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Abstract: This paper investigates a derivative-free control scheme called the single-delay
Proportional-Retarded (PR) protocol to achieve fast consensus in a multi-agent system (MAS)
with double-integrator agent dynamics. The PR protocol intentionally introduces a delay in the
feedback loop to create a derivative-like mechanism that relies only on position measurements,
thus providing high reactivity on the system while mitigating undesirable noise effects. The main
result shows how the PR parameters must be tuned, subject to the MAS topology, to effectively
place the spectral abscissa of the collective dynamics at a desired locus with the purpose of
achieving fast consensus.

Keywords: Multi-agent systems, fast consensus, delay-based control, pole placement

1. INTRODUCTION

Deliberate introduction of delays in a controller to achieve
stability and/or attain certain performance in closed-loop
settings has been long known (Suh and Bien, 1979; Pyra-
gas, 1992; Kokame et al., 2001). Such controllers, also
known as delay-based controllers, have various forms (Ab-
dallah et al., 1993; Atay, 1999; Ulsoy, 2015). A largely stud-
ied one utilizes time differencing, in place of a derivative
controller, to create derivative-like effects while avoiding
noise amplification and additional filtering considerations
(Fridman and Shaikhet, 2016; Özbek and Eker, 2017a,b;
Ramı́rez, 2015; Ramı́rez et al., 2013).

The controller utilizing the time differencing idea is called
the retarded controller as it naturally uses a delay term
for the time differencing operation. These controllers have
been combined with standard proportional and integral
controllers, yielding PR, IR and PIR controllers, to achieve
certain stability and performance characteristics in closed
loop settings (Hernández-Dı́ez et al., 2017; Ramı́rez et al.,
2015, 2016b; Ramı́rez, 2015).

Simple implementations of PR and PIR controllers make
them attractive and desirable alternatives over standard
PD and PID controllers. Indeed, in single-input single-
output (SISO) systems, superiority of PR and PIR in
terms of noise attenuation have already been demonstrated
(Ramı́rez et al., 2016a; Özbek and Eker, 2017a,b). At
this point, one wonders how and in what ways such
controllers could also be implemented in network settings,
for example, in multi-agent systems (MAS).
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One challenge in designing PR controllers for MAS is that
the design problem becomes a large scale one. A remedy
to this issue is to establish certain decomposition proper-
ties of the corresponding eigenvalue problem, mainly, by
decomposing the entire system into subsystems and sepa-
rately treating the design of each subsystem, combination
of which represents the dynamics of the MAS. Although
such a decomposition idea is beneficial, the main challenge
in this design problem is that the PR controller designed
based on one of the subsystems may not be necessarily an
ideal one for the remaining subsystems. That is, subsys-
tems compete against each other.

To address the above described design problem, one has
two options: (a) a multiple-delay PR controller with het-
erogeneous gains (Ramı́rez and Sipahi, 2018b), (b) a
single-delay PR controller (Ramı́rez and Sipahi, 2018a).
In (a), one completely decouples the subsystems; hence
each subsystem is independently designed without any
competition. But, this controller is quite complex with
multiple gains and delays. In (b), the controller has much
simpler form; it has three parameters to tune, which is
attractive, but the PR design based on one subsystem may
not be adequate for the remaining subsystems.

Simplicity of the single-delay PR controller is attractive
however the arising competition between subsystems of the
MAS must be understood in order to better harvest the
capabilities of PR in network settings; an open problem
to the best of our knowledge. To this end, here we
start with a single-delay PR controller implemented for
each double-integrator agent dynamics of an MAS with
undirected graph topology. We next examine the design
of PR controller for various subsystems of the MAS and
investigate the performance degradation in the remaining
subsystems. This degradation, as we show, is determined



by the ratios between pairs of MAS graph Laplacian
eigenvalues. We therefore utilize this knowledge to propose
the parameter settings to be used to design the PR
controller in a way that subsystem competition does not
influence the goal to achieve a desired performance from
the MAS.

2. PRELIMINARIES

Before presenting the theoretical framework, we first re-
view the network system under study and a standard
modal decomposition of this dynamics.

2.1 Problem formulation

We consider a system with n identical agents whose
dynamics is given by the double integrator plant 1

ṗi(t) = vi(t), v̇i(t) = ui(t), (1)

where pi, vi, and ui are respectively the position, velocity,
and control input of the ith agent. Notice that (1) can
be constructed with either homogeneous or heterogeneous
agents, simply by scaling each ui by a constant αi.

The network in (1) is described with an undirected graph
G = (N,E) where N = 1, n ≡ {1, . . . , n} is the set of
nodes and E ⊂ N × N is the set of edges. Each edge
has a weight aij = aji > 0, i 6= j, where the edge (i, j)∈E
indicates that agent i receives information from agent j
if aij 6= 0. As per the consensus nature, the Laplacian
matrix L = [−aij ] ∈ Rn×n associated with G has zero
row sum; aii =

∑n
j=1,j 6=i aij . Assuming the agents are

connected, L has one zero eigenvalue and its remaining
eigenvalues are real (Horn and Johnson, 1988) and positive
(Olfati-Saber and Murray, 2004). Hereafter, we assume
that 0 = λ1 < λ2 < · · · < λn holds noting also that
the developments can easily be extended to the case of
repeated eigenvalues (see, e.g., Section 4).

To achieve agreement in position and velocity amongst all
the agents, motivated by successful implementation of the
PR protocol originally developed for SISO systems (Suh
and Bien, 1979; López et al., 2017), here we start with
the same protocol and implement it for each of the agents,
subject to network topology,

ui(t) = kp

n∑
j=1

aij∆pji(t)− kr

n∑
j=1

aij∆pji(t− h) (2)

where ∆pji(t) = pj(t)−pi(t), kp and kr globally modulate
the strength of the proportional and retarded actions, and
h ≥ 0 is an intentional delay induced in the input to an
agent. The main motivation to introduce (2) here is that
the presence of delay can help improve dynamic response
as already shown in (Ramı́rez et al., 2016a; Suh and Bien,
1979; Ulsoy, 2015) where an intentional delay is used to
mimic a realizable derivative effect and to enhance perfor-
mance. Moreover, in many cases, only pi is measurable,
and differentiating it to estimate vi can be prohibitive
especially in the presence of noise (Ramı́rez et al., 2015).
In view of this rationale, in noisy environments, the PR

1 These types of dynamics attract strong interest both in engineering
and physics literature as they enable studying fundamental bench-
mark problems, see (Ramı́rez and Sipahi, 2018b) for a thorough list
of references.

protocol can be considered more preferable over traditional
PD protocols. Motivated by these observations, here we
aim to investigate the opportunity of using delay as part of
protocol (2) for the multi-agent system (1). We say that (2)
solves the consensus problem if limt→∞ ‖pi(t)−pj(t)‖ = 0
and limt→∞ ‖vi(t)− vj(t)‖ = 0 for all i, j ∈ N .

To address the above stated problem, we start with some

definitions. Let x =
(
p1, v1, · · · pn, vn

)>
be the stack vector

of the states at all nodes, then the matrix form of (1) with
(2) is conveniently written as

ẋ(t)=(In⊗ J−L⊗Kp)x(t) + L⊗Krx(t− h), (3)

where In is the n× n identity matrix and

J=

(
0 1
0 0

)
, Kp=

(
0 0
kp 0

)
, Kr=

(
0 0
kr 0

)
. (4)

Stability of (3) is important and can be studied through
the roots of its characteristic equation given by

f(s)=det
[
sI2n−

(
In⊗ J−L⊗Kp

)
−L⊗Kre

−hs
]
=0. (5)

However, here we are interested with the exponential decay
rate of the consensus dynamics with a given degree γ,
namely, with the γ-stability of (3), which is directly
associated with fast/slow consensus reaching. The main
problem of this article is then: find the analytical formula
relating (h, kp, kr) that creates the maximum exponential
decay rate for γ based on the roots of (5).

It is well known that the decay rate of (3) is associated
with the distribution of the roots of (5). In particular,
the above problem is better understood as the problem
of minimizing the spectral abscissa γ∗ of (3), (Hale and
Verduyn Lunel, 1993, Theorem 6.2). More precisely, how
should the parameters h, kp and kr be selected such that
real part of the rightmost root of (5) is pushed into the
left hand-side of the complex plane as far as possible?

2.2 Modal decomposition of the consensus dynamics

Finding an analytical relation between (h, kp, kr) and γ-
stability is not an easy task. In fact, analysis of γ-stability
over (5) is prohibitive, especially for large scale problems.
We summarize below an approach that can address this
problem, see the main results in (Ramı́rez and Sipahi,
2018b).

Proposition 1. The characteristic equation (5) satisfies

f(s) =

n∏
m=1

fm(s) =

n∏
m=1

(
s2 + λmkp − λmkre

−sh
)
, (6)

where λm is an eigenvalue of L.

Proof. Since the graph is undirected, L is symmetric,
hence the Schur’s theorem (Horn and Johnson, 1988) guar-
antees the existence of a nonsingular orthogonal matrix
U ∈ Rn×n, such that L = UDU−1 holds, where D
is a diagonal matrix formed with the eigenvalues of L.
Under this unitary transformation, introduce the change
of variable x(t) = Uξξξ(t), which transforms system (3) into

ξ̇ξξ(t) = (In ⊗ J−D⊗Kp)ξξξ(t) +D⊗Krξξξ(t− h). (7)

The fact that (7) is in diagonal form implies that (3) can be
treated as a set of n decoupled subsystems with dynamics

ξ̇ξξm(t) =
(
J− λmKp

)
ξξξm(t) + λmKrξξξm(t− h). (8)

The characteristic equation of (8) is fm(s) = s2 + λmkp −
λmkre

−sh, which is a factor of f(s) in (5). 2



Remark 2. Notice that λ1 =0 corresponds to the consen-
sus state s=0. Hereafter, the case m = 1 is ignored in the
stability analysis since this subsystem corresponds to the
consensus state, independent of delay h. We shall say that
“consensus γ-stability” holds if and only if all s satisfying
fm = 0, m = 2, n have negative real parts less than γ.

With Proposition 1 at hand, and keeping Remark 2 in
mind, we now are able to separately analyze the γm-
stability of the subsystems in (8) and use this analysis
to conclude about the γ-stability of the complete system
in connection with the design of (h, kp, kr). To this end,
let γ∗

m be the spectral abscissa of (8) and define

γ∗ = max
2≤m≤n

{γ∗
m}. (9)

It follows that γ∗ < 0 holds if and only if γ∗
m < 0 for all

possible m. One important point here is that h, kp and kr
are distributed throughout all the factors in (6). That is,
the design of (h, kp, kr) using only one factor associated
with one subsystem may produce favorable results for
this subsystem, but not necessarily for all subsystems.
Therefore, it is necessary to study how this choice impacts
the stability of the rest of the factors.

2.3 Tuning of the PR protocol for a stable subsystem

We first investigate a generic factor fq and show how
its spectral abscissa γ∗

q can be placed at any desired
position γdq thus guaranteeing γdq -stability provided that
γdq < 0. To this end, let us introduce the change of variable
s → (s+γq) by which the real part of the Laplace operator
is shifted by γq. From (6), the change of variable yields

fq(s+ γq)=(s+ γq)
2 + λqkp− λqkre

−(s+γq)h. The purpose
here is to push the roots of fq as deep as possible into
the left-half of the complex plane using the shift γq. To
this end, a minimum value for γ∗

q is to be found in terms
of kp and further associated with the design parameters
in (h, kr) domain. For conciseness, we summarize from
(Ramı́rez and Sipahi, 2018b) the following proposition, see
also (Ramı́rez et al., 2015) for SISO implementations:

Proposition 3. (Ramı́rez and Sipahi (2018b)). Let kp > 0
and λq > 0 be given, then γ∗

q exhibits a minimum in (h, kr)
domain at

γ∗
q = −

√
λqkp, (10)

subject to

(h, kr) =

(
− 1

γ∗
q

,−
2γ∗

q

λqhe
−γ∗

qh

)
. 2 (11)

The above result reveals an exact minimum for γ∗
q . Fur-

thermore, this characterization may be used to achieve a
desired exponential decay rate γdq

for one of the subsys-
tems in (8), ultimately establishing its γdq

-stability, via
the analytical tuning of h, kp and kr as stated next.

Proposition 4. Let γdq
< 0 be a desired exponential decay

rate, then the spectral abscissa of the qth subsystem in (8)
is placed at γdq

by tuning the gains of the PR protocol as

(h, kp, kr)=

(
− 1

γdq

,
γ2
dq

λq
,
2γ2

dq
e−1

λq

)
. (12)

Proof. The result follows from Proposition 3 by defining
γ∗
q ≡ γdq

. Then, solving kp from (10) and algebraic
manipulation of (11) yield (12). 2
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Fig. 1. Non-dimensional spectral abscissa γ∗
δ with respect to δ.

Computation using TRACE-DDE (Breda et al., 2009) and (14).

As mentioned above, the PR design based on one subsys-
tem should not be detrimental for the other subsystems to
collectively achieve the control design goal at hand. Based
on Proposition 4, we next investigate the impact of λm on
the stability of these subsystems.

3. STABILITY ANALYSIS

The analytical tuning in the previous section is now
employed to study the stability of the overall system in
connection with the Laplacian eigenvalues associated with
the topology of the network.

3.1 Non-dimensionalization

Motivated by (Źıtek et al., 2013), the following non-
dimensionalization is performed to facilitate the stability
analysis of (3) subject to the tuning of the PR protocol in
(12). To this end, let the Laplace operator s and the mth
factor in (6) be scaled by −γdq

and 1/γ2
dq
, respectively,

fm(−sγdq
)

γ2
dq

=
s2γ2

dq

γ2
dq

+
λmkp
γ2
dq

− λmkre
sγdqh

γ2
dq

. (13)

Substituting (h, kp, kr) in (12) into the above equation and
defining δ ≡ λm/λq and fδ(s) ≡ fm(−sγdq )/γ

2
dq
, the tuned

characteristic factors take the final form

fδ(s) = s2 + δ − 2δe−(s+1), (14)

where in this case γ∗
δ is defined as the real part of the

rightmost root of (14), then the linear function

γ∗
m = −γdqγ

∗
δ = −γdqγ

∗
λm/λq

, (15)

maps any γ∗
δ value to the original coordinates γ∗

m. Using
next TRACE-DDE (Breda et al., 2009), we record in
Fig. 1 the behavior of γ∗

δ as δ increases. Observe that γ∗
δ

attains its minimum at −1 for δ = λm/λq = 1, which
holds only if q = m. Then, substituting γ∗

δ = −1 into
(15) we readily obtain that γ∗

m = γdm
. In other words,

the spectral abscissa of the mth subsystem is placed at
the desired locus γdm

, which is consistent with the design
presented in Proposition 4. Since γ∗

δ is minimal at δ = 1, it
follows that δ 6= 1 always creates larger γ∗

δ values. In other
words, the analytical placement of γ∗

m shifts the spectral
abscissas of the rest of the subsystems towards right on the
complex plane. Furthermore, stability is preserved only in
the interval 0 < δ < δ̄, where the upper-bound is easily
found by crossing frequency analysis of (14), δ̄ = π2/(1−
2 e−(jπ+1)) ≈ 5.686, see (Michiels and Niculescu, 2007).

Proposition 5. The consensus dynamics (3), subject to
(h, kp, kr) in (12) with q ∈ 2, n, is stable if and only if
0 < λm/λq < δ̄ holds for all m = 2, n. 2



At this point, the design of the PR controller is able to
provide stability. Recall however that the main objective
here is to achieve fast consensus, which is related with the
placement of the spectral abscissa of the overall system.
In what follows, drawing on the above developments, we
perform a simple re-design of the proposed protocol with
which fast consensus can be achieved.

3.2 Tuning of the PR protocol for rightmost root placement

To render the network with improved settling times, we
rely on the previous analysis to place the spectral abscissa
of the consensus dynamics at a desired locus. From the
above discussions, we can conclude from (9) and (15) that

γ∗ = max
2≤m≤n

{γ∗
m} = −γdq

max
δ>0

{γ∗
δ } = −γdq

γ̄∗
δ , (16)

for some q ∈ 2, n. With the above in mind, the follow-
ing proposition places the spectral abscissa of the entire
network at a desired locus.

Proposition 6. Let q ∈ 2, n be fixed and a desired spectral
abscissa γd < 0 be given. Then, for network (3), at least
one dominant root at γd is placed by tuning the gains of
the PR protocol as

(h, kp, kr)=

(
γ̄∗
δ

γd
,

γ2
d

γ̄∗2
δ λq

,
2γ2

de
−1

γ̄∗2
δ λq

)
, (17)

where γ̄∗
δ = maxδ>0 {γ∗

δ } is obtained from fδ(s) = s2+δ−
2δe−(s+1) as the maximum value that the real part of its
rightmost root can exhibit, subject to G, with δ = λm/λq,
m = 2, n for some fixed q ∈ 2, n.

Proof. The proof follows by noting that γ∗ = −γdq
γ̄∗
δ .

Hence, choosing γdq
= −γd/γ̄

∗
δ yields γ∗ = γd. Further

substitution of γdq
into (12) yields (17). 2

The above proof completes the main contributions of this
study. Specifically, the PR controller enables a desired
spectrum optimization that ultimately ensures a dominant
desired spectral abscissa. This becomes possible by opti-
mizing the spectrum based on the worst case subsystem
and over-designing the remaining subsystems.

4. CASE STUDIES

We now verify the theoretical results via numerical ex-
amples under different topologies. Since the developments
are fully analytical, the main result in Proposition 6 must
guarantee the exact placement of the spectral abscissa.
To conserve space, some position plots are suppressed.
In all the cases, a five-agent MAS is considered, n = 5.
For simplicity, agents’ coupling strengths are taken to be
homogeneous aij = aji = a = 0.2, subject to G. Initial
positions [0.180, 0.231, 0.088, 0.148, 0.162]> and velocities
[0.131, 0.356, 0.059, 0.159, 0.254]> at t = 0 are randomly
picked for all the cases. To emulate the availability of
the initial conditions in −h ≤ t ≤ 0, in the practical
implementation of the PR protocol, we let ui(t) = 0 for
t ∈ [0, h] ≡ th. After th has elapsed, the PR protocol is
activated and hence, the stability features of the collective
dynamics (3) are properly captured by (6). Time simula-
tions are conducted using Matlab/ODE4 with a fixed
step size 0.001 sec, and the spectrum of the dynamics is
computed using QPmR (Vyhĺıdal and Źıtek, 2009).

Fig. 2. Five agents under a complete graph with γdq = –2

4.1 Complete graph as ideal

Consider the complete graph with PR and let γd = −2.
The non-zero eigenvalues of L are λ2 = · · · = λn = na
(Koh and Sipahi, 2016). That is, there exist n−1 identical
subsystems. This case study is considered ideal since the
ratio between any pairs of eigenvalues, δ, can only be unity,
and consequently no competition among subsystems. That
is, the PR design based on one subsystem will place all the
subsystem spectral abscissas at γdq

= γd = −2. In view of
this, from (12), the PR controller parameters are obtained
(h, kp, kr) = (0.5, 4, 2.943). Fig. 2 presents the positions
and the velocities of the agents, each equipped with the
designed PR controller.

4.2 Undirected line topology

Consider now an undirected line graph. The eigenvalues

of L are
{
0, 3−

√
5

2 a, 5−
√
5

2 a, 3+
√
5

2 a, 5+
√
5

2 a
}
. By inspection

of γ∗
δ in Fig. 1 subject to δ, we determine λq minimizing

γ∗. Table 1 is provided for this purpose, which suggests
two messages. Firstly, since λ5/λ2 = 9.472 > 5.686, this
leads to positive γ∗

5 , that is, instability. Hence, λq 6= λ2.
Secondly, in terms of attaining the convergence rate γ∗,
one should select λq = λ3, see Table 1. Now considering the
scaling property in (15) and doubling γdq to γdq = −2 for
consistency with the other cases, the numerical values of
γ∗
m in Table 1 will also double. Indeed, these observations

are also validated with computations, see Fig. 3.

Table 1. Spectral abscissa values γ∗
m obtained with the

non-dimensional system for δ = λm/λq for q = 2, 5

δ = λm/λq γ∗
m

λq=λ5 [0.106,0.382,0.724,1] [-0.040,-0.163,-0.380,-1]

λq=λ4 [0.146,0.528,1,1.382] [-0.056,-0.243,-1,-0.435]

λq=λ3 [0.276,1,1.894,2.618] [-0.112,-1,-0.380,-0.353]

λq=λ2 [1,3.618,6.854,9.472] [-1,-0.334, 0.134, 0.353]

4.3 Undirected star topology

In this case, the eigenvalues of L are given by λ1=0,
λ2 = λ3 = λ4 = a and λ5 = na, hence one has
two different choices for λq to be used in tuning the
PR controller based on (12). For each selection, the
set of δ becomes either {1, 1, 1, 5} for λq = λ2 or
{0.2, 0.2, 0.2, 1} for λq = λ5. From Fig. 1, based on δ, the



Fig. 3. Five agents under an undirected line topology with γdq = –2
and h = 1/2; (kp, kr) = (5.528, 4.067) for λq = λ5; (kp, kr) =
(7.6393, 5.6207) for λq = λ4; (kp, kr) = (14.472, 10.648) for
λq=λ3; (kp, kr)=(52.361, 38.525) for λq=λ2 using (12).

set of γ∗
m is given respectively by {−1,−1,−1,−0.0938}

and {−0.0789,−0.0789,−0.0789,−1}. Therefore, we ex-
pect that the selection λq = λ2 achieves a faster con-
vergence rate since −0.0938 < −0.0789. Next, doubling
to γdq

= −2 for consistency with the other cases, these
observations are validated in computations, see Fig. 4.

4.4 Undirected ring topology

Consider an undirected ring topology. The eigenvalues of

L are
{
0, 5−

√
5

2 a, 5−
√
5

2 a, 5+
√
5

2 a, 5+
√
5

2 a
}
. In this case, one

has two options in terms of picking λq for tuning (h, kp, kr):

Fig. 4. Five agents under an undirected star topology with γdq = –2
and h = 1/2. (Top) (kp, kr)=(4, 2.9430) for λq=λ5. (Bottom)
(kp, kr)=(20, 14.715) for λq=λ2 using (12).

Fig. 5. Five agents under an undirected ring topology with γdq = –2
and h = 1/2; (kp, kr) computed with (12).

(i) If λq = λ5 = λ4 = 5+
√
5

2 a, the set of δ ratios
is {0.382, 0.382, 1, 1}. With this, for γdq = −1, the set
of γ∗

m is obtained as {−0.163,−0.163,−1,−1} from Fig.
1. Based on the scaling in (15), it is easy to see that
the set of γ∗

m reads {−0.326,−0.326,−2,−2} when γdq is
doubled to γdq = −2. In this case, PR parameters read
(h, kp, kr) = (0.5, 5.528, 4.067).

(ii) If λq = λ3 = λ2 = 5−
√
5

2 a, the set of δ ratios
becomes {1, 1, 2.618, 2.618}. With this, for γdq = −1, the



Fig. 6. Five agents under an undirected ring topology with γ∗ = –2
and (h, kp, kr) computed with (17).

set of γ∗
m is obtained as {−1,−1,−0.3534,−0.3534} from

Fig. 1. Similarly, for γdq = −2, the entries in the set of
γ∗
m are doubled to {−2,−2,−0.7068,−0.7068} as per the

scaling property in (15). In this case, PR parameters read
(h, kp, kr) = (0.5, 14.472, 10.648).

By inspecting γ∗ = max2≤m≤5{γ∗
m} between (i) and (ii),

we have that MAS with PR controller in (ii) achieves
faster consensus than in (i), owing to its smaller γ∗,
i.e., −0.707 < −0.326. This conclusion is consistent with
time simulations (Fig. 5). Moreover, γ∗ of MAS can be
attained by designing the PR controller based on (17).
Given γd = γ∗ = −2 and that we have λq = λ2 and
γ̄∗
δ = −0.354 (see (ii)), the PR parameters now read

(h, kp, kr) = (0.1767, 115.8776, 85.2579). Then the new set
of γ∗

m becomes {−5.658,−5.658,−2,−2}, and as expected
γ∗ = −2. Simulation results are shown in Fig. 6.

5. CONCLUSIONS

This paper studies the convergence rate of an LTI consen-
sus dynamics using a Proportional Retarded (PR) protocol
in a single-delay setup. To facilitate the implementation
of the proposed protocol, we use spectral analysis to op-
timize the dominant modes of the system resulting in
algebraic tuning formulas for the parameters of the con-
troller, ultimately placing the spectral abscissa at a desired
position thus ensuring fast settling times. The proposed
approach is scalable and computationally amenable for
practitioners. Moreover, the proposed approach can be
applied regardless of the size and the type of network,
heterogeneous/homogeneous coupling strength as long as
the underlying graph of the dynamics is undirected.
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López, K., Garrido, R., and Mondié, S. (2017). Position control
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