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Abstract: This paper proposes an integral inequality related to the state vector for systems with time-
varying delay and exploits component vectors of the proposed inequality for constructing a Lyapunov-
Krasovskii functional. The proposed inequality is based on orthogonal-polynomial-based integral
inequality. The component vectors of the proposed inequality have the relation in terms of time-varying
delay with those of the orthogonal-polynomial-based integral inequality. Also, the time-derivative of the
component vectors of the proposed inequality are represented by those of the orthogonal-polynomial-
based integral inequality. The Lyapunov-Krasovskii functional is constructed by utilizing the component
vectors of the proposed inequality and the orthogonal-polynomial-based integral inequality. Based on the
the Lyapunov-Krasovskii functional, a stability criterion is derived in terms of linear matrix inequalities.
Simulation results show that the proposed criterion is less conservative than the criteria in the literature.
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1. INTRODUCTION

In the past decades, stability analysis for time-delay systems
has widely studied by academic and industrial communities,
because time-delay is an inevitable phenomenon in many fields
such as chemistry, biology, and mechanical engineering (Gu
et al., 2003). In stability analysis, an important issue is to obtain
maximum delay bounds guaranteeing the asymptomatic stabil-
ity of the time-delay systems. Therefore, many stability criteria
formulated in terms of linear matrix inequality (LMI) condi-
tions have proposed by various Lyapunov-Krasovskii function-
als (LKFs) and integral inequalities (Seuret and Gouaisbaut,
2013; Kwon et al., 2014; Park et al., 2015; Zeng et al., 2015;
Zhang et al., 2016; Lee et al., 2017a,b; Zhi et al., 2017; Zhang
et al., 2017).
There are two approaches to obtain less conservative cri-
teria. One is to develop lower bound lemmas of integral
terms in LKFs such as Jensen’s inequality(Jensen, 1906),
Wirtinger-based inequality(Seuret and Gouaisbaut, 2013), aux-
iliary function-based integral inequality(Park et al., 2015),
free-matrix-based integral inequality(Zeng et al., 2015), im-
proved free-matrix-based integral inequality(Zhi et al., 2017),
Bessel-Legendre inequality(Seuret and Gouaisbaut, 2014), and
polynomial-based integral inequality(Lee et al., 2017b). Re-
cently, (Lee et al., 2017a) proposed orthogonal-polynomial-
based integral inequality which provides less conservative re-
sults than Bessel-Legendre inequality and less computational
complexity than polynomial-based integral inequality. In (Lee
et al., 2017a), the upper bounds of−

∫ t

t−h(t)
ẋT (r)Rẋ(r)dr and

−
∫ t−h(t)

t−h
ẋT (r)Rẋ(r)dr were provided. The other is to choose

appropriate LKFs with the augmented vectors to provide more
freedom for checking the feasibility of the LMI conditions
(Kim, 2016; Zhang et al., 2017). In (Kim, 2016), augmented

vectors with integral vectors are used in a quadratic term and
integral terms of the LKF. In (Zhang et al., 2017), augmented
vectors involved in current and delayed states, a time-derivative
state, and the integral vectors are used in integral terms of the
LKF. The time-derivative of integral terms with the augmented
vectors of the LKFs in (Kim, 2016; Zhang et al., 2017) are a
convex function with respect to ḣ(t), but a quadratic function
with respect to h(t). There is still room to obtain a less con-
servative criterion by proposing an integral inequality related to
−
∫ t

t−h(t)
xT (r)Rx(r)dr and −

∫ t−h(t)

t−h
xT (r)Rx(r)dr whose

component vectors make the quadratic function to be convex
with respect to h(t).
This paper proposes an integral inequality, which is related
to −

∫ t

t−h(t)
xT (r)Rx(r)dr and −

∫ t−h(t)

t−h
xT (r)Rx(r)dr, for

systems with time-varying delay and exploits component vec-
tors of the proposed inequality for constructing a LKF. The
proposed inequality is based on orthogonal-polynomial-based
integral inequality. The component vectors of the proposed
inequality have the relation in terms of h(t) with those of
the orthogonal-polynomial-based integral inequality. Also, the
time-derivative of the component vectors of the proposed in-
equality are represented by those of the orthogonal-polynomial-
based integral inequality. The LKF is constructed by utiliz-
ing the component vectors of the proposed inequality and the
orthogonal-polynomial-based integral inequality. Based on the
the LKF, a stability criterion derived in terms of LMIs is convex
with respect to h(t) and ḣ(t), respectively. Simulation results
show that the proposed criterion is less conservative than the
criteria in the literature.
Notations. Throughout this paper, the Rn is n-dimensional
vectors. The superscripts ’−1’ and ’T ’ denote the inverse and
transpose of a matrix. P > 0 means the matrix, P , is sym-



metric and positive definite. Symmetric terms in a matrix are
denoted by ∗. diag {. . . } stands for a block diagonal matrix.
col {x1, x2, . . . , xn}means [xT1 , x

T
2 , . . . , x

T
n ]T . He {Z} = Z+

ZT .

2. PRELIMINARIES

Consider the following system with a time-varying delay de-
scribed by {

ẋ(t) = Ax(t) +Adx(t− h(t))
x(θ) = φ(θ), θ ∈ [−h, 0],

(1)

where x(t) ∈ Rn is the state vector, φ(θ) is an initial condition,
and h(t) is time-varying delay satisfying

0 ≤ h(t) ≤ h, −d ≤ ḣ(t) ≤ d <∞ (2)
where h and d are known constants.
An orthogonal polynomial function called as Legendre polyno-
mial function over an interval [a, b] is defined as follows.
Definition 1. (Seuret and Gouaisbaut, 2014) Legendre polyno-
mials over the interval [a, b] can be defined as follows.

Li(r) =

i∑
j=0

lij

(
r − a
b− a

)j

for r ∈ [a, b], (3)

where

lij = (−1)i+j

(
i
j

)(
i+ j
j

)
. (4)

The polynomial function satisfies the following properties:

1) Lk(b) = 1, Lk(a) = (−1)k, (5)

2)

∫ b

a

Lk(r)Ll(r)dr =

{
0 if k 6= l,

b−a
2k+1 if k = l

. (6)

The following lemmas are used for obtaining a proposed stabil-
ity criterion.
Lemma 2. (Lee et al., 2017b) For an non-negative integerm, let
x(r) ∈ Rn be an integrable function: {x(r)|r ∈ [a, b]}. Then
we have ∫ b

a

(r − a)mx(r)dr = m!Im(a, b), (7)

where

Im(a.b) =

∫ b

a

∫ b

r1

· · ·
∫ b

rm

x(rm+1)drm+1 · · · dr1. (8)

Lemma 3. (Lee et al., 2017a) Let x(r) ∈ Rn be a continuous
function: {x(r)|r ∈ [a, b]}. For a non-negative integer m, a
positive integer k, an arbitrary vector ζ ∈ Rkn, a positive
definite matrix R, and a matrix F with appropriate dimensions,
the following inequality holds:

−
∫ b

a

ẋT (r)Rẋ(r)dr

≤ (b− a)ζTFR−1
m FT ζ + He{ζTFL(a, b)}, (9)

where
L(a, b) = col{L0(a, b), . . . ,Lm(a, b)}, (10)
Rm = diag{R, 3R, . . . , (2m+ 1)R}, (11)
Li(a, b)

=

{
x(b)−x(a) if i = 0

x(b)−(−1)ix(a)−
∑i

j=1 l
i
j

j!
(b−a)j Ij−1(a, b) for i ∈ N .

(12)

Lemma 4. Let x(r) ∈ Rn be a continuous function: {x(r)|r ∈
[a, b]}. For a non-negative integer m, a positive integer k, an
arbitrary vector ζ ∈ Rkn, a positive definite matrix R, and a
matrix F with appropriate dimensions, the following inequality
holds:

−
∫ b

a

xT (r)Rx(r)dr

≤ (b− a)ζTFR−1
m FT ζ + He{ζTFM(a, b)}, (13)

where
M(a, b) = col{M0(a, b), . . . ,Mm(a, b)}, (14)
Rm = diag{R, 3R, . . . , (2m+ 1)R}, (15)

Mi(a, b) =

i∑
j=0

lij
j!

(b− a)j
Ij(a, b) for i ∈ N. (16)

Proof. For matrices Yi ∈ Rkn×n (i = 0, . . . ,m), let us define
F = [Y0 . . . Ym], Y = col{Y0, . . . , Ym}, (17)

R̄ =

[
Y R−1Y T Y

Y T R

]
, Mi(a, b) =

∫ b

a

Li(r)x(r)dr, (18)

ζm = col{L0(r)ζ, . . . , Lm(r)ζ}. (19)

Due to the positive definite matrix R, it is clear that R̄ > 0.
Then, the following inequality holds

−
∫ b

a

xT (r)Rx(r)dr

≤
∫ b

a

ζTmY R
−1Y T ζmdr + He

{∫ b

a

ζTmY x(r)dr

}
. (20)

From (5), (6), and , (20) is represented as

−
∫ b

a

xT (r)Rx(r)dr

≤
m∑
i=0

(
b− a
2i+ 1

ζTYiR
−1Y T

i ζ + He
{
ζTYiMi(a, b)

})
.

(21)

Rearranging (21) yields (13). It completes the proof �.
Remark 5. This paper proposes the integral inequality of
−
∫ b

a
xT (r)Rx(r)dr based on the orthogonal-polynomial-based

integral inequality (Lee et al., 2017a). The component vectors
of the proposed inequality have the following relations with
those of the orthogonal-polynomial-based integral inequality:
For i = 0, the time-derivative I0(a, b) of M0(a, b) includes x(b)
and x(a) related to L0(a, b). For i ≥ 1, the time-derivative (b−
a)−iIi(a, b) of Mi(a, b) includes (b − a)−iIi−1(a, b) and (b −
a)−(i+1)Ii(a, b) related to Li(a, b) and Li+1(a, b), respectively.
Also, for i ≥ 0, the following zero-equalities can be obtained:
(b − a)−iIi(a, b) − (b − a)(b − a)−(i+1)Ii(a, b) = 0, where
(b − a)−iIi(a, b) is the component vectors of Mi(a, b) and
(b− a)−(i+1)Ii(a, b) is the component vectors of Li+1(a, b).

3. MAIN RESULTS

This section proposes a stability criterion for the time-delay
system (1).
Theorem 6. For given scalars h and d, the time-delay system
(1) is asymptotically stable if there exist positive definite ma-
trices P ∈ R7n×7n, Q1, Q2 ∈ R6n×6n, R1, R2 ∈ Rn×n, and



matrices F1, F2 ∈ R13n×3n, F3, F4 ∈ R13n×2n, Gi ∈ R13n×n

(i = 1, . . . , 4) such thatΦ[h,d]

√
hF1

√
hF3

∗ −R1m 0
∗ ∗ −R2m

 < 0, (22)

Φ[0,d]

√
hF2

√
hF4

∗ −R1m 0
∗ ∗ −R2m

 < 0, (23)

Φ[h,−d]

√
hF1

√
hF3

∗ −R1m 0
∗ ∗ −R2m

 < 0, (24)

Φ[0,−d]

√
hF2

√
hF4

∗ −R1m 0
∗ ∗ −R2m

 < 0, (25)

where Φ
[h(t), ˙h(t)]

= hDT
0 R1D0 + heT1 R2e1 + DT

20Q1D20

−(1− ḣ(t))DT
21Q1D21 + (1− ḣ(t))DT

30Q2D30 −DT
31Q2D31

+He{DT
1 PD11 + DT

22Q1D23 + DT
32Q2D33 +F1D41 +F2D42

+F3D51 + F4D52 +G1D6 +G2D7 +G3D8 +G4D9}
with
D0 = Ae1 +Ade2, D1 = col{e1, e2, e3, e8, e9, e10, e11},
D11 = col{D0, (1− ḣ(t))e12, e13, e1 − (1− ḣ(t))e2,

(1− ḣ(t))e2 − e3, e1 − (1− ḣ(t))e4 − ḣ(t)e6,

(1− ḣ(t))e2 − e5 + ḣ(t)e7},
D20 = col{e1,D0, e0, e1, e2, e3},
D21 = col{e2, e12, e8, e1, e2, e3},
D22 = col{e8, e1 − e2, h(t)e10, h(t)e1, h(t)e2, h(t)e3},
D23 = col{e0, e0, e1,D0, (1− ḣ(t))e12, e13},
D30 = col{e2, e12, e0, e1, e2, e3},
D31 = col{e3, e13, e9, e1, e2, e3},
D32 = col{e9, e2 − e3, (h− h(t))e11, (h− h(t))e1,
(h− h(t))e2, (h− h(t))e3},
D33 = col{e0, e0, (1− ḣ(t))e2,D0, (1− ḣ(t))e12, e13},
D41 = col{e1 − e2, e1 + e2 − 2e4, e1 − e2 + 6e4 − 12e6},
D42 = col{e2 − e3, e2 + e3 − 2e5, e2 − e3 + 6e5 − 12e7},
D51 = col{e8,−e8 + 2e10}, D52 = col{e9,−e9 + 2e11},
D6 = h(t)e4 − e8, D7 = (h− h(t))e5 − e9,
D8 = h(t)e6 − e10, D9 = (h− h(t))e7 − e11,
ei = [0n×(i−1)n In 0n×(13−i)n], i = 1, . . . , 13,
e0 = [0n×13n].

Proof. Choose the following LKF V (t) such that
V (t) = V1(t) + V2(t) + V3(t) + V4(t), (26)

where
V1(t) = ηT1 (t)Pη1(t),

V2(t) =

∫ t

t−h(t)

ηT2 (t, s)Q1η2(t, s)ds

+

∫ t−h(t)

t−h

ηT3 (t, s)Q2η3(t, s)ds,

V3(t) =

∫ 0

−h

∫ t

t+s

ẋT (r)R1ẋ(r)drds,

V4(t) =

∫ 0

−h

∫ t

t+s

xT (r)R2x(r)drds

with η1(t) = col{η0(t),
∫ t

t−h(t)
x(s)ds,

∫ t−h(t)

t−h
x(s)ds,

1
h(t)

∫ t

t−h(t)

∫ t

s
x(r)drds, 1

h−h(t)

∫ t−h(t))

t−h

∫ t−h(t)

s
x(r)drds},

η2(t, s) = col{x(s), ẋ(s),
∫ t

s
x(r)dr, η0(t)},

η3(t, s) = col{x(s), ẋ(s),
∫ t−h(t)

s
x(r)dr, η0(t)},

where η0(t) = col{x(t), x(t− h(t)), x(t− h)}.
Then, the time-derivative of V (t) can be derived as

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t), (27)

where

V̇1(t) = He{ηT1 (t)P η̇1(t)},
V̇2(t) = ηT2 (t, t)Q1η2(t, t)

− (1− ḣ(t))ηT2 (t, t− h(t))Q1η2(t, t− h(t))

+ (1− ḣ(t))ηT3 (t, t− h(t))Q2η3(t, t− h(t))

− ηT3 (t, t− h)Q2η3(t, t− h)

+ He
{∫ t

t−h(t)

ηT2 (t, s)Q1
∂η2(t, s)

∂t
ds

+

∫ t−h(t)

t−h

ηT3 (t, s)Q2
∂η3(t, s)

∂t
ds
}
,

V̇3(t) = hẋT (t)R1ẋ(t)−
∫ t

t−h

ẋT (s)R1ẋ(s)ds,

V̇4(t) = hxT (t)R2x(t)−
∫ t

t−h

xT (s)R2x(s)ds.

Applying Lemmas 3 and 4 to the integral terms of V̇3(t) and
V̇4(t) lead to

−
∫ t

t−h

ẋT (s)R1ẋ(s)ds

≤ h(t)ζTF1R
−1
1mF

T
1 ζ + (h− h(t))ζTF2R

−1
1mF

T
2 ζ (28)

+ He{ζTF1L1(t− h(t), t) + ζTF2L2(t− h, t− h(t))},

−
∫ t

t−h

xT (s)R2x(s)ds

≤ h(t)ζTF3R
−1
2mF

T
3 ζ + (h− h(t))ζTF4R

−1
2mF

T
4 ζ (29)

+ He{ζTF3M1(t− h(t), t) + ζTF4M2(t− h, t− h(t))},
where L1(t − h(t), t) = D41ζ, L2(t − h, t − h(t)) = D42ζ,
M1(t− h(t), t) = D51ζ, and M2(t− h, t− h(t)) = D52ζ

with ζ = col{x(t), x(t− h(t)), x(t− h), 1
h(t)

∫ t

t−h(t)
x(s)ds,

1
h−h(t)

∫ t−h(t)

t−h
x(s)ds, 1

h2(t)

∫ t

t−h(t)

∫ t

s
x(r)drds,

1
(h−h(t))2

∫ t−h(t)

t−h

∫ t−h(t)

s
x(r)drds,

∫ t

t−h(t)
x(s)ds,∫ t−h(t)

t−h
x(s)ds, 1

h(t)

∫ t

t−h(t)

∫ t

s
x(r)drds,

1
h−h(t)

∫ t−h(t)

t−h

∫ t−h(t)

s
x(r)drds, ẋ(t− h(t)), ẋ(t− h)}.

From the relations between entries in Li and Mi (i = 1, 2), the
following zero-equalities can be obtained:

He{ζTG1[h(t)e4 − e8]ζ} = 0, (30)

He{ζTG2[(h− h(t))e5 − e9]ζ} = 0, (31)

He{ζTG3[h(t)e6 − e10]ζ} = 0, (32)

He{ζTG4[(h− h(t))e7 − e11]ζ} = 0. (33)

By using integral inequalities (28) and(29) and zero-equalities
(30)-(33), the following stability criterion is obtained:

V̇ (t) ≤ ζT [Φ[h(t),ḣ(t)] + h(t)Γ1 + (h− h(t))Γ2]ζ, (34)

where Γ1 = F1R
−1
1mF

T
1 + F3R

−1
2mF

T
3 , Γ2 = F2R

−1
1mF

T
2 +

F4R
−1
2mF

T
4 .



Table 1. The maximum admissible upper bound h
for Example 1

Method d
0.1 0.2 0.5 0.8

Kim (2016) 4.753 3.857 2.429 2.183
Zeng et al. (2015) 4.788 4.060 3.055 2.615
Kwon et al. (2014) 4.811 4.101 3.061 2.612
Zhi et al. (2017) 4.836 4.149 3.157 2.708
Zhang et al. (2017) 4.910 4.216 3.233 2.789
Theorem 6 4.955 4.300 3.380 2.973

Therefore, the time-delay system (1) is asymptotically stable if
the following condition holds

Φ[h(t),ḣ(t)] + h(t)Γ1 + (h− h(t))Γ2 < 0. (35)

Here, Φ[h(t),ḣ(t)] is convex with respect to h(t) ∈ [0, h] and

ḣ(t) ∈ [−d, d], respectively. Therefore, the condition (35) is
also convex with respect to h(t) ∈ [0, h] and ḣ(t) ∈ [−d, d],
respectively. Based on Schur complement, the condition (35) is
equivalent to (22)-(25). It completes the proof �.
Remark 7. In Theorem 6, an augmented vector ζ of the stability
criterion (34) includes single integral vectors and double inte-
gral vectors of M1(t − h(t), t), M2(t − h, t − h(t)), L1(t −
h(t), t) and L2(t − h, t − h(t)). For the augmented vector ζ,
the time-derivative of V2(t) can be represented as a convex
condition with respect to h(t) ∈ [0, h] and ḣ(t) ∈ [−d, d], re-
spectively. However, for the augmented vector ζ without single
integral vectors and double integral vectors of M1(t − h(t), t)
and M2(t − h, t − h(t)), the time-derivative of V2(t) is repre-
sented as a convex condition with respect to ḣ(t) ∈ [−d, d], but
a quadratic condition with respect to h(t) ∈ [0, h].

Remark 8. In V1(t), the single and double integral vectors of
M1(t− h(t), t) and M2(t− h, t− h(t)) are included in η1(t).
These integral vectors have the following relations with those
of L1(t− h(t), t) and L2(t− h, t− h(t)):

d

dt

(∫ t

t−h(t)

x(s)ds

)
= x(t)− (1− ḣ(t))x(t− h(t)),

d

dt

(∫ t−h(t)

t−h

x(s)ds

)
= (1− ḣ(t))x(t− h(t))− x(t− h),

d

dt

(
1

h(t)

∫ t

t−h(t)

∫ t

s

x(r)drds

)

= x(t)− (1− ḣ(t))

h(t)

∫ t

t−h(t)

x(s)ds

− ḣ(t)

h2(t)

∫ t

t−h(t)

∫ t

s

x(r)drds,

d

dt

(
1

h− h(t)

∫ t−h(t)

t−h

∫ t−h(t)

s

x(r)drds

)

= (1− ḣ(t))x(t− h(t))− 1

h− h(t)

∫ t−h(t)

t−h

x(s)ds

+
ḣ(t)

(h− h(t))2

∫ t−h(t)

t−h

∫ t−h(t)

s

x(r)drds.

Also, the single and double integral vectors of M1(t − h(t), t)
and M2(t − h, t − h(t)) have the zero-equalities (30)-(33)
with those of L1(t − h(t), t) and L2(t − h, t − h(t)). Using
these relations gives the potential to obtain a less conservative
criterion for the time-delay system (1).

Table 2. The maximum admissible upper bound h
for Example 2

Method d
0.1 0.2 0.5 0.8

Seuret and Gouaisbaut (2013) 6.590 3.672 1.411 1.275
Kwon et al. (2014) 7.125 4.413 2.243 1.662
Zhi et al. (2017) 7.144 4.462 2.413 1.844
Zhang et al. (2017) 7.230 4.556 2.509 1.940
Theorem 6 7.559 4.925 2.757 2.116

4. NUMERICAL EXAMPLE

This section presents simulation results to verify the effective-
ness of the proposed stability criterion.
Example 1. Consider the system (1) with

A =

[
−2 0
0 0.9

]
, Ad =

[
−1 0
−1 −1

]
(36)

and the time-varying delay h(t) satisfying (2).
For comparison with the existing criteria, this paper calculates
the maximum admissible upper bound h for different d ∈
{0.1, 0.2, 0.5, 0.8} and the results are listed in Table 1. From
the Table 1, Theorem 6 gives larger h than the existing works.
Example 2. Consider the system (1) with

A =

[
0 1
−1 −2

]
, Ad =

[
0 0
−1 1

]
(37)

and the time-varying delay h(t) satisfying (2).
For comparison with the existing criteria, this paper calculates
the maximum admissible upper bound h for different d ∈
{0.1, 0.2, 0.5, 0.8} and the results are listed in Table 2. From
the Table 2, Theorem 6 gives larger h than the existing works.

5. CONCLUSION

This paper proposes a less conservative criterion for systems
with time-varying delay by proposing an integral inequality re-
lated to the state vector for systems with time-varying delay and
exploiting component vectors of the proposed inequality for
constructing a Lyapunov-Krasovskii functional. The proposed
inequality is based on orthogonal-polynomial-based integral
inequality. The component vectors of the proposed inequality
have the relation in terms of time-varying delay with those of
the orthogonal-polynomial-based integral inequality. Also, the
time-derivative of the component vectors of the proposed in-
equality are represented by those of the orthogonal-polynomial-
based integral inequality. The Lyapunov-Krasovskii functional
is constructed by utilizing the component vectors of the pro-
posed inequality and the orthogonal-polynomial-based integral
inequality. Based on the the Lyapunov-Krasovskii functional, a
stability criterion is derived in terms of linear matrix inequali-
ties. Simulation results show that the proposed criterion is less
conservative than the criteria in the literature.
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