
Exploring the Rendezvous of Agents in

Cyclic Pursuit with Possible Negative

Controller Gain and Homogeneous Input

Delay

Souradip De ∗ Soumya Ranjan Sahoo ∗∗ Pankaj Wahi ∗∗∗

∗ Department of Electrical Engineering, IIT Kanpur, Kanpur, India
(e-mail: souradip@iitk.ac.in).

∗∗ Department of Electrical Engineering, IIT Kanpur, Kanpur, India
(e-mail: srsahoo@iitk.ac.in)

∗∗∗ Department of Mechanical Engineering, IIT Kanpur, Kanpur,
India (e-mail: wahi@iitk.ac.in)

Abstract: In this paper, the effect of homogeneous input delay on rendezvous of a group of
agents under cyclic pursuit strategy is investigated. Presence of negative controller gain(s) aids
in expanding the reachable set. It is found that at most one negative controller gain is possible for
all the agents to converge under delayed condition. In contrast to accommodating any positive
controller gains in the no-delay case, the controller gains in delayed case are restricted by the
delay. A modification on the gains is proposed in order to tolerate arbitrarily large bounded
delay. The weighted centroid of all agents does not change as time evolves and all agents finally
converge to their weighted centroid. Simulation results are provided to substantiate the obtained
delay-dependent conditions.
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1. INTRODUCTION

Research in multi-agent systems has drawn considerable
attention because of its extensive applications in wireless
communication, unmanned aerial vehicle, spacecraft (He
et al., 2014; Ren, 2010; Van Der Walle et al., 2008; Mu
et al., 2017). The collective behavior in multi-agent system
can be found in flocking of birds (Jadbabaie et al., 2003),
rendezvous for mobile autonomous robots (Smith et al.,
2007) and so on. Consensus algorithm finds its appliance
in investigating these collective behaviors. Specifically, ren-
dezvous refers to the motion of a group of agents governed
by simple interaction rules with limited environmental
information such that all agents reach to a common po-
sition simultaneously (Su et al., 2010). In this work, we
investigate the conditions for rendezvous in the presence
of input delays.

Cyclic pursuit strategy is related to consensus, where
each agent follows its immediate neighbour (Ren, 2009;
Trinh et al., 2017). The network topology thus forms a
directed cyclic graph, and consensus protocols are per-
tinent. Neighbour-based rules have broad applications in
distributed multi-agent system and can be found in Cao
et al. (2008); Li et al. (2014). Marshall et al. (2004) an-
alyze the linear cyclic pursuit with homogeneous positive
controller gains and establish that centroid of the agents
remains stationary and all agents converge to the centroid.
However, rendezvous may not occur at the centroid if the
gains are heterogeneous (Sinha and Ghose, 2006a,b). Sinha
and Ghose (2006a,b) analyze the stability with one nega-

tive gain in order to expand the reachable set. Recent work
with negative edge weights can be found in Mukherjee and
Ghose (2017); Ahmadizadeh et al. (2017). However, the
effect of input delay is not considered in these works, and
here, we investigate the conditions for rendezvous in the
presence of homogeneous input delay.

Input delay is present in multi-agent system due to pos-
sible time for actuation of an agent. Presence of input
delay may degrade the performance of the multi-agent
system and even result in instability (Liu and Liu, 2013;
Wang and Ding, 2016). Tian and Liu (2008) discuss the
effect of input delays in consensus and achieve some delay-
dependent conditions for stability. For a general directed
graph, Allen-Prince et al. (2017) find the delay margin
which depends on the eigenvalues of the Laplacian matrix.
However, present work focuses on deriving conditions on
controller gains rather than finding criteria on eigenvalues
of Laplacian matrix. Irofti and Atay (2016) consider cir-
culant networks and show that allowable maximum delay
for consensus depends on the network topology. All these
works consider the edge weights, if existing, to be positive.
In the present work, we investigate the delay-dependent
conditions with negative controller gain to ensure ren-
dezvous. Sinha and Ghose (2006a,b) establish that at most
one negative controller gain is possible without input delay.
Yet, the possibility of one or more than one negative
controller gains in the presence of input delay has not
been examined. This work explores the above issues and
we summarize the main contributions as:



• Rendezvous occurs for at most one negative controller
gain with other gains strictly positive in the presence
of homogeneous input delay. The rendezvous point is
independent of the input delay.

• The upper bound on each controller gain is restricted
by the input delay. As delay increases, the upper
bounds on positive gains decrease which in turn
reduces the margin on the negative gain.

• Arbitrarily large but bounded input delay can be
accommodated by a proportional change in the con-
troller gains of all agents.

• The weighted centroid of the agents remains station-
ary and rendezvous occurs at the weighted centroid.
Specifically, for homogeneous controller gains the final
convergence point is the centroid of agents.

2. LINEAR CYCLIC PURSUIT LAW

We consider the cyclic pursuit problem for a group of n
agents. Each agent starts from arbitrary positions in Rd.
Agent i receives information from the agent i + 1 mod
n. The communication topology is thereby described by a
directed cyclic graph. The kinematics of agent i is

Żi(t) = ui(t− τ), (1)

where Zi(t) =
[
z1i (t)z

2
i (t) . . . z

d
i (t)

]⊤
∈ R

d denotes the

position of the agent i and ui(t) ∈ R
d is the control

input. The input delay τ < ∞ is constant and uniform
for the multi-agent system. The control inputs to achieve
rendezvous is based on the relative position of current
agent i and its in-neighbour i + 1 mod n. The control
input for agent i has the following form:

ui(t) = ki (Zi+1(t)− Zi(t)) . (2)

Here, the gains ki ∈ R are finite (−∞ < ki < ∞).
The objective is to achieve a desired rendezvous Z̄ in
the presence of input delay τ , that is, for arbitrary initial
conditions

lim
t→∞

‖Z̄ − Zi(t)‖ = 0. (3)

We make the following assumption to accomplish the
objective:

Assumption 1. Input delay τ is constant, bounded and
homogeneous throughout the network.

3. RENDEZVOUS IN CYCLIC PURSUIT

From the control law given by (2), it can be noted that

velocity of ith agent is proportional to the relative position

of (i+1)th agent with respect to ith agent. Let us denote

mth coordinate of agent i as zmi . As the coordinates
m = 1, . . . d of each agent evolve independently, the cyclic
pursuit problem can be cast into following d identical
decoupled linear time-delay systems
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where m = 1, 2, . . . d. As the equation of motion in any
coordinate is exactly same, the cyclic pursuit problem of

n agents reduces to stability analysis of a single delay
differential equation of the form

ẋ(t) = Ax(t− τ), (4)

with A =
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Here, (−A) represents the Laplacian matrix corresponding
to the directed cyclic graph. The characteristic quasipoly-
nomial of (4) is therefore represented as

ρ(s) = |sIn −Ae−sτ | =

n∏

i=1

(
s+ kie

−sτ
)
− e−nsτ

n∏

i=1

ki.

(5)

Now, we investigate conditions on the controller gains such
that agents meet at a point. For the occurrence of ren-
dezvous, it is necessary that the time-delayed system (4)
is stable. The delay-dependent conditions can be obtained
with the help of Lemma 1.

Lemma 1. The system (4) with τ = 0 has a simple
eigenvalue at the origin and the remaining eigenvalues in
the open left-half complex plane if and only if

(i) at most one agent has non-positive controller gain
kγ with other agents having positive controller gains
(ki > 0, i 6= γ), and

(ii) the bound on kγ is kγ > −
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Proof. The proof of the Lemma is discussed in the work
of Sinha and Ghose (2006b). �

Lemma 1 tells us that if more than one controller gain
is negative, the agents will never converge to a point in
the absence of input delay. However, depending on the
stabilizing or destabilizing effect of the delay, rendezvous
may or may not be possible with one or more than one
negative controller gains . In Lemma 2, we investigate the
possibility of negative controller gains for rendezvous.

Lemma 2. Consider a group of agents with kinematics
(1)-(2). If more than one controller gain is non-positive,
rendezvous is never possible.

Proof. We analyze the characteristics of the roots of (5)
when more than one gain is non-positive. This analysis has
been done considering two cases.

• Case 1: At least two gains are zero.
Let there be p(≥ 2) zero controller gains and sym-
bolically we denote these gains as kγ1, kγ2, . . . , kγp.
Under this scenario, ρ(s) can be expressed as ρ(s) =

sp
n∏

i=1
i6=γ1,... ,γp

(
s+ kie

−sτ
)
. As p ≥ 2, ρ(s) has at least

two roots at origin irrespective of the input delay τ .
This implies a polynomial divergence of trajectory
with time. Hence, the system (4) is unstable.



• Case 2: One gain is negative and at least one gain is
non-positive.
At first, we consider the case when there is no input
delay. For τ = 0, the characteristic quasipolynomial

becomes ρ(s)|τ=0
=

n∏

i=1

(s+ ki) −

n∏

i=1

ki. If at least

one gain kγ is zero, then ρ(s)|τ=0
is simplified to

ρ(s)|τ=0
= s

n∏

i=1
i6=γ

(s+ ki). Hence, for the existence of

one negative gain and at least one zero gain, ρ(s)|τ=0

will have at least one root in the open right-half
complex plane. Lemma 1 signifies that in the presence
of at least two negative controller gains, ρ(s)|τ=0

has
either double root at origin or at least one root in the
open right-half complex plane. Hence, the system (4)
is unstable in the absence of delay for the existence of
one negative gain and at least one non-positive gain.
Now, we investigate the stability of the system (4)

with one negative gain and at least one non-positive
gain in the presence of delay 0 < τ < ∞. For stability,
the root(s) of ρ(s)|τ=0

with positive real part(s) in the
open right complex plane have to cross the imaginary
axis from right-half to left-half and ρ(s) must have a
simple root at origin. First we consider the case when
ρ(s)|τ=0

has at least two roots at the origin. This is
possible if and only if
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Satisfying (6), we evaluate
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This signifies that if
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dρ(s)
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∣
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= 0 for any 0 < τ < ∞. Also, ρ(s) always

has a root at origin. Thus, if the system (4) contains
at least two eigenvalues at origin for τ = 0, then
there will be at least two roots at origin for any delay
0 < τ < ∞.
Let us consider the case when ρ(s)|τ=0

has simple
root at origin and at least one root in the open right-
half complex plane. The characteristic equation of (4)
can be written as

|sIn −Ae−sτ | = 0, ⇒ s

n∏

i=2

(
s− e−τsλi(A)

)
= 0,

where λ1(A) = 0. Existence of at least one root of
ρ(s)|τ=0

in the open right-half complex plane implies
Re {λi⋆(A)} > 0 for some i = i⋆. We define λi⋆(A) :=
a + jb with a > 0 and b ≥ 0. We have to investigate
the possibility of roots of h(s) = s − (a + jb)e−τs to
cross the imaginary axis from right to left. The root
tendency at s = jω with ω be the crossing frequency
is

RT|s=jω = sgn

[

Re

(

ds

dτ

∣
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s=jω

)]

= sgn

[

Re

(

−(a+ jb)se−sτ
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= sgn

[

Re

(

−s2

1 + sτ

∣
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s=jω

)]

= sgn

[
ω2

1 + ω2τ2

]

6= −1.

There exists no ω ∈ R such that root tendency can
be (−1). Therefore, root of ρ(s)|τ=0

having positive
real part cannot cross the imaginary axis from right
to left. Hence, there will be at least one root of ρ(s)
in the open right complex plane for any bounded
delay τ if the open right-half root is present for
τ = 0. This proves that the system is unstable for
one negative gain along with at least one non-positive
gain. Under this scenario, agents cannot converge to
any rendezvous point. �

In Lemma 2, it is established that rendezvous may occur
for not more than one negative gain with other gains being
positive. However, there exists bound on the negative gain
beyond which system (4) may be unstable. Lemma 3 is
useful to find the bound on negative gain.

Lemma 3. Consider a group of agents with kinematics
(1)-(2), where one agent has negative controller gain kγ
with other agents having positive controller gains (ki > 0,
i 6= γ). The agents will not converge to a point irrespective
of delay 0 < τ < ∞ if

kγ ≤ −
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Proof. We investigate the location of roots of (5) when
only one gain kγ is negative and rest are positive. It is
established in Lemma 1 that ρ(s)|τ=0

has either at least
one root in the open right-half complex plane or double
roots at origin when kγ satisfies (7). In the proof of Lemma
2, we establish that delay τ has a destabilizing effect and
therefore if the system (4) is unstable at τ = 0, it will
remain unstable for any 0 < τ < ∞. Hence, for the given
bound on kγ , ρ(s) will have either at least one root with
positive real part or double roots at origin irrespective of
τ . This implies agents will never converge. �

Lemma 3 gives necessary condition on the bound on the
negative gain. We still have to prove whether agents will

converge or not when kγ > −
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in the presence of input delay. Also, agents with positive
controller gains may have some restriction on their gains to
ensure stability of (4). We investigate the stability of (4)
in the presence of input delay τ with the help of Lemmas
1-3.

Theorem 1. The time-delayed system (4) has a simple
eigenvalue at origin and rest eigenvalues in the open left-
half complex plane if

(i) at most one agent γ possesses non-positive controller
gain kγ which is bounded as

1

2τ
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




n∏

i=1
i6=γ

ki






/







n∑

i=1
i6=γ

n∏

j=1

j 6=γ,i

kj







, and

(ii) all other agents i 6= γ have positive controller gains
bounded as

1

2τ
> ki > 0, i 6= γ.

Proof. The characteristic quasipolynomial of system (4)
is given by (5). It is seen from (5) that ρ(s) always has
a root at origin. We consider that agent γ has controller
gain

kγ > −
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and other agents i = 1, 2, . . . , n, i 6= γ possess positive
gains. According to Lemma 1, the proposed choices of
gains ensure that (4) has a simple eigenvalue at origin and
other eigenvalues are in the open left-half complex plane
for τ = 0. As τ increases there is a possibility that the roots
of ρ(s) having negative real parts cross the imaginary axis
from left to right resulting in instability. Therefore, we
investigate for conditions under which these roots of ρ(s)
have negative real parts only.

First, we check the possibility of existence of at least two
roots at origin due to increase in delay τ . From the proof
of Lemma 2, we get the condition for existence of at least

two roots at origin as
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mentioned bounds on gains, we get
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⇒
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kj > 0.

Therefore, there always exists a simple root of ρ(s) at
origin for any value of τ ∈ [0,∞). Hence, the roots can
cross the jω-axis with an increase in delay for ω > 0.
Substituting s = jω, ω > 0 in (5), we get
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Taking the absolute magnitude on both sides of (9), we
get
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The necessary condition for the roots of ρ(s) to lie on the
imaginary axis is given by (10). When τ = 0, the left
hand side of (10) is greater than 1 as ω > 0. Now, we
investigate the delay-dependent condition such that roots
of ρ(s) never cross the imaginary axis with increase in τ .
This is possible if (10) is never satisfied with increase in
delay. In other words, given a τ , all roots of ρ(s) will be in
the open left-half complex plane with a simple eigenvalue
at origin if we design the control gains in a way such that
the left hand side of (10) remains greater than 1, ∀ω > 0.

Thus, the stability problem reduces to designing ki such
that
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> 1, ∀ω > 0, ∀i,

⇒ ω − 2ki sinωτ > 0, ∀ω > 0, ∀i. (12)

For gains ki(> 0), i 6= γ, the inequality (12) is always
satisfied if sinωτ is nonpositive. For positive value of

sinωτ , we get the constraint on ki as ki <
1

2τ
sinωτ

ωτ

,

∀ω > 0. However, max
ωτ∈R+

sinωτ is 1. Therefore, if we design

the gains ki as

0 < ki <
1

2τ
, ∀i, i 6= γ, (13)

(12) will be satisfied ∀i, i 6= γ.

Now we focus on deriving condition on the gain kγ for

stability. We already establish that if 0 < kγ <
1

2τ
, (12)

is satisfied. When kγ takes negative value and sinωτ is
nonnegative, (ω − 2kγ sinωτ) is always greater than zero.
When sinωτ is negative, condition imposed on kγ is

kγ >
1

2τ sinωτ
ωτ

, ∀ω > 0. (14)

From (8) and (14), we get the lower bound on kγ as
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The gains ki, i 6= γ are bounded by delay τ . From (13),
we get
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Using (15) and (16), we achieve
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The inequality (17) signifies that lower bound on kγ is
decided by the condition imposed on kγ for no-delay case.

Hence,
1
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other gains 0 < ki <
1

2τ
satisfy (12). Therefore, ρ(s) has

a simple root at origin and other root are in the open left-
half complex plane. �

Remark 1. From (16) and (17), we get

kγ > −k⋆γ = −
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−1

> −
1

2(n− 1)τ
.

As τ increases, k⋆γ decreases. This is due to the decrease
in upper bound of positive controller gains and the very
relationship among the margin of kγ with other gains.

Theorem 2. Consider n agents with kinematics (1)-(2).
The weighted centroid of the positions of n agents remains
stationary for all time t ≥ 0. For the controller gains as
per Theorem 1, rendezvous occurs at the weighted centroid
given by

Z̄ =

(
n∑

i=1

1

ki
Zi(0)

)/(
n∑

i=1

1

ki

)

. (18)

Proof. According to Theorem 1, the proposed conditions
on controller gains ensure all the eigenvalues of the char-
acteristic equation of system (4) are in the open left-half
complex plane with a simple eigenvalue at origin. There-
fore, the steady state solution of (4) is governed by the
eigenvector corresponding to the simple eigenvalue at the
origin. As the eigenvector corresponding to the eigenvalue

at origin is e = [1 1 . . . 1
︸ ︷︷ ︸

n−times

]⊤, x will converge to ǫe, ǫ ∈ R.

As the motion of agents are decoupled in each coordinate,
all agents finally converge to a point.

Let us find the analytical expression of the rendezvous
point Z̄. From (1) and (2), we get

Żi(t)

ki
= Zi+1(t− τ)− Zi(t− τ), ∀i, ∀t ≥ 0

n∑

i=1

Żi(t)

ki
= 0, ∀t ≥ 0 ⇒

n∑

i=1

Zi(t)

ki
= c, ∀t ≥ 0, (19)

c being a constant. The equality (19) signifies that the

weighted centroid

(
n∑

i=1

Zi(t)

ki

)/(
n∑

i=1

1

ki

)

is stationary

∀t ≥ 0. As all agents finally converge to Z̄, c becomes equal

to Z̄

n∑

i=1

1

ki
. Therefore, the rendezvous point is given by

Z̄

n∑

i=1

1

ki
=

n∑

i=1

Zi(t)

ki
= c, ∀t ≥ 0

⇒ Z̄ =

(
n∑

i=1

1

ki
Zi(0)

)/(
n∑

i=1

1

ki

)

. �

Remark 2. From (18), it can be seen that the propor-
tional change in the controller gains does not affect the
rendezvous point. Theorem 2 establishes that rendezvous
point does not depend on the input delay. However, due
to the destabilizing effect of delay the controller gains de-
signed for no-delay case may lead to instability. According
to Theorem 1, each gain has an upper bound. Therefore,
proportional change in the controller gains can be done
that guarantees stability and the modified gains ensure
that all agents will meet at the desired rendezvous point.

Remark 3. For homogeneous controller gains (ki = k, ∀i)

with 0 < k <
1

2τ
, the centroid of the agents remains

stationary ∀t ≥ 0 and the final convergence point is

Z̄ =

(
n∑

i=1

1

k
Zi(0)

)/
(n

k

)

=

(
n∑

i=1

Zi(0)

)/

n .

4. SIMULATION RESULTS

In this section, we verify the obtained delay-dependent
conditions for a group of 4 agents. They move in x − y
plane. Initial position of agents 1, . . . , 4 are (−9, 9), (9, 9),
(13,−1), (−9,−9), respectively. The homogeneous input
delay is τ = 1. According to Theorem 1, we design the
gains as: k1 = 0.4, k2 = 0.1, k3 = 0.1 and k4 = 0.3.
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Fig. 1. Trajectory of the agents for positive controller gains
k1 = 0.4, k2 = 0.1, k3 = 0.1, k4 = 0.3. Solid lines and
dashed lines denote the trajectories of agents without
delay and with τ = 1 respectively.

To verify the invariance of the rendezvous point, we
study the multi-agent system for both the no-delay and



delayed cases. The trajectories of four agents are shown
in Fig. 1. It can be seen that the final convergence point
(6.4839, 2.8065) is same in both the cases (in accordance
with Theorem 2). This signifies that the rendezvous point
is invariant with respect to input delay. However, due to
the input delay the trajectories are not identical.

Next, we study the system behavior with negative con-
troller gain of agent 2 and other gains same as before. We
set k2 = −0.05 satisfying Theorem 1. The trajectories for
delayed case and no-delay case are shown in Fig. 2. All
agents converge at (24.6, 47.4). The rendezvous point does
not change with delay as earlier. Presence of delay restricts
the controller gains for a stable rendezvous.
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Fig. 2. Trajectory of the agents for controller gains k1 =
0.4, k2 = −0.05, k3 = 0.1, k4 = 0.3. Solid lines and
dashed lines denote the trajectories of agents without
delay and with τ = 1 respectively.

5. CONCLUSION

In this work, possibility of negative controller gain(s) in
cyclic pursuit strategy is investigated and we found that
at most one negative controller gain is permissible in
the presence of homogeneous input delay. The bounds
on the controller gains depend on the input delay. The
gains can be appropriately proportioned to accommodate
arbitrarily large bounded delay. The weighted centroid
remains stationary for all time and rendezvous occurs at
the weighted centroid.
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