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Abstract: This paper addresses the problem of global stabilization for a class of time-delay
systems with inherent nonlinearity and unknown control directions, which may not be controlled
by any smooth feedback. The dynamic gain based approach in Zhang, Lin and Lin (2017) and
the idea of Nussbaum-gain function Nussbaum (1983) are employed to deal with inherently
nonlinear systems with time-delay in the presence of unknown control directions. With the help
of appropriate Lyapunov-Krasovskii functionals, we design a non-smooth delay-independent
feedback control law that guarantees the global asymptotic convergence of the system state and
global boundedness of the resulting closed-loop system.

1. INTRODUCTION

Control of time-delay nonlinear systems is an important yet challeng-
ing problem. It is often encountered in many real-world applications
that involve time-delay, such as network control, mechanical systems,
biological systems and chemical processes, etc. In this work, we first
consider the following class of time-delay nonlinear systems with
unknown control directions

ẋi = θix
pi

i+1 + fi(x1, · · · , xi, x1(t − d), · · · , xi(t − d)),

ẋn = θnupn + fn(x, x(t − d)),

x(s) = ζ(s), s ∈ [−d, 0], (1)

where x ∈ IRn and u ∈ IR are the system state and input,
respectively. The constant d ≥ 0 is an unknown time-delay of the
system, pi > 0 are odd integers, fi : IR2i → IR are C1 mappings
with fi (0, 0) = 0, and ζ(s) ∈ IRn is a continuous function defined
on [−d, 0]. The coefficients θi , 0, 1 ≤ i ≤ n, are unknown constants
bounded by a known constant c̄.

For the analysis and synthesis of time-delay systems Gu, Kharitonov
and Chen (2003); Jankovic (2001); Richard (2003), the Lyapunov-
Krasovskii and Lyapunov-Razumikhin methods are two powerful
and common tools that have been found wide applications. In the
literature, research of time-delay systems can be classified primarily
into three different categories. The first category of study focuses on
the time-delay in the system state Gu, Kharitonov and Chen (2003),
while the second one is aimed at the time-delay in the control input
Mazenc, Modie and Niculescu (2003); Mazenc, Mondie and Francisco
(2003); Liberis and Krstic (2013); Zhang, Boukas, Lui and Baron
(2010). The last category addresses a general case where the time-
delay is present in both the control input and the system state. For
each category of time-delay nonlinear control problems, substantial
progress has been made and various results have been obtained; see,
for instance, Mazenc, Modie and Niculescu (2003); Mazenc, Mondie
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and Francisco (2003); Zhang, Zhang and Lin (2014); Zhang, Lin and
Lin (2017) and references therein.

In the the case when θi = 1, the time-delay nonlinear system (1) is in
general not stabilizable, even locally, by any smooth state feedback.
For instance, the time-delay system ẋ = u3 + x(t − d) cannot be
stabilized by any smooth state feedback even when d = 0, and hence
it is impossible to be smoothly stabilizable for d ≥ 0. However,
it is easy to verify that with the aid of the Lyapunov-Krasovskii

functional V = x2 +
∫ t

t−d
x2(s)ds, the system is globally stabilizable

by non-smooth but C0 feedback u = −(2x)1/3. Motivated by this
observation and the under-actuated mechanical system Qian and Lin
(2001b) in the presence of time-delay, we focus in this paper on the
problem how to control the time-delay nonlinear system (1) by non-

smooth, rather than smooth, delay-independent state feedback.

Most of the results obtained so far have been concentrated on time-
delay nonlinear systems with known control directions, e.g., the signs
of all coefficients of the chain of integrator are assumed to be known.
If this crucial information is not available, a new method needs
to be developed for the control of time-delay nonlinear systems.
Since the sign of the control input often represents, for instance,
motion directions of mechanical systems (such as robotics modeled
by the Lagrange equation) and may be unknown, it is certainly
interesting to investigate how to control time delay systems with
unknown control directions. For the time-delay system with unknown
control direction (1), global stabilization by delay-independent state
feedback is not a trivial problem. The difficulties are i) when the
signs of coefficients of a chain of integrators are unknown, the design
of virtual controllers is less intuitive and more involved as the uncer-
tainties cannot be cancelled directly by a conventional backstepping
design; ii) the presence of time delay nonlinearities makes a delay-
free, static state feedback law insufficient for mitigating the effects
of time-delay, and hence a dynamic instead of static state feedback
seem to be necessary.

Motivated by the universal control idea Nussbaum (1983); Lei
and Lin (2006, 2007) and the recent development Zhang, Lin and
Lin (2017), we propose a novel method for the construction of a
set of Lyapunov-Krasovskii functionals and a delay-free, dynamic
state feedback control scheme for counteracting the effects of time-
delay nonlinearities and unknown control directions in the system
(1) simultaneously. With the help of the new dynamic gain-based



Lyapunov-Krasovskii functionals, we are able to design a delay free,
dynamic state feedback compensator step-by-step, resulting in a
solution to the global state regulation of the time-delay system (1)
with boundedness. Interestingly, it is worth pointing out that the
approach presented in this paper also provides a new yet simpler
way for the design a dynamic state compensator that achieves global
stabilization of the time-delay nonlinear system (1), in the absence
of unknown control direction.

Notations: Denote v̄i = [v1, · · · , vi]
T ∈ IRi, for i = 1, · · · , n. For

instance, x̄i = [x1, · · · , xi]T , x̄i(t−d) = [x1(t−d), · · · , xi(t−d)]T and
l̄i = [l1, · · · , li]T . A Nussbaum function N(k) = k2 cos(k), which is
obviously an even function, will be used in this work. It is not difficult

to verify the following properties: 1) limk→+∞ sup 1
k

∫ k

0
N(s)ds =

+∞; 2) limk→+∞ inf 1
k

∫ k

0
N(s)ds = −∞.

2. PRELIMINARY

To design a non-smooth but C0 state feedback controller for the
time-delay system (1), we introduce several key lemmas to be used
throughout this paper.

Lemma 1. Qian and Lin (2001a,b) For positive real numbers m, n
and a real-valued function π (x, y) > 0, the following inequality holds
∀x, y ∈ IR.

|x|m|y|n≤
m

m + n
π (x, y) |x|m+n +

n

m + n
π−m/n (x, y) |y|m+n (2)

Lemma 2. Lin and Qian (2002) For a C0 function f(x, y), ∃ smooth
functions a (x) ≥ 0, b (y) ≥ 0, c (x) ≥ 1 and d (y) ≥ 1, such that

|f(x, y)| ≤ a(x) + b(y), |f (x, y) | ≤ c (x) d (y) . (3)

Lemma 3. Qian and Lin (2001a,b) Let x, y ∈ IR and p ≥ 1 be an
integer. Then,

|x + y|p ≤ 2p−1 |xp + yp| ,

(|x| + |y|)
1
p ≤ |x|

1
p + |y|

1
p ≤ 2

p−1
p (|x| + |y|)

1
p . (4)

If p is an odd positive integer, then

|x − y|p ≤ 2p−1 |xp − yp| . (5)

Lemma 4. Zhang, Lin and Lin (2017) For a C0 function f(x, y)
and a positive integer k, there exist smooth functions g(x) ≥ 0 and
h(y) ≥ 0, such that

f (x, y) (|x|k + |y|k) ≤ g (x) |x|k + h (y) |y|k . (6)

Lemma 5. Zhang, Lin and Lin (2017) For the C1 function
fi(x̄i, x̄i(t − d)) with fi(0, 0) = 0, there exist smooth functions
γ̄ij (xj) ≥ 0 and γ̄∗

ij (xj (t − d)) ≥ 0, j = 1, · · · , i, such that

|fi (·)| ≤ Σi
j=1(γ̄ij (xj) |xj | + γ̄∗

ij (xj (t − d)) |xj (t − d)|) (7)

3. NONSMOOTH FEEDBACK WITH DYNAMIC GAINS

In this section, we utilize the idea from universal control Nussbaum
(1983); Lei and Lin (2006, 2007), coupled with the feedback control
strategy in Zhang, Lin and Lin (2017), to design a delay-free,
dynamic state compensator that achieves global asymptotic state
regulation with boundedness for the time-delay nonlinear system (1),
As we shall see, the proposed dynamic compensator is composed of
two sets of dynamic state feedback controllers. One of them is capable
of mitigating the effects of the unknown control direction, while the
other one is able to counteract the time-delay nonlinearities of the
system (1). Notably, the idea of utilizing two sets of gain update laws
has been explored in the area of adaptive control of nonlinear systems
with unknown parameters by output feedback Lei and Lin (2006,
2007). This paper further demonstrates how a similar philosophy
can be applied to effectively control the time-delay system (1) with
unknown control direction.

Theorem 6. For the time-delay nonlinear system (1) whose control
directions are not known, there exists a delay-free, dynamic state
feedback controller of the form

L̇ = η(L, k, x), k̇ = h(L, k, x), u = α(L, k, x) (8)

with α(L, k, 0) = 0, such that the system state x converges to the
origin, while maintaining boundedness of the closed-loop system,
where η : IRn−1 × IRn × IRn → IRn−1, h : IRn−1 × IRn × IRn → IRn

and α : IRn−1 × IRn × IRn → IR are C0 mappings. �

Proof. We apply the adding a power integrator technique Qian
and Lin (2001a,b), together with the idea of utilizing the Nussbaum
functions Nussbaum (1983) and dynamic gains Zhang, Lin and Lin
(2017); Lei and Lin (2006, 2007), to design a delay-free, non-smooth
dynamic state compensator (8) that does the job.

Step 1: For the x1—subsystem of the time-delay system (1) with
the unknown sign of θ1, one can regard x2 as a virtual control. Define
ξ1 = x1 and construct the Lyapunov function V1(x1, l1) = 1

2
(1 +

1
l1

)ξ2
1 , where l1(·) ≥ 1 is a dynamic gain to be designed in Step 2.

Then, a direct computation gives

V̇1 ≤ (1+
1

l1
)θ1ξ1x∗p1

2 −
l̇1

2l21
ξ2

1 +2c̄|ξ1ξ2|+2 |ξ1f1(x1, x1(t − d))| , (9)

where ξ2 = xp1
2 − x∗p1

2 . In view of Lemma 2.5, we have |f1 (·)| ≤
γ̄1 (x1) |x1| + γ̄∗

1 (x1 (t − d)) |x1 (t − d)| , for some smooth functions
γ̄1 (·) ≥ 0 and γ̄∗

1 (·) ≥ 0. Hence,

2|ξ1f1(·)| ≤ 2ξ2
1 γ̄1 (x1) + ξ2

1 + ξ2
1 (t − d) γ̄∗2

1 (x1 (t − d)) (10)

Use the bound γ̄∗

1 (·) to construct the Lyapunov-Krasovskii functional

V1LK = V1(x1, l1) +

∫ t

t−d

ξ2
1 (s) γ̄∗2

1 (x1 (s)) ds.

From (9)-(10), it follows that

V̇1LK ≤−nξ2
1 +[1+

1

l1
]θ1ξ1x∗p1

2 −
l̇1ξ2

1

2l21
+ξ2

1[2+n+2γ̄1(·)+γ̄∗2
1 (·)]+c2ξ2

2(11)

To cope with the unknown sign of θ1, we use the Nussbaum function
Nussbaum (1983) for the design of a virtual controller. Specifically,
a virtual controller with the Nussbaum gain can be constructed as

x∗p1
2 = ξ1N(k1)(2 + n + 2γ̄1(·) + γ∗2

1 (·)) := ξ1N(k1)β1(x1)

k̇1 = (1 +
1

l1
)ξ2

1β1(x1). (12)

This, together with l1(·) ≥ 1, results in

V̇1LK ≤ −nξ2
1 + (θ1N(k1) + 1)k̇1 + c2ξ2

2 −
l̇1

2l21
ξ2

2 . (13)

Step 2: For the (x1, x2)—subsystem of the time-delay system (1)
with the unknown sign of θ2, we construct the Lyapunov-Krasovskii
functional

V2 = V1LK +
1

l1
k2

1W2(·) +
1

l1l2

[

ξ2
1

2
+ k2

1W2(·)

]

W2(k1, x1, x2) =

∫ x2

x∗

2

(sp1 − x∗p1
2 )2−1/p1 ds, (14)

where l2(·) ≥ 1 is a dynamic gain to be designed in the next step.

Following the argument in Qian and Lin (2001a,b), one can prove
that W2(k1, x1, x2) is C1 and its partial derivatives are

∂W2

∂x2
= ξ

2−1/p1
2 , (15)

∂W2

∂x1
= −

(

2 −
1

p1

)∂x∗p1
2

∂x1

∫ x2

x∗

2

(sp1 − x∗p1
2 )1−1/p1 ds

∂W2

∂k1
= −

(

2 −
1

p1

)∂x∗p1
2

∂k1

∫ x2

x∗

2

(sp1 − x∗p1
2 )1−1/p1 ds.

Moreover, m2(x2−x∗

2)2p1 ≤W2(·)≤(2p1−1)ξ2
2 , for a constant m2 > 0.



Since lj ≥ 1, it is deduced from (13) and (15) that

V̇2 ≤ −nξ2
1 + (θ1N(k1) + 1)k̇1 + c2ξ2

2 −
l̇1

2l21
ξ2

2 +
k2

1

l1
(1 +

1

l2
)θ2ξ

2−1/p1
2

·(x∗p2
3 + xp2

3 − x∗p2
3 ) +

2

l1

∣

∣

∣
k2

1

[

ξ
2−1/p1
2 f2(·) +

∂W2

∂x1
ẋ1 +

∂W2

∂k1
k̇1

]

+k1k̇1W2(·)

∣

∣

∣
+

ξ1ẋ1

l1l2
−

l̇1

l21
k2

1W2(·) −
l̇1l2 + l1 l̇2

l21l22
(
ξ2

1

2
+ k2

1W2(·))(16)

From ξ2 = xp1
2 − x∗p1

2 , (12) and (15), it is not difficult to obtain (by
Lemma 2.1 and Lemmas 2.3-2.5),

2k2
1

l1
|ξ

2−1/p1
2 f2(·)|≤ k2

1ξ2
2Υ21(k1, x1, x2) +

1

l1
ξ2

1Υ22(k1, x1)

+
1

l1
ξ2

1(t − d)Υ∗

22(k1(t − d), x1(t − d))

+ξ2
2(t − d)Υ∗

21(k1(t − d), x1(t − d), x2(t − d)), (17)

2k2
1

l1

∣

∣

∣

∂W2

∂x1
ẋ1 +

∂W2

∂k1
k̇1

∣

∣

∣
+

2

l1
k1k̇1W2(·) +

1

l1l2
ξ1ẋ1

≤ k2
1ξ2

2Φ21(k1, x1, x2)+
1

l1
ξ2

1Φ22(k1, x1)+
1

l1
ξ2

1(t − d)Φ∗

2(x1(t − d)),

where Υ2j(·) ≥ 0, Υ∗

2j(·) ≥ 0, Φ2j(·) ≥ 0 and Φ∗

2(·) ≥ 0, j = 1, 2, are

smooth functions. Using the bounds Υ∗

2j(·) and Φ∗

2(·) thus obtained,
one can construct the Lyapunov-Krasovskii functional

V2LK = V2 +

∫ t

t−d

ξ2
2(s)Υ∗

21(k1(s), x1(s), x2(s))ds

+

∫ t

t−d

1

l1(s)
ξ2

1(s)[Υ∗

22(k1(s), x1(s)) + Φ∗

2(x1(s))]ds (18)

Then, it is deduced from (16) and (18) that

V̇2LK≤−nξ2
1 − (n − 1)k2

1ξ2
2 + (θ1N(k1) + 1)k̇1−

l̇1

2l21
ξ2

2+
1

l1
ξ2

1

[

Φ∗

2(x1)

+Υ22(k1, x1)+Υ∗

22(k1, x1)+Φ22(k1, x1)
]

+
k2

1

l1
(1 +

1

l2
)θ2ξ

2−1/p1
2 x∗p2

3

+
2c̄

l1
k2

1|ξ
2−1/p1
2 (xp2

3 − x∗p2
3 )| + k2

1ξ2
2

[

c2 + (n − 1) + Υ21(k1, x1, x2)

+Υ∗

21(k1, x1, x2) + Φ21(k1, x1, x2)
]

−
l̇2

l1l22
(
ξ2

1

2
+ W2(·)). (19)

The inequality above is derived by neglecting the negative terms that
are related to l̇1 and using the facts that −k2

1W2(·) ≤ −W2(·) and
1
l1

− 1
l1(t−d)

≤ 0 (see (22)). From (19), it is not difficult to show that

the dynamic state compensator

l̇1 = max{−l21 + l1ρ1(k1, x1), 0}, l1(0) = 1, (20)

ρ1(k1, x1) = 2
[

Υ22(·) + Υ∗

22(·) + Φ22(·) + Φ∗

2(·)
]

(21)

can counteract the effect of the time-delay nonlinearity. In fact, by
construction the gain l1 satisfies

0 ≤ l̇1 ≤ l1ρ1(·), l̇1 ≥ −l21 + l1ρ1(·), l1 ≥ l1(t − d) ≥ 1 (22)

As a consequence,

−
l̇1

2l21
ξ2

1 ≤ ξ2
1 −

1

2l1
ξ2

1ρ1(k1, x1) (23)

Moreover,

2c̄2

l1
k2

1

∣

∣

∣
ξ

2−1/p1
2 (xp2

3 − x∗p2
3 )

∣

∣

∣
≤ c̄2k2

1ξ2
2 + c3k2

1ξ2
3 , (24)

where ξ3 = xp1p2
3 − x∗p1p2

3 , c̄2 and c3 are positive constants.

Substituting (23) and (24) into (19), we arrive at

V̇2LK ≤ −nξ2
1 − (n − 1)k2

1ξ2
2 + (θ1N(k1) + 1)k̇1 + c3k2

1ξ2
3

+
k2

1

l1
(1 +

1

l2
)θ2ξ

2−1/p1
2 x∗

3p2 + k2
1ξ2

2

[

c2 + c̄2 + n − 1

+Υ21(·) + Υ∗

21(·) + Φ21(·)
]

−
l̇2

l1l22
(
ξ2

1

2
+ W2(·)) (25)

Similar to Step 1, because of the unknown sign of θ2, we design the
virtual controller

x∗p2
3 = l1N(k2)ξ

1/p1
2 [c̄2 + n + Υ21(·) + Υ∗

21(·) + Φ21(·)]

:= l1N(k2)(ξ2β2(k1, x1, x2))1/p1

k̇2 = (1 +
1

l2
)ξ2

2β
1/p1
2 (k1, x1, x2), k2(0) = 1. (26)

with the Nussbaum gain k2 that is updated dynamically. Clearly,
the dynamic compensator (26) leads to

V̇2LK ≤ −(n − 1)(ξ2
1 + k2

1ξ2
2) + (θ1N(k1) + 1)k̇1

+c3k2
1ξ2

3 + (θ2N(k2) + 1)k2
1 k̇2 −

l̇2

l1l22
(
ξ2

1

2
+ W2(·)). (27)

Inductive Step: At step i − 1, assume that there are a Lyapunov-
Krasovskii functional V(i−1)LK , a set of dynamic gains lj(·) ≥ 1, j =
1, · · · , i − 1, updated by

l̇1 = max{−l21 + l1ρ1(k1, x1), 0},

l̇2 = max{−α2l22 + l2ρ2(l1, k1, k2, x1, x2), 0},

... (28)

l̇i−2 = max{−αi−2l2i−2 + li−2ρi−2(l̄i−3, k̄i−2x̄i−2), 0},

with αj = 1/(2p1 ···pj−1 −1), and a set of non-smooth but C0 virtual
controllers x∗

1, · · · , x∗

i , with the Nussbaum gains, given by

x∗

1 = 0 ξ1 = x1 − x∗

1

x∗

2
p1 = ξ1N(k1)β1(x1) ξ2 = xp1

2 − x∗

2
p1

k̇1 = (1 +
1

l1
)ξ2

1β1(·)

.

..
.
..

x∗

i
p1···pi−1= (l1 · · · li−2N(ki−1))p1···pi−2 ξi = xi

p1···pi−1

·ξi−1βi−1(l̄i−3, k̄i−2, x̄i−1) −x∗

i
p1···pi−1

k̇i−1 = (1 +
1

li−1
)ξ2

i−1β
1/p1···pi−2

i−1 (·)

(29)

with ρj(·) > 0 and βj(·) > 0 being smooth functions, such that

V̇(i−1)LK ≤ −(n − i + 2)

i−1
∑

j=1

[

j−1
∏

m=0

k2
mξ2

j

]

+ cik
2
1 · · · k2

i−2ξ2
i (30)

+

i−1
∑

j=1

[

(θjN(kj) + 1)

j−1
∏

m=0

k2
mk̇j

]

−
l̇i−1(

ξ2
1
2

+ Σi−1
j=2Wj(l̄j−2, k̄j−1, x̄j))

l1 · · · li−2l2i−1

where ci > 0 is a constant and k0 = 1. Clearly, (30) reduces to (27)
when i = 3.

We claim that (30) also holds at Step i. To prove this claim, consider
the Lyapunov-Krasovskii functional

Vi = V(i−1)LK +
k2

1 · · · k2
i−1

l1 · · · li−1
Wi(l̄i−2, k̄i−1, x̄i) +

1

l1 · · · li

[ ξ2
1

2

+Σi−1
j=2Wj(l̄j−2, k̄j−1, x̄j) + k2

1 · · · k2
i−1Wi(l̄i−2, k̄i−1, x̄i)

]

, (31)

Wi =

∫ xi

x∗

i

(

sp1···pi−1 − x
∗p1···pi−1

i

)2−1/(p1···pi−1)
ds,

where li(·) ≥ 1 is a dynamic gain to be designed.



Similar to the argument in Step 2, one can show that Wi(·) =
Wi(l̄i−2, k̄i−1, x̄i) is C1. Moreover,

∂Wi

∂xi
= ξ

2−1/(p1···pi−1)
i

∂Wi

∂xj
= −

(

2 −
1

p1 · · · pi−1

)

∂x
∗p1···pi−1

i

∂xj
Ui(l̄i−2, k̄i−1, x̄i)

∂Wi

∂kj
= −

(

2 −
1

p1 · · · pi−1

)

∂x
∗p1···pi−1

i

∂kj
Ui(l̄i−2, k̄i−1, x̄i)

∂Wi

∂lj
= −

(

2 −
1

p1 · · · pi−1

)

∂x
∗p1···pi−1

i

∂lj
Ui(l̄i−2, k̄i−1, x̄i)

mi(xi − x∗

i )2p1···pi−1 ≤ Wi(·) ≤ (2p1···pi−1 − 1)ξ2
i (32)

where Ui =
∫ xi

x∗

i

(

sp1···pi−1 − x
∗p1···pi−1

i

)1−
1

(p1···pi−1) ds for 1 ≤

j ≤ i − 1 and a positive constant mi.

Analogous to the derivation of (19), using the facts that lj ≥ 1
and −k2

1 · · · k2
i−1Wi(·) ≤ −Wi(·), we deduce from (30)-(32) that (by

neglecting the negative terms which are related to l̇j , j = 1, . . . , i−1)

V̇i ≤ −(n − i + 2)Σi−1
j=1

[

j−1
∏

m=0

k2
mξ2

j

]

+Σi−1
j=1

[

(θjN(kj)+1)

j−1
∏

m=0

k2
mk̇j

]

+cik
2
1 · · · k2

i−2ξ2
i −

l̇i−1

l1 · · · li−2l2i−1

[

ξ2
1

2
+ Σi−1

j=2Wj(l̄j−2, k̄j−1, x̄j)

]

+
k2

1 · · · k2
i−1

l1 · · · li−1
(1 +

1

li
)

[
∣

∣

∣

∣

ξ
2−

1
(p1···pi−1)

i fi(·)

∣

∣

∣

∣

+ θiξ
2−

1
(p1···pi−1)

i (x∗pi

i+1

−xpi
i+1 + x∗pi

i+1) +

∣

∣

∣

∣

Σi−1
j=1

∂Wi

∂xj
ẋj + Σi−1

j=1

∂Wi

∂kj
k̇j + Σi−2

j=1

∂Wi

∂lj
l̇j

∣

∣

∣

∣

]

+
2

l1 · · · li−1

(

Σi−1
j=1(kj k̇j

i−1
∏

m=1
m,j

k2
m)

)

Wi(·) +
1

l1 · · · li

·

[

Σi−1
j=2

(

Σj
m=1

∂Wj

∂xm
ẋm + Σj−1

m=1

∂Wj

∂km
k̇m + Σj−2

m=1

∂Wj

∂lm
l̇m

)

+ ξ1ẋ1

]

−
l̇i

l1 · · · li−1l2i
(
ξ2

1

2
+ Σi

j=1Wj(·)). (33)

Using an argument similar to Zhang, Lin and Lin (2017), we obtain
the estimations (34)-(38) (see the appendix for details):

2k2
1 · · · k2

i−1

l1 · · · li−1

∣

∣

∣

ξ
2−1/(p1···pi−1)
i fi

∣

∣

∣

≤ k2
1 · · · k2

i−1ξ2
i

·Υi1(l̄i−2, k̄i−1, x̄i) + ξ2
i (t − d) (34)

·Υ∗

i1(l̄i−2(t − d), k̄i−1(t − d), x̄i(t − d)) +
1

l1 · · · li−1

·
[

ξ2
1 + Σi−1

j=2

(

xj − x∗

j

)2p1···pj−1
]

Υi2(l̄i−2, k̄i−1, x̄i−1)

+
1

l1 · · · li−1

[

Σi−1
j=2

(

xj(t − d) − x∗

j (t − d)
)2p1···pj−1

+ξ2
1(t − d)

]

Υ∗

i2(l̄i−2(t − d), k̄i−1(t − d), x̄i−1(t − d)),

2k2
1 · · · k2

i−1

l1 · · · li−1

∣

∣

∣

∣

Σi−1
j=1

∂Wi

∂xj
ẋj + Σi−1

j=1

∂Wi

∂kj
k̇j + Σi−2

j=1

∂Wi

∂lj
l̇j

∣

∣

∣

∣

≤ k2
1 · · · k2

i−1ξ2
i Φi1(l̄i−2, k̄i−1, x̄i) +

1

l1 · · · li−1

[

ξ2
1

+Σi−1
j=2

(

xj − x∗

j

)2p1···pj−1
]

Φi2(l̄i−2, k̄i−1, x̄i−1) (35)

+
1

l1 · · · li−1

[

Σi−1
j=2

(

xj(t − d) − x∗

j (t − d)
)2p1···pj−1

+ξ2
1(t − d)

]

Φ∗

i2(l̄i−2(t − d), k̄i−1(t − d), x̄i−1(t − d)),

2

l1 · · · li−1

[

Σi−1
j=1

(

2kj k̇j

i−1
∏

m=1
m,j

k2
m

)

]

Wi(·)

≤ k2
1 · · · k2

i−1ξ2
i ωi(l̄i−3, k̄i−2, x̄i−1), (36)

2k2
1 · · · k2

i−1

l1 · · · li−1
|θiξ

2−
1

p1···pi−1

i (x
pi

i+1 − x
∗pi

i+1)|

≤ k2
1 · · · k2

i−1(c̄iξ2
i + .ci+1ξ2

i+1), (37)

1

l1 · · · li

∣

∣

∣
ξ1ẋ1 + Σi−1

j=2

[

Σj
m=1

∂Wj

∂xm
ẋm + Σj−1

m=1

∂Wj

∂km
k̇m

+Σj−2
m=1

∂Wj

∂lm
l̇m

]

∣

∣

∣
≤

1

l1 · · · li−1
Ψi(l̄i−2, k̄i−1, x̄i−1)

·
[

ξ2
1 + Σi−1

j=2

(

xj − x∗

j

)2p1···pj−1
]

+ k2
1 · · · k2

i−1ξ2
i (38)

+
1

l1 · · · li−1
Ψ∗

i (l̄i−2(t − d), k̄i−1(t − d), x̄i−1(t − d))

·
[

ξ2
1(t − d) + Σi−1

j=2

(

xj(t − d) − x∗

j (t − d)
)2p1···pj−1

]

where Υij(·) ≥ 0, Υ∗

ij(·) ≥ 0, Φij(·) ≥ 0, Φ∗

ij(·) ≥ 0, Ψi(·) ≥ 0 and

Ψ∗

i (·) ≥ 0, ωi(·) ≥ 0 j = 1, 2, are smooth functions.

With the help of the bounds Υ∗

ij(·), Φ∗

ij(·) and Ψ∗

i (·) thus obtained,
which are related to the delay terms, we construct the Lyapunov-
Krasovskii functional

ViLK = Vi +

t
∫

t−d

ξ2
i (s)Υ∗

i1(l̄i−2(s), k̄i−1(s), x̄i(s))ds + (39)

t
∫

t−d

1

l1(s) · · · li−1(s)

[

ξ2
1 (s) + Σi−1

j=2

(

xj(s) − x∗

j (s)
)2p1···pj−1

]

·
[

Υ∗

i2(l̄i−2(s), k̄i−1(s), x̄i−1(s)) + Φ∗

i2(l̄i−2(s), k̄i−1(s), x̄i−1(s))

+Ψ∗

i (l̄i−2(s), k̄i−1(s), x̄i−1(s))
]

ds

From (33)-(38) and the fact that 1
l1···li−1(t)

≤ 1
l1(t−d)···li−1(t−d)

and ki ≥ 1, i = 1, . . . , i−1, A straightforward but tedious calculation
gives

V̇iLK ≤−(n − i + 2)Σi−1
j=1[

j−1
∏

m=0

k2
mξ2

j ]+Σi−1
j=1

[

(θjN(kj)+1)

j−1
∏

m=0

k2
mk̇j

]

−
l̇i−1(

ξ2
1
2

+ Σi−1
j=2Wj(·))

l1 · · · li−2l2i−1

+

[

ξ2
1 + Σi−1

j=2

(

xj − x∗

j

)2p1···pj−1
]

l1 · · · li−1

·

[

Υi2(l̄i−2, k̄i−1, x̄i−1)+Υ∗

i2(l̄i−2, k̄i−1, x̄i−1)+Φi2(l̄i−2, k̄i−1, x̄i−1)

+Φ∗

i2(l̄i−2, k̄i−1, x̄i−1)+Ψi(l̄i−2, k̄i−1, x̄i−1)+Ψ∗

i (l̄i−2, k̄i−1, x̄i−1)

]

+
k2

1 · · · k2
i−1

l1 · · · li−1
(1 +

1

li
)θiξ

2−1/(p1···pi−1)

i x∗pi

i+1 + ci+1k2
1 · · · k2

i−1ξ2
i+1

+k2
1 · · · k2

i−1ξ2
i

[

1 + ci + c̄i+Υi1(l̄i−2, k̄i−1, x̄i)+Υ∗

i1(l̄i−2, k̄i−1, x̄i)

+Φi1(l̄i−2, k̄i−1, x̄i)+ωi(l̄i−3, k̄i−2, x̄i−1)

]

−
l̇i[

ξ2
1
2

+ Σi
j=2Wj(·)]

l1 · · · li−1l2i
(40)

Based on (40), one can design the delay-free gain update law

l̇i−1 =max{−αi−1l2i−1 +li−1ρi−1(l̄i−2, k̄i−1, x̄i−1), 0}, li−1(0) = 1

ρi−1(·) =
1

Mi−1

[

Υi2(·)+Υ∗

i2(·)+Φi2(·)+Φ∗

i2(·)+Ψi(·)+Ψ∗

i (·)
]

, (41)

where αi−1 = 1
(2

p1···pi−2 −1)
and Mi−1 = min{ 1

2
, m2, · · · , mi−1}



By construction, the gain thus constructed satisfies

0 ≤ l̇i−1 ≤ li−1ρi−1(·), l̇i−1 ≥ −αi−1l2i−1 + li−1ρi−1(·)(42)

Using (32) and (42), it is not difficult to prove that

−l̇i−1

l1 · · · li−2l2i−1

(
ξ2

1

2
+ Σi−1

j=2Wj(·)) ≤ Σi−1
j=1[(

j−1
∏

m=0

k2
m)ξ2

j ]

−
Mi−1ρi−1(·)

l1 · · · li−1

[

ξ2
1 + Σi−1

j=2

(

xj − x∗

j

)2p1···pj−1
]

(43)

Substituting (41) into (40) yields

V̇iLK ≤−[n − i + 1]Σi
j=1

[

j−1
∏

m=0

k2
mξ2

j ]+Σi−1
j=1[(θjN(kj)+1)

j−1
∏

m=0

k2
mk̇j

]

+
k2

1 · · · k2
i−1

l1 · · · li−1
(1 +

1

li
)ξ

2−1/(p1 ···pi−1)

i x∗pi

i+1 + k2
1 · · · k2

i−1ξ2
i

·

[

2 + ci + c̄i + n − i + Υi1(·) + Υ∗

i1(·) + Φi1(·) + ωi(·)

]

−
l̇i

l1 · · · li−1l2i
(
ξ2

1

2
+ Σi

j=2Wj(·)) + ci+1k2
1 · · · k2

i−1ξ2
i+1. (44)

In view of (44), one can design the non-smooth virtual controller
with the Nussbaum gain

x∗pi

i+1 = l1 · · · li−1N(ki)ξ
1/(p1···pi−1)

i

[

2 + ci + c̄i + n − i

+Υi1(·) + Υ∗

i1(·) + Φi1(·) + ωi(·)

]

:= l1 · · · li−1N(ki)(ξiβi(l̄i−2, k̄i−1, x̄i))
1/(p1···pi−1)

k̇i = (1 +
1

li
)ξ2

i βi(·)
1/(p1···pi−1) (45)

Substituting (45) into (44), we can show that (30) holds at Step i.

Using the claim for i = n + 1 with u = xn+1 = x∗

n+1, we conclude
that the dynamic state feedback controller that is composed of (28)
with i = n + 1 and

u = (l1 · · · ln−1N(kn))
1

pn

(

ξnβn(l̄n−2, k̄n−1, x)
) 1

(p1···pn)

k̇n = ξ2
nβn(l̄n−2, k̄n−1, x)

1
(p1···pn−1) (46)

is such that

V̇nLK ≤ −Σn
j=1[(

j−1
∏

m=0

k2
m)ξ2

j ] + Σn
j=1[(θjN(kj) + 1)(

j−1
∏

m=0

k2
m)k̇j ].

(47)

4. STATE REGULATION WITH BOUNDEDNESS

We now use the inequality (47) to complete the proof of Theorem 6.
In particular, it is shown that the proposed dynamic state feedback
controller (46) and (28) can regulate the system state to the origin,
while maintaining the boundedness of the closed-loop system.

First of all, we can establish, based on the Lyapunov inequalities
(30) and (47), the following lemma.

Lemma 4.1. The Nussbaum gains ki(t), i = 1 · · · n, given by (45)
are bounded ∀t ∈ [0, +∞).

The proof of Lemma 4.1 requires delicate and tedious analyses and
can be carried out in a fashion similar to the one in the appendix of
Pongvuthithum, Rattanamongkhonkun and Lin (2018). The details
are omitted due to the limited space.

With the aid of the boundedness of ki(t), 1 ≤ i ≤ n, we deduce
from (45) that ξ2

i (t) ≤ k̇i(t) because, by construction, βi(·) ≥ 1 and

li(t) ≥ 1. Hence,
∫ +∞

0
ξ2

i ds ≤ ki(+∞) − ki(0) = c. On the other

hand, (47) and the boundedness of ki(t), 1 ≤ i ≤ n, imply that

VnLK(t) ≤ Σn
j=1

∫ t

0

|θjN(kj(s))+1|(

j−1
∏

m=0

k2
m(s))k̇j(s)ds + VnLK(0)

≤ c1Σn
j=1

∫ t

0

k̇j(s)ds + c2 ≤ C. (48)

In view of (39) and (31), it is clear that the boundedness of

VnLK (·) on [0, +∞) implies the boundedness of x1,
k2

1···k2
i−1

l1···li−1
Wi(·),

i = 2, · · · , n. Using the estimation of Wi(·) in (32), one concludes

that x1 and
k2

1 ···k2
i−1

l1···li−1
(xi−x∗

i )2pi···pi , i = 2, · · · , n, are also bounded.

Because x1 and k1 are bounded and the gain l1(·) given by (52)-
(21) is monotone non-deceasing, then l1(·) must be bounded. If
not, limt→+∞ l1(t) = +∞. By continuity of ρ1(·), ρ1(k1, x1) is
bounded. Consequently, there is a time instant T > 0 such that
−l21 + l1ρ1(k1, x1) ≤ 0 on [T, +∞). This, together with (22), yields

l̇1 = 0 on [T, +∞), which contradicts to the unboundedness of l1(·).
In conclusion, l1(·) is bounded. The boundedness of l1(·) and k1

implies the boundedness of x∗

2 as well as x2 −x∗

2. As a such, x2 is also
bounded. Similarly, one can prove the boundedness of li(·) and xi in
the following recursive manner: x2 → l2 → x3 → · · · → ln−1 → xn,
by the boundedness of ki(·), i = 1, · · · , n, (28) and the estimation
(32). Therefore, all the signals of the closed-loop system (1)-(46)-(28)
are bounded ∀t ∈ [0, +∞).

To prove the convergence of the system state, we observe that

ξ̇i, i = 1, · · · , n are also bounded and
∫ +∞

0
ξ2

i (t)dt < +∞. By the
Barbalat’s lemma, it is concluded that ξi, i = 1, · · · , n converge to
zero. This, in view of the coordinate transformation (29), implies
that all the states x1(t), · · · , xn(t) converge to zero as well, thus
completing the proof of Theorem 3.1. �

Because the proposed nonsmooth control scheme is based on the
Lyapunov-Krasovskii functional method, it is not surprising that
Theorem 6 is robust with respect to the uncertainty. With this
observation in mind, Theorem 6 can be extended to a larger family of
uncertain time-delay systems dominated by a homogeneous system
with time-delay. In fact, the following more general result also holds.

Theorem 7. Consider a family of uncertain time-delay systems with
unknown control directions:

ẋi = θixpi

i+1 + φi(x, x(t − d), t), i = 1, · · · , n, (49)

where xn+1 = u and φi : IRn × IRn × IR → IR, is a continuous
mapping. Assume that the uncertain function φi, i = 1, · · · , n,
satisfies the homogeneous growth condition

|φi(·)|≤γi(x̄i, x̄i(t − d))
(

|x1|
1

p1···pi−1 +|x2|
1

p2···pi−1 +· · ·+|xi−1|
1

pi−1

+|xi|+|x1(t − d)|
1

p1···pi−1 +· · ·+|xi−1(t − d)|
1

pi−1 + |xi(t − d)|
)

(50)

with γi(x̄i, x̄i(t − d)) ≥ 0 being a known smooth function. Then,
there is a delay-free, nonsmooth but C0 dynamic state feedback (8)
that steers the state x to zero and keeps the boundedness of the
closed-loop system (8)-(49). �

Under the homogeneous growth condition (50), the proof of Theorem
7 can be carried out, with some subtle modifications, by means of an
argument analogue to that of Theorem 6. For this reason, the details
are left to the reader as an exercise.

Remark 8. When the nonlinear system (1) or (49) has multiple
delays, the design of a delay-independent controller remains al-
most same, except that multiple Lyapunov-Krasovskii function-
als with different time-delays need to be used. Specifically, the

Lyapunov-Krasovskii functional
∫ t

t−d
K(s)ds should be replaced by

∫ t

t−di
K(s)ds in the recursive design. Of course, a similar philosophy



can be employed to handle the general case when every subsystem
of (1) involves different time delays.

Remark 9. The assumption that the bound C of unknown coeffi-
cients θi, 1 ≤ i ≤ n is known is used for a technical convenience
and can indeed be removed. When the bound C is unknown, a
similar design procedure can be carried out with slightly different
estimations of the right hand side of V̇iLK in (44) so that the term
(θjN(kj)+1) is replaced by (θjN(kj)+Cj), where Cj is an unknown
constant. Due to the characteristics of the Nussbaum function and
the monotone property of the adaptive gains kj , 1 ≤ j ≤ n, the same
argument in Appendix B can also be used for the stability proof.

Finally, we present a simple but nontrivial example that demon-
strates how Nussbaum gains need to be introduced to handle the
problem of unknown control directions.

Example 10. Consider a time-delay system in the plane, with strong
nonlinearity and unknown control directions, of the form

ẋ1 = θ1x3
2 + x1, ẋ2 = θ2u +

1

2
x3

2(t − d), (51)

where θ1, θ2 , 0 are unknown constants whose signs are also
unknown (either positive or negative), and represents unknown
directions of the actuator. Note that the time-delay system under
consideration involves not only an unknown control direction but
also strong nonlinearities. The latter requires the use of a nonsmooth
rather than smooth feedback control strategy. In fact, even in the
case when control directions are known (e.g., θ1 = θ2 = 1) and no
time delay is involved (i.e., d = 0), it is known that the planar system
cannot be controlled by any smooth state feedback, even locally, and
a nonsmooth feedback must be employed.

Following the control scheme proposed in section 3, we first consider
the Lyapunov function V1(x1, l1) = 1

2
(1 + 1

l1
)ξ2

1 , where ξ1 = x1 and
the gain l1 is updated by

l̇1 = max{−l21 + l1ρ(k1, x1), 0}, l1(0) = 1, (52)

with ρ1(·) ≥ 0 being a smooth function to be determined later on.

For the x1-subsystem, it is clear that the nonsmooth virtual control
law x∗3

2 = 2x1N(k1), with k̇1 = 2(1 + 1
l1

)x2
1, globally asymptotically

regulates it.

Define ξ2 = x3
2 − x∗3

2 = x3
2 − 2x1N(k1). From (52), it is easy to see

that l1(·) ≥ 1 and l̇1 ≥ −l21 + l1ρ1(k1, x1). Moreover,

V̇1 ≤ −2x2
1 + (θ1N(k1) + 1)k̇1 −

1

2l1
ξ2

1ρ1(k1, x1). (53)

Then, consider the Lyapunov-Krasovskii functional

V2LK =V1(·)+
k2

1

l1

x2
∫

x∗

2

(s3− x∗3
2 )2−

1
3 ds+

t
∫

t−d

(

ξ6
2(s)+2(k6

1x3
1(s))2

)

l1(s)
ds.(54)

Following the design procedure in Step 2, one can find a dynamic
state compensator that consists of (52) and

u = N(k2)ξ
1/3
2

(

2(k2
1 + 2k1)2 +

10

3
(1 +

1

l1
)x2

1 + l1 + ξ4
2

)

k̇2 =
1

l1
ξ2

2

(

2(k2
1 + 2k1)2 +

10

3
(1 +

1

l1
)x2

1 + l1 + ξ4
2

)

(55)

with ρ1(k1, x1) = 2(2x4
1k12

1 + 4k6
1 + 5

3
(1 + 1

l1
)x2

1k2
1) in (52) and

N(k2) = k2
2 cos(k2), such that

V̇2LK ≤ −x2
1 − k2

1ξ2
2 + (θ1N(k1) + 1)k̇1 +

(θ2N(k2) + 1)k2
1 k̇2

l1
,

from which it is deduced, as shown in Section 4, that the delay-
free controller (55) and (52) achieves asymptotic state regulation
and maintains the boundedness of the closed-loop system (51), (52)
and (55), without the information of the sign of the parameter
θi, i = 1, 2.

5. CONCLUDING REMARKS

In this paper, we have presented a delay-free, non-smooth dynamic
state feedback scheme to control a family of uncertain time-delay
systems with strong nonlinearities and unknown control directions.
To cope with the effects of time-delay nonlinearities and unknown
control directions, we have introduced, respectively, two sets of gains
that need to be updated online, in a dynamic manner. One of
them is the Nussbaum-type gains from universal control Nussbaum
(1983), making it possible to mitigate the effect of unknown control
directions, while the other one is borrowed the idea from the dynamic
state feedback control method Zhang, Lin and Lin (2017), which is
able to counteract the time-delay effects via a delay-free nonsmooth
controller. Global asymptotic state regulation with boundedness of
the closed-loop system has been proved to be possible, thanks to the
construction of a set of new Lyapunov-Krasovskii functionals that
are different from the previous ones in the literature, due to the
involvement of the Nussbaum gains.
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