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Abstract: The performance of Proportional-Retarded (PR) protocols in both single-delay and
multiple-delay settings is studied in a large-scale consensus dynamics. The benefits of using
these protocols are investigated specifically by analytically tuning them for fast consensus
and investigating their control effort and noise mitigation characteristics. Benchmark analyses
demonstrate that PR protocols can be more preferable over Proportional (P) and Proportional-

Derivative (PD) protocols in network settings.
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1. INTRODUCTION

With the emergence of low cost sensing, actuation, and
computation platforms, we are already envisioning a future
where multiple autonomous robots, or shortly “agents”,
will collectively work together to perform certain missions.
However, rendering the agents to autonomously work
together still poses a number of challenges. Among others,
three key issues broadly studied in the context of multi-
agent system are related to the presence of noise in network
settings (Hunt et al., 2012), time delays arising in exchange
of information (Olfati-Saber and Murray, 2004), and the
structure of the network, i.e., the graph underlying the
interactions between agents in the network (Schéllig et al.,
2007; Qiao and Sipahi, 2016). In most studies these issues
were addressed separately but not in combination although
all three are interrelated with one another.

While many studies focus on the stability of multi-agent
systems, authors also recognized the need of achieving
certain performance characteristics (Carli et al., 2011).
In the presence of delays, achieving fast stabilization in
multi-agent systems is not straightforward mainly be-
cause highly-aggressive control actions can destabilize the
system. Moreover, designing such systems for fast stabi-
lization is challenging as there are too many parameters
to tune, and infinite dimensionality of the corresponding
eigenvalue problem due to delays makes this design even
more challenging (Qiao et al., 2013). From a control point-
of-view, rigorous control design tools to achieve fast con-
sensus, especially for large-scale systems, still do not exist
in the literature. One opportunity, as demonstrated for low
order systems, is to utilize reliable computational tools to
approximate system’s rightmost roots (Vyhlidal and Zitek,
2009), or to use such tools to tune the controller gains
via optimization (Michiels and Vyhlidal, 2005). Another
opportunity is to take advantage of implementations of
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proportional-retarded (PR) controllers demonstrated for
single-input single-output (SISO) systems (Ramirez et al.,
2013; Suh and Bien, 1979; Abdallah et al., 1993; Seli-
vanov and Fridman, 2017), and expand PR controllers
for multi-agent systems. Some recent results along these
lines include (Atay, 2013; Cao and Ren, 2010; Li et al.,
2010; Yu et al., 2013; Meng et al., 2013; Song et al., 2016;
Huang et al., 2016; Ramirez and Sipahi, 2018a; Fridman
and Shaikhet, 2017).

The use of PR controllers for large-scale networked sys-
tems can be promising, although it still remains under-
explored. Our recent results provide some guidelines as
to how to address this on a widely-studied consensus
dynamics (Ramirez and Sipahi, 2018b). Here, we first
summarize from the cited study, mainly by demonstrating
the analytical tuning of PR controllers with single and
multiple delays. This tuning, especially in the multiple
delay case, enables placing the system rightmost poles at a
user defined spectral abscissa with a user-defined spectrum
separation from the rest of the poles, for effective pole
placement. One open question, which is the focus of this
manuscript, is regarding how the PR controllers perform
in terms of control effort and under noisy measurements,
and how they compare with standard Proportional or
Proportional-Derivative (P or PD) controllers. Here, we
present a systematic approach to setup benchmark studies
to establish this comparison, mainly in terms of metrics
associated with agents’ settling times, control effort, and
noise sensitivity. Results suggest that multiple-delay PR
controllers for the consensus dynamics at hand can render
superior characteristics in terms of noise attenuation, while
requiring slightly less control effort compared to the P
and PD cases. This therefore suggests that PR controllers
can be designed and utilized as better alternatives over
standard P and PD-type controllers in network settings.



2. PRELIMINARIES

We start with a system with n identical agents

xz(t) = ui(t)v (1)
where x; is the state of agent ¢ and w; its control input.The
topology of the network in (1) is described by an undi-
rected graph G = (N, E) where N={1,2,...,n}=1,n is
the set of nodes and E C NxN is the set of edges. Each edge
has a weight a;; = a;;, where the edge (7,j) € E indicates
that agent i receives information from agent j if a;; # 0.
The Laplacian matrix L = [—a;;] € R"*™ associated with
G accepts the property Z}Ll ai; =0 for all i € N. Hence,
according to the spectral theorem for Hermitian matrices
(Horn and Johnson, 1988), all the eigenvalues of L are real.

Remark 1. Assuming that the agents are connected, L has
a zero eigenvalue A; =0 and the remaining eigenvalues for
a;; >0, i#j are positive (Olfati-Saber and Murray, 2004).
Hereafter, we present the developments only on the case of
unique eigenvalues as the extension to the case of repeated
eigenvalues is straightforward. We adopt the convention
0=\ <Ao<+ < Ay

Given m graphs sharing the same set of nodes G,,,= (N, E,,)
with associated Laplacian Ly, = [—an, ;] € R™*™, we define
the composed Laplacian L:=}_ Ly, Where the m-th
graph layer belongs to a finite index set M=1,...,m < n.
Moreover, the neighbors of agent ¢, in the m-th layer, are
denoted by NJ* = {j € N : (¢,j) € En}. The control
objective is to achieve agreement of the states amongst all
the agents. To this end, here we introduce a distributed PR
protocol for all the agents and subject to network topology,

wit) =D > i [ A s (6) = Ky, Aaji(t—hn)], (2)
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where Ax;;(t) = x;(t) — z;(t), the heterogenous coupling
strengths a, ;; satisfy a;; = Z:n:l Qm,ij, and a;; are the
entries of L. The heterogenous gains kp,, >0 and &, , >0
determine respectively the strength of the proportional
and retarded actions, and h,, > 0 are intentional multiple
delays induced in the input to an agent.

As shown successfully in the literature, intentional delays
can create realizable derivative effects to enhance perfor-
mance (Suh and Bien, 1979). Here, we aim to investigate
this opportunity for the large-scale consensus dynamics
(1)-(2). We state that protocol (2) solves the consensus
problem if limy_, ||2;(¢) — x;(¢)]| = 0 for all 4,5 € N.

Let x = (331 C Xy i be the stack vector of the states at
all nodes, then system (1)-(2) is written in matrix form as

X(t) = Yo mem Lm[=kp, x(t) + K, x(t = )] (3)
In the following we present two case studies. The first case
considers a complete graph with a single layer;i.e., M = 1.
The second case, on the other hand, investigates the use
of n graph-layers; that is, M =1, n.

3. ANALYTICAL TUNING OF THE PR PROTOCOL

Delay-based control is an effective alternative to bench-
mark control schemes (Ramirez et al., 2016). Based on (2),
we next present the single and multiple delay PR protocols
and summarize from (Ramirez and Sipahi, 2018b) how to
analytically assign system’s spectral abscissa at a desired
locus ~4. This approach is scalable and easy to implement,

and can achieve a desired separation, DI;, between system
rightmost poles and rest of the spectrum, consistent with
what has been advocated in the literature as a critical
design constraint (Ramirez et al., 2017; Zitek et al., 2013),
see also (Ramirez and Sipahi, 2018a,b) for details.

Case I. Single-delay PR protocol: — The single-delay ver-
sion of the PR protocol considers a complete graph with
a single layer, hence M =1 and N}! = 1,...,n. Then, the
single-delay PR protocol is readily obtained from (2) as

ui(t) = 300 avijlkp, Axji(t) — ke Azji(t — ha)]. (4)
Matrix form of (1) and (4) follows from (3) as
x(t) = Ln[—kp, x(t) + kr,x(t — ha)]. (5)

In this setting L, is symmetric, hence the Schur’s theorem
(Horn and Johnson, 1988) guarantees the existence of a
nonsingular orthogonal matrix U € R™*"  such that L; =
UD;U! holds, where D; = diag{\1,...,\,}. Then, the
change of variable x(t) = U§(t) transforms system (5) into

&(t) = Di[—kp, &(1) + b, £(t — 1)), (6)
This diagonal form allows obtaining the following tuning:
Proposition 2. (Ramirez and Sipahi (2018b)). Given a de-
sired spectral abscissa 74 < 0 and a desired dominance
index DI, €(1,2.3102). Then, for network (5), a dominant
root at 4 is placed by distributing the spectrum of L; as

’YdAm (DId — 1)
Qo(DIdQO —DI; + 1)’
and tuning the gains of the PR protocol as
—Q QoDIy

A = —

m=Tm, (7

hi,kpy o k) = , e k) (8
( 1y Aprs 1) (’-Yd(DIdl) DId*l e 1) ( )

where A, = DI;Qo(dm—1+m—2)+06m—2(DI4Q0—DIz+1),
the constant® Qg = 0.5671, and d,,,_,, is the Kronecker
delta function 2. Moreover, this dominant root is isolated
from the rest of the spectrum by DIy x ~4. O

Case 1. Multiple-delay PR protocol: ~ The multiple-delay
version of the PR protocol uses n graph-layers; i.e., M =
1,n. Here, the composed Laplacian L = Zm 1Lm is
restricted to a symmetric form, hence ami; = Gm,ji-
Moreover the network must be Strongly connected. Then,
the multiple-delay PR protocol follows from (2) as

wi(0) =312 1O i [Kip A i (8) = K, A ji (=P )] (9)
Matrix form of ( ) and (9) is in this case obtained as
X(t) = 3 ey L[ =kp, X(t) + ki, X(t = hn)],  (10)

whose diagonal representation, under the change of vari-
able x(t) = U&(t), is given by

£(t) = > 0o1 Dinl[—kp, (1) + kr &t — hin)]. (1)
Here U € R"*" is a nonsingular orthogonal matrix, such
that L=UDU~!'=Y""_UD,, U~ '="" _ L,, holds, and
D =diag{\1,..., \n}, Do =AnJmm and Jop € R™X™ s
a single-entry matrix whose (m, m)th entry is one. Based
on the above decomposition, the parameters of the PR
controller can be tuned:

Tm/

1 The constant Qg follows from the principal branch of the Lambert
W function as Q¢ = Wp(1), see also (Ramirez and Sipahi, 2018b).

2 Function Sm—mqo=0[m — mo] follows the standard definition; i.e.,
d[m —mo] =1 if m = mgo and §[m — mp] = 0 if m # mo.



Proposition 3. (Ramirez and Sipahi (2018b)). Given a de-

sired exponential decay rate 74 < 0 and a desired domi-

nance index DI, > 1 for the network (10), then a dominant

root at 74 is placed by distributing the spectrum of L as

Am =7a(m—1)DIly—1)/Q, m=Tn, (12)

and tuning the gains of the multiple-delay PR protocol as
Q

y— , 13

Falm ~ (DL~ 1) 19)
Ap(DIy— 1) +1

kpm 0 (m . 1)(DId . 1)a m y 1, ( )

ky,, = e Frm (15)

with (hy, kpy, kr) =(0,0,0). Here, Ay, =(m —2)(m —1)/2,
with3 Q = —2.1011, and €y = 0.5671. This dominant root
is isolated from the rest of the spectrum by DI x ~4. O

The main difference between Propositions 2 and 3 is
that the multiple-delay PR protocol enables an arbitrary
separation DI; between the rightmost roots and the rest
of the spectrum. On the other hand, the single-delay PR
protocol not only requires fewer parameters to design
but it can also be implemented on graphs that are not
necessarily strongly connected.

Graph generation:  Matrices Dy = diag{A1,..., A} and
D., = \nJmm are completely determined from Proposi-
tions 2 and 3. Hence, with L, — U'L;U and L,, —
U~'L,,U, one obtains respectively L; and L,,. The uni-
tary matrix U is found by constructing an orthonormal
basis B = {uy,...,u,}, where u,, € R" is the eigenvector
associated with A,,. In addition, the graph Laplacian has
always a right eigenvector 1,, = (1,...,1)" corresponding
to its zero eigenvalue. Without loss of generality, propose
B={1,,es,...,e,} where e,, has a single non-zero entry
with value 1 in the mth position. The orthonormal basis
is then retrieved using the Gram-Schmidt process (Horn
and Johnson, 1988; Leon et al., 2013; Qiao et al., 2013).

4. NUMERICAL EVALUATION

We present a comparison case where the single-delay PR
protocol outperforms a P and PD protocols respectively
in terms of converge rate and noise attenuation. Then,
we illustrate the advantages of using multi-delays over
the use of single-delay*. To estimate the convergence
rate we measure the settling time t,, defined by an %
settling rule on the total displacement of all the agents,

x| = [, 22 (t)] Y2 The ¢% settling criterion is based
on the total drop of |x| between its initial and final
values. Here, ¢ may be interpreted as a settling error.
Then, ¢ — 0 indicates that t; is measured when |x| —
|xo|, where [x,]? = na?, and o = 1/n) ", 2;(0) is
the average-consensus defined by the agents’ initial states
2;(0). Further, we need to contrast speed of convergence

against effort. To this end, we estimate the total control
effort using TCE = fot uldt, where [u| = [>07; u?(t)] 2,

=1 "

3 The constant Q follows from the principal and the first branch
of the Lambert W function as @ = R (Wi(1) — Wy(1)), see also
(Ramirez and Sipahi, 2018b).

4 The results are based on time simulations in Simulink with ODE1
solver and fixed-step size of 1 ms.

Table 1. S1, DELAYS AND LAPLACIAN EIGENVALUES,

DI;=1.5
—Yd hy A1 A2 A3 A4 A5
1.5 0.7562 0 1.3224  3.2077 6.4155 9.6232
2 0.5671 * 1.7632  4.2770 8.5540 12.8309
2.5 0.4537 * 2.2040 5.3462 10.6924  16.0387
3 0.3781 * 2.6448  6.4155 12.8309 19.2464

Table 2. S1, TCE AND ts BASED ON A 2% RULE

PR protocol, Eq. (4) P protocol, Eq. (16)

—Yd ts TCE —Yd ts TCE
1.5 1.59 1.1329 1.5 1.885 1.0836
2 1.192  1.1273 2 1.413 1.08
2.5 0953 1.1226 2.5 1.130 1.0763

3 0.794 1.1163 3 0.941 1.0727

4.1 Single-delay PR protocol versus P(PD) protocol

To form a common basis for comparison, we use the
following P protocol as a benchmark,

ui(t) = 3251 avij[rp, Awyi(t)], (16)
which is obtained by removing the retarded term in (4).
Due to the fact that Ly is diagonalizable, the characteristic
equation of (1) with (16) is given by the product of the
factors fy,(s) = s+ Arp,, m = 1, n. Since the Laplacian
eigenvalues are assumed to satisfy Ay < --- < A,, it can be
proved that the spectral abscissa of the consensus network
(1) with (16) can be assigned at 74 using

Tpy = —7d/A2 = Qo/(Dla — 1), (17)
thus providing a comparable dynamic response with re-
spect to the PR protocol. It is worthy to mention that the

case associated with A\; = 0 can be neglected as this pole
corresponds only to the consensus state of the dynamics.

Simulation 1 (S1):  For the five-agent problem at hand,
the Gram-Schmidt process yields the orthonormal basis
B={15v5/5, (5e2—15)v/5/10, (de3+es—15)v/3/6, (2e4—
es — €1)V6/6,(es — e1)v/2/2} with which the unitary
matrix U is constructed. Given 4 and DI, the Laplacian
eigenvalues can be computed from (7) and then employed
to form D; = diag{\1,...,As}. With U and D; at hand,
the corresponding Laplacian matrix follows from L; =
UD,U~!. With L; computed, it is easy to see that we
obtain a fully connected graph® . Finally, the gains of PR
and P protocols follow respectively from (8) and (17).

In S1, we test the convergence rate of the above defined
five-agent network subject to both PR and P protocols
for an initial condition satisfying o = 0 with DIy = 1.5
and v4 € {-1.5,—2,-2.5,-3}. The computed Laplacian
eigenvalues are listed in Table 1. Since DIy is kept fixed,
the gains k,, = 1.7014, k., = 0.1824 and r,, = 1.1343
remain the same for all the considered 4. On the other
hand, delay h; decreases with smaller v4 values as shown
in the same table. Fig. 1 shows the total displacement of
the agents with a 2% settling time rule and Table 2 sum-
marizes the performance indices. Indeed, and as expected,
smaller values of -, are associated with faster responses.
Clearly, the single-delay PR solves the consensus problem
faster than P but requires slightly more control effort.

5 The design can be adapted to a given sparse graph (Ramirez and
Sipahi, 2018b) as PR gains scale only a single Laplacian, see (3).
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Fig. 1. S1; (Left panels) Single-delay PR protocol (4). (Right panels)
P protocol (16). (Top panels) Total displacement and settling
time, initial condition (0.6,0.3,—0.2,—0.7,0) . (Bottom pan-
els) |x| zoom-in and 2% settling time envelope in gray.

Simulation 2 (52):  We now examine how consensus
velocity and control effort vary with the size of the network
n and its initial conditions. For different n ranging from
10 to 100 agents with increments of 10, we perform 1000
trials for each n. For each trial the initial conditions and
the desired dominance index are re-randomized and seeded
by computer clock while v4 = —1.5 is kept fixed. The
result in Fig. 2 summarizes the ratio of the means of t;
and TCE obtained in the multiple-delay PR case to the P
case. These ratios being less than unity indicate that the
PR network outperforms the P network. Clearly, the PR
network exceeds the convergence speed of the P network
however requiring larger, on average, control effort.
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Fig. 2. S2; Mean ts and TCE ratios for 74 = —1.5 where for each

n, 1000 trials are performed. Initial conditions and DI; are re-
randomized in each trial and drawn from a uniform distribution
in (—1,1) and (1.5, 1.8), respectively.

Simulation 3 (58):  As a well-known rule of thumb,
improved transient dynamics in systems, in terms of con-
vergence rates, can be achieved with the predictive nature
of the feedback controller. In classical control, this corre-
sponds to the use of derivative control actions, which are
known to provide sufficient damping and high reactivity
on the system. With this in mind, aiming at speeding up
convergence speed of the P network, we next complement
(16) with a Derivative (D) control action and obtain the
PD protocol

ui(t) = 305 avijlrp, Axji(t) +ra, Ay (1)), (18)

PR protocol PD protocol
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Fig. 3. S3; (Left panels) Single-delay PR protocol (4). (Right panels)
PD protocol (18). (Top panels) Agents’ states, initial condition
(0.6,0.3,—0.2,—0.7,0) . (Bottom panels) Control signals.

where r,, and rg, are the proportional and derivative
gains, respectively. Following the same decomposition as
in the case of the PR controller, the characteristic equa-
tion of system (1) with (18) factorizes as fi,(s) = s +
AmTpy /(L4 Amra, ). Then, using the gains
¥aDIg(A2 — A3) A3 — DIghe

() = ( A2Xa(DI; — 1) " Ahs(DL; — 1)) - (19)
the first two rightmost roots of the PD network are placed
at the same locus with those of the PR network provided
that DIy < Az(A2 — Au)A5 (A3 — A,) ™Y, thus expected to
yield a comparable response.

In 53, we use the 5-agent network defined in S1 with
v¢=—1.5 and DI;=1.5, where we have injected uniformly
distributed random signals in the communication channels
to mimic high-frequency noise measurements of the states
with a flat power spectral density and infinite total energy.
The result is displayed in Fig. 3. Two observations are in
order: i) agents’ dynamics of the PR network are minimally
affected by the simulated high-frequency noise in the
measurements as opposed to using the PD protocol and ii)
the network with the PR controller yields a much smoother
control signal compared to the PD controller thus reducing
actuator chattering. Consequently, the control designer is
advised to utilize PR over PD protocols when dealing with
noisy measurements.

4.2 Multiple-delay PR protocol versus P protocol

Similarly, we remove the retarded terms in (9) to obtain
the P protocol with heterogenous gains

ui(t) = 3021 it Tpon [@m g A (t)], (20)
with which the dynamic properties of PR in (9) are to be
compared. In this case, the characteristic equation of (1)
with (20) is given by the factors f,,(s) = s + A\p7p,,. It is
worthy of mention that the spectral abscissas of the PR
subsystems are placed at vq,, = A (Dlg — 1)yg + va. It
follows from 7,4, and A, in (12) that choosing

Ydm Am(DId — 1) +1
Tp, = ———=

= — :2
. I (m m n

- 1)(DIy - 1)’ o

(21)
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Fig. 4. S4; (Left panels) Multiple-delay PR protocol (9). (Right
panels) P protocol (20). (Top panels) Total displacement and
settling time, initial condition (0.6, 0.3,—0.2,—0.7,0)". (Bottom
panels) |x| zoom-in and 2% settling time envelope in gray.

Table 3. S4, LAPLACIAN EIGENVALUES, DI = 1.5

Y4 M A2 A3 A4 As
1.5 0 0.3570 0.7139 1.0709 1.4279
2 * 0.4760 0.9519 1.4279 1.9038

2.5 * 0.5949 1.1899 1.7848  2.3798
3 * 0.7139  1.4279 2.1718 2.8557

and r,, = 0, the spectral abscissas of the P subsystems are
placed at the same locus with those of the PR subsystems,
thus providing a comparable response. Once again, Ay = 0
can be neglected as noted above.

Simulation 4 (S4): We now use the multiple-delay PR
protocol in S1. With 4 € {-1.5,—2,-2.5,—3} and
DI; = 1.5 in (12), we compute the Laplacian eigenvalues
in Table 3. Since DIy is kept fixed, the gains k, , k.,
and r, remain the same for all considered 74 while
the multiple delays h,, decrease with smaller v, values,
see Tables 4 and 5. With the Laplacian eigenvalues at
hand, we next construct the matrices D,, = A\pnJmm as
in Proposition 3 and use them along with U to reveal
the Laplacian forms L,,=UD,,U~!, and finally obtain
the composed Laplacian matrix L = Zgzl L,,. After
computations, we observe that the design technique lands
itself into a fully connected graph.

Fig. 4 shows the total displacement of the agents with
a 2% settling rule. Here, average consensus is reached
asymptotically where in this case the group disagreement
decreases monotonically for both protocols as |x| vanishes.
Table 6 summarizes the performance indices from which
we can see that PR outperforms P in terms of convergence
ratios and moreover PR requires slightly less control effort
than that required in the P network.

Simulation 5 (S5): Now we demonstrate the speed of
convergence of the algorithms (9) and (20) for two different
networks with n=10 and n =100, and randomized initial
states satisfying c=0. The state trajectories of the systems

Table 4. S4, DELAY VALUES, DIy = 1.5

-4 M ha h3 hy hs
1.5 0 2.8014 1.4007 0.9338 0.7004
2 * 2.1011 1.0505 0.7004 0.5253
2.5 * 1.6806 0.8404 0.5603  0.4202
3 * 1.4007 0.7004 0.4669 0.3502

Table 5. S4, GAIN VALUES, DIy = 1.5

m 1 2 3 4 5
kp,, 0 47693 3.7187 4.0689 4.7693
kr, * 0.0085 0.0243 0.0171 0.0085
Tpm % 42021 3.1516 3.5018  4.2021

Table 6. S4, TCE AND ts BASED ON A 2% RULE

PR protocol, Eq. (9) P protocol, Eq. (20)

g ts TCE e ts TCE
1.5 1.664 1.0298 15 1.889 1.0302
2 1.248 1.0275 2 1416  1.0282
2.5 0998 1.0253 2.5 1132 1.0263
3 0.831 1.0230 3 0943  1.0243

and the corresponding settling times are shown in the top
panels of Figs. 5 and 6 for n=10 and n=100, respectively.
Observe that consensus is reached about 12% faster when
multiple-delays are used. Further, in contrast with the
single-delay case, comparable TCE is required by both PR
and P protocols in the selected networks.

Simulation 6 (S6):  Finally, we examine how consensus
velocity and control effort vary with the size of the network
and its initial conditions. Here, for different number of
nodes n € {5,10,25,50}, 1000 trials are executed for each
n, where for each trial v4 € (=2, —1.5), DI € (1.5,2), and
x;(0) € (—1,1) are re-randomized and seeded by computer
clock. The result is summarized in Fig. 7, which shows the
ratio of the means of ¢t; and TCE obtained in the multiple-
delay PR case to the P case. In the multiple-delay case, we
see that the PR network consistently exceeds convergence
speed of the P network with comparable control effort.

5. CONCLUSIONS

Performance of single-/multiple-delay PR protocols in
comparison to benchmark P and PD implementations are
assessed in a multi-agent system by way of simulations
considering settling time of the agent dynamics, control
effort, and noise rejection capabilities. We report that
PR protocols not only require comparable control effort
while achieving satisfactory speed of reach to consensus,
but they can also successfully handle noisy measurements
without the need of additional filtering. These results
indicate that these protocols can be better alternatives
over benchmarks in network settings.
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