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Abstract: In this paper, the effects of time delay and correlated noises on noise-induced dynamics in a 
delayed triple-well potential system are studied. Using the linear response theory, we derive the 
expression of the transient response to show the effectiveness of the system response to a periodic forcing. 
The effectiveness of the system response to an external forcing can be improved in a triple-well system 
by choosing the proper time delay and noise cross-correlation. Moreover, the power spectrum and the 
quality factor are calculated to quantify coherence resonance (CR). It is found that the power spectrum 
and the quality factor show the peak structure as the optimal noise intensities are chosen. That is, the CR 
appears in this system. The noise cross-correlation can break the symmetry of the triple-well potential 
and induce the transition of the interwell resonance among different wells. The presence of time delay in 
the triple-well potential enhances the role of multiplicative noise in the regularity dynamics. 
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1. INTRODUCTION 

Time delay exists in a wide variety of natural and manmade 
systems, such as laser physics, biological systems, 
mechanical and electrical systems. Most dynamical systems 
with time delays can be modelled as the delay-differential 
equations (DDEs), which are infinite-dimensional systems 
with an infinite number of initial conditions. Over the past 
decades, a great progress has been made for DDEs in both the 
theoretical methods and practical applications. Among them, 
we refer the readers to the classic books written by Hale 
(1977), Qin et al. (1989), Stépán (1989), Diekmann et al. 
(1995) and Hu et al. (2002). 

In practice, the random fluctuation or environmental noise is 
an unavoidable factor existing in system modelling and may 
lead to the discovery of some counterintuitive phenomena. 
Particularly, stochastic resonance (SR) is a phenomenon in 
which the optimal noise intensity results in a maximal 
response of the dynamical system to a weak input signal, and 
coherence resonance (CR) describes the increased regularity 
of the output in an excitable system by the addition of 
moderate noise intensity. Therefore, the effects of noise on 
the DDEs have attracted the attentions of scientists from 
many fields. For example, Ohira et al. (1999) illustrated the 
resonance behavior between noise and delay both 
numerically and analytically in a two-state model. Guillouzic 
et al. (1999, 2000) proposed a small delay approximation 
method and applied it to a stochastic delayed differential 
equation (SDDE) with non-delayed diffusion. Tsimring et al. 
(2001) established the theory of a bistable system with noise 
and time delay within the framework of the two-state system 
approximation. Masoller (2002) found that the appearance of 

resonant behavior is due to the interplay of noise and delayed 
feedback in a single-mode semiconductor laser. Jin et al. 
(2007, 2012, and 2015) studied the noise-induced resonances 
and the delay-independent stability of the delayed bistable 
and linear systems. However, most of the previous studies 
focus on linear and bistable systems, only a few publications 
involve the multi-stable systems. 

Multi-stable dynamical systems mean the coexistence of 
several possible attractors for a given set of parameters. 
Pisarchik et al. (2014) pointed out the coexistence of different 
stable states offers a great flexibility in the system 
performance without major parameter changes. Therefore, 
the research of noise-induced dynamics in the multi-stable 
systems is important because the phenomenon of multi-
stability exists in many fields, such as biological systems (see 
Foss et al. (1996, 1997, and 2000)), energy harvesting system 
(see Zhou et al. (2014)), optical systems (see Brambilla et al. 
(1991)) and social systems (see Sneppen et al. (2012)). For 
example, Ma et al. (2007) studied the multistability in spiking 
neuron models of delayed recurrent inhibitory loops. 
Campbell et al. (1995) demonstrated the existence of limit 
cycles, two-tori, and multistability in a damped harmonic 
oscillator with delayed negative feedback. Later, Nicolis et al. 
(2017) analyzed how the phenomenon of SR is modulated as 
a triple-well system is moved across its bifurcation diagram. 
Jia (2009) investigated the effects of the time delay on the 
stationary properties of a triple-well system driven by the 
correlated noises. Jin et al. (2017) explored the CR and SR in 
a periodic potential system driven by multiplicative and 
additive noises. Xu et al. (2017, 2018) studied the SR in a 
delayed triple-well potential and a couple system with four-
well potential, respectively. To the best knowledge of authors, 



 
 

     

 

less attention has been paid to the stochastic response and CR 
in a delayed triple-well potential with correlated noises. 

The aim of this paper is to study the transient response and 
CR in a delayed triple-well potential system driven by 
correlated multiplicative and additive noises. In Section 2, the 
expressions of transient response are obtained by using the 
linear response theory. The effects of time delay and noise 
cross-correlation on the stochastic response to a periodic 
forcing in the triple-well potential system are analyzed. In 
Section 3, CR are explored by using the quantifiers, such as 
the power spectrum and the qualify factor. The influences of 
noise intensities and time delay on CR are discussed. Some 
conclusions are drawn in Section 4. 

2. STOCHASTIC RESPONSE 

2.1  The Model 

The system of concern is an over-damped particle moving in 
a delayed triple-well potential, which is driven by correlated 
noises and a periodic forcing:  

5 3[ (1 ) ] sin( )
( ) ( ),

x ax b h x hx t
x t t

τ ε ω
ξ η

= − − + + +
+ +

                 (1) 

where ( )x x tτ τ= −  and τ  is the time delay, ε  and ω  
represent the amplitude and the frequency of a periodic 
forcing, respectively. ,a  ,b  and h  are the parameters of the 
potential function. The multiplicative noise ( )tξ  and additive 
noise ( )tη  are cross-correlated Gaussian white noises with 
zero mean and Dirac δ correlation functions as follows: 

( ) ( ) 2 ( ),t t D t tξ ξ δ′ ′= −  ( ) ( ) 2 ( ),t t Q t tη η δ′ ′= −  

( ) ( ) ( ) ( ) 2 ( ).t t t t DQ t tξ η ξ η λ δ′ ′ ′= = −            (2) 

where D  and Q  are the multiplicative and additive noise 
intensity, respectively. λ  is the cross-correlation between 
multiplicative and additive noises. The triple-well potential 
with 0τ = , i.e. 6 4 2( ) 6 (1 ) 4 2V x ax b h x hx= − + +  for 
fixed 1 30,a =  1 5b =  and 3 10h =  is plotted in Fig. 1. It 
is clear that the potential has three stable states ( 1, 2,3)is i =  

and two unstable states ( 1, 2)ju j = . 

Using the small time delay approximation proposed by 
Guillouzic et al. (1999), the corresponding Fokker-Planck 
equation of (1) can be derived as following 

2
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where   5 3( ) [ (1 ) sin( )] ( ),x ax b h x hx t xα ε ω ρ= − + + − +  

2 1/2 1/2( ) [ 2 ( ) ] ( ),x Dx DQ x Q xβ λ ρ= + + 4( ) 1 5 .x a xρ τ= +  

By setting the left side of (3) to zero, the generalized 
potential ( , )V x t  can be given by 

0( , ) ( ) ( )sin( ),V x t V x g x tε ω= −                     (4) 
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Fig. 1. Plot of the triple-well potential V(x). 

2.2  Transient Response 

The effectiveness of the system response to a periodic forcing 
is investigated through the transient response. For small 
signal amplitude ε , the transition probability masses ip  
( 1, 2,3)i =  between the attraction basins of the stable states 

is  have the form (0) .ε= + ∆P P P  The ∆P  satisfies the 
following equations: 

d
d t
∆

=
P ∆W P + sin( ).tωφ                       (5) 

where 1 2 3( )Tp p p=P  , (0) (0) (0) (0)
1 2 3( )Tp p p=P the 

superscript T  denotes the transpose of matrix. And  
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Here the components of W  are obtained from (4) by using 
the adiabatic approximation:  
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The φ  in (5) is expressed as follows: 
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                                                                                    (6) 
where , 1 ( ) ( ),m m m mg g u g s+∆ = −  , 1 1( ) ( ),n n n ng g u g s− −∆ = −  
( 1, 2; 2,3).m n= =  
Setting the matrix G = 1( ,ξ 2 ,ξ 3 )ξ  ( iξ  are the 

eigenvectors of W ) and the variables 1−= ∆a G p , one 

obtains the following equations from (5):  
3 1

1

d ( )
d
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i i ijj

a t a
t

γ −
=

= + ∑ G jφ sin( ),tω                (7) 

where iγ ( 1, 2,3)i = stand for the eigenvalues of W . 
The transient response ( )ip t∆  in (5) can be obtained by 
solving (7) as follows: 

3
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For the unperturbed system the probability masses in middle 
well reaches half of its asymptotic value at time (0)

1/2 ,t  i.e.,  
(0) (0) (0) (0)
2 1/2 2 1/2( ) 0.5lim ( ).

t
p t p t

→∞
=

                      
(9) 

If (0)
2 1/2( ) 0p t∆ > , the periodic forcing would be deemed 

effective. Then, the system would accelerate the crossing of 
level 1/2 of the full response (0)

2 2 2( ) ( ) ( ),p t p t p tε= + ∆  which 
is a primary indicator of the effectiveness of the periodic 
forcing (see Nicolis (2012)). 

The unperturbed (0)
2 ( )p t  is derived with the initial state 
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2.3  Analysis of Stochastic Response 

For the case of two correlation noises, the time (0)
1/2t  in (9) is 

too complicated to present through (10), so the numerical 
algorithm is adopted to obtain (0)

1/2t . Particularly, for two 

independent noises the formula ( )(0)
1/2 12 21ln(2) 2t W W= +  is 

satisfied. Furthermore, the transient response in middle well 
at time (0)

1/2t  i.e., (0)
2 1/2( )p t∆  is derived from (8). 

In Figs. 2(a) and 2(b), the transient response (0)
2 1/2( )p t∆  as a 

function of driving frequency ω  is displayed for different 
values of time delay τ  and cross-correlation λ , respectively. 
Note that to guarantee the condition of adiabatic 
approximation, ω  is limited to the range of ''

0 ( )iV Sω <<  
(see Nicolis et al. (2017)). In Fig. 2(a), the range of ω  
corresponding to the positive value of (0)

2 1/2( )p t∆  is almost the 

same length for different τ . But, (0)
2 1/2( )p t∆  decreases with an 

increase in τ . That is, the increasing time delay leads to the 
weakening of the transient response to a periodic forcing in 
the low frequency region. Moreover, it can be seen from Fig. 
2(b) that (0)

2 1/2( )p t∆  increases as the increment in λ  when 

0.055.ω <  However, when 0.055,ω >  (0)
2 1/2( )p t∆  shows a 

non-monotonic change with .λ  In other words, for a given 
driving frequency there is an optimal λ  that would maximize 
the transient response of the system. The τ  and λ  play an 
opposite role in the enhancement of transient response for the 
low frequency forcing, which is different from the case of 
asymptotic response shown in the work by Xu et al (2017). 
Thus, one can improve the effectiveness of the system 
response to a periodic forcing in the triple-well system by 
controlling the time delay and noise cross-correlation. 

If the periodic forcing sin( )tε ω  in (1) is replaced by 
sin( )tε ω θ+  with non-zero phase θ , the transient response 

(0)
2 1/2( )p t∆  as a function of θ  varies with period 2π  shown in 

Fig. 2(c). As expected, the amplitude of (0)
2 1/2( )p t∆  achieves a 

finite value as the driving frequency ω  decreases to 
infinitesimal. On the contrary, the system response can 
vanish in the limit where ω  is larger than the inverse of the 
characteristic time of the diffusion process around each of the 
stable states. In particular, these values of (0)

2 1/2( )p t∆  which 
are negative in Figs. 2(a) and 2(b) can again be positive 
within an appropriate range of phase θ  values; thus, the 
periodic forcing to the system can still be deemed effective.  

3. COHERENCE RESONANCE 

When the periodic forcing is absent (i.e., 0ε = ), the CR of 
the system (1) is characterized by the power spectrum and the 
quality factor in this section. The quality factor is defined by 
Hu et al. (1993) as ,phβ ω ω= ∆ where h  is the peak height 

of the power spectrum, pω  represents the peak frequency and 

ω∆  is the width of the spectrum measured at the height of 
.h e  In the numerical simulations, the sample frequency is 

chosen as 100Ηz,Fs =  410  different realizations are 

performed and the data length takes 45 10×  for each 
realization. Here, the power spectrum as a function of 
frequency is shown for different additive noise intensity Q  
and multiplicative noise intensity D  in Fig. 3. It is clear that 
the peak height of the power spectrum first increases and then 
decreases as both Q  and D  increase (see Figs. 3(a) and 3(b)). 



 
 

     

 

That is, the power spectrum attains the maximum at the 
optimal noise intensities, which indicates the possibility of an 
occurrence of CR phenomenon. Noting that the peak 
frequency in Fig. 3(b) is increased with the enlargement of 
D , which is different from the case of Q  (see Fig. 3(a)). 
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Fig. 2. Plot of the transient response (0)
2 1/2( )p t∆  for (a) 

different τ  with 0λ = ; (b) different λ  with 0.1τ = ; (c) 
different ω  with 0.1τ = , 0.4.λ =  The other parameters are 
chosen as 0.05.Q D= =  
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Fig. 3. The power spectrum of the system versus frequency 
for (a) different Q  with 0.1D =  and (b) different D  with 

0.01.Q =  The other parameters are chosen as 0.03τ =  and 
0.5.λ =  
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Fig. 4. The quality factor β  as a function of Q  for different 
λ  with 0τ = : (a) 0.01D =  and (b) 0.1.D =  

Figure 4 displays the quality factor β  as a function of Q  for 
different λ  and D . In Fig. 4(a), the curve of β  shows the 
oscillatory character for small D . The reason is that, for the 
triple-well potential system, the resonances in the single 
potential well and between the lateral potential wells are 
coexistent. The system mainly concentrates on the intrawell 
motion in the lateral potential wells owing to the small D , 
which induces the multi-peak phenomenon in the curve of β . 
With the increment in λ  in Fig. 4(a), the maximal peak value 
of β  decreases but the noise intensity that induced resonance 
remains almost unchanged. Especially, for sufficiently large 
D  as shown in Fig. 4(b), when λ  is increased, the peak 



 
 

     

 

value of CR ascends (a trend opposite to the one in Fig. 4(a)) 
and the position of the peak is shifted toward the direction of 
increasing Q . One possible explanation of this observation is 
that the large cross-correlation between multiplicative and 
additive noises strongly breaks the symmetry of the triple-
well potential; thus, the increasing D  or Q  induces the 
transition of the interwell resonance from two adjacent wells 
to two side wells. So the CR phenomenon is quite sensitive to 
the correlated multiplicative and additive noises in the triple-
well potential system. It demonstrates that the correlated 
noises can significantly affect the regularity of system 
dynamics. 

The effects of time delay τ  on CR are analyzed in Fig. 5. 
When τ  is increased in Figs. 5(a) and 5(b), these peak values 
of β  versus Q  or D  decrease. Thus, the increase of time 
delay results in the weakening of the regularity of the system 
according to the CR effect. Moreover, the additive noise 
intensity of resonance keeps almost fixed in Fig. 5(a) but the 
optimal multiplicative noise intensity is decreased by 
increasing the time delay. In fact, the intensity of 
multiplicative noise being different from additive noise does 
not scale with an inverse power of the system size, and the 
effect of multiplicative noise depends on the state of the 
system (see Horsthemke et al. (1983). The presence of time 
delay enhances the role of multiplicative noise in the 
regularity dynamics. 
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Fig. 5. Plot of the quality factor β  for different τ  with 
0λ =  as a function of (a) Q  with 0.08D =  and (b) D  with 
0.005.Q =  

To explore the combined effects of correlated noises and time 
delay on CR, the quality factor β  versus noise cross-

correlation λ  is plotted with fixed 0.03D =  for different 
time delay τ  and additive noise intensity Q  in Fig. 6. The 
curve of β  versus λ  shows the symmetry structure, which 
demonstrates the positive and negative cross-correlation has 
the same effect on the CR. It is obvious that the curve of β  
versus λ  can be transferred from single peak (see Fig. 6(a)) 
into the collapse shape (see Fig. 6(b)) at the center of 0λ =  
as Q  varies from 0.03 to 0.3. For small additive noise 
intensity in Fig. 6(a), the system subjected to uncorrelated 
noises has the largest regularity than that with correlated 
noises. However, as Q  increases to a tenfold, there is an 
optimal noise cross-correlation that can generate the largest 
regularly activity. Moreover, with the enlargement of ,τ  the 
single peak (see Fig. 6(a)) and the collapse shape (see Fig. 
6(b)) become less pronounced and β  attains a very shallow 
extremum at the value of 0λ = . Therefore, the influences of 
smaller noise cross-correlation on regularity are not evident 
in the system with larger time delay. 
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Fig. 6. The quality factor β  as a function of λ  for different 
τ  with 0.03D =  and (a) 0.03Q = ; (b) 0.3.Q =  

4. CONCLUSIONS 

This paper presents the analysis of the transient response and 
CR in a delayed triple-well potential system with correlated 
noises and a periodic forcing. The obtained theoretical and 
numerical results show that the effectiveness of the stochastic 
response to a periodic forcing in the triple-well potential 
system can be improved by adjusting the time delay and 
noise cross-correlation. Particularly, the combined effects of 
both time delay and correlated noises on CR are explored by 
the power spectral and the quality factor. It is found that the 



 
 

     

 

noise cross-correlation can break the symmetry of the triple-
well potential and significantly affects the regularity of 
system dynamics. The CR effect can be weakened by 
increasing the time delay. Moreover, the random fluctuation 
adopted in this paper is Gaussian white noise, which has zero 
correlation time. When the correlation time of the fluctuation 
is large, we must choose a stochastic process with non-zero 
correlation time, such as colored noise, dichotomous noise 
and non-Gaussian noise, which will be considered in our 
future work. 
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