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Abstract: In this study, finite-time control of switched linear systems with interval time-delay
is considered. State feedback is applied in order to ensure finite-time boundedness of the system.
Sufficient conditions and average dwell-time bounds are obtained. Because of non-convex terms
in the average dwell-time constraint, a technique which converts the nonlinear terms into linear
matrix inequality conditions is expressed in terms of the cone-complementarity linearization
method. Finally, numerical examples are given for the effectiveness and validity of the proposed
solutions.
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1. INTRODUCTION

Switched systems are class of hybrid systems which have a
switching sequence directing the system among the finite
number of subsystems. They are used for modelling various
control problems such as network control, traffic control,
process control etc.

Stability is one of the basic research topic for switched
systems, which has attracted most of the attention in last
decades, Liberzon and Morse (1999); Sun and Ge (2005);
Sun (2006); Lin and Antsaklis (2009). Most of the studies
related to stability of switched systems focus on Lyapunov
asymptotic stability, which is defined over an infinite time
interval. However, in many practical applications, finite-
time (FT) stability of a system is the main concern, which
means keeping the system behavior/state within specified
bounds in a fixed FT interval, Dorato (1961); Michel and
Wu (1969); Weiss and Infante (1967). FT stability for
switched systems is an emerging concept in recent years,
Du et al. (2009); Xiang and Xiao (2011, 2013).

Average-dwell time (ADT) is another research topic for
switched systems. ADT means that the number of switch-
ing instants in a finite interval is bounded and the average
time between consecutive switching instants is not less
than a constant. The analysis of the switched systems with
dwell time Cheng et al. (2015); Karabacak et al. (2014);
Zhang and Shi (2009) became prominent after Hespanha
and Morse (1999). In the most of the existing literature,
a suitable Lyapunov functional is determined to obtain
an ADT bound for the stability and the stabilization of
switched systems as small as possible.

Time-delay systems have drawn attention to many schol-
ars. If both upper and lower bounds on time-delay exist,
such systems are called interval time-delay systems, Bot-
mart et al. (2011); Phat et al. (2012); Shao (2009); Shao
and Han (2012). The current methods of stabilization are
divided into two categories: delay-dependent Park (1999);
Zhang et al. (2005) and delay-independent Zhang et al.

(2007). Robust Blizorukova et al. (2001); Bus lowicz (2010),
H∞ Fridman and Shaked (2002) and observer based con-
trol Kwon et al. (2006) problems are also examined in
time-delay systems.

This paper deals with the design of the state-feedback
controller to stabilize the interval time-delay switched
systems in FT. Some sufficient conditions and new ADT
bounds are introduced. Because of nonlinear terms in the
ADT constraint, a technique which converts the nonlinear
terms into LMI conditions is expressed in terms of the
cone-complementarity linearization method.

The notation used in this paper is fairly standard. “*”
in a matrix means to be the symmetric term of the
corresponding upper triangular element, C1 is the class
of continuously differentiable functions and λmax(A) (re-
spectively λmin(A)) represents the maximum (minimum)
eigenvalue of A. Matrices, if not stated, are assumed to
have compatible dimensions for algebraic operations.

2. PROBLEM STATEMENT

Consider a switched linear system with an interval time-
varying delay in the state vector, where

ẋ(t) =Aσ(t)x(t) +Adσ(t)x(t− h(t)) +Bσ(t)u(t)

+Bwσ(t)w(t),
(1)

with the initial conditon function

x(t) = φ(t), t ∈ [−h2, 0]. (2)

Here x(t) ∈ Rn is the state vector and u(t) ∈ Rm

the control input, respectively. Aσ(t), Adσ(t), Bσ(t) and
Bwσ(t) are real constant matrices of appropriate dimen-

sions, φ(t) ∈ C1([−h2, 0],Rn) is the initial function and
h(t) ∈ C1([h1, h2],R) is the delay satisfying

0 ≤ h1 ≤ h(t) ≤ h2, ḣ(t) ≤ hd <∞. (3)

The switching signal is defined as σ(t) : [0,∞) →
I = {1, 2, ..., N} with the switching sequence Σ =
{x0; (i0, t0), (i1, t1), ..., (ik, tk), ...|ik ∈ I, k = 0, 1, ...}, i.e.



ik
th system is activated when t ∈ [tk, tk+1). In this paper,

the expression “Switched Systems with Stable Subsys-
tems” means that A1, A2, ..., AN are all Hurwitz stable.
w(t) is the exogenous disturbance and satisfies∫ ∞

0

wT (t)w(t)dt < d, d ≥ 0 (4)

Consider the control law

u(t) = −Kσ(t)x(t). (5)

The closed-loop system is given as follows

ẋ(t) =AKσ(t)x(t) +Adσ(t)x(t− h(t))

+Bwσ(t)w(t),
(6)

where AKσ(t) = Aσ(t) −Bσ(t)Kσ(t).

Lemma 1. (Schur complement) Given constant matrices
S11, S12, S22 with appropriate dimensions satisfying
S11 = ST11 and S22 = ST22 and S22 < 0, the LMI S =[
S11 S12

∗ S22

]
< 0 is equivalent to S11 +S12S

−1
22 S

T
12 < 0, Boyd

and Vandenberghe (2004).

Lemma 2. (Grönwall’s lemma) If a differentiable function
ψ(t) > 0 on the open interval U = (a, b) (as well as
U = [a, b] or U = [a, b)) and

u̇(t) ≤ φ(t) + ψ(t)u(t)

then

u(t) ≤ u(a)eΨ(t) +

∫ t

a

φ(s)eΨ(t)−Ψ(s)ds

for t < b where

Ψ(t) =

∫ t

a

ψ(s)ds,

Perko (2013).

Lemma 3. (Jensen’s inequality) For any symmetric posi-
tive definite matrix M > 0, scalars a, b > 0 with b > a and
an integrable vector function x : [a, b]→ Rn, the following
inequality holds, Gu et al. (2003).(∫ b

a

x(s)ds

)T
M

(∫ b

a

x(s)ds

)

≤ (b− a)

(∫ b

a

xT (s)Mx(s)ds

)
Definition 1. Let Nσ(t)(t, T ) denotes the switching num-
ber of the switching signal σ(t) for the interval 0 ≤ t ≤ T .
N0 is the chatter bound. Then the following inequality
holds

Nσ(t)(t, T ) ≤ N0 + (T − t)/τa
for so called ADT τa, Hespanha and Morse (1999).

Definition 2. (FT Stability) Given scalars δ > 0, ε > 0,
Tf > 0 with 0 ≤ δ ≤ ε and a matrix R > 0 with
appropriate dimensions, the switched system (1) with
u(t) ≡ 0 and w(t) ≡ 0 is said to be FT stable with
respect to (δ, ε, Tf , R), if sups∈[−h2,0]

{
xT (s)Rx(s)

}
< δ

then xT (t)Rx(t) < ε, ∀t ∈ [0, Tf ], Liu et al. (2012).

Definition 3. (FT Boundedness) Given scalars δ > 0,
ε > 0, Tf > 0 with 0 ≤ δ ≤ ε and a matrix R > 0
with appropriate dimensions, the switched system (1)
with u(t) ≡ 0 is said to be FT bounded (δ, ε, Tf , d, R),
if sups∈[−h2,0]

{
xT (s)Rx(s)

}
< δ then xT (t)Rx(t) < ε,

∀t ∈ [0, Tf ] and ∀w(t) :
∫ Tf

0
wT (t)w(t)dt < d, Liu et al.

(2012).

3. FT BOUNDEDNESS ANALYSIS

In this section, we suppose that A1, A2,..., Ar, (1 ≤ r <
N) in system (1) are Hurwitz stable and the remaining
matrices are unstable. Let us define

ψi =

{
−αi i ∈ Ist
αi i ∈ Iun

where Ist and Iun are the index set of all Hurwitz stable
and unstable subsystems, respectively. Note that I = Ist∪
Iun. For a given switching sequence Σ, the total activation
times of stable and unstable subsystems are defined as
T− and T+, respectively in a finite interval [0, Tf ]. Thus,
Tf = T+ + T−.

Theorem 4. Consider the switched system (1) with r Hur-
witz stable and N − r unstable subsystems. The system
(1) is FT bounded with respect to (δ, ε, Tf , d, R), for given
constants αi ≥ 0, µ ≥ 1, T+ > 0 and T− > 0 such that
Tf = T+ + T−, if there exist a set of symmetric matrices
for every ith system Pi > 0, Q1i > 0, Q2i > 0, S1i > 0,
S2i > 0, Ti > 0, Wi > 0, Yi, M1i, M2i, N1i, N2i satisfying

Υi =


Ωi −Mi −Ni Zi
∗ −e2ψih2S2i 0 0
∗ ∗ −e2ψih2S2i 0
∗ ∗ ∗ −I

 < 0 (7a)

e2α+
maxT

+

η′+ ≤ λ1e
2α−
min

T−
ε (7b)

Pj ≤ µPi, Qkj ≤ µQki, Skj ≤ µSki, Tj ≤ µTi, (7c)

for i, j ∈ I and k = 1, 2, where

Ωi =


Ω11,i Ω12,i Ω13,i −N1i Bwi Ω16,i

∗ Ω22,i M2i −N2i 0 PiA
T
di

∗ ∗ Ω33,i 0 0 0
∗ ∗ ∗ Ω44,i 0 0
∗ ∗ ∗ ∗ −Wi BTwi
∗ ∗ ∗ ∗ ∗ Ω66,i

 (8)

with entries

Ω11,i =AiPi + PiA
T
i −BiYi − Y Ti BTi +Q1i +Q2i

− e2ψih1S1i − 2ψiPi + Ti,

Ω12,i =AdiPi −M1i +N1i,

Ω13,i =e2ψih1S1i +M1i,

Ω16,i =PiA
T
i − Y Ti BTi ,

Ω22,i =N2i +NT
2i −M2i −MT

2i − (1− hd)e2ψih2Ti

Ω33,i =− e2ψih1(Q1i + S1i),

Ω44,i =− e2ψih2Q2i,

Ω66,i =h2
1S1i + h2

12S2i − 2Pi.

Then the ADT of the switching signal satisfies

τa >

τ∗a =
Tf lnµ

ln(λ1ε)− ln η′+ − 2α+
maxT+ + 2α−minT

− −N0 lnµ
(9)

where α+
max = maxi∈Iun{αi}, α−min = mini∈Ist{αi} and

η′+ =λ2δ + λ′3h1e
2α+
maxh1δ + λ′4h2e

2α+
maxh2δ

+ λ′5h
3
1e

2α+
maxh1δ′

+ λ′6h
2
12(h1e

2α+
maxh1 + h12e

2α+
maxh2)δ′

+ λ′7h2e
2α+
maxh2δ + λ8d.

(10)



with matrix transformations

Q̂1i =R1/2Q1iR
1/2, Q̂2i = R1/2Q2iR

1/2,

Ŝ1i =R1/2S1iR
1/2, Ŝ2i = R1/2S2iR

1/2,

T̂i =R1/2TiR
1/2,

Q1i =PiQ1iPi, Q2i = PiQ2iPi,

S1i =PiS1iPi, S2i = PiS2iPi,

Ti =PiT iPi,

M1i =PiM1iPi, M2i = PiM2iPi,

N1i =PiN1iPi, N2i = PiN2iPi

(11)

and

λ1 = inf
i∈I
{λmin(P̃−1

i )}, λ2 = sup
i∈I
{λmax

(
P̃−1
i

)
},

λ′3 = sup
i∈I
{λmax

(
P̃−1
i Q̂1iP̃

−1
i

)
},

λ′4 = sup
i∈I
{λmax

(
P̃−1
i Q̂2iP̃

−1
i

)
},

λ′5 = sup
i∈I
{λmax

(
P̃−1
i Ŝ1iP̃

−1
i

)
},

λ′6 = sup
i∈I
{λmax

(
P̃−1
i Ŝ2iP̃

−1
i

)
},

λ′7 = sup
i∈I
{λmax

(
P̃−1
i T̂iP̃

−1
i

)
},

λ8 = sup
i∈I
{λmax(Wi)}, δ′ = sup

s∈[−h2,0]

{
ẋT (s)Rẋ(s)

}
h12 =h2 − h1, Zi = [0 0 0 0 CiPi 0 0]T

Mi =[M1i M2i 0 0 0 0 0]T , Ni = [N1i N2i 0 0 0 0 0]T .

The gain matrices Ki and Li of controller and observer are
perceived as

Ki = YiP
−1
i , Li = −1

2
PiC

T
i (12)

Proof. Consider the following Lyapunov-Krasovskii can-
didate functional as

Vi(x(t)) =

6∑
j=1

Vji(x(t)) (13)

where

V1i(x(t)) =xT (t)P−1
i x(t)

V2i(x(t)) =

∫ t

t−h1

e2ψi(t−s)xT (s)Q1ix(s)ds

V3i(x(t)) =

∫ t

t−h2

e2ψi(t−s)xT (s)Q2ix(s)ds

V4i(x(t)) =

∫ 0

−h1

∫ t

t+θ

h1e
2ψi(t−s)ẋT (s)S1iẋ(s)dsdθ

V5i(x(t)) =

∫ −h1

−h2

∫ t

t+θ

h12e
2ψi(t−s)ẋT (s)S2iẋ(s)dsdθ

V6i(x(t)) =

∫ t

t−h(t)

e2ψi(t−s)xT (s)T ix(s)ds

(14)

The derivatives are obtained as follows

V̇1i(x(t)) =xT (t)[P−1
i AKi +ATKiP

−1
i ]x(t)

+ 2xT (t)P−1
i Adix(t− h(t))

+ 2xT (t)P−1
i Bwiw(t)

V̇2i(x(t)) =2ψiV2i + xT (t)Q1ix(t)

− e2ψih1xT (t− h1)Q1ix(t− h1)

V̇3i(x(t)) =2ψiV3i + xT (t)Q2ix(t)

− e2ψih2xT (t− h2)Q2ix(t− h2)

V̇4i(x(t)) =2ψiV4i + h2
1ẋ
T (t)S1iẋ(t)

− e2ψih1

∫ t

t−h1

h1ẋ
T (s)S1iẋ(s)ds

V̇5i(x(t)) ≤2ψiV5i + h2
12ẋ

T (t)S2iẋ(t)

− e2ψih2

∫ t−h1

t−h2

h12ẋ
T (s)S2iẋ(s)ds

V̇6i(x(t)) ≤2ψiV6i + xT (t)T ix(t)

− (1− hd)e2ψih2xT (t− h(t))T ix(t− h(t))
(15)

By Jensen’s Inequality, V̇4i(x(t)) can be written as

V̇4i(x(t)) ≤2ψiV4i(x(t)) + h2
1ẋ
T (t)S1iẋ(t)

− e2ψih1xT (t)S1ix(t)

+ 2e2ψih1xT (t)S1ix(t− h1)

− e2ψih1xT (t− h1)S1ix(t− h1)

(16)

From (3), it is clear that −(h2 − h1) ≤ −(h2 − h(t)) and
−(h2 − h1) ≤ −(h(t)− h1). Thus

−h12

∫ t−h1

t−h2

ẋT (s)S2iẋ(s)ds ≤

− (h2 − h(t))

∫ t−h(t)

t−h2

ẋT (s)S2iẋ(s)ds

− (h(t)− h1)

∫ t−h1

t−h(t)

ẋT (s)S2iẋ(s)ds

(17)

Let
∫ t−h1

t−h(t)
ẋ(s)ds =: ih1

(t) and
∫ t−h(t)

t−h2
ẋ(s)ds =: ih2

(t).

Then, by Jensen’s Inequality, (17) is written as follows

−h12

∫ t−h1

t−h2

ẋT (s)S2iẋ(s)ds

≤ −iTh2
(t)S2iih2(t)− iTh1

(t)S2iih1(t)

(18)

Now, define

ξ(t) =
[
xT (t) xT (t− h(t)) xT (t− h1) xT (t− h2)

wT (t) ẋT (t) iTh1
(t) iTh2

(t)
]T
.

(19)

By Leibniz’s formula, we have

2ξT (t)Mi

[
x(t− h1)− x(t− h(t))− ih1(t)

]
= 0

2ξT (t)Ni
[
x(t− h(t))− x(t− h2)− ih2

(t)

]
= 0

(20)

Also from (6), it can be written

2ẋT (t)P−1
i

[
AKix(t) +Adix(t− h(t))

+Bwiw(t)− ẋ(t)

]
= 0

(21)

On the other hand, for a positive definite matrix Wi the
following holds



[
wT (t)Wiw(t)− wT (t)Wiw(t)

]
= 0 (22)

Then, by the equations (13)-(21), we obtain

V̇i(x(t))− 2ψiVi(x(t)) ≤ξT (t)Σiξ(t) + wT (t)Wiw(t).
(23)

Here

Σi =

Ξi −Mi −Ni
∗ −e2ψih2S2i 0
∗ ∗ −e2ψih2S2i

 (24)

for i, j ∈ I and k = 1, 2, where

Ξi =


Ξ11,i Ξ12,i Ξ13,i −N1i P

−1
i Bwi A

T
KiP

−1
i

∗ Ξ22,i M2i −N2i 0 ATdiP
−1
i

∗ ∗ Ξ33,i 0 0 0
∗ ∗ ∗ Ξ44,i 0 0
∗ ∗ ∗ ∗ −Wi BTwiP

−1
i

∗ ∗ ∗ ∗ ∗ Ξ66,i

 (25)

with entries

Ξ11,i =P−1
i AKi +ATKiP

−1
i +Q1i +Q2i − e2ψih1S1i

− 2ψiP
−1
i + T i,

Ξ12,i =P−1
i Adi −M1i +N1i,

Ξ13,i =e2ψih1S1i +M1i,

Ξ22,i =N2i +N
T

2i −M2i −M
T

2i − (1− hd)e2ψih2T i,

Ξ33,i =− e2ψih1(Q1i + S1i),

Ξ44,i =− e2ψih2Q2i,

Ξ66,i =h2
1S1i + h2

12S2i − 2P−1
i

Mi =[M
T

1i M
T

2i 0 0 0 0 0]T , Ni = [N
T

1i N
T

2i 0 0 0 0 0]T

By pre- and post-multiplying both sides of the Inequalities
in (24) with (25) by Di = diag{Pi, Pi, Pi, Pi, I, Pi, Pi, Pi},
Υi of (7a) are obtained. From (7a)

V̇i(x(t))− 2ψiVi(x(t)) ≤ wT (t)Wiw(t) (26)

is obtained.
On the other hand, by applying Grönwall’s Lemma on
t ∈ [tk, tk+1) we have

Vσ(t)(x(t)) ≤e2ψσ(tk)(t−tk)Vσ(tk)(x(tk))

+

∫ t

tk

e2ψσ(tk)(t−s)wT (s)Wσ(tk)w(s)ds.
(27)

Consider (7c) and assume σ(tk) = i and σ(t−k ) = j, we
have

Vσ(tk)(x(tk)) ≤ µVσ(t−
k

)(x(t−k )) (28)

If Grönwall’s Lemma and (28) is applied to (26) until [0, t1)
iteratively, we get

Vσ(t)(x(t)) ≤e2ψσ(tk)(t−tk)+...+2ψσ(0)(t1−0)

× µNVσ(0)(x(0))

+ µN
∫ t1

0

e2ψσ(tk)(t−tk)+...+2ψσ(0)(t1−s)

× wT (s)Wσ(0)w(s)ds

+ ...

+

∫ t

tk

e2ψσ(tk)(t−s)wT (s)Wσ(tk)w(s)ds

(29)

By considering the activation times T− and T+ for stable
and unstable subsystems, respectively, the inequality (29)
can be written as follows:

Vσ(t)(x(t)) ≤e2α+
maxT

+−2α−
min

T−

× µN
(
Vσ(0)(x(0)) + λ8d

)
.

(30)

where N denotes the switching number of σ(t) over (0, Tf ).
Moreover,

Vσ(t)(x(0)) =xT (0)P−1
σ(0)x(0)

+

∫ 0

−h1

e−2ψσ(0)sxT (s)Q1σ(0)x(s)ds

+

∫ 0

−h2

e−2ψσ(0)sxT (s)Q2σ(0)x(s)ds

+

∫ 0

−h1

∫ 0

θ

h1e
−2ψσ(0)sẋT (s)S1σ(0)ẋ(s)dsdθ

+

∫ −h1

−h2

∫ 0

θ

h12e
−2ψσ(0)sẋT (s)S2σ(0)ẋ(s)dsdθ

+

∫ 0

−h(0)

e−2ψσ(0)sxT (s)Tσ(0)x(s)ds.

(31)

When the orders of the double integrals are changed and
the matrices in (11) are substituted, we have

Vσ(0)(x(0)) =xT (0)P−1
σ(0)x(0)

+

∫ 0

−h1

e−2ψσ(0)sxT (s)P−1
σ(0)Q1σ(0)P

−1
σ(0)x(s)ds

+

∫ 0

−h2

e−2ψσ(0)sxT (s)P−1
σ(0)Q2σ(0)P

−1
σ(0)x(s)ds

+

∫ 0

−h1

∫ s

−h1

h1e
−2ψσ(0)s

× ẋT (s)P−1
σ(0)S1σ(0)P

−1
σ(0)ẋ(s)dθds

+

∫ −h1

−h2

∫ s

−h2

h12e
−2ψσ(0)s

× ẋT (s)P−1
σ(0)S2σ(0)P

−1
σ(0)ẋ(s)dθds

+

∫ 0

−h1

∫ −h1

−h2

h12e
−2ψσ(0)s

× ẋT (s)P−1
σ(0)S2σ(0)P

−1
σ(0)ẋ(s)dθds

+

∫ 0

−h(0)

e−2ψσ(0)sxT (s)P−1
σ(0)Tσ(0)P

−1
σ(0)x(s)ds.

From (11), each matrix can be bounded as

P−1
σ(0)Q1σ(0)P

−1
σ(0) =R1/2P̃−1

σ(0)Q̂1σ(0)P̃
−1
σ(0)R

1/2

≤λmax
(
P̃−1
σ(0)Q̂1σ(0)P̃

−1
σ(0)

)
R ≤ λ′3R.

Also, note that

sup
s∈[−h(0),0]

{e−2ψσ(0)s} ≤ sup
s∈[−h1,0]

{e−2ψσ(0)s} = e2α+
maxh1 ,

sup
s∈[−h2,0]

{e−2ψσ(0)s} =e2α+
maxh2

(32)

Here, an upper bound for Vσ(0)(0) can be written as follows



Vσ(0)(x(0)) ≤λ2δ + λ′3h1e
2α+
maxh1δ + λ′4h2e

2α+
maxh2δ

+ λ′5h
3
1e

2α+
maxh1δ′

+ λ′6h
2
12(h1e

2α+
maxh1 + h12e

2α+
maxh2)δ′

+ λ′7h2e
2α+
maxh2δ.

(33)

Since,

Vσ(t)(x(t)) ≥ xT (t)P−1
i x(t) = xT (t)R1/2P̃−1

i R1/2x(t)

≥ inf
i∈I

(
λmin(P̃−1

i )

)
xT (t)Rx(t)

= λ1x
T (t)Rx(t).

(34)

By the equations (30), (33) and (34) the inequality
xT (t)Rx(t) < ε is obtained, which tells that the switched
system (1) is FT bounded. Then, for µ = 1 the inequality
in (7b) and for µ > 1 the ADT bound in (9) are calcu-
lated. 2

Remark 1. Note that the condition (7b) contains the con-
stants λ1, λ2, λ′3, λ′4, λ′5,λ′6, λ′7 and λ8. The existance of
these constants depends on the solutions of the following
inequalities

λ1I < P̃−1
i < λ2I

0 < P̃−1
i Q̂1iP̃

−1
i < λ′3I, 0 < P̃−1

i Q̂2iP̃
−1
i < λ′4I

0 < P̃−1
i Ŝ1iP̃

−1
i < λ′5I, 0 < P̃−1

i Ŝ2iP̃
−1
i < λ′6I,

0 < P̃−1
i T̂iP̃

−1
i < λ′7I, 0 < Wi < λ8I.

(35)

For more details see Lin et al. (2011).

To solve the inequalities in (35), it is necessary to put

them into LMIs form. Thus, consider 0 < P̃−1
i Q̂1iP̃

−1
i <

λ′3I, write it as −λ′3I + P̃−1
i Q̂1iP̃

−1
i < 0 and use Schur

Complement[
−λ′3I P̃−1

i

∗ −Q̂−1
1i

]
≤ 0 ⇐⇒

[
−λ′3I Ji
∗ −E1i

]
≤ 0 (36)

where Ji := P̃−1
i and E1i := Q̂−1

1i (or equivalently JiP̃i = I

and E1iQ̂1i = I). By applying same procedure to the other
nonlinear inequalities from (35) and defining the matrices
E2i, F1i, F2i and Gi for the matrix inverse approximates
of Q̂2i, Ŝ1i, Ŝ2i and T̂i, the following inequalities can be
stated in terms of cone-complementarity algorithm given
in El Ghaoui et al. (1997).

λ1I < Ji < λ2I, 0 ≤
[
P̃i I
∗ Ji

]
,[

−λ′3I Ji
∗ −E1i

]
≤ 0, 0 ≤

[
Q̂1i I
∗ E1i

]
,[

−λ′4I Ji
∗ −E2i

]
≤ 0, 0 ≤

[
Q̂2i I
∗ E2i

]
,[

−λ′5I Ji
∗ −F1i

]
≤ 0, 0 ≤

[
Ŝ1i I
∗ F1i

]
,[

−λ′6I Ji
∗ −F2i

]
≤ 0, 0 ≤

[
Ŝ2i I
∗ F2i

]
,[

−λ′7I Ji
∗ −Gi

]
≤ 0, 0 ≤

[
T̂i I
∗ Gi

]
,

0 < Wi < λ8I,

(37)

Algorithm 1. This algorithm is derived for Theorem 4.

• Step 1: Find a feasible set

(P 0
i , Q

0
1i, Q

0
2i,S

0
1i, S

0
2i, T

0
i , J

0
i , E

0
1i, E

0
2i, F

0
1i, F

0
2i, G

0
i ,

W 0
i , T

0
i ,M

0
1i,M

0
2i, N

0
1i, N

0
2i)

satisfying the inequalities in (7a), (7b), (7c) and (37).
Set k = 0.
• Step 2: Solve the following LMI problem for the

variables
(Pi, Q1i, Q2i,S1i, S2i, Ti, Ji, E1i, E2i, F1i, F2i, Gi,

Wi, Ti,M1i,M2i, N1i, N2i)

according to the following minimization problem

minimize tr

(∑
i∈I

Jki P̃i + JiP̃
k
i + Ek1iQ̂1i + E1iQ̂

k
1i

+ Ek2iQ̂2i + E2iQ̂
k
2i + F k1iŜ1i + F1iŜ

k
1i

+ F k2iŜ2i + F2iŜ
k
2i +Gki T̂i +GiT̂

k
i

)
subject to (7a), (7b), (7c) and (37)

• Step 3: If a stopping criteria is satisfied, then exit.
Otherwise, set

P̃ ki = P̃i, Q̂
k
1i = Q̂1i, Q̂

k
2i = Q̂2i, Ŝ

k
1i = Ŝ1i, Ŝ

k
2i = Ŝ2i,

T̂ ki = T̂i, J
k
i = Ji, E

k
1i = E1i, E

k
2i = E2i,

F k1i = F1i, F
k
2i = F2i, G

k
i = Gi

and set k = k + 1 and go to Step 3.

4. NUMERICAL EXAMPLES

A numerical example is presented in order to show the
effect of the Algorithm 1.

Example 1. Consider the switched system with time delay
(1) with two subsystems

A1 =

[
0.4 0
0 −0.34

]
, A2 =

[
−1.6 0

0 −0.14

]
,

Ad1 =

[
−0.06 0
0.06 −0.03

]
, Ad2 =

[
−0.03 0
−0.69 −0.12

]
,

B1 =

[
0.4
0.1

]
, B2 =

[
0.3
0.15

]
, Bw1 =

[
0.1
0.4

]
, Bw2 =

[
0.15
0.3

]
.

Note that, A1 is Hurwitz unstable and A2 is Hurwitz
stable. The activation times of the unstable and unstable
subsystems are chosen as T+ = 0.6 and T− = 1.4,,
respectively. The constants

ψ1 = 0.5, ψ2 = −0.05, h1 = 0, h2 = 0.1, hd = 0.01,

R = I, δ = 4, δ′ = 4, ε = 25, µ = 1.01, d = 0.01,

Tf = 2, N0 = 0.

are chosen and by Algorithm 1, we get a feasible solution
with controller gains

K1 = [1850.6 388.3] , K2 = [−662.5 1760.7]

with the ADT τ∗a = 0.2180.

5. CONCLUSION

This paper investigates the FT boundedness of the
switched systems with interval time-delay and distur-
bances. Based on a state-feedback controller, some suf-
ficient conditions are obtained for systems vector. Due



to the nonconvex elements on these conditions, a cone-
complementarity linearization is made. Number of nu-
merical examples exhibit better results with the designed
method.
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