  
work-piece. This feature causes serious problems in the 
mathematical treatment of the loss of contact  
(e.g., uniqueness of solutions, uncertainties in numerical 
simulations). Also, the bifurcation calculations require 
Taylor series expansion of the power-law function at the 
stationary cutting.   
In turn, the Tobias cubic curve Figure 2 (b) has a finite 
gradient at the origin and an inflection at 
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while it has more parameters and so greater class of 
functions can be identified this way. 

2.2 Equation of motion 
As show in Figure 1, the so-called regenerative effect 
arises during the chip separation. Through the relative 
vibration between the tool and the work-piece, the tool 
leaves its motion pattern on the work-piece that excites 
the system after one revolution of the work-piece. The 
0)()()( htqtqth

actual chip thickness can be expressed as a function of 
the present and the delayed motions of the tool 

, (4) = −τ − +

where h0 is the theoretical chip thickness and τ = 2π / Ω is 
the time delay which is equal to the time period of one 
revolution of the work-piece of angular velocity Ω. The 
chip thickness variation has the form 
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The power series of the cutting force with respect to the 
chip thickness variation is given by 
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Note that in the case of Tobias cubic curve this is a finite 
polynomial function of third degree.  
Let us consider the perturbed system around the steady 
state solution with the new coordinate x(t) defined by  
q(t) = q0 + x(t). With substitution into (1), we obtain  
q0 = Fx0 / ( m ω  n

2
 ) for the equilibrium, which is the static 

deformation of the tool.  
Thus we can obtain the perturbed equation of motion: 
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After the introduction of the dimensionless time :=ω t n t  we 
obtain a more general form 
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and the coefficients of the square and cubic terms in the 
nonlinear excitation are 
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By abuse of notation, we drop the tilde, thus, the equation 
of motion is 
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In first order delayed differential equations (DDE) form we 
have  

))(),(()()()(′ ττ −+−+= ttttt yygyRyLy , (7) 



where  and the linear non-delayed and 
delayed coefficient matrices and the nonlinear term are 
given by 
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2.3 Operator formulation 
In order to investigate the nonlinear DDE, we transform the 
system into the space of continuously differentiable 
functions by the shift, 

2,      .  

In this space the whole system can be rewritten as an 
operational differential equation (OpDE) 
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with the linear operator A  defined by 
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and the nonlinear operator F  defined by 

⎧ −∈ ,)0,[if, τθ0
 (10) 

It can be shown that (8) corresponds to (7) since the two 
kinds of derivates are equivalent 
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3 LINEAR STABILITY 
Consider only the linear part ty A=′

t
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 of (8) with the 
exponential trial solution: 
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The trivial solution of (8) is exponentially stable if the 
characteristic exponents λk, that is, the eigenvalues of the 
linear operator A    satisfy  
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With the substitution of the general solution into the linear 
equation, we get a boundary value problem 
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With the trial solution b(θ )=B exp(λ θ ), this leads to an 
eigenvalue problem leading to the characteristic function 

)det()( λτλλ −+−= eD RIL
 (12) 
The damping factor is fixed for a certain machine tool, so 
the stability chart will be constructed for the variable 
parameters w and τ, which are determined by the chip 
width and the cutting speed. The stability boundaries for 
these parameters are expressed as a function of the 
dimensionless vibration frequency ω  after the substitution 
λ  = iω : 
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Then the dimensionless angular velocity Ω of the  
work-piece is calculated as 
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The jth parametric function formed from (13) and (14) is 
called jth ‘lobe’. The stability limit consists of the sections 
of the lobes in the (w, Ω) plane beneath which the cutting 
process is asymptotically stable [7, 12]. 

 

Figure 3: The linear stability chart (a) and the vibration 
frequency at the stability limits (b); κ =0.01. 

 
4 NONLINEAR INVESTIGATION 
At the stability limits, there are two complex conjugate 
critical characteristic roots. We will choose the 
dimensionless chip width w as a bifurcation parameter and 
follow the motion of these critical roots in the complex 
plane as w increases through the stability limit. 

4.1 Overview of the Hopf bifurcation calculus 
We briefly present here the procedure of the Hopf 
bifurcation calculation following the algorithm given in  
[2, 8]. 
Variation of critical eigenvalues 
According to the Hopf bifurcation theory we need the 
derivates of the critical eigenvalues with respect to the 
bifurcation parameter w, which comes from the implicit 
differentiation of characteristic function (12): 
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Centre Manifold 
At the linear stability limit the Hopf bifurcation can be 
studied on a two dimensional centre manifold embedded 
in the infinite dimensional phase space. The tangent 
subspace of the centre manifold at the origin is spanned 
by the real and imaginary part of the critical eigenvectors 
of the linear operator A (Figure 4). 

 
Figure 4: Tangent subspace and centre manifold at the 

steady state 

The critical eigenvectors are calculated from 
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Substituting the operator A according to (9), and solving 
the corresponding boundary value problem, we obtain the 
real and the imaginary part of the eigenvectors 
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Since the base of the tangent space defined by (17) is not 
orthogonal, to make the projection, we need its reciprocal 
base spanned by nR and nI, which satisfy the adjoint 
problem 
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The orthonormality of the critical eigenvectors are 
prescribed by the conditions 
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where the scalar product is defined by 
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The solution of the linear boundary value problem (18) 
provides the critical normed adjoint eigenvectors 
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where the coefficient vectors b1(ω ) and b2(ω ) are not 
presented here. With the help of the new coordinates  
z(t)  =  col (z1(t), z2(t)) we can decompose the phase space in 
the following way: 
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With the new coordinates we can express the transformed 
 as  OpDE
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where 
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and the Jordan block at the critical parameters assumes 
the form 
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The centre manifold is bent, so its second degree 
approximation with the new coordinates z(t) is  
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where the unknown coefficient functions are calculated  
from a linear boundary value problem, again. During the 
lengthy calculations, the restriction of the nonlinear 
operator F (10) on the centre manifold requires the 
following substitution of the nonlinear function  
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4.2 Poincaré-Ljapunov constant 
The first two scalar equations of (19) describe the flow on 
the centre manifold, where the Hopf bifurcation takes 
place. Its second and third order terms assume the form 
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The Poincaré-Ljapunov constant (PLC) can be expressed 
directly with the help of the coefficients from (20) [7] 
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If  then the 0)( >Δ ω Hopf bifurcation is subcritical, 
otherwise, it is supercritical. Since the PLC can be 
calculated along the lobes as a function of the vibration 
frequency ω, we can follow the criticality of the Hopf 
bifurcation along the lobes. If we substitute the 
coefficients ajk ,  bjk , (20) we obtain 
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and γn (ω ), γd (ω ) can be found in (15), (16). 
We can determine the first harmonic component of the 
arising periodic motion analytically. Its amplitude can be 
expressed as a function of the bifurcation parameter w: 
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This period one branch gives us a good approximation in 
for actual chip width values w close enough to the critical 
value w  (ω  ).  

 

Figure 5: Structure of periodic orbits; j=10, κ = 0.01. 

 
5 THE CRITICALITY OF THE HOPF BIFURCATION 
It has great technical relevance what kind of limit cycle 
exists in the vicinity of the stability boundaries, that is, 
whether the arisen Hopf bifurcation is subcritical or 
supercritical. In the subcritical case, an unstable oscillation 
exists around the stable stationary cutting, which can still 
lead to chatter for perturbations larger than the amplitude 
of the unstable oscillation. Consequently the sign of (22) 
refers to the nature of the stability. Since the chatter 
frequencies ω ∈ (1,∞) along the stability boundaries, w  (ω  ), 
γ d (ω    ) and u (ω   ) are positive in (22) in accordance with d 

(13), (16) and (24). Thus, the sense of the bifurcation 
depends only on the nominator of the PLC, more exactly on 
the signs of δ n1 (ω) defined in (23) and η  3 defined in (5): 
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(5) into the condition (26)Substituting , the problem leads 
to a second order polynomial condition with respect to the 
theoretical chip thickness h0: 
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This condition is always satisfied if it has no real root for  
h0, that is, if the discriminant D satisfies 
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> 0 for all reasonable cutting force characteristics Since ρ 3 
(2) and the last factor is always positive for all ω ∈ (1,∞), 
κ ∈ [0,∞), we are left the simple condition 
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This condition is equivalent with the condition of the 
positive gradient at the inflection point (3) since 
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Thus, if the gradient of the cubic cutting force function at 
the inflection point is positive, then the Hopf bifurcation is 
subcritical. Otherwise, the subcriticality is not proven 
mathematically, but again, having negative derivative at a 
possible inflection point on the cutting force characteristic 
is physically unreasonable.  
 
6 ZONES OF BI-STABILITY 
As explained above, the subcriticality of the Hopf 
bifurcation means that the unstable limit cycle separates 
two coexisting stable motions, the desired stable 
stationary cutting and the undesired large amplitude 
chatter that is also stable in the sense of dynamical 
systems theory. This is why this region is called the region 
of bi-stability. Since we proved that the Hopf bifurcation is 
subcritical along the lobes, the bi-stable regions are 
located below these lobes, covering a large region of the 
parameter domain of stable stationary cutting.  

6.1 Bi-stable limits 
According to (25) the first harmonic component of the limit 
cycle can be calculated as a projection of the real orbit to 
the subspace tangent to the centre manifold (Figure 4): 
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This way, the actual chip thickness is given by (4): 
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The tool leaves the surface of the work-piece when the 
chip thickness becomes zero: 
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If we project this condition (27) onto the plane spanned by 
(yt,1 (–τ  ), yt,1 (0)), that is by (x (t–τ  ), x(t)) as shown in  
Figure 7, we obtain a straight-line as switching condition. 
The tool leaves the surface of the work-piece when the 
orbits shown as ellipses in Figure 7 hit this switching line. 

   

Figure 7: Critical periodic orbit in reduced phase space. 

Expressing the bifurcation parameter w from (27), we get 
the so-called bi-stable limit where the periodic orbits 
reach the switching line:  
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7 CONCLUSION 
Figure 6 shows the bi-stable regions as dark strips in the 
grey stable cutting domain, just below the white unstable 
parameter domain. With the appropriate choice of the 
parameters η2, η3 from (6), the results are shown for both 
3/4 law and for the Tobias cubic curve.   
While the dimensionless linear stability boundary is not 
affected at all by the applied cutting force characteristic 
function, the size of the bi-stable region strongly depends 
on it. Clearly, this bi-stable region is much larger if the 
cutting force characteristics follow the cubic curve rather 
than the power-law. 
During the design of the technological parameters, it is 
much more convenient and common to use the power-law 
 

Figure 6: Both panels show the stability chart with the bi-stable region in case of the 3/4 power-law (a) and Tobias cubic 
curve (b); h =0.06 [mm], κ = 0.01.
approximation of the real measured cutting force 
characteristics. From the view-point of the stability 
prediction of the stationary cutting the linearization of this 
power-law is still appropriate. However, from nonlinear 
vibrations view-point, the use of the power-law 
approximation has great deficiencies. As we showed, the 
prediction of the bi-stable parameter domain is important if 
we want to secure stable stationary cutting robust enough 
for perturbations. However, this domain cannot be 
predicted correctly, in a conservative way, if we use the 
power-law approximation.  
We proved that the Tobias cubic curve approximation of 
the cutting force characteristics leads to subcritical Hopf 
bifurcations along all the stability limits in the same way as 
it was shown for the power-law by [4]. In the meantime we 
also showed that the bi-stable domain can be substantially 
larger for these cutting force characteristics than one 
predicted by the power-law. 
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