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Abstract: Input shaping is an effective vibration control technique for flexible systems with
known dynamic characteristics. However, due to its open-loop nature, it must be combined
with a feedback controller to enable rejection of unknown disturbances. Although a number of
researchers have demonstrated the effectiveness of combining input shaping and feedback control
methods, performance gains can be made by cooperatively designing the feedback gains and
input shaping sequence. This paper presents a preliminary investigation of such a control method
on a two-link flexible manipulator. This formulation allows for energy-efficient point-to-point
motion while simultaneously minimizing command-induced vibration. Simulations demonstrate

the effectiveness of this preliminary work.
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1. INTRODUCTION

Increasing the productivity of flexible mechanical systems
typically requires rapid point-to-point motion as well as
disturbance rejection. Command shaping has been thor-
oughly shown to allow quick motion without exciting vi-
bration [Singhose (2009)]. Specifically, input shaping is a
widely used command shaping technique due to its sim-
plicity and effectiveness. However, because input shaping
is open-loop, it cannot be used to reject unmodeled dis-
turbances. To do so, feedback control methods must be
used.

A significant amount of effort has been given to in-
corporate input shaping with feedback control [Kapila
et al. (1999); Yang et al. (2014); Chatlatanagulchai and
Benjalersyarnon (2015); Stergiopoulos and Tzes (2010);
Staehlin and Singh (2003); Vyhlidal et al. (2016); Huey
et al. (2008); Sorensen et al. (2007)]. Commonly called
“closed-loop input shaping,” this approach places an input
shaper within the feedback loop, permitting it to act di-
rectly on the plant. This implementation ensures that the
control signal is always fully shaped. However, closed-loop
input shaping mandates that the control gains be chosen
to ensure stability subject to the time-delay caused by the
input shaper [Huey and Singhose (2010)].

In each cited example of closed-loop input shaping, the
input shaper and feedback gains were designed sequen-
tially. Recent work indicates that placing an input shaper
outside the feedback loop and concurrently designing the
input shaper with the feedback gains shows promise as a
control approach [Baheri and Vaughan (2015); Huey and
Singhose (2012); Kenison and Singhose (2002); Muenchhof
and Singh (2002)]. However, [Baheri and Vaughan (2015);
Huey and Singhose (2012)], and [Kenison and Singhose

(2002)] only consider the control of a point mass. A flexible
system was considered in [Muenchhof and Singh (2002)],
where robustness to parametric uncertainty was improved
by utilizing full-state feedback control optimized concur-
rently with input shaping.

Because input shaping generates commands which do not
excite oscillatory plant dynamics, it will result in more
energy-efficient rest-to-rest commands than feedback con-
trol alone. Because the rigid-body motion generated by
input shaping brings the system to rest, no additional
energy is required to dampen residual vibration. Further-
more, by delaying a portion of the reference command,
input shaping can reduce the peak actuator effort required
to reach the desired states. If the closed-loop control gains
are intelligently designed to maximize the advantages that
input shaping provides, a control system with better per-
formance than either method alone can be created.

This paper will expand on the concept of concurrently-
designed input shaping and feedback control with an appli-
cation to a two-link flexible manipulator. In a system with
limited available actuator effort, the concurrent design
approach will be used to generate commands which result
in minimal rise time without exciting oscillatory dynamics.
This method will be compared to Linear Quadratic Reg-
ulation (LQR) for settling time, required actuator effort,
and disturbance rejection properties.

The next section will discuss the relevant properties of in-
put shaping. Next, Section 3 will introduce the benchmark
dynamic model and provide an analysis of its relevant dy-
namic properties. An optimal control law will be presented
in Section 4. A benchmark comparison of the proposed
control method to LQR is given through computer simu-
lations in Section 5. Finally, concluding remarks are given
in Section 6.



2. INPUT SHAPING OVERVIEW

Input shaping is a popular and effective open-loop control
method which has been applied to a wide array of flexible
systems [Singhose (2009); Singer and Seering (1990)]. With
input shaping, vibration reduction can be achieved by
designing a sequence of impulses, called an input shaper,
which result in low oscillation when convolved with a
reference command.

The residual vibration equation provides a fundamental
constraint for formulating an input shaper with n impulses
of amplitudes A; and times t;

V(w, Q) =e " V[C(w, QP+ [Sw. QP (1)
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and w and (¢ are the natural frequency and damping
ratio of the shaped mode, respectively. Equation (1) gives
the ratio of residual vibration for a series of impulses
relative to a unity magnitude impulse at time ¢ = 0.
The simplest input shaper is given by setting (1) equal
to zero while constraining all impulse amplitudes to be
positive. After further specifying that the minimum-time
result is desired, the result is the Zero Vibration (ZV)
shaper [Smith (1957)], which has the form
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and 74 is the damped oscillation period of the system.

Note that the settling time of a response subject to a
shaped command is explicitly related to the time of the
final impulse of the input shaper, ¢,,. Although a number
of modifications to the constraint equations for an input
shaper can be made [Vaughan et al. (2008)], t,, and
therefore the settling time, ¢, shaped, is always proportional

to 74
T
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This relationship between settling time and pole location
is unique to input shaping. Because ts of a second-order
system is otherwise related to its time constant

(6)

1
ts X o (7)
there exists a damping threshold beyond which input
shaping increases the settling time of the response. For
a 5% settling time, this value is ¢ ~ 0.7.

Another important metric of input shaper performance
is robustness to modeling errors. This can be visualized
by plotting (1) for a given shaper sequence subject to
changing w and (. An example sensitivity plot for a ZV
shaper designed to cancel w = 1Hz and ¢ = 0.05 is shown
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Fig. 1. Sensitivity plot for a ZV shaper

Fig. 2. Dynamic model of a two link flexible-arm manipu-
lator

in Fig. 1. Viewing cross-sections of this curve along the ¢
axis results in the often referenced sensitivity curves used
to evaluate input shaper robustness.

3. DYNAMIC MODEL

The dynamic model used in this analysis is shown in Fig. 2.
The two-link flexible manipulator is modeled as a series
of rigid bodies connected by rotational springs. Links L,
and Lo are rotated about hubs h; and hs and modeled
by n elements. Each element, hub, and the payload P are
modeled as homogeneous rigid bodies with corresponding
masses and moments of inertia. The nodal displacements
are given by

Qanx1 = 011 1,2 .. 0" (8)

For each link with n elements, n — 1 internal rotational
springs are used to model the flexible behavior of the
material. These springs are based on Euler-Bernoulli beam
theory, which relates the internal bending moment to
deflection by

. 91’71 92’1 92,2 ..
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where E and I are the material modulus of elasticity and
area moment of inertia, respectively. If small deflections



are assumed, the slope of the beam can be approximated
by

dy
Omn = —. 10
nmg (10)
The stiffness of the i* spring is therefore given by
ET
ki = —. 11
o (11)

The resulting equations of motion were created by Kane’s
method using the Python SymPy module [Meurer et al.
(2017)]. The state-space representation of the dynamic
system is given by
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While the system model consists of n elements per link,
the states at hubs h; and ho as well as the payload P are
assumed to be observable. The resulting output matrix is
given by

Clnx1=[10p_o 1 ...

10,5 1]. (15)

3.1 FEigenvalue Analysis

For the dynamic model considered in this work, the system
has 2n unique eigenvalues, two of which are associated
with the rigid body motion. In reality, an Euler-Bernoulli
beam possesses a countably infinite number of modes due
to the transcendental nature of its characteristic equation.
However, the dominant dynamics can be accurately cap-
tured by considering one or two flexible modes. Because
the model in this work has a finite number of elements, the
calculated eigenvalues will be approximations of the true
values. These approximations can be improved by increas-
ing the number of elements at the cost of computational
complexity.

In order to design an input shaper to eliminate vibratory
modes for the two-link flexible manipulator, the eigenval-
ues of the state transition matrix in (12) should be evalu-
ated. Having this knowledge of the system pole locations
allows for time-efficient input shapers that eliminate the
dominant modes to be designed. Because the eigenvalues
are configuration-dependent, a nominal configuration must
be chosen to generate the eigenvalues to be suppressed by
the input shaper.

Although the eigenvalues of the two-link system are de-
pendent on the configuration of the links, the variation is
not exceptionally large. Figure 3 demonstrates the percent
difference of the first four flexible modes of a model with
n = 4 elements as a function of 5. As shown, the variation
in frequency is less than 5% for the low modes. This
difference becomes almost zero for high frequency modes.

4. CONTROL DESIGN

For the given system, a controller is desired which pro-
vides fast rise time subject to actuator constraints. This
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Fig. 3. Variation in frequency as a result of configuration
change
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Fig. 4. Block diagram of the proposed control method

controller will utilize input shaping to modify the reference
command outside of the feedback loop, while the feedback
gains and input shaper are concurrently designed for opti-
mal performance. The block diagram for this controller is
shown in Fig. 4, which shows that the controller, C, acts
on the plant, G, to push the system states to their desired
values, X4. These desired states are given by convolving
the reference signal — in this case a step input — with
an input shaper. Forming the controller in this way as
opposed to a shaper-in-the-loop approach eliminates the
need to consider possible instability caused by the time
delay from the shaper impulses.

To provide a direct comparison between input shaping and
optimal linear control, the gain matrix K will be selected
by LQR. For the shaped command, the state and actuator
weight matrices Q and R will be tuned by minimizing
a cost function associated with the shaped step response
properties. The cost function is given by

J=at? +ﬂ/t ' (u(lt)) dt, (16)
where
u(t) = K(xa(t) —z(t)), (17)

and the desired states, z4(t), are given by the convolution
of a reference step input with the input shaper. This
function penalizes the shaper duration and the inverse
of the shaped actuator effort, respectively. The weights «
and B can be modified to penalize these values differently.
These terms were selected based on their contribution to
the characteristics of the desired response. The duration of
the input shaper serves as a proxy for command duration,
which should be minimized. However, this term alone does
not directly determine how aggressively the system will
be pushed to the desired setpoint. To make this desired
property explicit, the second term is added.



Table 1. System Parameters

Variable Value

n 3

Ly, Lo 0.5m

p 0.21%g

mp 0.1kg

Mp1 Okg

Mp2 1kg

Int, Jn2 0.1kg m?

Jp 0.0005kg m?
Tmazx 10N-m

Af; = Afy  90°

Equation (16) is minimized subject to the constraint that
the peak actuator effort must not exceed the allowed
torque

Umaz S Tmax- (18)
Because input shaping will be used for the low modes, a
constraint limiting their damping ratios will be enforced
to ensure low settling time.

Chyopt < 0.7. (19)

4.1 Input Shaper Design

Designing an input shaper for the multi-mode system
under consideration requires knowledge of the dominant
dynamics. The low frequency rigid-body modes are as-
sumed to dominate the response characteristics of the two-
link flexible manipulator relative to the flexible dynamics.
Furthermore, shaping the low modes implicitly limits vi-
bration in higher frequency modes if positive amplitude
input shapers are used. The nature of the positive ampli-
tude constraint strictly means that the worst case for high
mode excitation will be an oscillatory response equal to
that of an unshaped command.

For this preliminary work, a four-mode convolved ZV
shaper will be used to eliminate the low frequency modes.
This formulation allows the two rigid body modes and first
two flexible modes to be shaped. Because the resulting
multi-mode shaper is convolved, it is not time-optimal for
the vibration constraints [Singhose et al. (1997)]. However,
this shaping approach simplifies the optimization process.

5. EXAMPLE APPLICATION

Based on the proposed control approach, an example sim-
ulation using the parameters given in Table 1 was per-
formed. The physical system characteristics were chosen to
match those presented in [De Luca and Siciliano (1991)],
while the number of elements n = 3 was chosen to be
computationally efficient while yielding a sufficient number
of modes for analysis. The state and input matrices for
the benchmark LQR controller were tuned using the same
cost function for an accurate comparison. Assuming that
the intermediate states along each link are unobservable,
the resulting control gains are

(716 —6.87
0.0 0.0
—0.19 246
—0.57 13.78
0.0 0.0
0.09 —3.25
Kror=| 375 _1.31 (20)
0.0 0.0
~0.08 1.40
—0.15 5.29
0.0 0.0
|—0.11 —0.06]

These control gains result in the following modal charac-
teristics

{wk,LQR} _ [0.29 0.39 0.79 2.38 8.02 21.97

Groror| = 048 058 0.08 0.01 0.02 0.00 | 2V
where wy ror is given in Hz.

Similarly, the concurrent design resulted in the following
control gains

(1315 —9.9 T
0.0 0.0
0.70  3.61
—0.84 37.40
00 0.0
0.28 —13.88
Kopt=| 571 118> (22)
00 0.0
035 16
—0.16 8.64
00 0.0
014 —1.42

where the resulting closed-loop dynamic characteristics are

{wk,(,pt} _ [0.44 0.55 0.78 2.38 8.03 21.97

0.45 0.60 0.07 0.02 0.04 0.01 | (23

Ck ,opt

A four-mode convolved ZV shaper for the low modes is
chosen to eliminate the command-induced vibration. Its
impulse sequence is given by

[0.00 0.22]
0.21 0.20
0.64 0.18
0.85 0.16
1.14 0.02
1.26 0.04
1.35 0.02| °
1.47 0.04
1.78 0.02
1.90 0.04
1.99 0.02
2.11 0.04

[Ai t;] = (24)

and the resulting sensitivity curve subject to variations in
¢ and natural frequency w is shown in Fig. 5. The three
lowest shaped modes are near one another, resulting in
very low vibration in the range 0.4 < w < 0.8. The fourth
mode is the most lightly damped, and the point of zero
vibration can be seen at (w = 2.4,( = 0). The shaping
sequence results in near zero vibration for all frequencies
where ¢ > 0.2.
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5.1 Optimized Command

To demonstrate the best-case performance of the proposed
controller, a step command of amplitude Af; = Afy =
90° starting from 6; = 6, = 0 was simulated for a
system with the values in Table 1. To show a thorough
comparison of the control methods, a sequentially designed
LQR and shaped command was simulated in addition to
the concurrently designed controller and LQR without
shaping.

The system response to these commands is given in Figs. 6
and 7. These figures show the response of x and y payload
coordinates for each control method. Although the LQR
controller has a faster rise time than the concurrently
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Fig. 9. Actuator 2 torque

designed command, it exhibits overshoot and requires time
to dampen the resulting vibration. The shaped command
effectively executes the desired motion without exciting
unwanted vibration, resulting in a longer rise time, but
shorter settling time. The sequentially designed command
performs similarly to the concurrent controller, but with
slower rise time.

The simulated actuator effort for both links is given in
Figs. 8 and 9. Both simulations limit actuator effort at
10N-m. Because the input shaper breaks the reference
command into a series of steps, it can utilize the full
available torque more effectively than LQR alone. In
comparison, the LQR controller yields high torque at
the start of the command, while slowly damping over
time. Because the sequential design does not use the full
available torque, its command duration is longer than
the concurrent design. The total energy consumed by
the shaped command, measured by the absolute value
of the definite integral from ¢ = 0 to ¢t = 6 of u(?), is
approximately 61% of the comparable LQR command,
demonstrating the energy efficiency of the input shaping
method.

Finally, the disturbance rejection properties of the pro-
posed control method are compared to LQR in Fig. 10.
In this figure, a positive amplitude force pulse of 20N is
applied to the payload of the fully extended two-link arm.
Because the concurrent design can have more aggressive
control gains, it is more effective at damping the force
disturbance than the benchmark LQR controller.
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6. CONCLUSION

This paper has presented a method for concurrently de-
signing a linear control law with a multi-mode input
shaper. The two-link flexible manipulator is used as a
benchmark system for simulating this control law. When
subject to a step input, the concurrently designed con-
troller results in similar residual vibration while utilizing
significantly less energy than LQR control. Furthermore,
due to the more aggressive control gains allowed by the
concurrent design, better disturbance rejection was at-
tained.
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