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Abstract: In this paper, we study the robust stabilization of a class of single input single output
(SISO) unstable time delay systems by stable and finite dimensional controllers through finite
dimensional approximation of infinite dimensional parts of the plant. The plant of interest is
assumed to have finitely many non-minimum phase zeros but is allowed to have infinitely many
unstable poles in the open right half plane. Conservatism of the proposed methods is illustrated
by numerical examples for which infinite dimensional strongly stabilizing controllers are derived
in the literature.
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1. INTRODUCTION

In this paper, we study the robust stabilization of single
input single output systems, which have finitely many
unstable zeros in the open right half plane, by stable
controllers. Stable controllers are desired due to their ro-
bustness against sensor failures (Zeren and Özbay (1998)),

saturation of the control input (Ünal and Iftar (2012b))

and other practical reasons, see e.g. Özbay and Garg
(1995). Stabilization of a system by a stable controller is
also known as strong stabilization, see Vidyasagar (1985)
and Doyle et al. (1992) for details.

For finite dimensional case, there have been extensive
research for robust stabilization by stable controllers using
linear matrix inequalities, algebraic Riccati equations and
non-convex optimization, see e.g. Petersen (2009), Gumus-
soy et al. (2008) and their references.

For infinite dimensional systems, sensitivity reduction by
strong stabilization have been studied by Gumussoy and
Özbay (2009), Özbay (2010), Wakaiki et al. (2012). Robust
stabilization of infinite dimensional systems by stable con-
trollers has also been studied by Wakaiki et al. (2013), con-
sidering only infinite dimensional controllers. In Wakaiki
et al. (2013), upper and lower bounds for the maximum
allowable uncertainty level have been obtained for robust
and strong stabilization of infinite dimensional plants. To
the best of our knowledge, strong and robust stabilization
of infinite dimensional plants by stable and finite dimen-
sional controllers is still an open research question.

In this study, first we concentrate on a simplified case in
which we assume that the time delay system has finitely
many unstable poles in the open right half plane. We pro-
pose a method to approximate the infinite dimensional and

invertible part of the system by a finite dimensional trans-
fer function. After that, using the error associated with this
approximation, we introduce a sufficient condition under
which it is possible to design a stable controller robustly
stabilizing the time delay system. We additionally explain
how to design the desired stable and finite dimensional
controller when the problem is feasible. In the second part
of the study, we deal with a more complicated case in
which the time delay system has infinitely many unstable
poles in the open right half plane. Similar to first part,
by using the approximation error and the approximation
itself, we introduce a sufficient condition under which the
problem is feasible and outline how to design stable and
finite dimensional controllers.

The rest of the paper is organized as follows: Section
2 defines the main problem of this paper together with
the assumptions. In Section 3, we briefly point out the
method defined in Wakaiki et al. (2013) for the sake
of completeness in addition to a basic result about the
feasibility of the modified Nevanlinna-Pick interpolation
problem. Section 4 is about robust stabilization of time
delay systems having finitely many unstable poles in the
open right half plane. Section 5 considers the case where
the plant has infinitely many unstable poles. Section 6
compares the effectiveness of the method of Wakaiki et al.
(2013) and the methods given in Section 4 and 5 via
numerical examples in order to present the conservatism
of the proposed methods. Finally, Section 7 concludes the
paper by some remarks.

2. PROBLEM STATEMENT

Throughout this study, we consider the linear, continuous
time, single input single output unity feedback system
given in Figure 1. The plant P is assumed to be a time



delay system which has finitely many simple zeros in the
open right half plane (denoted by C+).
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Fig. 1. Unity feedback system of interest

A controller C is said to stabilize P if S, PS and CS
belong to H∞, where S = (1 + PC)−1 is the sensitivity
function of the closed loop system. Let us denote the set of
all stabilizing controllers for a specific plant P by C(P ), i.e.
C stabilizes P if C ∈ C(P ). Then P is strongly stabilizable
if C(P )∩H∞ 6= ∅. It is essential to note that the set C(P )
may include infinite dimensional transfer functions as well
as finite dimensional ones. Let us further define the set
of all stabilizing and finite dimensional controllers that
stabilize the plant P as Cf (P ).

It is well known in the literature that it is not possible to
stabilize any P by a stable controller if P does not satisfy
the parity interlacing property (PIP). In other words,
C(P ) ∩ H∞ 6= ∅ if P has even number of poles between
any pair of right half plane zeros on the extended positive
real axis, see e.g. Ünal and Iftar (2012a).

Following assumption holds throughout the paper:

Assumption 1. Let us assume that the time delay sys-
tem P is a ratio of two quasi-polynomials, i.e. P (s) =
qn(s)/qd(s) where qn(s) is retarded type with no direct
I/O delay. The denominator quasi-polynomial qd(s) can
be retarded or neutral type. Then, in this case, it has been
shown that P has finitely many zeros in C+ and can be
written in the form

P =
Mn

Md
No (1)

where Mn and Md are inner and they hold zeros and poles
of P in C+, respectively. Readers are directed to Bonnet
and Partington (2002) and its references for further details
on the analysis of delay systems of retarded and neutral
type. We further assume that qn(s) and qd(s) do not
have common roots in C+. Since the plant has finitely
many zeros in C+, Mn is a finite dimensional transfer
function. We also assume that the zeros of Mn are distinct
and they are denoted by z1, . . . , zn. Note that No =
PMd/Mn is infinite dimensional and outer, for the sake
of simplicity we assume that the relative degree of the
plant is zero, in this case No, N

−1
o ∈ H∞. When No

has a relative degree greater than zero, then we need
to make further assumptions on the uncertainty weight
so that the resulting controller is proper, Doyle et al.
(1992). Moreover, the above assumptions imply that the
plant has finitely many poles within a sufficiently small
neighborhood of the Im-axis, in particular this means
that there is no chain of poles clustering the Im-axis.
See also Gumussoy and Özbay (2018) for further technical
discussions on this issue.

Assumption 1 does not declare the number of poles of the
plant P in C+. If qd(s) is retarded type, or neutral type
with all the asymptotic chains on the open left half plane,
then P has finitely many poles in C+ (as it will be the

case in Section 4), then Md is a finite dimensional transfer
function and all the infinite dimensionality of the plant is
captured by invertible No. However, if qd(s) is neutral type
with at least one asymptotic root chain in the open right
half plane, then, the plant has infinitely many unstable
poles in C+ (as it will be the case in Section 5), and Md

is infinite dimensional.

Let us further assume that P is the nominal model and
the actual plant belongs to a set P(P ) with multiplicative
uncertainty:

P(P ) = {P∆ = (1 +W∆)P : ‖∆‖∞ < 1,∆ ∈ H∞} (2)

The following assumption about the uncertainty weight W
holds throughout the paper:

Assumption 2. Uncertainty weight W is a unit in H∞, i.e.
W, W−1 ∈ H∞; moreover, it satisfies ‖W‖∞ < 1.

It can be shown that the controller C stabilizes all elements
of the set P∆ if it stabilizes the nominal plant model P and
satisfies

‖WT‖∞ ≤ 1 (3)

where T = PC(1 + PC)−1.

Now, we can define the main problem as follows:

Problem 1. Find a finite dimensional controller C ∈
C(P ) ∩H∞ satisfying (3) under Assumptions 1 and 2.

Problem 1 is called the Robust Stabilization of Infinite
Dimensional Plants by Stable and Finite Dimensional
Controllers (RSSFC).

3. RELEVANT LITERATURE

In Wakaiki et al. (2013), a relaxed version of Problem 1
is considered where the controller is allowed to be infinite
dimensional. According to them, this relaxed problem has
a solution if it is possible to find a function U in H∞ such
that

• U,U−1 ∈ H∞
• U(zi) = 1/Md(zi) for i = 1, . . . , n where Mn(zi) = 0

• ‖W−1
s U‖∞ < 1

where Ws is also a unit in H∞ whose frequency response
satisfies the following relation

|Ws(jω)| ≤ 1− |W (jω)|
|W (jω)|

, ∀ω ∈ R. (4)

If such U exists then the robustly stabilizing stable con-
troller is given as

C =
1−MdU

MnNoU
. (5)

As it is discussed in the previous section, No and possibly
Md are the infinite dimensional parts of the controller.
Additionally, design of U may also lead to infinite dimen-
sional transfer functions as it is described in Gumussoy
and Özbay (2009) and Özbay (2010). Design of such U is
also known as the modified Nevanlinna-Pick interpolation
problem (mNPIP) or bounded unit interpolation problem

in the literature. In Yücesoy and Özbay (2015) there was
an attempt to find finite dimensional solutions of mNPIP



by some iterative techniques for only real interpolation
conditions. In Yücesoy and Özbay (2018b), we proposed a
predetermined structure for the unit interpolating function
and reduced the mNPIP to a classical Nevanlinna-Pick
interpolation problem to analyse the feasibility of the mN-
PIP through the associated Pick matrix. When a feasible
solution for mNPIP exists, it is calculated through the
optimal strategy defined in Yücesoy and Özbay (2016) and

Yücesoy and Özbay (2018a). In this study, we will make

use of the proposed method of Yücesoy and Özbay (2018b)
to solve mNPIP, where the solution is finite dimensional.

4. SOLUTION FOR THE CASE OF FINITELY MANY
UNSTABLE POLES

When the plant has finitely many unstable poles in C+,
the only infinite dimensional part of the controller is No.
Following design method is based on finite dimensional
approximation of No.

Proposition 1. RSSFC has a solution if there exists a
rational transfer function R such that

• R,R−1 ∈ H∞
• R(zi) = 1/Md(zi) for all i = 1, . . . , n

• ‖K−1R‖∞ < 1

for some K,K−1 ∈ H∞ satisfying

|K(jω)| ≤ 1− |W (jω)|
|W (jω)|+ |E(jω)|

, ∀ω ∈ R (6)

where E = N̂oN
−1
o − 1 is the error introduced by the ap-

proximation and N̂o is a finite dimensional approximation
of No.

Proof 1. Let us consider a finite dimensional controller
of the form

C =
1−MdR

MnN̂oR
(7)

where N̂o, N̂
−1
o ∈ H∞ is a finite dimensional approxima-

tion of No. Note that if it is possible to find a rational
transfer function R ∈ H∞ such that R−1 ∈ H∞ and R
satisfies the following interpolation conditions for zi ∈ C+

and ∀i
R(zi) = 1/Md(zi)

where Mn(zi) = 0 then C ∈ H∞ and in case stabilization
is obtained, it will be Strong Stabilization.

Next, let us derive the conditions under which the internal
stability of the feedback loop is satisfied. To do so, we need
to find the conditions which satisfy

S, PS,CS ∈ H∞.
We can write S as

S =
1

1 + PC
=

RMdN̂o

No

(
1 + RMd(N̂o−No)

No

) . (8)

Note that, if ‖ER‖∞ < 1 than S ∈ H∞ by small gain
theorem where

E =
N̂o −No

No
(9)

since Md is inner, i.e. |Md(jω)| = 1 for all ω ∈ R. It is also
easy to show that the aforementioned condition is sufficient

to show PS, CS ∈ H∞, hence Internal Stability for
RSSFC is satisfied.

In order to derive a condition for robust stability, let us
first write T as

T =
PC

1 + PC
=

1−RMd

1 +RE
. (10)

For robust stability due to multiplicative uncertainty, we
need to satisfy (3). Since ‖W‖∞ < 1 then it is sufficient
to simplify the condition as

|R(jω)| < 1− |W (jω)|
|W (jω)|+ |E(jω)|

(11)

for all ω. Let us assume that there exists an outer function
K such that

|K(jω)| ≤ 1− |W (jω)|
|W (jω)|+ |E(jω)|

and K,K−1 ∈ H∞. With this assumption, we can simplify
(11) to ‖K−1R‖∞ < 1. If this is satisfied then Robust
Stability condition of RSSFC is also satisfied. It is easy
to show that ‖K−1R‖∞ < 1 implies ‖ER‖∞ < 1.

5. SOLUTION FOR THE CASE OF INFINITELY
MANY UNSTABLE POLES

When the plant has infinitely many unstable poles, Md

becomes infinite dimensional, in addition to No. We need
to incorporate a finite dimensional approximation of Md

into the controller in order to design a finite dimensional
one. Following proposition quantifies the effect of the error
of this approximation on the controller design process
when the plant has infinitely many unstable poles in C+.

Proposition 2. Consider Problem 1 under Assumptions 1
and 2. Additionally assume that the plant has infinitely
many unstable poles, i.e. Md is infinite dimensional.
RSSFC has a solution if there exists a finite dimensional
and rational transfer function H such that

• H,H−1 ∈ H∞

• H(zi) = 1/M̂d(zi) for all i = 1, . . . , n

• ‖L−1H‖∞ < 1

for some L,L−1 ∈ H∞ satisfying

|L(jω)| ≤ 1− |W (jω)|
|W (jω)M̂d(jω)|+ |E(jω)|

, ∀ω ∈ R (12)

where N̂o and M̂d are finite dimensional approximations
of No and Md, respectively. Note that, differently from
Proposition 1, E = M̂d−MdN̂oN

−1
o is the error introduced

by the finite dimensional approximations of both Md and
No.

Proof 2. Proof is omitted since it is very similar to the
previous case, provided that the stable controller is taken
to be

C =
1− M̂dH

MnN̂oH
. (13)

Let us compare (4), (11) and (12): (4) is the bound on the
interpolating unit function when the controller is assumed
to be infinite dimensional. Note that (11) has an additional
term in its denominator which is associated with the
error of the finite dimensional approximation of No. As



the approximation error increases the maximum allowable
norm of the interpolating unit decreases, and the problem
becomes harder to solve, as expected. In (12), we again
observe the additional error term as the approximation
error which is associated with the finite dimensional ap-
proximation of both No and Md. However, additionally
the finite dimensional approximation of Md takes place in
the denominator next to the plant’s uncertainty bound W .
As a result of (12), we can say that the deviation of the
approximation of Md from being inner is modelled within
Proposition 2 as an extra uncertainty in the plant.

6. EXAMPLES

In this section, we compare the methods proposed in this
study and the method proposed in Wakaiki et al. (2013) to
present the conservatism caused by the finite dimensional
approximation approach. We make use of three different
numerical examples. First two examples are systems with
time delay having finitely many unstable poles. Such
plants are suitable to be analysed by the method defined
in Proposition 1. Third one will also be a system with
time delay, however, this time the plant has infinitely many
unstable poles and is suitable for Proposition 2.

6.1 Example 1

Let us consider the plant P = MnNo/Md, given as

P =
(e−s + 0.1s− 2)(s+ 1)(s− z1)

(e−s + 0.3s+ 0.2)(s− 0.6)(s− 1.5)

Mn =
(s− z1)(s− z2)

(s+ z1)(s+ z2)

Md =
(s− 0.6)(s− 1.5)(s2 − 0.7488s+ 4.3109)

(s+ 0.6)(s+ 1.5)(s2 + 0.7488s+ 4.3109)

No = PMd/Mn

W = K
s+ 1

s+ 10

(14)

where K > 0 and z2 ≈ 20 is the only root of the quasi-
polynomial (e−s + 0.1s − 2) in C+. Figure 2 illustrates
the maximum allowable uncertainty level K for which a
solution can be found for Problem 1, for the values of z1

between 1.5 and 7. Note that, when z1 < 1.5, the plant P
does not satisfy PIP, hence it is not possible to stabilize
it by a stable controller. As z1 becomes larger than 1.5,
the plant relaxes (i.e. it becomes far from violating PIP)
and according to Smith and Sondergeld (1986), it becomes
easier to find a finite dimensional and stable controller
to stabilize the plant. This effect is clear in Figure 2 as
the maximum allowable uncertainty bound (i.e. K) under
which RSSFC is feasible gets larger as z1 gets larger for all
methods. Figure 2 also shows the effect of the conservatism
caused by the finite dimensional approximation of No.
Matlab built-in function pade is used to approximate No

by finite dimensional functions of 13 and 21 degrees and
results in Proposition 1 are used to derive the bounds
in Figure 2. Throughout this study, all finite dimensional
approximations of eachNo is conducted via Pade, however,
it is not compulsory to use Pade. Any approximation
method can be used to generate N̂o provided that the

resulting transfer function is a unit in H∞. To satisfy this
requirement, each delay element in No is replaced by its
Pade approximation and an approximate right half plane
pole-zero cancellation is used to have a unit approximation
in H∞.
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Infinite Dimensional (Wakaiki et al.)
Finite Dimensional (Prop. 1), App. Ord. 13
Finite Dimensional (Prop. 1), App. Ord. 21

Fig. 2. Maximum allowable multiplicative uncertainty level
with respect to the location of the unstable zero z1 in
Example 1

Figure 3 represents an example case where z1 = 7 and the
approximation order is 13. In the figure, the pole-zero map
of the approximating finite dimensional transfer function
(N̂o) is shown.

-80 -60 -40 -20 0

-20

0

20

Zeros
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Fig. 3. Pole-zero map of the finite dimensional approxi-
mation of N̂o given in (14). Maximum approximation

error (max
ω∈R
|No(jω)− N̂o(jω)|) is -14.15 dB.

6.2 Example 2

Let us consider the plant P = MnNo/Md, given as

P =
(e−0.1s + 0.1s− 1.25)(s2 − 2s+ (1 + ω1))

(e−s + 0.3s+ 0.2)(s− 2)(s+ 1)

Mn =
(s− p)(s2 − 2s+ (1 + ω1))

(s+ p)(s2 + 2s+ (1 + ω1))

Md =
(s− 2)(s2 − 0.7488s+ 4.3109)

(s+ 2)(s2 + 0.7488s+ 4.3109)

No = PMd/Mn

W = K
s+ 1

s+ 10

(15)

where K > 0 and p ≈ 8.0122 is the only root of the quasi-
polynomial (e−0.1s + 0.1s− 1.25) in C+.

Note that, as ω1 → 0, the plant P gets closer to violating
PIP since when ω1 = 0 PIP does not hold because of
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Fig. 4. Maximum allowable multiplicative uncertainty level
with respect to the location of the real part of the
unstable zero (ω1) in Example 2

the pole at 2 staying in between the zeros at 1 and
p. Similar to discussions in Example 1, according to
Smith and Sondergeld (1986), the strong stabilization
problem becomes harder and requires higher degrees of
interpolating functions as the plant comes closer to violate
PIP. Because of this phenomena, problem relaxes and
becomes feasible for larger uncertainty levels as ω1 gets
larger.

As an example, the pole-zero map of the 15th order finite
dimensional approximation (N̂o) is given in Figure 5 for
ω1 = 10.
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Fig. 5. Pole-zero map of the finite dimensional approxi-
mation of N̂o given in (15). Maximum approximation

error (max
ω∈R
|No(jω)− N̂o(jω)|) is -21.69 dB.

It is important to note that in Figures 2 and 4, the mul-
tiplicative uncertainty bounds under which RSSFC is fea-
sible (i.e. red and green dotted lines) are the unattainable
upper bounds, i.e. it is not possible to achieve these bounds
by finite dimensional controllers because it is not possible
to solve the bounded unit interpolation problem by finite
dimensional interpolating functions at that level. However,
as described in detail in Yücesoy and Özbay (2018b), it is
always possible to get closer to these bounds by increas-
ing the order of the finite dimensional unit interpolating
function. These bounds are calculated by utilizing N̂o, the
finite dimensional approximation of No, and than solving
the infinite dimensional mNPIP as described in Gumussoy
and Özbay (2009) and Özbay (2010).

6.3 Example 3

Let us consider the infinite dimensional system example
from Wakaiki et al. (2013) as follows:

P =
(s− 2)(s− 4e−s + 1)

(s− 10)(s− 15)(2e−s + 1)

Mn =
(s− 2)(s− p)
(s+ 2)(s+ p)

Md =
(s− 10)(s− 15)(2e−s + 1)

(s+ 10)(s+ 15)(e−s + 2)

No = PMd/Mn

W = K
s+ 1

s+ 10

(16)

where K > 0 and p ≈ 0.799 is the only root of the quasi-
polynomial (s − 4e−s + 1) in C+. It is shown in Wakaiki
et al. (2013) that for K < 0.47 it is possible to find
an infinite dimensional and stable controller to robustly
stabilize the given plant P in (16). They have additionally
designed a controller when K = 0.468.

In this study, we show that it is possible to design finite
dimensional and stable controllers for the same plant in
(16) when K < 0.375 by using Proposition 2. Additionally,
as an example, we design a controller when K < 0.25.
For this design, approximation of No is also obtained
through its Pade approximation as it was described in
prior examples. As it is given in (18), we designed a 7th

order N̂o to approximate No in (16) and the pole-zero map

of N̂o is depicted in Figure 6.

For the finite dimensional approximation of Md, finitely
many unstable zeros are utilized among its infinitely many
zeros. Let us say that the zeros of Md in C+ are zk =
0.6931 + j2πk and their complex conjugates (i.e. z̄k) for
all k ∈ {1, 3, 5, . . . } in addition to 10 and 15. In the light
of this parametrization, we can generate N th dimensional
finite approximation of Md for even N > 2 as follows

M̂d =
(s− 10)(s− 15)

(s+ 10)(s+ 15)

N−2
2∏

k=1

(s− zk)(s− z̄k)

(s+ zk)(s+ z̄k)
. (17)

We used an approximation of Md where N = 26 in (17)
for the numerical example in (16). All other elements of
the designed controller are given numerically in (19). Note
that L(s) in (19) is generated by Matlab built-in function
fitmagfrd and the interpolating part of H(s) is calculated

by the method that is proposed in Yücesoy and Özbay
(2018b). When all the elements are combined to form
the controller in (13), a 44th order finite dimensional and
stable controller is obtained which robustly stabilizes the
infinite dimensional plant given in (16) for K < 0.25.

7. CONCLUSION

We considered the robust stabilization of a class of un-
stable time delay systems by finite dimensional and stable
controllers. We divide the problem into two subclasses and
derived similar sufficient conditions under which the asso-
ciated problems are feasible. For the subclass of systems
having finitely many unstable poles in C+, we propose
a method to reduce the robust and strong stabilization
problem to a mNPIP through the finite dimensional ap-
proximation of the infinite dimensional part of the plant,
which is both stable and invertible. With this interpre-
tation and via numerical examples, we show that as the



N̂o(s) =
(s+ 30.01)(s+ 2)(s+ 0.7989)(s2 + 0.423s+ 23.81)(s2 + 5.362s+ 158.9)

(s+ 86.47)(s+ 15)(s+ 10)(s2 + 1.386s+ 10.35)(s2 + 2.144s+ 101.4)
(18)

L(s) =
0.25787(s+ 86.95)(s2 + 2.475s+ 110.3)

(s+ 0.9844)(s2 + 12.09s+ 77.58)
, H(s) =

0.98787(s+ 0.0002641)10

(s+ 0.2032)10
L(s) (19)
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Fig. 6. Pole-zero map of the finite dimensional approxi-
mation of N̂o given in (16). Maximum approximation

error (max
ω∈R
|No(jω)− N̂o(jω)|) is -3.52 dB.

dimension of the approximation increases, and as the error
of the approximation decreases, it is possible to solve
the problem for larger multiplicative uncertainty levels.
We also compare the results of the proposed methods to
the results of the method of Wakaiki et al. (2013) and
concluded that we can design finite dimensional and stable
controllers for satisfactory levels of uncertainty.

For the second subclass of systems having infinitely many
unstable poles in C+, we propose another finite dimen-
sional approximation scheme to reduce the original prob-
lem to a mNPIP. Since the infinite dimensional part of the
plant is not invertible this time, we divide the approxi-
mation process into two parts. We approximate the inner
part of the infinite dimensional plant by finitely many
unstable roots. The approximation of the invertible part
is done as it is explained in the first subclass. We use a
numerical example from the literature in order to discuss
the conservatism of the proposed method.
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tion by strongly stabilizing controllers for MIMO dis-
tributed parameter systems. IEEE Trans. Autom. Con-
trol, Vol. 57, pp. 2089–2094, 2012.

M. Wakaiki, Y. Yamamoto, H. Özbay. Stable controllers
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