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Abstract: This paper proposes an approximation-based analysis method for the asymptotic
behavior of a class of multi-agent systems with communication delay among the agents. It is
considered that the agents implement the consensus protocol. The communication delay affects
the asymptotic behavior of the agents that cannot be analyzed by using the methods developed
for ordinary differential equations. The method proposed in this paper explores that, if the delay
satisfies a “smallness” condition, then the delayed system has a number of dominant eigenvalues,
which can be computed using numerical methods. The result of the proposed approximation
method is a delay-free multi-agent system with weighted consensus protocol which has the same
order as the original system, and it approximates well the dynamic behavior of the original
multi-agent system with communication delay.
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1. INTRODUCTION

Multi-Agent System (MAS) based coordination methods
have made significant progress in the last years due to the
development of the communication technology, robotics,
and computer science (Mesbahi and Egerstedt, 2010).
Many multidisciplinary research branches, such as con-
trol theory, biology, and statistical physics, gave major
attention to these methods due to their broad applicability
in many fields (Vicsek et al., 1995). These include sensor
networks, reference tracking robot groups, etc.

The MAS uses some form of communication among the
agents. With the increase in the number of agents and the
physical distance between the agents, the communication
delay becomes significant, and it cannot be neglected.
As such, the behavior of MAS must be analyzed by
taking into consideration the time delay induced by the
communication.

Although, the stability of MASs can be assured in the
presence of the communication lag (Liu and Liu, 2017),
the delay influences the dynamic behavior of these systems
(Michiels and lulian Niculescu, 2007).

The two well-known methods for approximating the delay
terms in the dynamic system’s model are the Padé ap-
proximant (Kumar and Chaudhary, 2017) and the Taylor
series (Zwillinger, 2002). The first method uses rational
components, while the second applies only polynomials.

According to (Insperger, 2015) if the order of the Taylor
series expansion exceeds the order of the leading derivative
by 2, the linearized system becomes unstable indifferent to

the stability of the delayed system. The maximum order
of the Taylor series can also be calculated by applying
the Routh-Hurwitz stability criterion as explained in (Dorf
and Bishop, 2001).

Another method for a delay-free approximation of a de-
layed system is the chain method (Győri, 1988) which uses
a high-order dynamical system for approximation. The
modified chain method described in (Krasznai et al., 2010)
in some cases can be used for the uniform approximation
of the solutions even on infinite interval.

In many applications, such as coordination-based control
of multi-robot systems, the transient behavior of the
agents is critical. In this work, we restrict ourselves to
MAS where the communication delay is sufficiently small.
Note that this smallness condition is naturally satisfied in
many MAS application. Our aim is to develop an algorithm
which combines numerical and symbolical computation
methods to analyze the asymptotic behavior of a class of
multi-agent systems with communication delay. The result
of the algorithm is an order-preserving approximation of
the multi-agent system with communication delay. The
resulting model is a weighted MAS which has the same
communication structure and steady states as the original
system, and approximates well the transient behavior of
the original MAS with communication delay.

Let N,R,C denote the set of natural numbers, the set of
real numbers and the set of complex numbers. Let Rn be
a set of column vectors with n real elements. Let Rn×n be
the set of matrices with n×n real elements, and In ∈ Rn×n
the identity matrix. Let C(a0, r) be the disc of center
a0 and radius r. Let ‖x‖ be the l1-norm of x ∈ Rn so



that the induced matrix norm of A ∈ Rn×n is given by
‖A‖ = max

1≤j≤n

∑n
i=1 |aij |.

2. MODELS OF MULTI-AGENT SYSTEMS

In this paper, a MAS is considered with agents having
single integrator dynamics. Thus the state space model of
an agent becomes ẋi(t) = ui(t), where xi ∈ R is the state
of the i -th agent and ui ∈ R is the input, i = 1, 2, . . . , n.

A MAS has an underlaying communication graph, in which
the vertex is an agent and the edge is a communication
path (Trudeau, 1994), so the ith agent in the system is
the vertex vi. Let Ni be the set of neighbors of vi, so that
Ni contains all vertices that are connected to vi.

Consensus algorithm

The consensus problem of a MAS is the procedure of gath-
ering every state from the initial condition to a common
steady-state. If the communication graph is connected,
the consensus for an agent can be reached with the input
(consensus protocol)

ui(t) =
∑
j∈Ni

(xj(t)− xi(t)) . (1)

The adjacency matrix A = (aij) ∈ Rn×n of a graph with
n nodes is defined as

aij :=

{
1, if i 6= j and vi is adjacent to vj
0, otherwise

. (2)

This matrix shows which vertices are neighbors in the
graph.

The degree matrix D = (dij) ∈ Rn×n of a graph with n
nodes shows the number of neighbors for each vertex and
can be defined as

dij :=

{
deg(vi), if i = j

0, otherwise
, (3)

where deg(vi) denotes the degree, or the number of edges
incident to vertex i.

With this notation the dynamics of the MAS with the
consensus protocol (1) is given by

ẋ(t) = −Lx(t), x(0) = ξ, (4)

where L is the Laplacian matrix (Chaiken and Kleitman,
1978), which is constructed as L = D − A, D is the
degree matrix, A is the adjacency matrix of the graph,

x = (x1 x2 . . . xn)
T ∈ Rn is the state vector consisting of

the n states of the MAS and ξ ∈ Rn is a constant vector.

The eigenvalues of −L are given by the solutions of the
characteristic polynomial of the state-space system (4),
and they can be located in the Geršgorin circles (Varga,
2004)

C

(
− dkk,

n∑
i=0,i6=k

|aik|
)
, k = 1, 2, . . . , n. (5)

According to (Mesbahi and Egerstedt, 2010) the eigen-
values of a MAS consisting of n agents with a connected
communication graph can be ordered as

0 = λ1 > λ2 ≥ · · · ≥ λn. (6)

The steady states (equilibria) of the MAS xss are the
elements of the null space of L. Since, by the definition
of the Laplacian,

∑
j∈Ni

lij = 0 according to (Lewis et al.,

2014) for every solution x of (4) we have lim
t→∞

x(t) = xss =

1
n

∑n
i=1 xi(0)1, where 1 = (1 1 . . . 1)

T ∈ Rn.

Weighted MAS structures

In a weighted MAS, numbers (weights) are assigned to the
edges, so the control input of an agent becomes

ui(t) =
∑
j∈Ni

wij (xj(t)− xi(t)) , (7)

where wij > 0. The dynamics of the MAS can be written
in a matrix form similarly to relation (4) with Lw = (lij) ∈
Rn×n given by

lij :=


∑
k∈Ni

wik, if i = j

−wij , if i 6= j and vi is adjacent to vj
0, otherwise

. (8)

In this paper we will consider symmetric weights (wij =
wji for 1 ≤ i, j ≤ n).

MAS with delayed communication

According to (Cheng-Lin Liu, 2017), and (Cepeda-Gomez
and Olgac, 2011), the MAS with communication de-
lay (further refereed to as Delayed Multi-Agent System
(DMAS)) is

ẋ(t) = −Dx(t)+Ax(t−τ), x(θ) = ξ, θ ∈ [−τ, 0], (9)

where τ ≥ 0 is the constant delay which is present among
neighbor agents and ξ ∈ Rn.

2.1 Reference tracking algorithm

In the case presented in the previous subsection, the con-
sensus equilibrium is the weighted average of the agents’
initial states, which is constant. If the state of the system
has to converge to a reference vector, the stated control
signal must be augmented with a reference tracking term
so that

ui(t) =
∑
j∈Ni

(xj(t)− xi(t)) + kpi(xri − xi(t)), (10)

with a positive proportional gain kpi for the reference
tracking of the ith agent, and xri is a given reference
signal.

If we write the system in a matrix form, we get the relation

ẋ(t) = −Lx(t) +Kp(xr − x(t)), (11)

where Kp = diag((kp1 kp2 . . . kpn)) ∈ Rn×n is the diago-
nal proportional gain matrix, and xr ∈ Rn is the reference
vector.

The eigenvalues of the system are located in the Geršgorin
circles

C

(
− dkk − kpkk

,

n∑
i=0,i6=k

|aik|
)
, k = 1, 2, . . . , n, (12)

We can see that the centers of the circles are shifted to the
left by the proportional gains.

If a communication delay is introduced into the system,
the state space representation is given by

ẋ(t) = −(D +Kp)x(t) +Ax(t− τ) +Kpxr. (13)



Note that the equilibria of the delayed MAS coincide with
the equilibria of the system without delays (τ = 0). The
characteristic equation of the homogeneous part of the
delayed system is given by

det
(
λIn +D +Kp −Ae−τλ

)
= 0. (14)

This system in general has an infinite number of eigenval-
ues.

3. APPLIED METHODS

3.1 Differential equations with small delays

Consider a system of Delayed Differential Equation (DDE)

ẋ(t) = F (t, xt), (15)

where F : R × C → Rn, C ≡ C([−τ, 0],Rn) being the
Banach space of continuous functions from [−τ, 0] into Rn
equipped with the supremum norm and xt ∈ C is defined
by xt(θ) = x(t+ θ) for θ ∈ [−τ, 0].

According to (Driver, 1976) if conditions

F : R× C → Rn is continuous, (16)

‖F (t, 0)‖ ≤ He−t/τ , t ≤ 0, (17)

‖F (t, φ)− F (t, ψ)‖ ≤ K‖φ− ψ‖, t ∈ R, φ, ψ ∈ C , (18)

Kτe < 1 (smallness condition) (19)

are satisfied, then for every solution x of (15) there exists
a globally defined solution x̃ : R → Rn of (15) satisfying
the growth condition supt≤0 ‖x̃(t)‖et/τ <∞ and such that

‖x(t)− x̃(t)‖ → 0 exponentially as t→∞.
The special solutions x̃ are uniquely determined by their
values x̃(0) and thus form an n parameter family. In the
linear autonomous case they correspond to the eigensolu-
tions generated by exactly n characteristic roots (counting
multiplicities) which lie in the half plane Reλ > −1/τ , see
(Arino and Pituk, 2001). For further related results, see
(Győri and Pituk, 2005), and (Győri and Pituk, 2016).

3.2 The modified chain approximation method

A delay-free approximation model for the DDE

ẋ(t) = Ax(t) + f(x(t)) + g(x(t− τ)) + U (20)

has the form

ẏ
0
(t) = Ay

0
(t) + f(y

0
(t)) +

m

τ
Inym(t) + U

ẏ
1
(t) = g(y

0
(t))− m

τ
Iny1(t) (21)

...

ẏ
k
(t) =

m

τ
Inyk−1(t)− m

τ
Inyk(t) + U, 2 ≤ k ≤ m,

where A ∈ Rn×n, f, g : Rn → Rn are state dependent
functions, and U ∈ Rn. The output vector z = y

0
represents the approximation of the solution x of (20).
More precisely, it was proven that there exists c > 0 such
that supt≥0 ‖x(t) − z(t)‖ ≤ c

m independently of m. For
details, see (Krasznai et al., 2010).

4. ASYMPTOTIC BEHAVIOR ANALYSIS METHOD

In this section, we propose an algorithm for the transient
analysis of a given DMAS. The main steps are:

• Building up a higher order linear model with the help
of the modified chain method.

• Finding the dominant eigenvalues of the system cre-
ated with the modified chain method.

• Building up an order-preserving weighted MAS model
from the dominant eigenvalues of the approximated
system.

4.1 Higher order modified chain method approximation of
MAS

In the case of the DMAS described by (13) the approxi-
mating chain system has the linear state-space form

Ẏ (t) = GAY (t) +GBxr, (22)

where Y ∈ Rmn is the state vector, GA ∈ Rmn×mn and
GB ∈ Rmn×n are the system matrices and 0n ∈ Rn×n is
the zero matrix. These matrices have the form

GA =



−(Kp +D) 0n 0n · · · 0n
m

τ
In

A −m
τ
In 0n · · · 0n 0n

0n
m

τ
In −

m

τ
In · · · 0n 0n

...
...

...
. . .

...
...

0n 0n 0n · · · m
τ
In −

m

τ
In


GB = (Kp 0n 0n . . . 0n)

T
, (23)

where n is the number of agents and m is the number
of approximating equations for DMAS. The solution x(t)
of (13) is approximated by z(t) = GCY (t), where GC ∈
Rn×mn is given by GC = (In 0n . . . 0n).

4.2 Order preserving system approximation

The dominant eigenvalues of the chain approximation can
be used to build an approximate model which preserves
the order of the original one. In this step, we create an
nth order weighted graph with the same communication
structure as the original DMAS as shown in the relation

dx̂

dt
(t) = −(Lw −Kp)x̂(t) +Kpxr, (24)

where x̂ ∈ Rn is the approximating state vector, and xr is
a constant reference vector. Its characteristic polynomial
is

Pw(λ) = det(λIn− (Lw +Kp))) = λn+

n−1∑
i=0

pi(w)λi, (25)

where w is the vector containing all the weights of the
Laplacian matrix Lw defined by (8). The coefficients pi(w)
are calculated as

p1(w) =
∑n
i1=1 wi1

p2(w) =
∑n
i1=1 wi1(

∑n−1
i2=i1+1 wi2)

p3(w) =
∑n
i1=1 wi1(

∑n−1
i2=i1+1 wi2(

∑n−2
i3=i2+1 wi3))

etc.

The weights can be computed by solving the equation

Pw(λ) =

n∏
i=1

(λ− λi), (26)



where λ1, λ2, . . . , λn are the dominant eigenvalues of the
system from the chain approximation. Note that the
system (24) is constructed such that it has the same
communication topology as the original DMAS (13), and
their eigenvalues coincide with the n dominant eigenvalues
of system (22) from the chain approximation.

The right-hand side of formula (26) contains a polynomial
with positive coefficients since Re(λi) ≤ 0, i = 1, . . . , n.
The polynomial Pw(λ) also has positive coefficients, since
all the weights are positive.

Comparing the coefficients in equations (25) and (26), we
obtain a system of n nonlinear equations. If we consider
only the consensus protocol, this system contains n − 1
equations since both polynomials have λ = 0 as a root.

4.3 Algorithm to obtain the order-preserving approximation
of DMAS

Algorithm 1: Algorithm for the transient analysis
of a MAS with communication delay.

Input : τ real, A,D,Kp matrices
Output: Lw matrix, x̂(t) trajectories
1 Compute the Lipschitz constant

K = ‖D +Kp‖+ ‖A‖
2 if τ ≥ 1

Ke then
3 The method can only be applied in case of

smaller delays. return
4 end
5 Construct the model based on the modified chain

method according to (22)
6 Construct the characteristic equation of the system

by applying the LU factorization symbolically
with partial pivoting

7 Find dominant eigenvalues λi with Re(λi) ∈ (− 1
τ , 0]

interval using numerical methods
8 Construct a general weighted MAS with n nodes

according to (8).
9 Construct symbolically the characteristic

polynomial Pw of the weighted graph according to
(25).

10 Calculate the coefficients of the characteristic
equation so that the eigenvalues are the dominant
ones from the approximated model according to
(26).

11 Calculate the weights w from the coefficients.
12 Generate the trajectories x̂(t) using (24).
13 return Lw, x̂(t)

The algorithm inputs are the communication delay τ , the
adjacency matrix A, degree matrix D, and gain Kp (if
applicable) of the DMAS, and returns the approximating
linear system matrix Lw, the weight vector w and the
trajectories x̂(t) of the weighted delay-free MAS obtained
by the order preserving approximation.

Detailed steps of the devised algorithm:

(1) Define K = ‖D+Kp‖+‖A‖, and check the smallness
condition (19) , according to Section 3.1. Conditions
(16) and (17) are always satisfied for DMAS with
H = e−1‖Kp‖‖ξ‖. If the delay τ is greater than

(Ke)−1 this method cannot be applied.

(5) Construct the system (22) symbolically based on the
modified chain approximation method with matrices
given by (23).

(6) Create the LU factorization with partial pivoting of
the term (Imnλ−GA) according to Q(Imnλ−GA) =
LU , where L,U,Q ∈ Rmn×mn are the lower triangle,
upper triangle and the permutation matrices respec-
tively. Since the chain method approximation results
in a sparse matrix configuration, the decomposition
has a complexity of O(n) according to (Datta, 2010).

The characteristic equation of the chain approx-
imated system can be calculated symbolically with
the help of the above mentioned LUP factorization
as P (λ) = det(Q−1) det(L(λ)) det(U(λ)). Thus the
characteristic equation can be computed by multiply-
ing the diagonal terms of the L(λ) and U(λ) matrices.

(7) Find all the dominant eigenvalues λ1, λ2, . . . , λn of
the chain approximating system for which Re(λi) ∈
(− 1

τ , 0] using numerical methods. One real or complex
pair of roots can be found with the help of Bairstow’s
method (Press et al., 2007). After finding the root(s),
the characteristic polynomial can be divided accord-
ing to Horner’s method to eliminate the already found
roots. This iteration is continued until all n eigenval-
ues are found.

(8,9) The order-preserving approximating system is cre-
ated according to Section 4.2, for which the eigen-
values are in the circle C

(
0, 1τ

)
.

The dominant eigenvalues of the order preserved
approximating system converge to the dominant
eigenvalues of the delayed system, see (Yanushevskij,
1978).

The characteristic equation Pw(λ) is computed
symbolically using the Gaussian elimination method
with complexity O(n3).

(10,11) The weights of the order preserving approximator are
calculated by comparing the equations (25) and (26).
This creates an underdetermined nonlinear system of
equations which can be solved numerically.

5. CASE STUDIES

In this section, we apply the algorithm to study the
asymptotic behavior of two DMASs. The algorithm is
written and tested in MATLAB R© using the Symbolic
Math Toolbox.

5.1 Consensus problem with communication delay

1

2

3
4

Fig. 1. The communication topology of the first MAS.

Consider the DMAS structure shown in Figure 1 with
τ = 0.03s delay. The delayed model is written by (9) with
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Fig. 3. Comparison between the original DMAS, the re-
sult of the chain approximation, and the final order
preserving approximation.

D = diag(2, 3, 3, 2), A =

 0 −1 −1 0
−1 0 −1 −1
−1 −1 0 −1
0 −1 −1 0

, so that the

Laplacian matrix is L =

 2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

.

Condition (18) is fulfilled with K = ‖D‖+ ‖A‖ = 6. Thus
the algorithm works with delays τ ∈ [0, 1

6e ).

Figure 2 shows the eigenvalues of the system obtained from
the chain approximation. Four eigenvalues (−4,−4,−2, 0)
are found in the (− 1

τ , 0] interval.

The sym2poly Matlab function was used to convert
the symbolically calculated characteristic equation of the
weighted to an array containing the coefficients of the poly-
nomial equation. The numeric solution of the nonlinear
equation from step 10 of Algorithm 1 can be found with the
help of the function fsolve algorithm. The default trust-
region-reflective method is not suitable for this purpose,
since the system is a nonlinear, underdetermined system,
therefore the Levenberg-Marquardt method was used.

The weights for the weighted graph are w12 = 1.3448,
w13 = 1.1366, w23 = 0.8539, w24 = 0.7576, w34 = 1.0848.

The comparison of the trajectories of the original system,
the chain approximation and the order preserving approx-
imation can be seen in Figure 3.

5.2 Reference tracking with communication delay

1 2

3

4 5

Fig. 4. The communication topology of the second MAS.

In case of the DMAS structure shown on Figure 4, with a
time delay τ = 0.015 the model is writtenby (13) with

D = diag(2, 2, 4, 1, 1), A =


0 −1 −1 0 0
−1 0 −1 0 0
−1 −1 0 −1 −1
0 0 −1 0 0
0 0 −1 0 0

, so

that the Laplacian matrix is L =


2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 4 −1 −1
0 0 −1 1 0
0 0 −1 0 1

,

and Kp = diag((1 1 3 2 2)) gain. The reference state is
xr = 0.8 · 1.

The Lischitz constant is K = ‖D+Kp‖+ ‖A‖ = 11. Thus
the algorithm works with delays τ ∈ [0, 1

11e ).

Figure 5 shows the eigenvalues of the system after the
chain approximation. The five eigenvalues found are
(−8.2393,−4.1547,−3.0000,−2.6768,−1.4238).
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Fig. 5. The eigenvalues of the approximated system based
on the chain method. The vertical line shows the − 1

τ
boundary.

The weights for the weighted graph are w12 = 0.9269,
w13 = 1.2104, w23 = 1.2104, w35 = 1.0606, w34 = 0.7040.

The comparison of the trajectories of the original system,
the chain approximation and the order preserving approx-
imation for this case can be seen in Figure 6.

6. CONCLUSION

A new algorithm was introduced based on which an or-
der preserving approximation model for a class of MAS
with small delay can be determined. The algorithm com-
bines numerical and symbolical computation methods that
are available in commercial mathematical software. The
obtained weighted delay-free MAS has the same order,
communication structure and steady-state as the original
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Fig. 6. Comparison between the original DMAS, the re-
sult of the chain approximation, and the final order
preserving approximation.

DMAS. Moreover, it approximates correctly the transient
behavior of the DMAS. The presented numerical examples
confirm the applicability of the proposed asymptotic be-
havior analysis method. In our case studies we restricted
ourselves to simple DMAS. In the future we plan to test
whether the presented algorithm is suitable for complex
MAS. Furthermore, we plan to compare our algorithm
with the existing methods, see, e.g. (Jarlebring, 2008),
(Olfati-Saber and Murray, 2004), (Breda et al., 2014).
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Győri, I. (1988). Two approximation techniques for func-
tional differential equations. Computers & Mathematics
with Applications, 16(3), 195 – 214.
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