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Abstract: We present here two examples of effects of delays on stochastic systems. The first
model is an inclusion of delay in a classical problem of gambler’s ruin, modeled by a random
walk. The second model introduces delays in a lined collection of random walks which pass a
baton from one end to the other. The effects of delays as well as possible applications of these

models are discussed
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1. INTRODUCTION

Studies of delays in dynamics, particularly in the context
of feedback control systems, have found rather intricate
and complex behaviors even for a simple first order differ-
ential equation.(6; 17). “Delay Differential Equations” are
the main mathematical approaches and modeling tools for
such systems. We can further introducing stochastic ele-
ments together with delays. For such systems, “Stochastic
Delay Differential Equations” (4; 10) or “Delayed Random
Walks” (12; 13) have been proposed and investigated. It
has been pointed out that interplay between stochasticity
and delay can give rise to a peculiar behavior such as
“Delayed Stochastic Resonances”(11; 14; 19).

We present here two models incorporating stochasticity
and delay. The first one is an extension of the classic
problem of Gambler’s Ruin(1) A gambler who has an
initial asset takes on betting under certain probabilities
of win and loss, until he is broken or reaches to a specific
asset level. One of the simplest models can be described as
a restricted random walk with two absorbing boundaries.
The position of the walker indicates his asset and the
walker can probabilistically gain or lose a unit of his
asset at each time step, and moves accordingly until he
reaches either boundary. This model has been studied
extensively and various extensions are made (for examples
(7; 8; 15; 16)).The main feature of our extended model,
which we call “Delayed Gambler’s Ruin” (DGR), is that
it includes delays in the gain or loss of a unit in the
gambler’s asset. This reflects that, in reality, payments
and/or incomes often do not take place immediately at
the time of corresponding events, such as a purchase with
a credit card. Our proposed model, thus, moves according
to past results of gambling.

The second model also concerns with random walks. A
collection of random walkers which are lined and move
in one dimension passes a “baton” or a “message” from
one to the next. The baton holder can pass it to the next
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one when they come in contact. We investigate behaviors
during this relaying of the baton from the starting walker
to the final one. Delays are introduced in each transfer of
the baton, which we call “Delayed Random Relay” (DRR).
In this model, each walker is required to hold the baton
for a certain time period (delay) before it can pass to the
next walker. We will investigate the effect of this inclusion
of the delay on the total relaying time.

Through these models, we provide new examples which
show interplays between stochasticity and delay.

2. DELAYED GAMBLER’S RUIN

We start with a brief description of the Gambler’s Ruin.
A gambler attends a gamble with the initial asset of x
points. At each bet, he either wins or loses one point with
probabilities p and 1 — p respectively. He ends his betting
either when his assets become zero ("broken”) or reach to
his intended asset level A. We now define some notations
to analyze this problem.

e p: The probability of the gambler’s winning a point.
(We also set ¢ = 1 — p as the probability of losing.)

e U;: Gambler’s asset after t-th betting.

e P4 (x): Probability that a gambler, who has the initial
asset of x points and the intended winning asset level
of A, to become broken.

e X; = *1: The change of the asset at t-th betting.

By mapping this problem to restricted symmetric simple
random walks with each step as X; and with absorbing
boundaries at 0 and A, following results are known.
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We now extend the above basic model to investigate how
this probability of ruin is affected by inclusion of delays.
Two delays are introduced into the above Gambler’s Ruin
model:



e 7,.: delay in receipt (winning) of a point.
e 7,: delay in payment (losing) of a point.

At each bet, winning or losing of the point is deferred with
the above delays. We denote the probability of ruin in the
Delayed Gambler’s Ruin as Py’ (x). We will focus on this
probability in the following analysis. The stopping time,
T, r, is also defined as the time duration of the gambler’s
betting (i.e., the time between the beginning to the end of
his betting, either by broken or by reaching A)

It turns out the important parameter in analyzing this
model is the difference between these two delays:

e 0 = 7, — 7,: the difference of delay in payment and
receipt.

With the above setup, we start our analysis by considering

different cases of 6. We assume that the initial asset

is further away from the boundary than this difference

between delays.
A—z>|0| and z>|0]

In the following, we present results of calculations and

approximations. The details are found in (9).

The case § =0 (7, =7p)

We first consider the case of = 0, which means two delays
are the same, 7, = 7.

It turns out that we can reduce the problem for the case
of & = 0 to the original Gambler’s Ruin, leading to the
following ruin probability for 7, = 7,
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The case § >0 (7, > 7)

Let us now consider the case when the delay in receipt is
longer than that of payment, 7, > 7, (8 > 0).

In this case, the exact calculation is quite intricate, but
we can employ an approximation by replacing some of
the stochastic variables by its mean value in some steps
of the calculation. This approximation leads to the ruin
probability as
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We note that this is the same formula as no delay case,
except that the value of the initial asset is decreased from
z by the amount 1 + ¢(6 — 1). This is a natural result
considering that the receipt of points is more delayed than

the payments. Hence, the gambler’s asset tends to be lower
at any time points, leading to a higher probability of ruin
compared to the case of no delays or the same delays.
This approximation accounts for these effects by shifting
the initial assets to lower points.

The case 0 <0 (7 < 7p)

We now consider the opposite case with 7. < 7,. By
essentially the same arguments, the ruin probability for
this case can be approximated as
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We again notice that this is the same formula as no delay
case, but the initial asset is now increased by the amount
p(—0 —1). As in the case for § > 0, we can see that this is
an effective approximation to account for the decrease of
the ruin probability using an increase of the initial asset
points.

2.1 Comparison Against Computer Simulations

In this section, we will compare our approximate results
for P, (x) with computer simulations.

We will fix the following parameters:

e A=100

e p=19/19, (¢=11/19)

Also, we take 10,000 trials to obtain average values from
computer simulations. We show only a representative
examples, leaving other results to the separate paper (9).

The case § >0, (7 > 7p)

For the simplicity, we set 7, = 0 and vary 7., and initial
asset points x. A representative result is given in the
following table and associated plots. The Column A, B are,
respectively, the estimations from computer simulations,
and from our approximation Eq. (3). Though data are
limited due to constraints on computational times, for the
ranges of 7,.(= ), the discrepancy is less than 2 point
percentiles.

T A B

1 0.6883 | 0.6862
2 0.7039 | 0.7031
3 0.7283 | 0.7192
4 0.7422 | 0.7343
5 0.7587 | 0.7486
6 0.7696 | 0.7622
7 0.7883 | 0.7750
8 0.8036 | 0.7872
9 0.8082 | 0.7986
10 | 0.8223 | 0.8095

Table 1. The case with x = 90



o7}

>®

076
Py(x)
0

> 8

74L

>0

>0

072}

0 2 4 6 8 10
TI

Fig. 1. Comparison of computer simulations A (red dots),
and the analytical approximation B (blue triangles).

The case 0 <0, (1. < 7p)

Again, for the simplicity, we set 7. = 0 and vary 7, and
initial asset points x. A representative result is given in the
following table and associated plots. The Column A, B are,
respectively, the estimations from computer simulations,
and from our approximation Eq. (4).

T A B

1 0.6461 | 0.6513
2 0.6360 | 0.6335
3 0.6241 | 0.6147
4 0.6092 | 0.5950
5 0.5889 | 0.5743
6 0.5774 | 0.5525
7 0.5571 | 0.5296
8 0.5342 | 0.5055
9 0.5094 | 0.4802

Table 2. The case with x = 90
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Fig. 2. Comparison of computer simulations A (red dots),
and the analytical approximation B (blue triangles).

3. DELAYED RANDOM RELAYS

We now proceed to propose and study Delayed Random
Relays(18). Let us start with a description of our model
without delays. A schematic view of relaying by random
walkers is given in Figure 3. We consider a one-dimensional
line with a periodic boundary condition (a circle). On the
line, there are N discrete sites on which random walkers
hop. We place n simple symmetric random walkers on
these sites. Each random walker, at each unit time, takes
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Fig. 3. We show the case with 10 walkers. The forth walker
from the left is holding a baton.

a unit step either to his right or left with the equal
probabilities of 1/2.

A baton is relayed in one direction by this group of random
walkers. When the baton holder moves to an adjacent
position, i.e., in contact, to the next walker, the baton
is passed on. We measure the time, T, for the baton to
travel from the starting random walker to the last walker
in the line.

We performed computer simulations of this model with
the parameters of N = 100 and varying the number
n of walkers in the relay. For each n, we repeated the
simulations for 10000 trials and computed the average
values of this total relaying time 7' which is plotted as a
function of n (Figure 4). We observe a monotonic decrease
of T', meaning that the more walkers we have, the faster
the baton is relayed.
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Fig. 4. Total relaying time T as a function of the number
of walkers n.

Now we extend this basic model to include a delay in
relaying of the baton. When the baton is received from the
previous walker, it is not immediately transferable to the
next walker. There is a time interval, which we call delay
d, for the baton to become transferable. One can view this
as a requirement for each walker to hold the baton for at
least a certain period of time, or as a maturing time for
the baton becoming ready to be passed on.

Hence, even though a baton holding random walker comes
in contact with the next walker, he may not be able to pass
the baton. Only after the other condition that the delay
time has elapsed is also satisfied, the baton is passed on
to the next walker.

With this extended model, we also measured the total
relaying time 7' as a function of the number of walkers
n. A representative result is shown in Figure 5. A notable
feature is that there exists an optimal number of walkers
for the fastest relaying of the baton.

The existence of the optimal number of walkers in the
relay can be qualitatively understood as follows. With a
large number of walkers, the average distance between the
walkers is small. Thus, the average time of their contacts
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Fig. 5. Total relaying time T as a function of the number
of walkers n when there is a delay of d = 64.

is short. If the delay time is longer than this average
contact time, the total relaying time is prolonged. When
the number of walkers is small, the delay time is more
likely shorter than the average contact time. In this case,
the total relaying time is not affected. The optimal number
of walkers to have the shortest relaying time is in between.

We can roughly estimate this optimal number of walkers.
The average contact time between the two walkers is
roughly the square of the average distance N/n. If we set
n* as the optimal number of the walkers, the following
relation is obtained.
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In Figure 5, we see the minimum relaying time occurs at
around n &~ 15. The estimation from the above equation is
n* ~ 13. Our preliminary simulation results indicate that
this crude estimation is justified to a certain degree also
with other parameter values.

There have been investigations of “Stochastic Resonance”,
which is a resonant-like behavior with an optimally tuned
level of noise and oscillatory signals(2; 3; 5; 20). When
we replace oscillatory signals by oscillation due to delay,
we can still obtain a similar behavior. This is called
“Delayed Stochastic Resonance”, and has been studied
both theoretically and experimentally(11; 14; 19). The
DDR can be viewed as a collective version of Delayed
Stochastic Resonance models.

4. CONCLUSION

We have presented two models which show interplays
between stochasticity and delay. On Delayed Gambler’s
Ruin, exact analysis of the ruin probability is difficult
when there is a difference between delays associated with
gain and loss. We proposed an approximation scheme. The
scheme essentially finds shifts in the initial assets to ac-
count for the effects of the delays and reduces the problem
to a normal gambler’s ruin with a shifted initial assets.

Through computer simulations, we found that our ap-
proximation may account well for small delay differences,
particularly for the case that the initial asset is closer to
the mid-points between two boundaries. Further analysis
is left for the future. Also, we may extend this model
to mutually interacting multiple gamblers’ ruin problems
reflecting company bankruptcies in reality.

The Delayed Random Relays may find applications in
transfer processes involving multiple entities. For example,
the sun generates its thermal energy at its core, but it
takes unusually long time for the energy to go through the
radiative zone to reach the sun’s surface. This time ranges
are estimated from 170,000 to 50,000,000 years, but the
detailed mechanism is still unknown. Though quite rough,
we may be able to estimate the delay in micro-transfer of
energy among the particles involved, if we can estimate the
number of particles or the density of various parts of the
sun. Another area of application is an epidemic spreading
with latent periods. By observing spreading speed and
number of infected in a large scale, one may infer the latent
periods. Qualitatively similar behavior may arise in rumor
spreadings or in passing down of folklore stories.

ACKNOWLEDGEMENTS

The work on the Delayed Gambler’s Ruin is done with
T. Imai(9), and on the Delayed Random Relays with
K. Sugishita(18), when they were graduate students at
the Graduate School of Mathematics, Nagoya University.
Also, the author would like to thank Profs. Y. Kimura,
Y. Nakamura, H. Ohira, and K. Todayama of Nagoya
University for discussions and for their comments.

REFERENCES

[1] Bailey, N. (1964). FElements of Stochastic Process
with applications to the Natural Sciences, Wiley, New
York.

[2] Benzi, R., Sutera, A. and Vulpine, A. (1981). The
mechanism of stochastic resonance, J. Phys. A: Math.
Gen., 14, 1.453-1.457.

[3] Bulsara, A. R. and Gammaitoni, L. (1996). Tuning in
to noise, Physics Today, 49, 39-45.

[4] Frank, T. D. and Beek, P. J. (2001). Stationary solu-
tions of linear stochastic delay differential equations:
Applications to biological systems, Phys. Rev. E 64,
021917.

[6] Gammaitoni, L., Hanggi, P., Jung, P., and March-
esoni, F. (1998). Stochastic Resonance, Rev. Mod.
Phys., 70, 223-288.

[6] Glass, L. and Mackey, M. C. (1998). From Clocks to
Chaos: The Rhythms of Life, Princeton University
Press, Princeton, New Jersey.

[7] Gut, A. (2005). Probability: A Graduate Course,
Springer, New York.

[8] Gut, A. (2013). The gambler’s ruin problem with
delays, Statist. Probab. Lett. 83, 2549-2552.

[9] Imai, T. and Ohira, T. (2016). Delayed Gambler’s
Ruin, arXiv:1606.04342.

[10] Kiichler, U. and Mensch, B. (1992). Langevins
stochastic differential equation extended by a time—
delayed term, Stochastic Stochastic Rep. 40, 23-42.



[11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

Misono, M., Todo, T. and Miyakawa, K. (2009).
Coherence resonance in a Schmitt-Trigger Inverter
with delayed feedback, J. Phys. Soc. Jan, 78, 014802.
Ohira, T. and Milton, J. (1995). Delayed random
walks, Phys. Rev. E 52, 3277-3280.

Ohira, T. and Yamane, T. (2000). Delayed stochastic
systems, Phys. Rev. E 61, 1247-1257.

Ohira, T. and Sato, Y. (1999). Resonance with noise
and delay, Phys. Rev. Lett. 82, 2811-2815.

Rocha, A.L. and Stern, F. (1999). The gambler’s ruin
problem with n players and asymmetric play, Statist.
Probab. Lett.44, 87-95.

Rocha, A.L. and Stern, F. (2004). The asymmetric
n-player gambler’s ruin problem with equal initial
fortunes, it Adv. in Appl. Math.33, 512-530.
Stepan, G. (1989). Retarded dynamical systems: Sta-
bility and charactertistic functions Wiley, New York.
Sugishita, K. and Ohira, T. (2017). Delayed Random
Relays, in the proceedings of 9th European Nonlinear
Dynamics Conference, (ENOC2017) ID98.

Tsimring, L. S. and Pikovsky, A. S. (2001). Noise-
Induced dynamics in bistable systems with delay,
Phys. Rev. Lett. 87, 250602.

Wiesenfeld, K. and Moss, F. (1995). Stochastic res-
onance and the benefits of noise: from ice ages to
crayfish and SQUIDs, Nature, 373, 33-36.



