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Abstract: Novel robust PID controller tuning is designed for second-order processes with varying delay 

in terms of the similarity theory. Similarity numbers are provided to characterize class of dynamically 

similar control loops enabling to tune all the robust PID controller settings together with a measurement 

filter adjustment. The novelty of the paper consists in the controller gain and filter constant settings by 

means of dominant four-pole placement such that the quadruple of placed poles is simultaneously robust. 

In addition these settings are generalized due to plant’s dynamics characteristics expressed by the 

similarity numbers that describe sets of dynamically similar plants considered stable. For proving the 

robust stability of the similar control loops an algorithm for the pseudospectral abscissa evaluation is 

applied. Finally an example of the stability proof is given. 
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1. INTRODUCTION 

The robust stability notion related to the ∞-norm was founded 

by Doyle (1979). Later on in Kwakernaak (1993) a tutorial 

how to design the robust control based on H∞-optimization 

has been presented for plants with general uncertainty 

models. These models consider uncertainties in both the 

numerator and denominator of plant’s description. Generally, 

the uncertainties suggested are either structured or 

unstructured, and more specifically additive or multiplicative 

(Skogestad and Postlethwaite, 2001). Robust stability 

assessment based on the uncertainty model knowledge is the 

key point of properly designed robust controller. There are 

many works dedicated to the robust controller design where 

additionally the robust performance is evaluated. This robust 

design is then based on simultaneous robust stability 

assessment and robust performance optimization by means of 

the so-called mixed sensitivity minimization. To mention at 

least a few of works with consistent approach to this 

minimization the following ones are given (Dahleh and 

Pearson, 1988; Kwakernaak 1993; Zhou, Doyle and Glover 

1996).  

Another way how to design the robust controller utilizes 

robust pole assignment technique (Åström 1980). In Åström 

(1980) the robust stability criterion is introduced somewhat 

differently than it is in Doyle (1979) because this criterion is 

derived for two-degrees-of-freedom systems bringing about 

the desired model following. Generally, the robust pole 

assignment technique is designed to resist the variations in 

the model describing complex process (Åström 1980). 

Practically this pole assignment is obtained when the 

positions of poles placed are restricted to a region which is 

inside the left half-plane of the complex plane. The region 

strictly inside the stability region can be of various shapes 

and then this pole assignment is generalized to regional pole 

placement (Haddad and Bernstein, 1992). In Wu and Lee 

(1997) the multi-constraints optimal regional pole placement 

problem is solved. Frequently the regional pole placement is 

formulated and solved via an LMI approach (Chilali and 

Gahinet 1996; Ge, Chiu, and Wang (2002); Henrion, Šebek, 

and Kučera, 2005; Kosmidou, 2006). 

Once the process controlled is with delay the infinite number 

of poles originates in the control loop and due to finite-

dimensional controller considered the dominant pole 

assignment is to be applied to the controller tuning. Thus 

only so many poles can be assigned as many controller 

parameters are available. Establishing the dominance of the 

pole placement as well as sufficiently separating these poles 

from the rest of the infinite spectrum only then the pole 

placement can be properly made, see for instance Ramírez et 

al. (2017). In case at least four dominant poles are placed the 

PID controller with filter is successfully tuned if the rest of 

all the poles are moved spontaneously to the left from the 

placed rightmost poles in the complex plane (Fišer, Zítek, and 

Vyhlídal, 2017). Practically, once the goal is to design the 

robust PID controller inevitably measurement or derivative 

filter has to be included into the design (Ou, Zhang, and Gu 

2006; Goncalves, Palhares, and Takahashi 2008). Major 

breakthrough in the robust stability theory for time delay 

systems has been achieved by Kharitonov and Zhabko (1994) 

with extension of well-known Kharitonov’s theorem. This 

robust stability theory is applied to the robust PID controller 

tuning in the control loop with the fixed (Fang 2014) and 

time-varying delay (Wang 2011). Computationally 

demanding procedures for the robust stability proof are 

algorithms for pseudospectral abscissa evaluation (Gumussoy 



 

 

     

 

and Michiels, 2010; Michiels and Niculescu, 2014; 

Meerbergen et al., 2017). 

The paper is aimed at the robust PID controller tuning based 

on the dominant four-pole placement and pseudospectral 

abscissa mapping. To obtain generalized PID controller 

settings, including filter constant setting, the similarity theory 

is applied to the delayed control loop description.  

2. PROCESS AND UNCERTAIN MODEL DESCRIPTION  

Consider stable second-order process with the delay and 

uncertainties as follows 
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where 
1 2
,a a  are nominal process model coefficients and   is 

nominal process time delay. 
1 2
,a a   and   are parametric 

uncertainties corresponding to 
1 2
,a a  and  , respectively. K 

and C are steady-state gains corresponding to the control 

variable u and disturbance d, respectively. Process model (1) 

is further simplified applying the similarity theory adopted 

from Zítek, Fišer, and Vyhlídal (2017). This simplification 

consists in reducing the number of process model parameters 

and this model in (2) is derived from that in (1) 
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  and   are the similarity numbers called swingability and 

laggardness, respectively, introduced already in Zítek, Fišer, 

and Vyhlídal (2013). Novel similarity numbers introduced 

are 

 1
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which represent percentage changes of the reciprocal 

swingability similarity number (
1




) due to uncertainty 
1

a  

and the laggardness,  , due to uncertainty  . 

Consecutively, 
1

 , 
2

  and 


  represent percentage 

measures of uncertainty in 
1

a , 
2

a  and  . To investigate 

admissible ranges of 
1

 , 
2

 , 


  for the robust PID 

controller tuning the process and uncertain model transfer 

functions are obtained. First to separate the process model 

transfer function from that of the uncertain model the Laplace 

transform of (2) in complex variable 
2

s s a  is performed 

under zero initial conditions 
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Dividing (5) by nominal characteristic polynomial (6) one 

obtains 
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( )
N

   and ( )
M

   are multiplicative numerator and 

denominator uncertainty, respectively. ( )
M

   transfers the 

spectrum of ( )M s  zeros to the spectrum of roots in s  

satisfying the following equation  
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The following pair of roots is obtained from (11) as follows 
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then it is necessarily excluding 
1

1    and 
2

1   . The 

former is required by the stability assumption of (1) and the 

latter by the regularity condition of polynomial (Kharitonov 

and Zhabko 1994). Admissible ranges of 
1

 , 
2

  and also 


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1,2 , 1,2 ,
, 

 
 

 
 are lower and upper bounds of parameter 

uncertainties. In other words these bounds represent the 

percentage changes of the nominal parameters approaching 

either -100 or +100 %. However, in practice, these 

percentage changes are limited either down or up to less than 

50 % (Chen and Seborg, 2002). In case of the symmetric 

parametric uncertainties it results from (13) 

1,2 ,
, ,  0 1


        . (14) 

Similarly to s  also frequency   is transformed by applying 

the similarity theory to (1).   is transformed into the 

frequency angle defined as 
2

a  . Applying (14) in (12) 

and considering all the uncertainty bounds with the same sign 

then only damped natural frequency angle is changed by non-

zero uncertainty   as follows 

2
1

4 1
2 1




 
 


. (15) 



 

 

     

 

After that the process is critically damped when 

1 2   . Thus the sign minus increases the range of   

in which the process is oscillatory and vice versa. As regards 

 , a growth of 


  leads to more delayed process (2) and 

vice versa.  

In (2) no change in gains K and C is considered because the 

former is absorbed by the controller gains and the latter does 

not take effect on disturbance response damping as apparent 

from the next subsection. 

1.1 Nominal similar control loops 

In practice indispensable part of the PID controller is a filter 

allowing the robustness achievement. Consider process (8) 

free of uncertainties, ( ) ( ) 0
N M

     , to be controlled by 

the PID controller in Laplace transform (Zítek, Fišer, and 

Vyhlídal, 2017) 

  2
( ) ( ) ( )

P I D f
R s s s s U s E s       (16) 

with the control error ( e ) filtered by 
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Kr a  , see 

Zítek, Fišer, and Vyhlídal (2017). These gains are the 

dimensionless proportional, derivative and integration gains, 

respectively, absorbing K. In (17)   is the dimensionless 

filter time constant given as 
2

/
f
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T  

is the dimensional time constant. The disturbance transfer 

function of the similar control loops is then obtained using 
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This is expressed as 
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from where the denominator constituting the characteristic 

quasi-polynomial is modified after multiplying by non-zero 

 exp s  to the form 
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This modification does not change the spectrum of zeros. For 

the robust tuning of the PID controller gains including the 

filter time constant, 
P

 ,
D

 ,
I

 , , the dominant four-pole 

placement is introduced in the next section.  

3. DOMINANT FOUR-POLE PLACEMENT 

The restricted robust stability region for the dominant four- 

pole placement is adapted from Chilali and Gahinet (1996) in 

the way 
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where 
k

  is the ultimate frequency angle and   is the 

relative damping. The ultimate frequency angle belonging to 

dimensionless process model (8) free of any uncertainty, i.e. 

1 2
0


     , is adopted from Zítek, Fišer, and Vyhlídal 

(2017) for considered values of similarity numbers ,  . 

Region (20) warrants the well damped and fast enough 

quadruple of poles of the similar control loops described by 

(19).  

Theorem 1. The following four poles 
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Proof. The quadruple of poles (21) is placed by substituting 

the first complex pole from (21) and two real poles from (21) 

into characteristic equation 
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 

1

3 3 2 2 1 2

cos sin

3 3 1 1 2

R
q e j

j j

j


 

       

 





    

       
 
   

.  (35) 

and 
3

s  

    

2 2 2

4 33 1 2 2 2

D P I
L

e

q


     

      





    
  
  
 

,  (36) 

 
3 1 2 2 2

3

R
q e


     

      
 

.  (37) 

In final stage for 
4

s  one gets 

2 2 2 2

4

L

D P I
q k k          


 

    
4 31 2 2 2 2k

e k k k


      
    


,  (38) 

 
3 1 2 2 2 2

3

R k
q e k k k


     

      
 

.  (39) 

By inspection of relations (34) through (39) and after several 

simplifications of these relations we obtain the set  

 AP B   (40) 

where A  results in (24) and B  in (29). Finally applying 

Cramer’s rule to (40) formulae (23) are proved and this 

closes the proof.   ■ 

The four poles, (21), placed by the setting (23) inside the 

restricted region (20) can be robust only when these poles 

become dominant. Thus the four poles are at the same time 

the rightmost zeros of (19). To check this dominance let be 

recalled the quasi-polynomial root finder from Vyhlídal and 

Zítek (2009). Hence only such vector (22) is applicable if the 

four-pole dominance is guaranteed. Additionally how much 

the dominant four-pole placement achieved is robust is 

presented in the next section. 

4. ROBUST STABILITY PROOF OF PID                     

CONTROLLER SETTINGS 

For robust stability assessment the quasi-polynomial (19) is 

modified when uncertainties (13) take place in the process 

model description 

       

 

2 3 4

1 2 3 4

2

( ) +

                                                                  41

s

D P I

Q s e s s s s s s s s

s s




   

  

        
 

 

where 

  ,  1, 2, 3, 4
s

i i
s e i 

 


   (42) 

and  

   

 

1 1

1 2 1 3 2 1

4 2

1,  1 ,  1 1 ,  

1 .

        

  

    



       

 
  (43) 

Then applying the pseudospectral abscissa appropriately 

adapted from Michiels and Niculescu (2014) the rightmost 

point of pseudospectrum of quasi-polynomial (41) is defined  

  max Re : ( ) 0s s C Q s


    . (44) 

The settings computed by (23) are proved to be robust from 

both rigorous and practical points of view in the sequel. 
 

Theorem 2. The similar control loops characterized by quasi-

polynomial (19), on which interval uncertainties (14) are 

imposed, are robustly stable if in modified relations (42-43)   

  ,  1, 2, 3, 4
s

i i
s e i


 


   (45) 

     
1 1

2 3 4
1 ,  1 1 ,  1 ,          

    
         (46) 

0 1   is applied and according to (44) all the evaluated 

  fulfil the condition 

,  0     . (47) 



 

 

     

 

Proof. First determine for any non-zero   and   the worst 

case of the uncertainties (13), obeying the rule for the worst 

case sinusoidal input (Zhou, Doyle and Glover 1996). Since 

the process damping ratio results from (12) as follows 

1

2

11

2 1




 





 (48) 

the worst case of process to control is with the poorest 

damping, except 0  , i.e. 
1

1   , see discussion below 

(12). The lower value of 
1

  and the greater value of 
2

  are 

the lower results value of  . Additionally, with respect to the 

first similarity number in (4) the lower value of 
1

  and the 

greater value of   are the lower results value of  . 

Regarding the either similarity number in (4) the greater 


  

is the more delayed and thus worse controllable by controller 

(16) results the process. Hence the worst case of uncertainties 

considered symmetric as in (14) is derived from  

1 2
,  ,  0 1


            (49) 

when 1  , again except 
1

1   . Substituting (49) into 

(42) and (43) the relations (45) and (46) are obtained. After 

substituting (45), (46) and elements of (23) into (41) the 

pseudospectral abscissa of (41) is computed for varying   as 

follows  

  
0 1

max max Re , 1, 2, ...
j

j
s C

s j



  

  . (50) 

As far as   values evaluated by (50) satisfy condition (47) 

for certain 0   the similar control loops are robustly stable. 

The Theorem 2 is proved.  ■ 
 

In other words according to (50) the global rightmost point of 

the pseudospectra is found out. Efficiently the quasi-

polynomial root finder from Vyhlídal and Zítek (2009) is 

used for this purpose. In contrary to (51) also the effect of 

small laggardness, i.e. ,  0 1


      , analogously to the 

effect of small delays (Vyhlídal et al. 2009), under vanishing 

  should be tested on the worst case but this is not the case. 

In practice 
m ax

  bounding interval (14) as follows   

max max
0 ,  1      (51) 

is identified by (50) when certain exponential decay rate   

required by condition (47) is not satisfied yet. 
m ax

  shows at 

the same time to which extent the dominant four-pole 

placement is robust. This is much more enlightened in the 

following example. 

5. EXAMPLE OF ROBUST STABILITY PROOF 

Consider process (2) with the following similarity numbers 

1.414  , 0.265   and assessed ultimate frequency angle 

1.856
k

  . The dominant four-pole placement in the 

restricted region (20) is given as 
1,2

0.903 2.581s j   , 

3
1.174s   , 

4
2.936s    so that 0.35  , 1.3   and 

2.5k  . Formulae (23) give off the setting  

4.05
P

  , 2.15
D

  , 3.1
I

   and 0.015  . (52)  

As shown in Fig. 1 the four-pole dominance is guaranteed by 

the found rightmost spectrum of (19), separated enough from 

the rest of infinite spectrum, applying the quasi-polynomial 

root finder from Vyhlídal and Zítek (2009). In Fig. 2 the 

robust stability due to (49) for the controller setting (52) is 

shown with 
max

0.325   and 0.1  . For usual uncertainty 

0.25   0.22   , i.e. 0.2  , results. In practice the 

robust stability condition (47) is not reached in rigorous 

manner, i.e. 
max

1  . To reach a higher value of 
m ax

  the 

following dominant four-pole placement is made, 

1,2
1.3 3.25s j   , 

3
1.3s   , 

4
1.56s   , characterized by 

ratios 0.4  , 1   and 1.2k  .  

 

Fig. 1. The rightmost spectrum of (19) compared with the 

prescribed poles (21)  

 

Fig. 2. Pseudospectral abscissa evaluated according to (50) 

Formulae (23) provide then the setting 

4.377
P

  , 2.568
D

  , 2.978
I

   and 3
10


 . (53) 

In Fig. 2 the curve of the pseudospectral abscissa corresponds 

to (53) with 
m ax

  resulting in 0.45. In Fig. 3 the disturbance 

rejection with undershoots results not only with worse 

robustness but also IAE than either one obtained by control 

with the setting (53). 

6. CONCLUSIONS 

In summary the robust tuning of the PID controller requires 

meeting two conditions, namely the four-pole dominance and 

robust stability (47). As a tool for proving the robust stability 

the pseudospectral abscissa is selected that makes practically  

 
  



 

 

     

 

 

Fig. 3. Disturbance rejections with (54) and (55) settings 

the robustness mapping. In other words the higher value of 

m ax
  results the more robust is the tuning of the PID 

controller with filter. 
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