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Abstract: For the global stabilization of a family of feedforward nonlinear time-delay systems
with linearized identical oscillators, a saturated feedback control is established based on a
special canonical form for the considered system. The proposed control laws use not only
the current states but also the delayed states for feedback, and, moreover, contain some free
parameters. These advantages can help to improve the transient performance of the closed-loop
system significantly. A numerical example is given to illustrate the effectiveness of the proposed
approaches.

Keywords: Bounded controls; Feedforward nonlinear systems; Time-delay systems; Global
stabilization; Nonlinear feedback.

1. INTRODUCTION

Delays and boundedness are ubiquitous in systems (Chen
et al. (2014), Murguia et al. (2014), Wei et al. (2017),
Zhou et al. (2013)). Ignoring time delays/boundedness
in the design of control systems will degrade the system
performances and may even lead to instability. For this
reason, a subject of corresponding research activities have
increased over the past two decades (Giannini et al.
(2016), Liu et al. (2014), Marchand et al. (2005), Selivanov
et al. (2016), Zhang et al. (2011)). Among the research
activities, an important fundamental problem is the global
stabilization of control systems with bounded (and delayed
or not) controls (Kaliora et al. (2004), Mazenc et al. (2003),
Mazenc et al. (2004), Yakoubi et al. (2007)). For instance,
In Teel (1992), nonlinear state feedback laws were first
proposed by Teel for the global stabilization of the multiple
integrators without delay. Teel’s pioneer work was later
successfully extended to general ANCBC linear systems
(Sussmann et al. (1994), Yang et al. (1997)), and even
some nonlinear systems including feedforward nonlinear
systems described by equations with an upper triangular
structure (Mazenc et al. (2004), Ye (2014), Ye (2011)).

Motivated by Teel’s forwarding design in Teel (1992),
Mazenc et al. studied the problem for the global stabiliza-
tion of nonlinear systems in feedforward form with bound-
ed and delayed feedback in Mazenc et al. (2004). A class
of nonlinear control laws consisting nested saturation func-
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tions was established and explicit expressions of bounded
control laws were determined. Based on the transformed
nonlinear system given by Mazenc et al. (2004), another
nonlinear control law consisting cascade saturation func-
tions was proposed in Ye et al. (2012) by Ye et al.. Later
on, Ye investigated another kind of feedforward nonlinear
systems with nominal dynamics being the cascade of multi-
ple oscillators and multiple integrators in Ye (2014). The
saturated delayed feedback was proposed for the global
stabilization problem. However, different from the analysis
in Teel (1992), because of the existing time delay in the
input, the decoupling property is no longer valid in the
recursive designs in Mazenc et al. (2004); Ye (2014); Ye
et al. (2012), which makes the corresponding analysis
more complicated. In order to overcome the shortage,
recently, based on some special canonical forms which can
keep the decoupling property in the designs, we proposed
three globally stabilizing nonlinear control laws containing
not only the current states but also the delayed states for
global stabilization of a chains of integrators subject to
input saturation and delay in Zhou et al. (2016). Later
on, the methods in Zhou et al. (2016) have been extended
in Zhou et al. (2018) and Yang et al. (unpublished) to
continuous/discrete feedforward nonlinear systems whose
nonlinearities contain not only the current states but also
the delayed states.

In this paper, we consider the global stabilization of a
family of feedforward nonlinear time-delay systems with
linearized identical oscillators by bounded controls. Moti-
vated by our recent results in Yang et al. (2017) and Zhou
et al. (2018), a special state space description containing



both the current and delayed state vectors of the consid-
ered system will be constructed. The transformation could
help to maintain the decoupling property in the recursive
design. Based on the special canonical form, a class of
nonlinear control laws consisting cascade saturation func-
tions will be proposed to solve the problem, and explicit
conditions will also be proposed for the control laws to
guarantee the global stability of the closed-loop systems.
Different from our previous works in Zhou et al. (2018)
where nonlinear time-delay systems with linearized multi-
ple integrators were considered, the systems (see Eq.(1))
we consider here are more complicated to handle. For
instance, in order to guarantee the saturation functions
operate in linear region after a finite time, a deeper anal-
ysis than that in Zhou et al. (2018) will be presented.
Compared with the results in Ye (2014), our proposed
nonlinear control laws contain not only the current but
also the delayed states information, which allows us to
cancel all the other state components at every step of
the recursive design and naturally leads to a more concise
analysis than that in Ye (2014). Moreover, the design
approach proposed in this paper can deal with feedforward
nonlinear systems containing not only the current states
but also the delayed states, which was considered in Ye
(2014).

Notation: The notation used in this paper is standard.
For two integers p and q with p ≤ q, the symbol I[p, q]
refers to the set {p, p+ 1, . . . , q} . For a positive constant

ε, σε (x) , εsign (x)min{|x/ε| , 1} denotes the standard
saturation function. The notation |·| refers to both the
usual Euclidean norm for vectors and the induced 2-
norm for matrices. Finally, for any constants a and b
with b ≥ a, we let y[a,b] = y (s) , s ∈ [a, b] and |y|[a,b] ,
sups∈[a,b] |y (s)| .

2. PROBLEM FORMULATION

In this paper, we consider the following feedforward non-
linear system:

ẋ1 (t) = Aωx1 (t) +Ax2 (t− h2) + f1,
ẋ2 (t) = Aωx2 (t) +Ax3 (t− h3) + f2,

...
ẋp−1 (t) = Aωxp−1 (t) +Axp (t− hp) + fp−1,

ẋp (t) = Aωxp (t) + bxp+1 (t− hp+1) + fp,

(1)

where fi = fi((Xi+1)[t−r,t]), and

Aω =

[
0 ω
−ω 0

]
, A =

[
0 0
0 1

]
, b =

[
0
1

]
(2)

in which ω ̸= 0, p ≥ 1, hi, i ∈ I[2, p + 1], are non-
negative numbers, r is a non-negative constant that can
be unknown, x = [xT

1 , x
T
2 , . . . , x

T
p ]

T ∈ R2p with xi =

[xi1, xi2]
T ∈ R2, i ∈ I [1, p] , is the state vector, xp+1 =

u ∈ R is the input, and Xi = (xT
i , x

T
i+1, . . . , x

T
p , xp+1)

T

for any i ∈ I[1, p + 1]. The functions fi = [fi1, fi2]
T ∈

R2, i ∈ I [1, p] , are continuous and satisfy the following
assumption.

Assumption 1. There exist positive scalars ϕi, i ∈ I[1, p],
such that ∣∣∣fi ((Xi+1)[t−r,t]

)∣∣∣ ≤ ϕi |Xi+1|2[t−r,t] , (3)

whenever |Xi+1|[t−r,t] ≤ 1.

In this paper we aim to solve the following problem.

Problem 1. Find a state feedback control u satisfying
|u| ≤ 1 such that the closed-loop system is globally
asymptotically stable and locally exponentially stable at
the origin.

We give some explanations on the problem.

Remark 1. Similar to the analysis in Zhou et al. (2018),
the linear terms Axi (t− hi) (defined by Li(xt)), i ∈
I[2, p + 1], in (1) can be replaced by the general ones

Li (xt) = Σp+1
j=iΣ

mij

k=1Aijkxj (t− hijk) , i ∈ I[2, p + 1],
where mij ≥ 1 are integers, hijk are known non-negative
numbers, and Aijk ∈ R2×2 are some known matrices such
that the linearized system of (1) is controllable.

Remark 2. The upper bounds “1” in Assumption 1 and
Problem 1 can be replaced by any given positive constant
ρ. For example, if we study Problem 1 with |u| ≤ ρ for
system (1) satisfying Assumption 1, then by the change of
variable v = u/ρ, the system still satisfies Assumption 1
where the scalars ϕi are updated accordingly.

For system (1), when hi = 0, i ∈ I[2, p], and r = 0,
Problem 1 has been investigated in Ye (2014) based on a
canonical form introduced by Teel in Teel (1992). Howev-
er, since the control is subject to time delay, the decoupling
property is no longer valid in the recursive design, which
makes the analysis in Ye (2014) rather involved. In this
paper, we will construct a novel canonical form containing
not only time delay in the input but also time delays in
its state, which can keep the decoupling property in the
recursive design. With the aid of the special canonical
form, a type of nonlinear control laws will be proposed to
solve Problem 1. The proposed controllers contain some
free parameters that can be designed to improve the con-
trol performance. Moreover, such a special canonical form
permits us to handle the feedforward system containing
delayed states, which was not considered in Ye (2014).

3. A NOVEL STATE SPACE TRANSFORMATION

In this section, we will present a special state space
description of system (1), which is crucial in establishing
the main results. To this end, we define

τ ≥
p+1∑
i=2

hi ≥ 0, (4)

and

Aτ , bbTeAωτ =

[
0 0

− sin (ωτ) cos (ωτ)

]
. (5)

Lemma 1. Let λ be a given positive constant and consider
the following linear time-delay system:

ẏ1 (t) = Aωy1 (t) +

p∑
i=2

λAτyi (t− τ) + bu (t− τ) ,

...

ẏp−1 (t) = Aωyp−1 (t) +

p∑
i=p

λAτyi (t− τ) + bu (t− τ) ,

ẏp (t) = Aωyp (t) + bu (t− τ) ,
(6)



where y = [yT1 , y
T
2 , . . . , y

T
p ]

T ∈ R2p with yi = [yi1, yi2]
T ∈

R2, i ∈ I [1, p] . Then there exists an invertible upper
block-triangular transformation y (t) = T (x[t−γ1,t]) (its
associated inverse transformation is denoted by x (t) =
G(y[t−γ2,t+γ2])), in which γ1 = max{|τi| , |τijk|} ≥ 0,
γ2 = max{|κi| , |κijk|} ≥ 0, such that system (1) with
fi (·) = 0, i ∈ I[1, p], is transformed into (6) for t ≥ γ1.
Here

T =


T11 T12 · · · T1p

. . .
. . .

...
Tp−1,p−1 Tp−1,p

Tpp

 ,

G =


G11 G12 · · · G1p

. . .
. . .

...
Gp−1,p−1 Gp−1,p

Gpp

 ,

(7)

where Tij ,Gij , j ∈ I [i, n] , i ∈ I [1, n] , are linear operators
defined by

Tii
(
(xi)[t−γ1,t]

)
= Φiixi (t+ τi) ,

Tij
(
(xj)[t−γ1,t]

)
=

q1ij∑
k=1

Φijkxj (t+ τijk) ,
(8)

and
Gii

(
(yi)[t−γ2,t+γ2]

)
= Ψiiyi (t+ κi) ,

Gij

(
(yj)[t−γ2,t+γ2]

)
=

q2ij∑
k=1

Ψijkyj (t+ κijk) ,
(9)

in which q1ij ≥ 1, q2ij ≥ 1 are some integers, Φii =
Φii(λ, ω, τ),Ψii = Ψii(λ, ω, τ) are some invertible R2×2

matrices with elements being polynomial functions of
{λ, 1/λ, cos(ωτ), sin(ωτ)}, Φijk = Φijk(λ, ω, τ) ̸= 02×2,Ψijk

= Ψijk(λ, ω, τ) ̸= 02×2 are some R2×2 matrices with ele-
ments being polynomial functions of {λ, 1/λ, 1/ω, cos(ωτ),
sin(ωτ)}, τi ≤ 0, τijk ≤ 0, κi ≥ 0, κijk are polynomial
functions of {hi, τ} satisfying{

τijk ≤ τj , k ∈ I [1, q1ij ] , i ∈ I [1, j − 1] , j ∈ I [2, p] ,
κijk ≤ κi, k ∈ I [1, q2ij ] , j ∈ I [i+ 1, p] , i ∈ I [1, p− 1] .

(10)

The case p = 2 will be illustrated by an example in Section
5 (see (19)--(21)). By using Lemma 1, a special description
of system (1) is given in the following corollary.

Corollary 1. By the transformation y(t) = T (x[t−γ1,t]) in
Lemma 1, system (1) is transformed into

ẏ1 (t) = Aωy1 (t) + g1(t− τ) + bu (t− τ) + l1,
ẏ2 (t) = Aωy2 (t) + g2(t− τ) + bu (t− τ) + l2,

...
ẏp−1 (t) = Aωyp−1 (t) + gp−1(t− τ) + bu (t− τ) + lp−1,

ẏp (t) = Aωyp (t) + bu (t− τ) + lp,
(11)

for t ≥ γ1, where gj(t − τ) = Σp
i=j+1λAτyi (t− τ) , j ∈

I[1, p−1], li = li((Yi+1)[t−µ,t]) with li(·) = [li1(·), li2(·)]T ∈
R2, i ∈ I[1, p], satisfies, for some positive constants d =
d(λ, ω, τ) ≤ 1 and δi = δi(λ, ω, τ), i ∈ I [1, p] ,∣∣∣li ((Yi+1)[t−µ,t]

)∣∣∣ ≤ δi |Yi+1|2[t−µ,t] , (12)

whenever |Yi+1|[t−µ,t] ≤ d ≤ 1, where Yi = (yTi , y
T
i+1, . . . ,

yTp , yp+1)
T, i ∈ I [1, p+ 1] , with yi = [yi1, yi2]

T ∈

R2, yp+1 = u ∈ R, and µ = µ(r, hi) ≥ 0 is a (sufficiently
large) constant.

When 0 ≤ t < γ1, we set x(θ) = 0, θ ∈ [−γ1,−γ3) in (8),

where γ3 , maxi∈I[2,n]{hi}. From (8) and (9) we clearly
see that: (i) if the controller u (t) = u (y (t)) globally
stabilizes the y-system (11), it also globally stabilizes
the x-system (1); (ii) the controller u (t) = u (y (t)) is
implementable since y (t) involves only the current and
delayed information of the state x(t) in view of τi ≤ 0 and
τijk ≤ 0. Therefore, it remains to design the stabilizing
controller u (t) = u (y (t)) for the y-system (11).

Remark 3. For utilizing the special form of the transfor-
mation (8)--(9), the eigenvalues of the system matrix of
system (1) (also (6)) are all restricted to be ±ωi, ω ̸= 0.
However, if the eigenvalues are different, for instance,
±ωj i, j ∈ I[1, k] with k ≥ 2, and ωi ̸= ωj if i ̸= j,
the corresponding transformation can not be expressed as
(8) and (9) in the time domain, which will cause some
difficulties in the analysis of (1).

4. THE GLOBALLY STABILIZING CONTROLLER

With the aid of the above state space description (11), we
are ready to give the main results in this paper. For future
use, we define

Ap =


1
1 1
...
...
. . .

1 1 1 1


p×p

, cp = |Ap|2 , (13)

and {
Ac1 = Aω − λbbT,
Ac2 = (Ip ⊗Aω)− λ

(
Ap ⊗ bbT

)
,

(14)

where λ is a given positive constant. From (14) we can
get the characteristic polynomial of Aci , i = 1, 2, are
α (s) = s2+λs+ω2. Since λ > 0 and ω2 > 0, the Lyapunov
matrix equations AT

ciPci + PciAci = −2I, i = 1, 2, have
unique positive definite solutions Pci , i = 1, 2. Define

p−ci = λmin (Pci) , p+ci = λmax (Pci) , i = 1, 2.

Theorem 1. Let β ∈ (0, 1) and λ be two given positive
constants satisfying{ (

p−c1
)1/2

βp−i − 2λ
(
p+c1

)3/2
(λτηi + ηi−1) > 0, i ∈ I[1, p],

p−c2 − 3λ4τ2c2p
(
p+c2

)3
> 0,

(15)
with ηi = Σi

j=1β
p−j , i ∈ I [1, p], and η0 = 0. Then there

exists a positive constant ε† = ε† (β, λ) ∈ (0, 1) such that
Problem 1 is solved by the controller u (t) = −up (t) , in
which{

ui (t) = σεi

(
λbTeAωτyi (t)

)
+ ui−1 (t) , i ∈ I [2, p] ,

u1 (t) = σε1

(
λbTeAωτy1 (t)

)
,

(16)
where εi, i ∈ I [1, p], are some constants satisfying

εi = βp−iε, ∀ε ∈
(
0, ε†

)
, i ∈ I [1, p] . (17)

Remark 4. For given ω ̸= 0 and τ ≥ 0, (15) can be
guaranteed when the parameters β and λ are sufficiently
small. The detailed explanation is presented as follows. On
the one hand, it is easy to verify that




p−c1 =

λ2 + 4ω2 − λ
√
λ2 + 4ω2

2λω2
, 1

λ
α1,

p+c1 =
λ2 + 4ω2 + λ

√
λ2 + 4ω2

2λω2
, 1

λ
α2,

(18)

where αi = α1 (λ, ω, 1/ω) , i = 1, 2, from which we know
that αi ∈ [di1, di2], i = 1, 2, with dij being some suitable
positive constants independent of λ for any λ ∈ (0, 1).
Substituting (18) into the first inequalities of (15) gives,
for i ∈ I[1, p],

βp−i

((α1

λ

) 1
2 − 2α2

(α2

λ

) 1
2

(λτδi + δi−1)

)
> 0,

where δi = Σi
j=1β

i−j , which can be guaranteed by

1−
2
(√

d22
)3

√
d11

(λτδi + δi−1) > 0,

which are obviously true when β and λ are sufficiently
small. On the other hand, similar to (18), p−2 and p+2 can
be expressed as

p−c2 =
1

λ
α3 =

1

λ
α3

(
λ, ω,

1

ω

)
,

p+c2 =
1

λ
α4 =

1

λ
α4

(
λ, ω,

1

ω

)
,

where αi ∈ [di1, di2], i = 3, 4, with dij being some suitable
positive constants independent of λ for any λ ∈ (0, 1).
Then the second inequality in (15) can be rewritten as

1

λ
α3

(
λ, ω,

1

ω

)
− 3λτ2c2pα4

(
λ, ω,

1

ω

)
> 0,

which can be guaranteed by

1−
3τ2c2pd

2
42

d31
λ2 > 0,

which is also obviously true when λ is sufficiently small
where we have noticed that cp are some constants inde-
pendent of λ (see (13)).

5. AN ILLUSTRATIVE EXAMPLE

To illustrate Theorem 1, we consider the following nonlin-
ear system:

ẋ11 (t) = x12 (t) + x2
21 (t− r1) ,

ẋ12 (t) = −x11 (t) + x22 (t− h2) + x2
22 (t− r2) ,

ẋ21 (t) = x22 (t) ,
ẋ22 (t) = −x21 (t) + u (t− h3) .

(19)

Our design consists of the following two steps.

Step 1: The transformation calculation from x-system to
y-system. Based on Lemma 1, the transformation is given
by y1 (t) = Φ11x1 (t+ τ1) +

2∑
k=1

Φ12kx2 (t+ τ12k) ,

y2 (t) = Φ22x2 (t+ τ2)

(20)

where

Φ11 =

[
λ cos τ λ sin τ
−λ sin τ λ cos τ

]
,Φ121 =

[
−λ sin τ 0

0 0

]
,

Φ122 = Φ22 =

[
1 0
0 1

]
,

and τ1 = −2τ+h2+h3, τ121 = −2τ+h3, τ122 = τ2 = −τ+
h3. It is clear see that the above transformation satisfies (8)

and the first inequalities of (10) by noticing (4). Moreover,
the inverse transformation from y to x is given by x1 (t) = Ψ11y1 (t+ κ1) +

2∑
k=1

Ψ12ky2 (t+ κ12k) ,

x2 (t) = Ψ22y2 (t+ κ2) ,

(21)

where

Ψ11 =

 cos τ

λ

− sin τ

λ
sin τ

λ

cos τ

λ

 ,Ψ121 =

 − cos τ

λ

sin τ

λ− sin τ

λ

− cos τ

λ

 ,

Ψ122 =

[
sin (2τ)

2
0

sin2 τ 0

]
,Ψ33 =

[
1 0
0 1

]
,

and κ1 = κ121 = 2τ − (h2 + h3), κ122 = τ − (h2 + h3)
κ2 = τ − h3. It is also clear see that the above inverse
transformation satisfies (9) and the second inequalities of
(10) by noticing (4).

Step 2: Design of u(t) for system (19). Based on the
above transformation, the controller proposed in Theorem
1 takes the form

u (t) = −σε2

(
λbTeAωτy2 (t)

)
− σε1

(
λbTeAωτy1 (t)

)
, (22)

where yi (t) , i = 1, 2, are given by (20), Aω, b are given by
(2) with ω = 1, and εi, i = 1, 2, satisfy

εi = β2−iε, i = 1, 2. (23)

Now we perform simulations for the closed-loop system
consisting (19) and (22). Let h2 = h3 = 0.2, τ = 0.4,
ε = 0.6 and β = 0.15, λ = 0.1 (which satisfy (15)). For the
simulation purpose, we let the “unknown” time delays be
chosen as ri = 0.5, i = 1, 2. For a given initial condition
x (0) = [−1,−1, 1, 1]T, x(θ) = [0, 0, 0, 0]T, ∀θ ∈ [−0.6, 0),
u(θ) = 0, θ ∈ [−0.2, 0], the 2-norm of the state vectors of
the closed-loop system consisting (19) and (22) is recorded
in Fig. 1. It follows that the states converge to the origin,
which indicates asymptotic stability of the closed-loop
system.

At last, we show that the stability conditions (15) in
Theorems 1 may be conservative. Let β = 0.4, λ = 0.15
which do not satisfy (15) and the other values be chosen as
above. the 2-norm of the state vectors of the closed-loop
system consisting (19) and (22) is recorded in Fig. 2. It
follows that the states still converge to the origin.

6. CONCLUSION

This paper has investigated the global stabilization of a
family of feedforward nonlinear time-delay systems with
linearized identical oscillators with bounded feedback.
Based on a special canonical form which contains not only
time delay in the input but also time delays in its state, a
type of nonlinear control laws was proposed to achieve
global stabilization. The proposed nonlinear controllers
contain some free parameters that can be designed to im-
prove the control performance. A numerical example was
given to show the effectiveness of the proposed methods.
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Mazenc, F., Mondié, S., and Francisco, R. (2004). Global
asymptotic stabilization of feedforward systems with
delay in the input. IEEE Transanctions on Automatic
Control, 49, 844-850.
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