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Abstract: A machining tool can be subject to different kinds of excitations. The forcing may
have external sources (such as rotating imbalance or misalignment of the workpiece) or it can
arise from the cutting process itself (e.g. chip formation). We investigate the classical tool
vibration model which is a delay-differential equation with a quadratic and cubic nonlinearity
and periodic forcing. The method of multiple scales gave an excellent approximation of the
solution. The resonance curves found here are similar to those for the Duffing-equation, having
a hardening characteristic. We found subcritical Hopf and saddle-node bifurcations.
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1. INTRODUCTION

Delay-differential equations (DDEs) are important in
many areas of engineering and science. For example in
stability analysis, computational techniques (symbolic and
numerical), automotive engineering, manufacturing, neu-
roscience, and control theory (see Balachandran et al.
[2009]).

In this paper the nondimensional form of a regenerative
one-degree-of-freedom machine tool vibration model in the
case of orthogonal cutting is investigated (for derivation
see Kalmár-Nagy et al. [2001])

ẍ+ 2ζẋ+ x = p (xτ − x) + q
(

(x− xτ )
2 − (x− xτ )

3
)

+A cos (ωt) ,
(1)

where x is the tool displacement (xτ = x (t− τ) is its
delayed value with delay τ > 0), ζ > 0 is the relative
damping factor, p > 0 is the nondimensional cutting force,
q > 0 is the coefficient of nonlinearity, A is the amplitude
of the forcing and ω is its frequency.

Perturbation methods were successfully applied to delay-
differential equations (such as the Linstedt-Poincaré method
(Casal and Freedman [1980]), the method of multiple
scales (Nayfeh et al. [1997], Nayfeh [2008], Oztepe et al.
[2015]) or the combination of the method of multiple scales
and Linstedt-Poincaré method (Pakdemirli and Karahan
[2010]).
We will approximate the solution by using the method
of multiple scales. In the following we will assume that
damping is small, the nonlinearity and forcing are weak
(see Kalmár-Nagy [2002]). In particular

ζ, p, q, A ∼ O (ε) , ω = 1 + εσ, (2)

where ε � 1 and σ is the detuning frequency. We also
assume that the solution of (1) can be well approximated
by the two-scale expansion

x (t) = x0 (t0, t1) + εx1 (t0, t1) +O
(
ε2
)
, (3)

where the timescales are defined as

t0 = t, t1 = εt. (4)

With the differential operators

D0 =
∂

∂t0
, D1 =

∂

∂t1
, (5)

time differentiation can be written as

d

dt
= D0 + εD1 +O

(
ε2
)
, (6)

and similarly

d2

dt2
= D2

0 + 2εD0D1 +O
(
ε2
)
. (7)

2. LINEAR STABILITY ANALYSIS
OF THE UNFORCED SYSTEM

The stability analysis of the x = 0 solution of the linearized
equation

ẍ+ 2ζẋ+ x = p (xτ − x) , (8)

was performed in, for example, Hanna and Tobias [1974],
Stépán [1989]. The stability boundaries of (8) is obtained
by substituting the trial solution x(t) = C exp(iΩt) into
(8). The stability diagram in Figure 1 is given in paramet-
ric form in Kalmár-Nagy [2002] as

p =

(
1− Ω2

)2
+ 4ζ2Ω2

2 (Ω2 − 1)
, (9)

τ =
2

Ω

(
jπ − arctan

Ω2 − 1

2ζΩ

)
, j = 1, 2, . . . , (10)

where j corresponds to the jth ‘lobe’ and Ω > 1 because
p > 0.



Fig. 1. The linear stability chart of (1)

At the minima (‘notches’) of the stability lobes, Ω, p, τ
assume the particularly simple forms

Ωcrit =
√

1 + 2ζ, (11)

pcrit = 2ζ (ζ + 1) , (12)

τcrit =

2

(
jπ − arctan 1√

1+2ζ

)
√

1 + 2ζ
, j = 1, 2, . . . (13)

3. THE LINEAR DELAY-DIFFERENTIAL
EQUATION WITH HARMONIC FORCING

Here we study the harmonically forced linear equation

ẍ+ 2ζẋ+ x = p (xτ − x) +A cos (ωt) . (14)

With assumption (2), substituting the differential opera-
tors (6) and (7) into (14) and equating like powers of ε one
obtains

ε0 : D2
0x0 (t0, t1) + x0 (t0, t1) = 0, (15)

ε1 :
D2

0x1 (t0, t1) + x1 (t0, t1) = −2D0D1x0 (t0, t1)
−2ζD0x0 (t0, t1) + p [x0 (t0 − τ, t1)− x0 (t0, t1)]
+A cos (t0 + σt1) .

(16)
Solving (15) for x0 (t0, t1), knowing that the slow temporal
variable t1 is implicit in the constants of integration, we
get

x0 (t0, t1) = a (t1) eit0 + ā (t1) e−it0 , (17)
We substitute this solution into (16) and eliminate the
secular terms which would give rise to unbounded terms

0 = −1

2
Aeiσt1 + 2iD1a (t1) + a (t1)

[
p− e−iτp+ 2iζ

]
.

(18)
Writing a (t1) in a polar form (where α (t1) is the ampli-
tude and β (t1) is the phase)

a (t1) =
1

2
α (t1) eiβ(t1), ā (t1) =

1

2
α (t1) e−iβ(t1), (19)

then substituting into (18), we get

0 = −1

2
Aeiσt1 + i (D1α (t1) + iα (t1)D1β (t1)) eiβ(t1)

+
1

2
α (t1) eiβ(t1)

[
p− e−iτp+ 2iζ

]
.

(20)

Now we divide (20) by eiβ(t1) and introduce

φ (t1) = σt1 − β (t1) , (21)

to get

0 = −1

2
Aeiφ(t1) + i (D1α (t1) + i (σ −D1φ(t1)))

+
1

2
α (t1)

[
p− e−iτp+ 2iζ

]
.

(22)
Separating the real and imaginary parts of equation (22)
results in two ordinary differential equations describing the
evolution of the amplitude and phase

D1α = −
(
ζ +

p

2
sin τ

)
α+

A

2
sinφ, (23)

αD1φ =
1

2
(p cos τ + 2σ − p)α+

A

2
cosφ. (24)

To get the amplitude and phase of the steady-state pri-
mary resonance (i.e. the fixed point of (23) and (24))
we set the left-hand sides of (23) and (24) to zero and
solve the resulting algebraic equations (by eliminating the
trigonometric terms from them). For the amplitude α∗ and
phase φ∗ we get

α∗ =
A√

(p (1− cos τ)− 2(ω − 1))
2

+ 4
(
ζ + p

2 sin τ
)2 .

(25)

φ∗ = arcsin
(

2
(
ζ +

p

2
sin τ

) α
A

)
. (26)

The stability of the fixed point (α∗, φ∗) is determined by
the Jacobian

J =

−ζ − p

2
sin τ

A

2
cosφ∗

− A

2α∗2 cosφ∗ − A

2α
sinφ∗

 . (27)

The trace and determinant of J are

T = −2ζ − p sin τ, (28)

∆ =
(
ζ +

p

2
sin τ

)2
+

1

4
(p(1− cos τ)− 2ω + 2)2. (29)

The determinant ∆ is always non-negative. The discrimi-
nant

T 2 − 4∆ = −(p(1− cos τ)− 2ω + 2)2 ≤ 0, (30)

therefore the fixed point is a stable spiral when T < 0, a
center when T = 0 (at pbif = −2 ζ

sin τ ), and an unstable
spiral when T > 0.

We chose p as the bifurcation parameter. The phase
portraits of the “slow-flow” (Eqs. (23) and (24)) are shown
in Figs. 2, 3, 4 for different p values.



Fig. 2. Stable spiral p < pbif

Fig. 3. Center p = pbif

Fig. 4. Unstable spiral p > pbif

3.1 Numerical results

The direct numerical solution of (14) was determined in
Mathematica using the Dormand-Prince method with an
initial function α∗ cos(ωt + φ∗), t ∈ [−τ, 0], where α∗ and
φ∗ were determined from (25) and (26). The following
numerical values were chosen for the simulation

ζ = 0.01, A = 0.01. (31)

We have chosen p values at the first ‘notch’ (j = 1). Using
(12) and (13) gives

pcrit = 0.0202, τcrit = 4.676. (32)

Time series x (t) for

p = {0.75pcrit, 0.90pcrit, 0.99pcrit, 1.05pcrit} (33)

are shown in Figure 5.

(a) p = 0.75pcrit, stable

.
(b) p = 0.90pcrit, stable

(c) p = 0.99pcrit, stable

.
(d) p = 1.05pcrit, unstable

Fig. 5. Time series of the numerical solution (ω = 1.02)

The grey areas indicate the time interval [300τ, 450τ ]
where the steady state vibration amplitude of the numer-
ical solution was determined as

αnum = max|x(t)|, t ∈ [300τ, 450τ ]. (34)

In the case of p = 0.90pcrit and p = 0.99pcrit the vibration
becomes modulated, so the amplitude of the vibration also
varies between a certain range during the simulation. For
a better comparison of the method of multiple scales and
numerical results we introduce the method of multiple
scales amplification factor G∗ and numerical amplification
factor Gnum as

G∗ :=
α∗

A
, Gnum :=

αnum
A

. (35)

The comparison of the amplification factors G∗ and Gnum
is shown in Figure 6, where the solid line indicates the
method of multiple scales (MMS) results, the dots the
numerical results.



MMS

(a) p = 0.75pcrit

MMS

(b) p = 0.90pcrit

MMS

(c) p = 0.99pcrit

Fig. 6. The amplification factor G as a function of ω

4. THE HARMONICALLY FORCED NONLINEAR
DELAY-DIFFERENTIAL EQUATION

Substituting the differential operators (6) and (7) into (1)
and equating like powers of ε one obtains

ε0 : D2
0x0 (t0, t1) + x0 (t0, t1) = 0,

(36)

ε1 :

D2
0x1 (t0, t1) + x1 (t0, t1) = −2D0D1x0 (t0, t1)
−2ζD0x0 (t0, t1) + p [x0 (t0 − τ, t1)− x0 (t0, t1)]

+q [x0 (t0 − τ, t1)− x0 (t0, t1)]
2

+q [x0 (t0 − τ, t1)− x0 (t0, t1)]
3

+A cos (t0 + σt1) .
(37)

Solving (36) for x0 (t0, t1) yields

x0 (t0, t1) = a (t1) eit0 + ā (t1) e−it0 . (38)

Then we substitute this solution into (37) and eliminate
the secular terms which would give rise to unbounded
terms

0 = −1

2
Aeiσt1 + 2iD1a (t1)

+a (t1)
[
p− e−iτp+ 2iζ − 3e−2iτ

(
eiτ − 1

)3
qa (t1) ā (t1)

]
.

(39)
Writing a (t1) in a polar form (where α (t1) is the ampli-
tude and β (t1) is the phase)

a (t1) =
1

2
α (t1) eiβ(t1), ā (t1) =

1

2
α (t1) e−iβ(t1). (40)

then substituting into (39) using (21) and separating the
real and imaginary parts results in two ordinary differen-

tial equations describing the evolution of the amplitude
and phase

D1α = −
(
ζ +

p

2
sin τ

)
α− 3q cos

τ

2
sin3 τ

2
α3 +

A

2
sinφ,

(41)

αD1φ =
1

2
(p cos τ + 2σ − p)α− 3q sin4 τ

2
α3 +

A

2
cosφ.

(42)
To get the amplitude of the steady-state primary reso-
nance i.e. the fixed points of (41) and (42) we set the left-
hand sides of (41) and (42) to zero and solve the result-
ing algebraic equations (by eliminating the trigonometric
terms from them)[

1

4

(
p (1− cos τ)− 2σ + 6qα∗2 sin4 τ

2

)2
+
(
ζ +

p

2
sin τ + 3qα∗2 cos

τ

2
sin3 τ

2

)2]
α∗2 − A2

4
= 0.

(43)

φ∗ = arcsin

(
2

A

(
ζ +

p

2
sin τ

)
α∗ + 3q cos

τ

2
sin3 τ

2
α∗3
)
.

(44)
Equation (43) can be solved for α∗ resulting 1, 2 or 3 pair
(±) of real roots.

Stability of the fixed points (α∗, φ∗) is determined by the
Jacobian

J =

−ζ − p

2
sin τ − 9qα∗2 cos

τ

2
sin3 τ

2

A

2
cosφ∗

−6α∗q sin4 τ

2
− A

2α∗2 cosφ∗ − A

2α∗ sinφ∗

 .

(45)
The stability of the fixed points can be investigated
by calculating the determinant ∆, the trace T and the
discriminant T 2 − 4∆ of J .

The nondimensional cutting force coefficient was taken to
be p = 0.5pcrit, the coefficient of nonlinearity q = 0.003,
forcing amplitude A = 0.01. The quantity ω was chosen as
bifurcation parameter, increased from 0.98 to 1.03.

MMS

< SN
< SBH

Numerical

0.98 0.99 1.00 1.01 1.02 1.03
0.0

0.5

1.0

1.5

2.0

Ω

È
Α
È

_ _

Fig. 7. Bifurcation diagram (or resonance curve), where
SBH corresponds to subcritical Hopf bifurcation and
SN to saddle-node bifurcation.



Figure 7 shows the amplitude α∗ as a function of forcing
frequency ω (the solid line indicates stable solution, the
dashed line the unstable solution, both method of multiple
scales solution). The stable numerical equlibrium solutions
are shown with filled circles, unstable limit cycles are
depicted by empty circles. The thin vertical lines in Fig.
7 indicate the ω values (1.00, 1.005, 1.013, 1.02) for which
the phase portraits of Figs. (8-11) were generated.

Fig. 8. Stable spiral at ω = 1, the arrowheads indicate two
points of the unstable limit cycle

Fig. 9. Unstable spiral at ω = 1.005

Subcritical Hopf bifurcation occurs at ω ≈ 1.003, see
Figure 8 and 9.

Fig. 10. Stable spiral at ω = 1.013 and two unstable fixed
points

A saddle and a node connected with a heteroclinic orbit
can be observed at ω ≈ 1.013, see Figure 10.

Fig. 11. Stable spiral and unstable limit cycle at ω = 1.02

5. CONCLUSIONS

The method of multiple scales gave an excellent approx-
imation of the solution of the nonlinear delay-differential
equation (1). The resonance curves found here are simi-
lar to those for the Duffing-equation (Nayfeh and Mook
[1979]), having a hardening characteristic. We found sub-
critical Hopf bifurcations and saddle-node bifurcations.

Equation (1) without forcing admits a subcritical Hopf bi-
furcation (Kalmár-Nagy [2002]) and the interaction of forc-
ing and Hopf bifurcation may lead to incredibly complex
phenomena (Gambaudo [1985]). Plaut and Hsieh (Plaut
and Hsieh [1987]) studied a one-DOF mechanical system
with delay and excitation and found periodic, chaotic and
unbounded responses. Forcing of a Duffing-type equation
without delay can also result in complicated bifurcation
structure (Sanchez and Nayfeh [1990]; Zavodney et al.
[1990]).
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