!!! VEMA 12. HĂT: SzakĂtĂł prĂłbatest vizsgĂĄlata !! Kezdeti beĂĄllĂtĂĄsok /RGB,INDEX,100,100,100,0 /RGB,INDEX,0,0,0,15 ! DimenziĂłk: [N],[Nmm],[N/mm^2=MPa],[N/mm] L0=25 L1=75 R=30 B0=5 B1=10 T=5 PHI=ACOS(1-(B1-B0)/2/R) EY=210e3 SIGY=250 ET=10e3 NU=0.33 PMAX=300*B0/B1 /PREP7 ! ElemtĂpus kivĂĄlasztĂĄsa ET,1,PLANE182 KEYOPT,1,3,3 ! Elem vastagsĂĄga R,1,T ! Anyagi viselkedĂŠs ! LinearĂĄisan rugalmas szakasz MPTEMP,1,0 MPDATA,EX,1,,EY MPDATA,PRXY,1,,NU ! Izotrop kemĂŠnyedĹ szakasz TB,BISO,1,1,2 ! Kinematikailag kemĂŠnyedĹ szakasz ! TB, BKIN,1,,1 TBTEMP,0 TBDATA,,SIGY,ET !! ModellezĂŠs ! Kulcspontok felvĂŠtele K,1,0,0 K,2,B0/2,0 K,3,0,L0/2 K,4,B0/2,L0/2 K,5,0,L0/2 + R*SIN(PHI) K,6,B1/2,L0/2 + R*SIN(PHI) K,7,0,L1/2 K,8,B1/2,L1/2 K,9,B1/2,L0/2 ! Vonalak definiĂĄlĂĄsa L,1,2 L,1,3 L,2,4 L,3,4 L,3,5 L,5,6 L,5,7 L,6,8 L,7,8 LARC,4,6,9,R ! FelĂźletek lĂŠtrehzoĂĄsa AL,1,2,3,4 AL,4,5,6,10 AL,6,7,8,9 !! HĂĄlĂłzĂĄsa AESIZE,ALL,B0/2/5 AMESH,ALL !! Kinematikai kĂŠnyszerek definiĂĄlĂĄsa DL,1,,UY,0 DL,2,,UX,0 DL,5,,UX,0 DL,7,,UX,0 ! Merev megfogĂĄs modellezĂŠse DL,9,,UX,0 LSEL,S,LINE,,9 NSLL,S,1 CP,1,UY,ALL ALLSEL,ALL FINISH /SOL !! SzimulĂĄciĂł beĂĄllĂtĂĄsai ANTYPE,0 NLGEOM,1 DELTIM,1e-2,1e-4,2e-2 OUTRES,ALL,ALL TIME,1 FINISH /PREP7 ! ElsĹ terhelĂŠshez tartozĂł dinamikai peremfeltĂŠtel megadĂĄsa SFL,9,PRES,-PMAX FINISH /SOL ! ElsĹ terhelĂŠs lĂŠpcsĹ kiĂrĂĄsa LSWRITE,1 TIME,2 FINISH /PREP7 ! MĂĄsodik terhelĂŠsi lĂŠpĂŠshez tartozĂł peremfeltĂŠtel 'megadĂĄsa' SFLDELE,9,PRES FINISH /SOL ! MĂĄsodik terhelĂŠs lĂŠpcsĹ kiĂrĂĄsa LSWRITE,2 ! Esetek egymĂĄsutĂĄni megoldĂĄsa LSSOLVE,1,2 FINISH !! PosztprocesszĂĄlĂĄs /POST1 ! UtolsĂł 'idĹpillanat' kivĂĄlasztĂĄsa SET,LAST ! MaradĂł elmozdulĂĄsmezĹ PLNSOL, U,SUM, 2,1.0 ! MaradĂł egyenĂŠrtĂŠkĹą feszĂźltsĂŠg eloszlĂĄs PLNSOL, S,INT, 2,1.0 /POST26 ! Y irĂĄnyĂş normĂĄlfeszĂźltsĂŠg a szimmetria kĂśzĂŠppontban ANSOL,2,NODE(0,0,0),S,Y,SY ! Y irĂĄnyĂş elmozdulĂĄs a szakĂtĂł pofĂĄban NSOL,3,NODE(0,L1,0),U,Y,UY /AXLAB,X,'uY [mm]' /AXLAB,Y,'sigY [MPa]' XVAR,3 PLVAR,2