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1. INTRODUCTION

A mathematical model called “Goodwin oscillator” was
introduced in Goodwin (1965, 1966) and gained significant
popularity in mathematical biology (see Murray (2002);
Gonze and Abou-Jaoudé (2013); Mackey et al. (2012–
2014)). In Smith (1980, 1983) the Goodwin’s model was
applied to mathematical endocrinology, namely, to de-
scribe oscillations of hormones’ levels in the male repro-
ductive hormonal axis. The specific of endocrinological
regulation systems that involve the hypothalamus is that
hypothalamic hormones are released impulsively, governed
by ensembles of neurones. The conventional Goodwin
model does not suit properly to describe this impulsive
effect. To improve adequacy of the model Churilov et al.
(2009) proposed to substitute ordinary differential equa-
tions presented in the Goodwin’s scheme for impulsive
(functional-differential) equations used in applied math-
ematics (see Lakshmikantham et al. (1989); Bainov and
Simeonov (1993); Samoilenko and Perestyuk (1995); Sta-
mova and Stamov (2016)). In electrical engineering such
systems are known as pulse modulated (see e. g. Jones
et al. (1961); Gelig and Churilov (1998)).

The Goodwin model with time delays was studied in
a number of works Smith (1983); Cartwright and Hu-
sain (1986); Das et al. (1994); Mukhopadhyay and Bhat-
tacharyya (2004); Ren (2004); Enciso and Sontag (2004);
Efimov and Fradkov (2007); Greenhalg and Khan (2009);
Li (2015). Beginning with Churilov et al. (2012) a time
delay was introduced into the impulsive Goodwin model.
The main mathematical tool that was employed was a
construction of a discrete impulse-to-impulse map (called
the Poincaré map in the theory of hybrid systems, see
Haddad et al. (2006)). This map can also be considered
as a special translation operator along the trajectories of
a continuous-time system Krasnoselskii (1968). Poincaré
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maps preserve most of the properties of the initial system
and can be easily implemented in computer programs.
They are especially useful for finding periodic solutions
and bifurcation analysis. The basic property of a delayed
system that allows to construct Poincaré maps effectively
was called finite-dimensional reducibility. It was firstly in-
troduced in Churilov et al. (2012) and developed in a num-
ber of subsequent publications, see Churilov et al. (2013,
2014a); Zhusubaliyev et al. (2014); Churilov et al. (2014b);
Churilov and Medvedev (2014); Zhusubaliyev et al. (2015);
Churilov and Medvedev (2016); Churilov et al. (2016).

The Goodwin model with multiple delays was studied in
Liu and Deng (1991); Cao and Jiang (2011); Huang and
Cao (2015); Zhang et al. (2015); Sun et al. (2016). In
endocrine systems multiple delays describe times required
to transport hormones from one organ to another through
the bloodstream, and also times for hormones’ synthesis.
In Churilov et al. (2017) an impulsive counterpart of the
three-dimensional Goodwin oscillator was considered with
the help of an impulse-to-impulse map. In this paper the
same approach is extended to a Goodwin-like impulsive
system of a higher dimension that necessitates reworking
the proof of the main statement (Theorem 4).

2. FD-REDUCIBILITY OF A LINEAR SYSTEM
WITH TWO DISCRETE DELAYS

Let us consider a linear system with two discrete delays

u′ = U1u(t), (1)

v′ = U2v(t) +G1u(t− τ1) (2)

w′ = U3w(t) +G2v(t− τ2) (3)

for t > t0. Here U1, U2, U3, G1, G2 are constant matrix
blocks whose sizes are p1 × p1, p2 × p2, p3 × p3, p2 × p1,
p3×p2, respectively, and u(·), v(·), w(·) are functions with
vector values of dimensions p1, p2, p3.

Let us introduce a p-dimensional vector

x(·) = col{u(·), v(·), w(·)}



with p = p1+p2+p3. Then system (1)–(3) can be rewritten
in a matrix form as

x′ = A0x(t) +A1x(t− τ1) +A2x(t− τ2), (4)

where A0, A1, A2 are constant p× p matrices,

A0 =

[
U1 0 0
0 U2 0
0 0 U3

]
, A1 =

[
0 0 0
G1 0 0
0 0 0

]
, A2 =

[
0 0 0
0 0 0
0 G2 0

]
.

(5)
The initial problem for (4) can be defined as

u(t) = ϕu(t), t0 − τ1 6 t 6 t0,

v(t) = ϕv(t), t0 − τ2 6 t 6 t0,

w(t0) = w0,

where ϕu(·), ϕv(·) are initial functions and w0 is a constant
vector.

Definition 1. A time-delay linear system (4) is called
finite-dimensional reducible (FD-reducible) if for every t0
there exist a constant p×p matrix D and a positive number
τ̄ such that any solution x(t) of (4) defined for t > t0
satisfies the ordinary differential equation

x′ = Dx(t) (6)

for t > t0 + τ̄ . The matrix D and the number τ̄ are
independent of the initial data.

Certainly, the property of FD-reducibility is rather restric-
tive, but it holds for linear systems with matrices A0, A1,
A2 having a special “cyclic” structure (5).

Lemma 1. System (4) with coefficients (5) is FD-reducible
with τ̄ = τ1 + τ2 and the matrix D can be defined as

D = D0 +A2e−D0τ2 with D0 = A0 +A1e−A0τ1 . (7)

Proof. Since (1) is independent of (2), (3), we have

u(t) = eU1(t−t0)u(t0), t > t0,

and hence

u(t− τ1) = e−U1τ1u(t), t > t0 + τ1.

Thus (1), (2) can be rewritten as

u′ = U1u(t), v′ = U2v(t) +G1e−U1τ1u(t), t > t0 + τ1.

In a matrix notation we have

z′ = Dzz(t), t > t0 + τ1,

where

Dz =

[
U1 0

G1e−U1τ1 U2

]
, z(t) =

[
u(t)
v(t)

]
. (8)

This implies

z(t− τ2) = e−Dzτ2z(t), t > t0 + τ1 + τ2.

From (3) it follows

w′ = U3w(t) + [0 G2]z(t− τ2)

Introduce a p3 × (p1 + p2) matrix

Gz = [0 G2]e−Dzτ2 . (9)

Hence

z′ = Dzz(t),

w′ = U3w(t) +Gzz(t), t > t0 + τ1 + τ2.

Because x(·) = col{z(·), w(·)}, (6) is satisfied with

D =

[
Dz 0
Gz U3

]
.

It is easily seen that

D0 =

[
Dz 0
0 U3

]
, e−D0τ2 =

[
e−Dzτ2 0

0 e−U3τ2

]
,

which implies (7). 2

Notice that

det(sIp −A0 −A1e−A0τ1 −A2e−A0τ2) = det(sI −A0)

for all complex s. Thus the spectrum of the linear system
(4) is finite and independent of τ1, τ2.

3. IMPULSIVE MODEL WITH THREE DELAYS

In this section we consider an impulsive system whose
continuous part has the form of (4) including two discrete
delays τ1 and τ2. The third discrete delay τ3 is incorporated
into the discrete part of the system.

We shall deal with an impulsive system

x′ = A0x(t) +A1x(t− τ1) +A2x(t− τ2),

tn < t < tn+1,
(10)

σ(t) = Cx(t), (11)

x(t+n )− x(t−n ) = λnB, n = 0, 1, . . . , (12)

tn+1 = tn + Tn, Tn = Φ(σ(tn − τ3)),

λn = F (σ(tn − τ3)).
(13)

Assume that its matrix coefficients have specific block
forms (5) and

B = col{Bu, 0, 0}, C = [0 0 Cw] . (14)

Thus Bu is p1 × 1 and Cw is 1× p3.

Here Φ(·), F (·) are continuous R → R functions with
bounds

0 < Φ1 6 Φ(·) 6 Φ2, 0 < F1 6 F (·) 6 F2, (15)

where Φi, Fi, i = 1, 2, are positive constants. In particular,
inequality Φ1 > 0 implies that the sequence {tn}∞n=0 has
no accumulation points and tn → +∞ as n→∞.

As previously, x(·) = col{u(·), v(·), w(·)}. Thus equation
(10) can be rewritten as (1)–(3). Then σ(t) = Cww(t).
Evidently, only the function u(t) has jumps

u(t+n )− u(t−n ) = λnBu, (16)

while the functions v(t), w(t), σ(t) are continuous. For-
mulas (11)–(13) describe an amplitude-frequency pulse
modulation with a modulating signal σ(t) (see Gelig and
Churilov (1998)). The right-hand side of system (10) has
jumps at the points tn, tn+ τ1, tn+ τ2, n > 0, while in the
time intervals between these points system (10) is linear.

System (10)–(13) is subject to initial conditions given by
the continuous initial functions ϕu(·), ϕv(·), ϕw(·). More
precisely,

u(t) = ϕu(t), t0 − τ1 6 t < t0,

v(t) = ϕv(t), t0 − τ2 6 t 6 t0,

w(t) = ϕw(t), t0 − τ3 6 t 6 t0,

T0 = Φ(Cwϕw(t0 − τ3)), λ0 = F (Cwϕw(t0 − τ3))

and u(t+0 )−u(t−0 ) = λ0Bu. Notice that the values of ϕw(t)
inside the interval t0 − τ3 < t < t0 do not influence the
solution and can be chosen arbitrarily.

We will use notation (7), (8) for z(·), Dz, Gz, D0, D
introduced in the previous section.



The following two assumptions are made with respect to
the time delay values:

τ2 > τ1, Φ1 > τ1 + τ2 + τ3. (17)

The second inequality in (17) implies that the lower bound
for the length of a sampling interval

Tn > τ1 + τ2 + τ3 (18)

for all solutions and all n > 0.

For D given in (7) introduce a row vector

C̃ = Ce−Dτ3 . (19)

Introduce the shorthand notation x̄n = x(t−n ).

Lemma 2. Under assumption (17) the formulas for Tn, λn
in (13) can be rewritten for n > 1 as

Tn = Φ(C̃x̄n), λn = F (C̃x̄n), (20)

where C̃ is defined by (19).

Proof. As proved in Lemma 1, the continuous part of the
system given by (10) is FD-reducible for t > τ1 +τ2. Hence
x(t) satisfies

x′ = Dx(t) for tn+τ1+τ2 < t < tn+1, n = 0, 1, 2, . . . .
(21)

It follows from (18) that tn − τ3 > tn−1 + τ1 + τ2 for all
n > 1. Then (21) implies x(tn − τ3) = e−Dτ3 x̄n. Thus

Cx(tn − τ3) = Ce−Dτ3 x̄n = C̃x̄n for all n = 1, 2, . . . .

Then for n > 1 the expressions in (13) can be rewritten as
(20). 2

Finally, notice that the next statement can be obtained
immediately.

Theorem 3. Under supposition (15) the following proper-
ties of system (10)–(13) are valid.

(i) System (10)–(13) has no equilibria.

(ii) Let the matrices U1, U2, U3 be Hurwitz stable. Then
for any solution of (10)–(13) the Euclidean norm ‖x(t)‖ is
bounded for t > t0.

(iii) Assume that the matrices U1, U2, U3 are Metzler, i. e.
all their nondiagonal elements are nonnegative. Suppose
that all the elements of the matrices G1, G2, Bu are
also nonnegative. Then system (10)–(13) is positive (see
Luenberger (1979)). This means that if the initial functions
ϕu(·), ϕv(·), ϕw(·) are elementwise nonnegative, then all
the components of x(t) are also nonnegative for t > t0.

4. REDUCTION TO A DISCRETE-TIME SYSTEM

In this section we will obtain explicit formulas for the
solutions of (10)–(13).

For brevity introduce notation

t∗n = tn + τ1, t̂n = tn + τ2, t∗∗n = tn + τ1 + τ2.

From (17), (18) it follows that

tn < t∗n < t̂n < t∗∗n < tn+1.

Theorem 4. For t > t1 any solution of (10)–(13) satisfies
a delay-free equation

x′ = Dx(t)− (D −A0)α(t)− (D −D0)β(t). (22)

Here on every interval tn < t < tn+1, n > 1, the functions
α(t), β(t) are defined as

α(t) =

{
λneA0(t−tn)B, tn < t < t∗n,

0, t∗n < t < tn+1,
(23)

β(t) =


0, tn < t < t∗n,

λneD0(t−t∗n)eA0τ1B, t∗n < t < t∗∗,

0, t∗∗n < t < tn+1.

(24)

Proof. The proof of Theorem 4 is lengthy and is given in
Appendix.

Theorem 4 is the key result of this paper. Equations
(22), (23), (24) present a reduction of the initial impulsive
system with delays to delay-free equations, however only
for t > t1.

By integrating (22) we can get explicit formulas for x(t).

Corollary 1. Any solution (tn, x(t)) of (10)–(13) obeys for
all tn < t < tn+1, n > 1, the following relationships

x(t) = eD(t−tn)x̄n + λnθ(t)B, (25)

where

θ(t) =


eA0(t−tn), tn < t 6 t∗n,

eD0(t−t∗n)eA0τ1 , t∗n < t 6 t∗∗n ,

eD(t−t∗∗n )eD0τ2eA0τ1 , t∗∗n < t < tn+1.

(26)

Proof. From Theorem 4 it follows that any solution
(tn, x(t)) of (10)–(13) obeys the delay-free equation (22).
Let us demonstrate that by integrating (22) we will come
to (25).

Case (i). Let tn < t < t∗n. Theorem 4 yields (22) with
α(t) = λneA0(t−tn)B, β(t) ≡ 0. Obviously, α′ = A0α(t).
Introduce a difference y(t) = x(t) − α(t). From (22) it
follows

y′ = Dy(t), tn < t < t∗n,

y(t+n ) = x(t+n )− λnB = x̄n.
(27)

Integrating (27), we obtain

y(t) = eD(t−tn)x̄n, tn < t < t∗n.

Since x(t) = y(t) + α(t), we come to the first case in (25),
(26). Notice that by setting t = t∗n from the first formula
of (26) we have

x(t∗n) = eDτ1 x̄n + λneA0τ1B. (28)

Case (ii). Let t∗n < t < t∗∗n . From Theorem 4 we obtain
(22) with α(t) = 0, β(t) = λneD0(t−t∗n)eA0τ1B. Hence

β′ = D0β(t), β(t∗n) = λneA0τ1B. (29)

From (22), (28) and (29) we conclude that the difference
y(t) = x(t)− β(t) satisfies

y′ = Dy(t), t∗n < t < t∗∗n ,

y(t∗n) = eDτ1 x̄n.
(30)

Integrating (30) and using x(t) = y(t) + β(t), we get the
second case in (25), (26). Moreover, we have

x(t∗∗n ) = eD(τ1+τ2)x̄n + λneD0τ2eA0τ1B. (31)

Case (iii). Let t∗∗n < t < tn+1. Then x′ = Dx(t) and

x(t) = eD(t−t∗∗n )x(t∗∗n ), t∗∗n < t < tn+1. (32)

From (31) and (32) we come to the third case in (25),
(26). 2



It can be concluded from Corollary 1 that the dynamics
of (10)–(13) at points tn, n = 1, 2, . . ., obey the following
discrete (Poincar’e) map.

Corollary 2. For any solution (tn, x(t)) of (10)–(13) it
holds for n = 1, 2, . . . that

x̄n+1 = Q(x̄n), (33)

where

Q(x̄) = eDΦ(C̃x̄)x̄+ F (C̃x̄)eD(Φ(C̃x̄)−τ1−τ2)eD0τ2eA0τ1B.

Proof. With t = tn+1 formulas (31) and (32) imply

x̄n+1 = eDTn x̄n + λneD(Tn−τ1−τ2)eD0τ2eA0τ1B.

Thus (33) follows. 2

Thus given two initial points x̄0, x̄1, the subsequent points
x̄2, x̄3, . . . can be found by recurrence (33). The initial
functions ϕu(t), ϕv(t), ϕw(t), are necessary to calculate
the values of x̄0, x̄1, but they do not influence further
values x̄n.

Obviously, the functionQ(·) is continuous as a composition
of continuous functions. If the functions Φ(·), F (·) are
smooth, then Q(·) is also smooth.

5. CONCLUSION

An impulsive delayed system whose continuous part has
a specific “cyclic” structure is considered. It is shown
that solutions of this system calculated at sampling times
(beginning with the third sample) obey a discrete-time
equation (an impulse-to-impulse map) (33) that is inde-
pendent on the initial data (Corollary 2). Additionally,
explicit formulas for solutions are provided for times taken
inside a sampling period (Corollary 1). Thus the impulse-
to-impulse map thoroughly characterizes solutions of the
continuous-time equation with time delays. The discrete-
time equation (33) can be readily explored by means of a
computer modelling (examples of such analysis are given in
Churilov et al. (2017)). The results of this paper generalize
those of Churilov et al. (2017) for a multidimensional case.
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Gonze, D. and Abou-Jaoudé, W. (2013). The Goodwin
model: Behind the Hill function. PLoS ONE, 8(8),
e69573.

Goodwin, B.C. (1965). Oscillatory behavior in enzymatic
control processes. In G. Weber (ed.), Adv. Enzyme
Regul., volume 3, 425–438. Pergamon, Oxford.

Goodwin, B.C. (1966). An intrainment model for timed
enzyme synthesis in bacteria. Nature, 209(5022), 479–
481.

Greenhalg, D. and Khan, Q.J.A. (2009). A delay differen-
tial equation mathematical model for the control of the
hormonal system of the hypothalamus, the pituitary and
the testis in man. Nonlin. Anal., 71, e925–e935.

Haddad, W.M., Chellaboina, V., and Nersesov, S.G.
(2006). Impulsive and Hybrid Dynamical Systems: Sta-
bility, Dissipativity, and Control. Princeton Univ. Press,
Princeton and Oxford.

Huang, C. and Cao, J. (2015). Hopf bifurcation in
an n-dimensional Goodwin model via multiple delays
feedback. Nonlinear Dynam., 79(4), 2541–2552.



Jones, R., Li, C., Meyer, A., and Pinter, R. (1961). Pulse
modulation in physiological systems, phenomenological
aspects. IRE Trans. Biomed. Electron., 8(1), 59–67.

Krasnoselskii, M.A. (1968). The Operator of Translation
along the Trajectories of Differential Equations. Amer.
Math. Soc., Providence, RI.

Lakshmikantham, V., Bainov, D.D., and Simeonov, P.S.
(1989). Theory of Impulsive Differential Equations.
World Scientific, Singapore.

Li, X. (2015). Global existence of periodic solutions in a
physiological model with delay. Acta Math. Appl. Sinica,
English Ser., 31(4), 1043–1048.

Liu, B.Z. and Deng, G.M. (1991). An improved mathe-
matical model of hormone secretion in the hypothalamo-
pituitary-gonadal axis in man. J. Theor. Biol., 150, 51–
58.

Luenberger, D.G. (1979). Introduction to Dynamic Sys-
tems: Theory, Models, and Applications. Wiley, New
York.

Mackey, M.C., Santillán, M., Tyran-Kamińska, M., and
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Appendix A. PROOF OF THEOREM 4

Formulas (7) yield

A1 = (D0 −A0)eA0τ1 , A2 = (D −D0)eD0τ2 ,

so (10) can be rewritten as

x′ = A0x(t) + (D0 −A0)eA0τ1x(t− τ1)

+ (D −D0)eD0τ2x(t− τ2).

With D = A0 + (D0−A0) + (D−D0), the last equality is
equivalent to

x′ = Dx(t)− (D0 −A0)
[
x(t)− eA0τ1x(t− τ1)

]
− (D −D0)

[
x(t)− eD0τ2x(t− τ2)

]
.

(A.1)

From the previously deduced formulas

D0 −A0 =

 0 0 0
G1e−U1τ1 0 0

0 0 0

 ,
D −D0 =

[
0 0
Gz 0

]
,

i. e. the last columns of these matrices are zero. Using (8),
equation (A.1) can be expressed as

x′ = Dx(t)− (D0 −A0)η(t)− (D −D0)ξ(t), (A.2)

where

η(t) =

[
ηu(t)

0

]
, ξ(t) =

[
ξz(t)

0

]
(A.3)

and

ηu(t) = u(t)− eU1τ1u(t− τ1), (A.4)

ξz(t) = z(t)− eDzτ2z(t− τ2). (A.5)

Lemma 5. Let n > 1. Then from the first formula (A.3)
we obtain

η(t) = α(t), t > t1. (A.6)
Moreover, η(t) = 0 for t∗0 < t < t1.

Proof. Since

u′ = U1u(t), t 6= tn,

it follows that

u(t) = eU1(t−tn) ×
{
u(t−n ), tn−1 < t < tn,

u(t+n ), tn < t < tn+1.
(A.7)

Then

u(t− τ1) = eU1(t−t∗n) ×
{
u(t−n ), t∗n−1 < t < t∗n,

u(t+n ), t∗n < t < t∗n+1.
(A.8)

From (A.4), (A.7), (A.8) we get

ηu(t) = eU1(t−tn) ×


0, t∗n−1 < t < tn,

u(t+n )− u(t−n ), tn < t < t∗n,

0, t∗n < t < tn+1.
(A.9)

Then (16), (A.9) imply

ηu(t) =


0, t∗n−1 < t < tn,

λneU1(t−tn)Bu, tn < t < t∗n,

0, t∗n < t < tn+1.

(A.10)

Since

eA0tB =

[
eU1tBu

0

]
for all t, the statement of Lemma 5 follows from (A.10)
and (23). 2

Deduce explicit formulas for the function z(t). Consider a
matrix Az and a vector Bz defined as

Az =

[
U1 0
0 U2

]
, Bz =

[
Bu
0

]
.

(The number of elements in Bz is p1 +p2.) Recall that the
matrix Dz is defined by (8).



Lemma 6. The function z(t) can be calculated as

z(t) = eDz(t−tn)z(t−n ) + λnθz(t)Bz, (A.11)

where

θz(t) =


0, t∗n−1 < t < tn,

eAz(t−tn), tn < t < t∗n,

eDz(t−t∗n)eAzτ1 , t∗n < t < tn+1.

(A.12)

Proof. Notice that w(t), ξ(t) are not involved in the first
two block rows of (A.2). We have

Dz −Az =

[
0 0

G1e−U1τ1 0

]
.

Then the first p1+p2 rows of equation (A.2) can be written
as

z′ = Dzz(t)− (Dz −Az)ηz(t), ηz(t) =

[
ηu(t)

0

]
, (A.13)

where 0 stands for the zero vector of dimension p2. Since
ηu(t) is defined by (A.10) and

eAztBz =

[
eU1tBu

0

]
for all t,

the function ηz(t) in (A.13) takes the form of

ηz(t) =


0, t∗n−1 < t < tn,

λneAz(t−tn)Bz, tn < t < t∗n,

0, t∗n < t < tn+1.

(A.14)

If t∗n−1 < t < tn then (A.13), (A.14) imply z′ = Dzz(t).
Then the first case in (A.11) follows.

Let us consider the case tn < t < tn+1. In this interval
the function z(t) is continuous, while ηz(t) has a jump at
t = t∗n. Evidently,

η′z = Azηz(t), tn < t < tn+1, t 6= t∗n.

Consider a difference yz(t) = z(t)− ηz(t). Then

y′z = Dzyz(t), tn < t < tn+1, t 6= t∗n,

yz(t
+
n ) = z(t+n )− λnBz = z(t−n ),

yz(t
+
n + τ1)− yz(t−n + τ1) = ηz(t

−
n + τ1)− ηz(t+n + τ1)

= λneAzτ1Bz.
(A.15)

Relationships (A.15) imply

yz(t) = eDz(t−tn)z(t−n )

+

{
0, tn < t < t∗n,

λneDz(t−t∗n)eAzτ1Bz, t∗n < t < tn+1.

(A.16)

Since z(t) = yz(t) + ηz(t), from (A.14), (A.16) we come to
(A.11) for tn < t < tn+1. 2

Consider now the calculation of ξ(t). Recall that the
functions ξ(t), ξz(t) are defined by (A.3), (A.5).

Lemma 7. Let n > 1. The function ξz(t) defined by (A.5)
is calculated as

ξz(t) = λnθ̃z(t)Bz, tn < t < tn+1, (A.17)

where

θ̃z(t) =



eAz(t−tn), tn < t < t∗n,

eDz(t−t∗n)eAzτ1 , t∗n < t < t̂n,

eDz(t−t∗n)eAzτ1 − eDzτ2eAz(t−t̂n),

t̂n < t < t∗∗n ,

0, t∗∗n < t < tn+1.

(A.18)

Proof. From (A.11) it follows that

z(t− τ2) = eDz(t−t̂n)z(t−n ) + λnθz(t− τ2)Bz, (A.19)

tn < t < tn+1. Hence from (A.5) we have

ξz(t) = λn
(
θz(t)− eDzτ2θz(t− τ2)

)
Bz, (A.20)

tn < t < tn+1. Thus (A.20) can be represented as (A.17)
with

θ̃z(t) = θz(t)− eDzτ2θz(t− τ2).

Formula (A.12) implies

θz(t− τ2) =


0, tn < t < t̂n,

eAz(t−t̂n), t̂n < t < t∗∗n ,

eDz(t−t∗∗n )eAzτ1 , t∗∗n < t < tn+1.

Thus we obtain (A.18).

Lemma 8. Let n > 1. Then

Gzξz(t) = Gz ξ̃z(t), tn < t < tn+1, (A.21)

where

ξ̃z(t) =


λneAz(t−tn)Bz, tn < t < t∗n,

λneDz(t−t∗n)eAzτ1Bz, t∗n < t < t∗∗n ,

0, t∗∗n < t < tn+1.

(A.22)

Proof. From (A.18) and (A.22) we have

ξz(t)− ξ̃z(t)

=

{
−λneDzτ2eAz(t−t̂n)Bz, t̂n < t < t∗∗n ,

0, otherwise.

(A.23)

Since

Gze
Dzτ2eAztBz = [0 G2]

[
eU1t 0

0 eU2t

] [
Bu
0

]
= 0

for all t, (A.23) implies (A.21). 2

Now we can complete the proof of Theorem 4. From (A.21)
we have

(D −D0)ξ(t) =

[
0 0
Gz 0

] [
ξz(t)

0

]
=

[
0 0
Gz 0

] [
ξ̃z(t)

0

]
.

At the same time

eA0tB =

[
eAztBz

0

]
, eD0teA0τ2B =

[
eDzteAzτ2Bz

0

]
for all t. Thus from (A.22) we have

(D −D0)ξ(t) = (D −D0)(α(t) + β(t))

and for n > 1, t > t1 any solution (tn, x(t)) satisfies

x′ = Dx(t)−(D0−A0)α(t)−(D−D0)(α(t)+β(t)). (A.24)

Let tn < t < t∗n. Then β(t) ≡ 0. Since

(D0 −A0) + (D −D0) = D −A0,

from (A.24) we conclude that

x′ = Dx(t)− (D −A0)α(t), tn < t < t∗n.

Let t∗n < t < t∗∗n then α(t) ≡ 0, so (A.24) can be rewritten
as

x′ = Dx(t)− (D −D0)β(t), t∗n < t < t∗∗n .

Finally, let t∗∗n < t < tn+1. Then the functions α(t), β(t)
are equal to zero, so we come to (22) again. The proof of
Theorem 4 is complete.


