
On the stabilization of a system of neutral type
occurring in co-generation
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Abstract: There is considered a system of conservation laws with non-standard boundary conditions.
At a certain level of linearization, a bilinear controlled system of functional equations is associated by
integrating the Riemann invariants of the system along its characteristics. For this associated system the
basic theory (existence, uniqueness and smooth data dependence) is developed. Then some invariant
set accounting for the positiveness of the variables with physical significance is obtained. Further, its
equilibria are shown to be stable but not asymptotically stable as suggests the Stability Postulate of
N. G. Četaev. Feedback asymptotic stabilization is obtained by using a suitably designed Lyapunov
functional. Using the representation formulae for the solutions, all properties and results thus obtained
are projected back on the boundary value problem with bilinear control at the boundaries. This shows
a way to obtain stability by the first approximation for the linearized conservation laws with nonlinear
boundary conditions.
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1. PROBLEM STATEMENT AND ITS STARTING
MATHEMATICAL MODEL

Co-generation used to be (and still is) a valuable source of
necessary energy for industrial and individual consumption
ensuring an improved efficiency for the energy suppliers. From
the technological point of view large scale co-generation is
ensured by steam turbines with regulated steam extractions.

We shall focus on the standard case of a low/medium power
steam turbine without re-heating and having a single regulated
steam extraction. From the control point of view this is a two-
variable control object i.e. it has two controlled technological
parameters - the rotating speed and the steam pressure at the
steam extraction.

The steam flow in the turbine is critical and depends on the
product of the controlled cross-section and the upstream steam
pressure. This bi-linearity is avoided for the steam input of the
turbine by assuming a strictly regulated upstream pressure; for
this reason the models of the steam turbines without regulated
extractions are assumed linear - see e.g. the IEEE prescrip-
tions Report (1973). However the controlled steam flow at the
input of the low pressure cylinder has to ensure namely the
steam pressure control and, therefore, it introduces the bilinear
term. These considerations led to the following bilinear con-
trolled system

Ta
ds
dt

= απ1 +(1−α)π2−νg , T1
dπ1

dt
= µ1(t)−π1

Ts
dπs

dt
= π1 − µ2(t)πs −β1πs , 0 ≤ µ1 ≤ 1

T2
dπ2

dt
= µ2(t)πs −π2 , 0 < µ2min ≤ µ2 ≤ 1

(1)

The model, written in rated (p.u. - per unit) variables, has been
proposed and used in some previously published references Ha-
lanay and Răsvan (1980). The significance of the notations is
as follows: s - rated speed deviation with respect to the syn-
chronous reference speed; π1, πs, π2 - rated steam pressures in
the high pressure cylinder, steam extraction chamber and low
pressure chamber respectively; νg - rated mechanical load at
turbine’s shaft; µk(t) - rated cross-sections of the steam flow at
the high pressure and low pressure cylinders inputs respectively
(control input signals).

Model (1) was thus established as a standard one. A rather
different case occurs when the thermal energy consumer is
located rather distantly with respect to the power plant and the
flow propagation phenomena cannot be neglected any longer.
Consequently the steam pressure is controlled at one boundary
but the perturbation (consumption) is at the other one. This
case has been considered in the pioneering paper of Kabakov
(1946), being reproduced in Popov (1954). The aforementioned
references have to be mentioned for their modeling aspects:
physical laws and choice of the rated variables. Starting from
the equations of the isentropic flow e.g. Courant and Hilbert
(1966) there are obtained the following partial differential equa-
tions for the rated steam pressure, steam flow and for the rated
pipe length - see Răsvan (1981)

ψcTc∂tξρ + ∂λ ξw = 0 , ψcTc∂tξw + ∂λ

(

ξρ +
ξ 2

w

ψ2
c ξρ

)

= 0

(2)
where ξρ(λ ,t) and ξw(λ ,t) are the rated steam pressure
and steam flow respectively. The pipe length is rated hence
0 ≤ λ ≤ 1.

Clearly (2) describes a system of conservation laws. The bound-
ary conditions for (2) account for the coupling to the steam



extraction (at λ = 0) and to the steam consumer (at λ = 1).
Usually the steam flow entering heat exchangers is subcritical
but in our case, where the steam consumer is located rather
distantly, the flow might be critical. Description of the subcrit-
ical/critical flow has the form - in our case at λ = 0 (with the
aforementioned notations)

ξw(0,t) = πs(t)Φ(πs(t)/ξρ(0,t)) (3)

and of the critical flow at λ = 1
ξw(1,t) = ψsξρ(1,t) (4)

For the function Φ(x) in (3) one can use the Saint Venant
formula in the isothermal case

Φ(x) =

{

(1/x)
√

2lnx, 1 ≤ x ≤
√

e

1/
√

e, x ≥
√

e
(5)

or the ASME formula as follows

Φ(x) =

{

x
√

1− x, 0 ≤ x ≤ 2/3

2/(3
√

3), 2/3 ≤ x ≤ 1
(6)

(in this case x = ξρ(0,t)/πs(t))

The set of equations (1) - (4) with Φ defined either by (5) or (6)
defines a nonlinear boundary value problem (with non-standard
boundary conditions) for a system of two nonlinear conser-
vation laws. This boundary value problem has some specific
features. First, it is non-standard since the boundary condition
(3) is controlled - via the variable πs - by the bilinear system
of ordinary differential equations (1), itself controlled by the
boundary condition (3), thus displaying some kind of internal
feedback and this feedback might be a source of instability Ney-
mark (1978). Next, the equations (1) contain the control signals
µk(t), k = 1,2; consequently the boundary value problem (1)
- (4) is modeling a system with distributed parameters and
boundary control. And finally the nonlinear system of conserva-
tion laws may induce all possible complex behavior connected
to such equations Bressan (2000); Dafermos (2010); Lax (1987,
2006); Serre (2000): spontaneous appearance of the propagat-
ing singularities leading to shock formation, rarefaction waves
etc.

In power generation systems such phenomena have to be
avoided: operating points i.e. equilibria are designed far away
of these unpleasant regimes and their stability should be en-
sured by feedback control.

The considered application described by (1) - (4) will be tackled
having in mind the aforementioned aspects. Reasonable lin-
earization will constitute a basis for the approach: the equa-
tions are not linearized around some solution but the nonlin-
ear term in (2) i.e. ∂λ (ξ 2

w/(ψ2
c ξρ)) is neglected, being negli-

gible in real cases as documented by practical engineers e.g.
Kabakov (1946). Consequently the conservation become now a
linear system of partial differential equations but with nonlinear
boundary conditions.

Starting from this point what is left of the paper is struc-
tured as follows. Based on our concept of augmented valida-
tion Răsvan (2014) that integrates well posedness in the sense
of J. Hadamard (existence, uniqueness, and smooth data depen-
dence) with possible existence of invariant sets and inherent
stability of the equilibria - a consequence of the Stability Pos-
tulate of N.G. Četaev - it is considered first a general result of
existence and uniqueness, to start with. Further, integration of
the Riemann invariants of the linearized (2) along the charac-
teristics will allow the association of a nonlinear coupled de-

lay differential and difference system. A one-to-one correspon-
dence between the solutions of the two mathematical objects is
established Răsvan (2014) as resulting from the ideas of A.D.
Myshkis - see e.g. Abolinia and Myshkis (1960) - and from
those of K.L. Cooke - see Cooke (1970); Cooke and Krumme
(1968). Since all results obtained for one object are projected
back on the other, we shall focus on the system of functional
differential equations for more detailed results on the line of
the augmented validation. Its difference part is subsequently
linearized around some equilibrium to obtain existence, unique-
ness and data dependence, all via solution construction by steps.
For this bilinear system of functional differential and difference
equations (which turns to be of neutral type) an invariant set
is displayed, accounting for positiveness of some state vari-
ables representing steam pressures. This positiveness will turn
useful in control synthesis. The aforementioned synthesis is
done using a suitably “guessed” Lyapunov functional. After
being synthesized, the control functions are substituted in the
initial nonlinear system as well as in the linearized one. For
these closed loop systems we dispose of the same Lyapunov
functional; the bilinear closed loop system (the “linearized”
one) is globally asymptotically stable. Stability by the first
approximation of the nonlinear one could be obtained provided
a Persidskii type result (uniform asymptotic stability implies
exponential stability) could be established. All this subsequent
analysis will be continued elsewhere.

2. THE SYSTEM OF FUNCTIONAL EQUATIONS

A. We re-write here the equations (1) - (4) with the linearized
conservation laws

ψcTc∂tξρ + ∂λ ξw = 0 , ψcTc∂tξw + ∂λ ξρ = 0

ξw(0,t) = πs(t)Φ(πs(t)/ξρ(0,t)) , ξw(1,t) = ψsξρ(1,t)

Ta
ds
dt

= απ1 +(1−α)π2−νg , T1
dπ1

dt
= µ1(t)−π1

Ts
dπs

dt
= π1 − µ2(t)πs −β1ξw(0,t) , T2

dπ2

dt
= µ2(t)πs −π2

(7)
The equation of πs has been modified by replacing β1πs by
β1ξw(0,t). The term represents (in rated variables) the steam
flow going to the steam consumer and its expression depends
on the character of the flow: for critical flows it depends on the
upstream pressure πs only; this had been assumed in standard
models to obtain linear ones. During transients and/or in various
steady states the flow is subcritical and it will depend on
both upstream and downstream local pressure. Therefore the
local flow ξw(0,t) at λ = 0 was introduced and the boundary
conditions at λ = 0 take into account both cases. The term
µ2(t)πs stands for the controlled flow that “goes” to the Low
Pressure turbine cylinder and is always considered to be critical
hence it will stay unchanged.

For this system the following results are available: well posed-
ness in the class of both classical and generalized solutions - see
the results of Moroşanu (1988). Another property for (7) is ex-
istence of an invariant set. Since π1, π2, πs represent pressures,
they should be positive. The following result, partially known
from previous papers can be proved

Proposition 1. Consider system (7) with positive coefficients
0 < α < 1, β1 > 0 and positive control signals - see (1). If
π1(0)≥ 0, πs(0)≥ 0, π2(0)≥ 0 then either π1(t)≡ 0, πs(t)≡ 0,



π2(t) ≡ 0 or π1(t) > 0, πs(t) > 0, π2(t) > 0 for the entire set of
the existence of the solution.

Outline of proof The proof is direct and makes use of the
variation of constants formula as well as a theorem in Bellman
(1960), Chapter 10, § 15. We give some detail in what concerns
πs: substituting ξw(0,t) from the boundary conditions we find

Ts
dπs

dt
= π1 −

(

µ2(t)+ β1Φ(πs(t)/ξρ(0,t))
)

πs(t) =

= −a(t)πs + π1(t)
(8)

where π1(t) > 0 or π1(t) ≡ 0 and a(t) is bounded. Using the
variation of constants formula, the property for πs(t) follows.

B. In order to linearize the boundary conditions around some
steady state, we compute a steady state for (7). The steady state
values ξ̄ρ and ξ̄w are constant with respect to λ . We have further
π̄1 = µ̄1, π̄2 = µ̄2π̄0

s and

αµ̄1 +(1−α)µ̄2π̄0
s = νg , µ̄1 − µ̄2π̄0

s −β1ξ̄w = 0 ,

ξ̄w = π̄0
s Φ(π̄0

s /ξ̄ρ) = ψsξ̄ρ

(9)

Since νg - the mechanical load - and π̄0
s - the required regulated

steam pressure - are given, together with 0 < ψs < 1 which
accounts for the thermal load, we have to compute ξ̄ρ , then ξ̄w
and, finally, the reference control values µ̄1 and µ̄2. Consider
first Φ given by (5): if Φ = 1/

√
e then π̄0

s /ξ̄ρ = ψs
√

e and
this ratio is higher than

√
e only if ψs > 1. Since ψs < 1 the

equilibrium is located on the other branch of Φ given by (5).
Therefore

ξ̄ρ =
1

√

eψ2
s

π̄0
s , ξ̄w =

ψs
√

eψ2
s

π̄0
s

µ̄1 = νg +
(1−α)β1ψs

√

eψ2
s

π̄0
s , µ̄2 =

νg

π̄0
s
− αβ1ψs

√

eψ2
s

π̄0
s

(10)

If the restrictions on µ̄1, µ̄2 are taken into account, then

0 ≤ νg +
(1−α)β1ψs

√

eψ2
s

π̄0
s ≤ 1 , µ2min ≤

νg

π̄0
s
− αβ1ψs

√

eψ2
s

π̄0
s ≤ 1

(11)
represent the so called consumption diagrams, well known to
the turbine design engineers who take care to ensure them since
the design stage.

Consider now Φ given by (6). If Φ = 2/(3
√

3) then π̄0
s /ξ̄ρ =

ψs(3
√

3)/2. This is possible provided ψs
√

3 < 1 i.e. for small
enough ψs. If this is the case, then

ξ̄ρ =
2

3
√

3
π̄0

s , ξ̄w =
2ψs

3
√

3
π̄0

s

µ̄1 = νg +
2(1−α)β1ψs

3
√

3
π̄0

s , µ̄2 =
νg

π̄0
s
− 2αβ1ψs

3
√

3
π̄0

s

(12)

On the other branch of this function Φ it will follow that
ξ̄ρ/π̄0

s = 1−ψ2
s ; this is possible provided ψs

√
3 > 1 i.e. for

ψs ∈ (1/
√

3,1). Therefore, if this is the case

ξ̄ρ = (1−ψ2
s )π0

s , ξ̄w = ψs(1−ψ2
s )π0

s

µ̄1 = νg +(1−α)β1ψs(1−ψ2
s )π0

s ,

µ̄2 =
νg

π̄0
s
−αβ1ψs(1−ψ2

s )π0
s

(13)

The next step would be to write (7) in deviations with respect
to the aforementioned steady state. The deviation variables are

as follows
xk = πk − π̄k , uk = µk − µ̄k , k = 1,2 ; xs = πs −π0

s ;

ζw(λ ,t) = ξw(λ ,t)− ξ̄w , ζρ(λ ,t) = ξρ(λ ,t)− ξ̄ρ

(14)

and s is already a rated deviation of the turbine rotating speed.

As an illustrating example, we shall linearize the boundary
condition at λ = 0 for Φ given by (5). We shall have therefore
the following bilinear system in deviations

ψcTc∂tζρ + ∂λ ζw = 0 , ψcTc∂tζw + ∂λ ζρ = 0

ψsζw(0,t)+ (1−ψ2
s )ζρ(0,t) =

√

e−ψ2
s xs

ζw(1,t) = ψsζρ(1,t)

Ta
ds
dt

= αx1 +(1−α)x2 , T1
dx1

dt
= −x1 + u1(t)

Ts
dxs

dt
= x1 − µ̄2xs −β1ζw(0,t)− (π0

s + xs)u2(t)

T2
dx2

dt
= µ̄2xs − x2 +(π0

s + xs)u2(t)

(15)

C. We introduce now the Riemann invariants
ζ±(λ ,t) = ζρ(λ ,t)± ζw(λ ,t) (16)

which are subject to the equations
ψcTc∂tζ±± ∂λ ζ± = 0 (17)

We integrate ζ+(λ ,t) along the increasing characteristic
t+(σ ;λ ,t) = t + ψcTc(σ −λ ) to obtain

ζ+(λ ,t) = ζ+(1,t + ψcTc(1−λ )) (18)
hence ζ+(0,t) = ζ+(1,t + ψcTc) and ζ−(λ ,t) along the de-
creasing characteristic t−(σ ;λ ,t) = t −ψcTc(σ −λ ) to obtain

ζ−(λ ,t) = ζ−(0,t + ψcTcλ ) (19)
hence ζ−(1,t) = ζ−(0,t + ψcTc) Denoting

u+(t) := ζ+(1,t) , u−(t) := ζ−(0,t) (20)
the linearized boundary conditions will give the following
difference system

(1 + ψs−ψ2
s )u+(t + ψcTc)+ (1−ψs−ψ2

s )u−(t) =

= 2
√

e−ψ2
s xs(t)

(1 + ψs)u
−(t + ψcTc) = (1−ψs)u

+(t)
We denote further

η±(t) := u±(t + ψcTc) ; ρ1 := −1−ψs−ψ2
s

1 + ψs−ψ2
s

, ρ2 =
1−ψs

1 + ψs
;

β2 =
(1−ρ1)(1 + ρ2)

2

4ρ2

√

e−ψ2
s

to obtain finally the system of coupled delay differential and
difference equations

Ta
ds
dt

= αx1 +(1−α)x2 , T1
dx1

dt
= −x1 + u1(t)

Ts
dxs

dt
= x1 − (µ̄2 + β1β2)xs+

+β1(1−ρ1)η−(t −ψcTc)− (π0
s + xs)u2(t)

T2
dx2

dt
= µ̄2xs − x2 +(π0

s + xs)u2(t)

η+(t) = ρ1η−(t −ψcTc)+ β2xs(t)

η−(t) = ρ2η+(t −ψcTc)

(21)



where the newly introduced parameters have the following
properties: |ρ1| < 1, 0 < ρ2 < 1, β2 > 0.

In the following sections of the paper we shall focus on system
(21).

3. ANALYSIS OF THE BASIC PROPERTIES FOR THE
SYSTEM (21)

A. The basic theory - existence, uniqueness and data depen-
dence - relies on the construction by steps of the solution for
the difference part of (21). The initial conditions for (21) are
obtained as follows, starting from the initial conditions of (15).
Given s(0), xk(0), k = 1,2, xs(0), ζ 0

ρ (λ ), ζ 0
w(λ ) (0 ≤ λ ≤

1), the initial conditions ζ±
0 (λ ) for the Riemann invariants

are obtained from (16). Further, we integrate ζ+(λ ,t) along
those increasing characteristics that cannot be extended up to
λ = 0 since they cross the axis t = 0 before: t+(σ ;λ ,t) =
t + ψcTc(σ − λ ) = 0 for σ̂ = λ − t/(ψcTc) > 0 provided t −
λ ψcTc < 0. Therefore

ζ+(1,t + ψcTc(1−λ )) = ζ+(λ − t/(ψcTc),0) ,

0 < λ − t/(ψcTc) < 1

that is

η+(θ ) = ζ+
0 (−θ/(ψcTc)) , −ψcTc ≤ θ ≤ 0 (22)

In a similar way we obtain

ζ−(0,t +ψcTcλ ) = ζ−(λ +t/(ψcTc),0) , 0 < λ +t/(ψcTc) < 1

that is

η−(θ ) = ζ−
0 (1 + θ/(ψcTc)) , −ψcTc ≤ θ ≤ 0 (23)

Given uk(t) on some interval [0,T ] and the aforementioned
initial conditions, the construction by steps of the solution of
(21) is obvious. The solution is unique and η±(t) have the
smoothness of the initial conditions and are discontinuous at
t = kψcTc where k is a positive integer. We deduce that (21) is a
system of neutral type with all subsequent properties; moreover
its difference operator is strongly stable since |ρk| < 1, k =
1,2. Now, formulae (18) and (19) can be viewed as genuine
representation formulae for (15) since

ζ+(λ ,t) = η+(t −ψcTcλ ) , ζ−(λ ,t) = η−(t + ψcTc(λ −1))
(24)

and

ζρ(λ ,t) =
1
2
[η+(t −ψcTcλ )+ η−(t + ψcTc(λ −1))]

ζw(λ ,t) =
1
2
[η+(t −ψcTcλ )−η−(t + ψcTc(λ −1))]

(25)

Therefore the set of functions (ζρ(λ ,t), ζρ(λ ,t), s(t), xk(t),
xs(t)) defines a classical solution for (15), with propagating
discontinuities at t ±ψcTcλ = kψcTc where k is an integer. This
classical solution is however continuous provided the initial
conditions are “matched” to the boundary conditions

ψsζ 0
w(0)+ (1−ψ2

s )ζ 0
ρ (0) =

√

e−ψ2
s xs(0) ,

ζ 0
w(1) = ψsζ 0

ρ (1)
(26)

(these are also called consistency conditions).

B. In order to obtain some invariant set accounting for positive-
ness of some state variables, we make use of (14) in (15) and
(21) to obtain

ψcTc∂tξρ + ∂λ ξw = 0 , ψcTc∂tξw + ∂λ ξρ = 0

ψsξw(0,t)+ (1−ψ2
s )ξρ(0,t) =

√

e−ψ2
s xs

ξw(1,t) = ψsξρ(1,t)

Ta
ds
dt

= απ1 +(1−α)π2−νg , T1
dπ1

dt
= −π1 + µ1(t)

Ts
dπs

dt
= π1 − µ2(t)πs −β1ξw(0,t)

T2
dπ2

dt
= µ2(t)πs −π2

(27)

and, subsequently

Ta
ds
dt

= απ1 +(1−α)π2−νg , T1
dπ1

dt
= −π1 + µ1(t)

Ts
dπs

dt
= π1 − (µ2(t)+ β1β2)πs + β1(1−ρ1)y

−(t −ψcTc)

T2
dπ2

dt
= µ2(t)πs −π2

y+(t) = ρ1y−(t −ψcTc)+ β2πs(t) , y−(t) = ρ2y+(t −ψcTc)
(28)

where y±(t) = η±(t)+ (ξ̄ρ ± ξ̄w).

To simplify the analysis assume that ρ1 > 0 i.e. 1 − ψs −
ψ2

s < 0 ((
√

5− 1)/2 < ψs < 1). Since µk(t) > 0, if the initial
conditions for πk, πs, y±(t) are positive, the construction by
steps will result in positive πk(t), πs(t), y±(t). Therefore the
Riemann invariants are positive hence ξρ(λ ,t) > ξw(λ ,t). We
have proved in fact the following augmented validation result

Theorem 1. Consider the system (27) and the associated system
of functional equations (28) with positive parameters ψcTc >
0, (

√
5 − 1)/2 < ψs < 1, 0 < α < 1, β1 > 0, β2 > 0, 0 <

ρk < 1 and with the control signals subject to 0 ≤ µ1(t) ≤ 1,
0 < µ2min ≤ µ2(t) ≤ 1. Then (28) and (27) subsequently have
a unique solution, possibly discontinuous at kψcTc and t ±
ψcTcλ = kψcTc respectively, with the smoothness of their initial
conditions. Moreover, these systems display the invariant sets

{π1 > 0,πs > 0,π2 > 0,y±(·) > 0}
and

{π1 > 0,πs > 0,π2 > 0,ξρ(·) > 0,ξρ(·) > ξw(·)}
respectively.

C. We discuss now the inherent stability of the equilibria as
suggested by the Stability Postulate of N.G. Četaev. Consider
system (21) with µk(t) ≡ 0, k = 1,2. The system is now linear
and has the following characteristic equation (obtained after
some simple and straightforward manipulation)

Taσ(T1σ + 1)(T2σ + 1)(pc(σ)coshσψcTc+

+ps(σ)sinhσψcTc) = 0
(29)

where we denoted
pc(σ) := (1−ρ1ρ2)Tsσ + µ̄2(1−ρ1ρ2)+ β1β2(1−ρ2)

ps(σ) := (1 + ρ1ρ2)Tsσ + µ̄2(1 + ρ1ρ2)+ β1β2(1 + ρ2)

Equation (29) has a simple zero root and all other factors
have roots in C− (for the first two is obvious, for the quasi-
polynomial, see Čebotarev and Meiman (1949), Chapter VII).

Taking into account the engineering requirements for asymp-
totic stability, system (21) needs feedback stabilization.



4. A CONTROL LYAPUNOV FUNCTIONAL AND
SYNTHESIS OF THE FEEDBACK CONTROL

We shall consider again system (21) which has inherent stability
but non- asymptotic stability. Considering, as it is the case in
Power Control Engineering, that T1 and T2 - the time constant
of the turbine cylinders - are small time constants, we take
T1 = T2 = 0 in (21) to obtain the following system with reduced
dynamics

Ta
ds
dt

= (1−α)µ̄2xs + αu1(t)+ (1−α)(π0
s + xs)u2(t)

Ts
dxs

dt
= −(µ̄2 + β1β2)xs + β1(1−ρ1)ρ2η+(t −2ψcTc)+

+u1(t)− (π0
s + xs)u2(t)

η+(t) = ρ1ρ2η+(t −2ψcTc)+ β2xs(t)
(30)

(For stability and stabilization studies the equation of η−(t) can
be eliminated since it appears as a system output).

To system (30) we associate the following quadratic Lyapunov
functional

V (s,xs,φ(·)) =
1
2

Ta

[

s+
Ts

Ta

(

δ1xs +
δ2

Ts

∫ 0

−2ψcTc

φ(θ )dϑ
)]2

+

+
1
2

δ3Tsx
2
s + δ4

∫ 0

−2ψcTc

φ(θ )2dϑ

(31)
Along the solutions of (30) φ(·) is η+

t t(·) Differentiating
V (s(t),xs(t),η+

t (·)) along (30) the following derivative func-
tional is obtained

W (s,xs,φ(·)) = [(α + δ1)L (s,xs,φ(·))+ δ3xs]u1+

+(π0
s + xs)[(1−α − δ1)L (s,xs,φ(·))− δ3xs]u2+

+L (s,xs,φ(·))[(1−α)µ̄2xs − δ1(µ̄2 + β1β2)xs+

+δ1β1ρ2(1−ρ1)φ(−2ψcTc)+

+δ2(φ(0)−φ(−2ψcTc))]−Q(xs,φ(·))

(32)

where the linear form L (s,xs,φ(·)) and the quadratic form
Q(xs,φ(·)) are given by

L (s,xs,φ(·)) = s+
Ts

Ta

(

δ1xs +
δ2

Ts

∫ 0

−2ψcTc

φ(θ )dθ
)

Q(s,φ(·)) = δ3(µ̄2 + β1β2)x
2
s−

−δ3β1ρ2(1−ρ1)xsφ(−2ψcTc)+ δ4(φ(0)2 −φ(−2ψcTc)
2)
(33)

The first choice goes for the control signals as feedback state
functions

u1 = −Sat[(α + δ1)L (s,xs,φ(·))+ δ3xs] ,

u2 = −Sat[(1−α − δ1)L (s,xs,φ(·))− δ3xs]
(34)

with −µ̄1 ≤ u1 ≤ 1− µ̄1 and µ2min − µ̄2 ≤ u2 ≤ 1− µ̄2.

The next choice concerns the free parameters δ1 and δ2: they
are chosen in order to eliminate the term linear in L (s,xs,φ(·)).
Making use of the equation of η+(t) we obtain

1−α < δ1 =
(1−ρ1ρ2)(1−α)µ̄2

(1−ρ1ρ2)µ̄2 +(1−ρ2)β1β2
< 1

δ2 =
β1ρ2(1−ρ1)

1−ρ1ρ2
δ1 =

(1−α)β1ρ2(1−ρ1)µ̄2

(1−ρ1ρ2)µ̄2 +(1−ρ2)β1β2

(35)

The third choice concerns the free parameters δ3 > 0 and
δ4 > 0: they are chosen in order to make the quadratic form
Q(s,φ(·)) positive definite. Making again use of the difference
equation in (30) we find that the ratio δ3/δ4 > 0 has to be
chosen between the two positive roots of the trinomial

T (X) = β 2
1 ρ2

2 (1−ρ1)
2X2−

−4(µ̄2(1−ρ2
1 ρ2

2 )+ β1β2(1−ρ1ρ2
2 ))X + 4β 2

2 (1−ρ2
1ρ2

2 )
(36)

With these choices of the parameters the derivative functions
becomes

W (s,xs,φ(·)) = −[(α + δ1)L (s,xs,φ(·))+ δ3xs]×

×Sat[(α + δ1)L (s,xs,φ(·))+ δ3xs]−

−(π0
s + xs)[(1−α − δ1)L (s,xs,φ(·))− δ3xs]×

×Sat[(1−α− δ1)L (s,xs,φ(·))− δ3xs]−

−Q(xs,φ(−2ψcTc)) ≤ 0

(37)

From (37) we deduce that
V (s(t),xs(t),η+

t (·)) ≤ V (s(0),xs(0),η+
0 (·)) (38)

which signifies uniform stability in the sense of the norm in-
duced by the Lyapunov functional V . For the asymptotic stabil-
ity we remark that W = 0 on the set where xs = 0, φ(−2ψcTc) =
0 Applying the Barbashin Krasovskii LaSalle invariance prin-
ciple for neutral equations (Theorem 8.2 of Section 9.8 in Hale
and Lunel (1993)), global asymptotic stability follows.

Making use of the representation formulae (24) and (25), we
obtained in fact global asymptotic stability for the system
below, deduced from (15) by letting T1 = T2 = 0

ψcTc∂tζρ + ∂λ ζw = 0 , ψcTc∂tζw + ∂λ ζρ = 0

ψsζw(0,t)+ (1−ψ2
s )ζρ(0,t) =

√

e−ψ2
s xs

ζw(1,t) = ψsζρ(1,t)

Ta
ds
dt

= (1−α)µ̄2xs + αu1(t)+ (1−α)(π0
s + xs)u2(t)

Ts
dxs

dt
= −µ̄2xs −β1ζw(0,t)+ u1(t)− (π0

s + xs)u2(t)

(39)

with u1 and u2 chosen from (33) and with the integral expressed
from the representation formulae (24) and (25). Summarizing
we have obtained the following
Theorem 2. Consider the system (30) with all parameters pos-
itive. If the control functions uk are chosen according to (34)
with δ1 > 0, δ2 > 0 taken from (35), the zero solution of
(30) is globally asymptotically stable. Consequently, the zero
solution of (39) is also globally asymptotically stable provided
L (s,xs,φ(·)) is replaced by the linear state functional

L̃ (s,xs,φρ (·),φw(·)) = s+
Ts

Ta
(δ1xs+

+
δ2

Ts
· 2ψcTc

1−ψs

∫ 1

0
(φρ(λ )−ψsφw(λ ))dλ

) (40)



Let us observe that the structure of the feedback - linear
saturated - is standard in Power Control Engineering. Normally
the control feedback for bilinear systems results quadratic - see
e.g. Slemrod (1978); Quinn (1980) - but the invariant set πs > 0
i.e. π0

s + xs > 0 allowed obtaining a linear one. An additional
remark connected to the distributed parameters is the following:
if the feedback with respect to s and xs is standard in steam
turbine control, the integral - “averaging” - term is specific
to our approach but not unusual in distributed parameters.
Simulation studies show that if this term is missing the system
might not be stabilized - see Danciu et al. (2015).

5. CONCLUDING REMARKS. PERSPECTIVE
PROBLEMS

In this paper we started from a nonlinear system of conser-
vation laws with nonlinear boundary conditions that has been
linearized in two stages. It resulted finally a bilinear controlled
system of functional differential equations, stabilized by a sat-
urated linear feedback control. The closed loop system is non-
linear with a globally asymptotically stable equilibrium at the
origin. This property is projected back on the zero solution for
the closed loop system with distributed parameters which is
also globally asymptotically stable.

The engineering significance of the results and their practical
importance are obvious from the physical significance of the
equations. For this reasons (but not only) it is of interest to
enumerate some open problems which can define an interesting
research program consisting of: a) preservation of the global
asymptotic stability face to the neglected small time constants;
this can be analyzed using techniques of singular perturbations;
b) proof of the stability by the first approximation for the non-
linear boundary value problem; such a mathematical result is
strongly dependent of the theorem of K.P. Persidskii type in the
nonlinear case, ensuring that global asymptotic stability implies
exponential stability; such a theorem has been proved by A. Ha-
lanay for ordinary differential equations and in Răsvan (2012)
for time delay equations; for neutral equations this theorem is
not known. c) development of an augmented validation theory
(again in the sense of Răsvan (2014)) for systems containing
nonlinear difference operators.
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Răsvan, V. (2012). Slope restrictions and monotonicity in
nonlinear systems: almost linear behavior. El. J. Qualit.
Theory Diff. Equ., 11, 1–19.
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Čebotarev, N.G. and Meiman, N.N. (1949). The Routh Hurwitz
problem for polynomials and entire functions (in Russian).
Number XXVII in Works of “Steklov” Mathematical Insti-
tute. USSR Academy Publishing House, Moscow USSR.


