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Abstract: This paper examines the delay margin achievable by using PID controllers for linear
time-invariant (LTI) systems subject to variable, unknown time delays. We derive explicit lower
bounds on the delay margin of second-order unstable delay systems achievable by PID control,
which provide a priori the ranges of delay over which a second-order delay plant is guaranteed to
be stabilizable by a PID controller, and more generally, by a finite-dimensional LTI controller.
Analysis shows that our results are less conservative in most cases than lower bounds obtained
elsewhere using more sophisticated and general LTI controllers.
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1. INTRODUCTION

Consider the feedback system depicted in Fig.1, in which
Pτ (s) denotes a plant to be controlled subject to an
unknown delay τ , whose transfer function is given by

Pτ (s) = P0(s)e−τs, τ ≥ 0, (1)

where P0(s) is a finite dimensional delay-free plant. The
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Fig. 1. Feedback control system

problem of delay margin is to determine the largest vari-
ation range of τ ≥ 0 such that Pτ (s) can be stabilized
by a certain finite-dimensional LTI controller K(s) in that
range, that is, to compute the delay margin

τ̄ = sup{µ ≥ 0 : There exists some K(s) that stablizes
Pτ (s), ∀τ ∈ [0, µ)}.

A problem of significant practical interest is to find the
delay margin achievable by all LTI controllers of the PID
structure

KPID(s) = kp +
ki
s

+ kds, (2)
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in other words, we are interested in

τ̄PID = sup{µ ≥ 0 : There exists some KPID(s) that
stablizes Pτ (s), ∀τ ∈ [ 0, µ)}.

The delay margin defined above serves as a fundamental
measure of robust stabilization against uncertain time
delays which asks the question: in what range of the delay
parameter can a system be stabilized by one controller for
all possible delays lying within that range? For its fun-
damental interest, this problem has received considerable
attention, we refer to Michels et al. (2002), Miller and
Davison (2005), Gaudette and Miller (2016), Bresch-Pietri
et al. (2012); Liberis and Krstic (2013), Ju and Zhang
(2016); Middleton and Miller (2007); Qi et al. (2017b),
Qi et al. (2017a), Michels et al. (2002); Wei and Lin
(2017); Yoon and Lin (2013); Zhou et al. (2012) for various
methods tackling the problem, which accordingly, result
in different bounds on the delay margin depending on
the complexities of the control law and control structure.
Generally, for high-order systems, the exact delay margin
was found only for plants containing one unstable pole and
one nonminimum phase zero, achievable by general LTI
controllers of a possible high order Middleton and Miller
(2007); Qi et al. (2017b).

With a fixed structure and only three parameters available
for design, PID control of delay systems poses a more chal-
lenging task, and is largely limited to low-order systems.
An earlier result on the delay margin achievable by PID
control is found in Michels et al. (2002) (see also Michiels
and Niculescu (2007) (pp. 154)), where the exact delay
margin was obtained for first-order systems controlled by
proportional static feedback. With a full PID controller,
this margin can be doubled Silva et al. (2002, 2005), which,



inadvertently, is known to be the maximum delay mar-
gin achievable by any finite-dimensional LTI controllers
Michels et al. (2002); Middleton and Miller (2007); Qi
et al. (2017b). Recently, the authors examined second-
order systems Ma and Chen (2017), where a general op-
timization scheme was developed in search for the delay
margin achievable by PID controllers. For second-order
anti-stable plants, the problem appears considerably more
difficult, and only upper bounds are available.

Our purpose in this note is to derive companion lower
bounds on the delay margin of second-order systems
achievable by PID control. Results of this nature provide,
a priori, a range of delay values within which the delay
system is guaranteed to be stabilizable by a PID con-
troller, and consequently lower bounds on the delay margin
achievable by any finite-dimensional LTI controllers. A
comparison to other lower bounds obtained elsewhere, in
e.g., Wei and Lin (2017); Zhou et al. (2012), where general
LTI controllers are allowed, shows that our bounds can
be significantly less conservative. As a final remark, it
is known that PID control is generally effective only for
systems up to the second-order (see, e.g., Krstic (2017)),
and for unstable systems of a higher order, it is likely that
PID controllers may not even stabilize the systems free of
delay, lest that the systems may contain delays. On the
other hand, many industrial processes are often modeled
by first- and second-order systems. Under such circum-
stances, PID control remains to be an attractive means
for its low complexity in design and implementation.

2. PRELIMINARY RESULTS

We consider second-order anti-stable delay systems

Pτ (s) =
1

(s− p1)(s− p2)
e−τs, (3)

where Re(p1) ≥ 0 and Re(p2) ≥ 0. In the sequel, we
shall address the cases where p1 and p2 are both real
unstable poles, or they are an unstable complex conjugate
pair. Throughout the paper we shall assume that in the
PID controller (2) the integral coefficient ki = 0; that
is, only PD controller will be considered. Underlying this
consideration is the fact that integral control action will
generally reduce the delay margin Ma and Chen (2017).

In conjunction with the delay margin τ̄PID, also of interest
is the margin attainable by a particular PID controller
with a given set of the controller parameters kp, ki, and
kd. This controller-specific delay margin is defined as

τ̄PID(KPID) = sup{µ ≥ 0 : KPID(s) stablizes Pτ (s),
∀τ ∈ [ 0, µ)}.

Clearly,

τ̄PID = sup{τ̄PID(KPID) : KPID(s) stabilizes Pτ (s),
∀τ ∈ [ 0, µ)}.

The delay margin τ̄PID for second-order delay systems
generally presents a difficult problem, which has seldom
been addressed in the previous work. Indeed, no explicit,
exact delay margin appears to have been found. The
following results adopted from Ma and Chen (2017),
however, show that it can be determined by finding the
maximum of a real function in two real variables, by
optimizing τ̄PID(KPID).

Proposition 2.1. Let Pτ (s) be given by (3), with p1 ≥ 0
and p2 ≥ 0 being real poles. Suppose that ki = 0. Then
for any given KPID(s) to stabilize P0(s), it is necessary
and sufficient that kp > p1p2 and kd > p1 + p2. Under
these conditions,

τ̄PID(KPID) =
tan−1 ω0

p1

ω0
+

tan−1 ω0

p2

ω0
+

tan−1 kdω0

kp

ω0
− π

ω0
,

(4)
where ω0 > 0 is given by

ω0
2 =

kd
2 − (p21 + p22)

2

+

√
(kd

2 − (p21 + p22))
2

+ 4(k2p − p21p22)

2
. (5)

Proposition 2.2. Let Pτ (s) be given by (3), with p1 = p =
α + jβ, p2 = p̄ = α − jβ, where Re(p) = α ≥ 0. Suppose
that ki = 0. Then for any given KPID(s) to stabilize P0(s),
it is necessary and sufficient that kp > |p|2 and kd > 2α.
Under these conditions,

τ̄PID(KPID) =
tan−1 ω0−β

α

ω0
+

tan−1 ω0+β
α

ω0

+
tan−1 kdω0

kp

ω0
− π

ω0
, (6)

where ω0 > 0 is given by

ω2
0 =

k2d + 2β2 − 2α2

2

+

√
(k2d + 2β2 − 2α2)2 + 4(k2p − |p|

4
)

2
. (7)

In the sequel we shall also need the following lemma,
which collects a number of useful properties of the tan−1

function. We refer these properties to Boros and Moll
(2005).

Lemma 2.1. Suppose that ξ ≥ 0, η ≥ 0. Then,

(i) tan−1 ξ is monotonically increasing with ξ.
(ii)

ξ

1 + ξ2
≤ tan−1 ξ ≤ ξ.

(iii)

tan−1 ξ + tan−1 η =

{
tan−1 ξ+η

1−ξη , ξη < 1,

tan−1 ξ+η
1−ξη + π, ξη > 1.

(iv)

tan−1 ξ − tan−1 η = tan−1
ξ − η
1 + ξη

.

3. MAIN RESULTS

3.1 Real Poles

We first provide the following lower bound on the delay
margin τ̄PID when P0(s) contains two real unstable poles.

Theorem 3.1. Let Pτ (s) be given by (3), with p1 ≥ 0 and
p2 ≥ 0 being real poles. Suppose that ki = 0. Then,



τ̄PID ≥
(

1
√
p1p2

) tan−1 θ
√

2+
√
1+2θ2

θ2+1+
√
1+2θ2√

2 +
√

1 + 2θ2
(8)

≥
1
p1

+ 1
p2

2 + θ2 + 2
√

1 + 2θ2

(
1 +

1

θ2 +
√

1 + 2θ2

)
, (9)

where

θ =

√
p1
p2

+

√
p2
p1
.

Furthermore,

τ̄PID ≥
1

2

(
1
p1

+ 1
p2

5 + 2p1p2 + 2p2p1

)(
1 +

1

5 + 2p1p2 + 2p2p1

)
.

(10)

Proof. From Proposition 2.1, we note that

τ̄PID = sup {τ̄PID(KPID) : kp > p1p2, kd > p1 + p2} .
(11)

In view of Lemma 2.1 (iii), we may write

τ̄PID(KPID) =
tan−1 kdkpω0 − tan−1 (p1+p2)ω0

ω2
0−p1p2

ω0
.

Setting kp = p1p2 yields ω2
0 = k2d − (p21 + p22). Define then

g(kd) =
tan−1

kd
√
k2
d
−(p21+p

2
2)

p1p2
− tan−1

(p1+p2)
√
k2
d
−(p21+p

2
2)

k2
d
−(p21+p

2
2+p1p2)√

k2d − (p21 + p22)
,

g(kd) =
tan−1

(p1+p2)
√
k2
d
−(p21+p

2
2)

p1p2
− tan−1

(p1+p2)
√
k2
d
−(p21+p

2
2)

k2
d
−(p21+p

2
2+p1p2)√

k2d − (p21 + p22)
.

Since tan−1(·) is monotonically increasing, we have g(kd) ≥
g(kd). It thus follows that

τ̄PID ≥ sup{g(kd) : kd > p1 + p2}
≥ sup{g(kd) : kd > p1 + p2}.

In what follows we attempt to find the maximum of g(kd)
for kd > p1 + p2. To facilitate the derivation, we introduce
a new variable x such that

k2d = p21 + p22 + p1p2x
2.

Evidently, for kd > p1 + p2, we have x >
√

2. Define
g(x) = g(kd)

∣∣
kd=
√
p21+p

2
2+p1p2x

2 . It follows that

sup
kd>p1+p2

g(kd) = sup
x>
√
2

g(x).

By a direct calculation, we obtain

g(x) =
tan−1(θx)− tan−1 θx

x2−1
x
√
p1p2

. (12)

Invoking Lemma 2.1 (iv), we may rewrite g(x) as

g(x) =
tan−1 θx(x2−2)

(θ2+1)x2−1

x
√
p1p2

.

Furthermore, using Lemma 2.1 (ii), we obtain a lower
bound on g(x) as

g(x) ≥
(

θ
√
p1p2

) (
(θ2 + 1)x2 − 1

)
(x2 − 2)

((θ2 + 1)x2 − 1)
2

+ θ2x2(x2 − 2)2
,

which in turn gives rise to g(x) ≥ θ
√
p1p2

(g1(x) + g2(x)),

where

g1(x) =
x2 − 2

θ2x2 + (x2 − 1)2
,

g2(x) =
(x2 − 2)2

(θ2x2 + 1)(θ2x2 + (x2 − 1)2)
.

Maximizing g1(x) yields its maximum at

x∗ =

√
2 +

√
1 + 2θ2.

The lower bound in (8) is then established by evaluating
g(x∗), and the lower bound in (9) is obtained by evaluating
g1(x∗) + g2(x∗). The bound (9) can be further weakened
to

τ̄PID ≥
θ/
√
p1p2

2θ2 + 2
√

1 + 2θ2

(
1 +

1

θ2 +
√

1 + 2θ2

)
≥ 1

2

(
θ/
√
p1p2

1 + 2θ2

)(
1 +

1

1 + 2θ2

)
,

where the first inequality follows by noting that θ2 ≥ 2,
and the second by noting that

√
1 + 2θ2 ≤ 1 + θ2. The

proof is completed by substituting θ.

Remark 3.1. The progressively weakened lower bounds in
(8)-(10), from less conservative to more explicit, may serve
for different purposes. For a given pair of p1 and p2, the
bounds in (8) and (9) can be numerically evaluated. The
bounds (9) and (10) are better fitted for comparison to
earlier results, e.g., those in Ma and Chen (2017); Wei and
Lin (2017); Zhou et al. (2012). In this vein, we note the
upper bound on τ̄PID obtained in Ma and Chen (2017):

τ̄PID ≤
tan−1

(√
2p2
p1

+
√

2p1
p2

)
√

2p1p2
,

and that on τ̄ obtained in Ju and Zhang (2016),

τ̄ ≤
2
(

1
p1

+ 1
p2

)
1 + p1

p2
+ p2

p1

,

which is contingent on use of general LTI controllers.
Note that while in general the bounds (8)-(10) can be
conservative, they are nonetheless sharp in the limit, when,
for example, one of p1 and p2 lies at the origin, i.e., when
the plant is given by

Pτ (s) =
1

s(s− p)
e−τs, p > 0. (13)

We summarize this observation in the following corollary.

Corollary 3.2. Let Pτ (s) be given by (13). Suppose that
ki = 0. Then,

τ̄PID ≥
1

p
. (14)

Proof. It follows by setting p2 = p and taking the limit of
the lower bound in (9) with p1 → 0.

Note that the lower bound in (14) was shown to be exact
in Ma and Chen (2017).

Also of interest is a plant with a double pole, that is, the
plant

Pτ (s) =
1

(s− p)2
e−τs, p > 0. (15)

The following corollary is an immediate consequence of
Theorem 3.1, which follows by setting p1 = p2 = p.



Corollary 3.3. Let Pτ (s) be given by (15). Suppose that
ki = 0. Then,

τ̄PID ≥

(
tan−1(

√
5/4)√

5

)
1

p
(16)

≥
(

4

21

)
1

p
. (17)

Remark 3.2. In connection with Corollary 3.3, it is useful
to recall that for the plant given in (15), the upper bound
Ma and Chen (2017)

τ̄PID ≤

(
tan−1(2

√
2)√

2

)
1

p

holds, while more generally, it was found in Ju and Zhang
(2016) that

τ̄ ≤
(

4

3

)
1

p
.

3.2 Complex Conjugate Poles

We now develop in parallel the lower bounds for plants
that contain a pair of complex conjugate poles. Thus,
we consider the system (3) with p1 = p = α + jβ,
p2 = p̄ = α − jβ, where Re(p) = α ≥ 0. As stipulated in
the preceding section, we consider as well a PD controller
given by KPID(s) = kp+kds. The following theorem gives
an analogous result, whose proof is omitted due to space
consideration.

Theorem 3.4. Let Pτ (s) be given by (3), with p1 = p = α+
jβ, p2 = p̄ = α − jβ, where Re(p) = α ≥ 0. Suppose that
ki = 0. Then,

τ̄PID ≥
(

1

|p|

) tan−1
γ
√

2+
√

1+2γ2

1+γ2+
√

1+2γ2√
2 +

√
1 + 2γ2

(18)

≥ (2α/|p|2)

2 + γ2 + 2
√

1 + 2γ2

(
1 +

1

γ2 +
√

1 + 2γ2
,

)
(19)

where γ =
2α

|p|
.

Furthermore,

τ̄PID ≥
(

4

21

)
Re(p)

|p|2
. (20)

Additionally,

τ̄PID ≥
1

|p|


√√√√√

1 +

(
1− 2

α2

|p|2

)2

−
(

1− 2
α2

|p|2

)

− 2(α/|p|)√
1 +

(
1− 2 α2

|p|2

)2
− 2 α2

|p|2

 . (21)

Remark 3.3. It is worth pointing out that the bounds in
(18) and (19) are most useful when α/|p| is relatively large.
In the limit when α = |p|, i.e., when the conjugate poles
p and p degenerate to a double real pole, these bounds
coincide with those in (16) and (17), respectively. On the

other hand, the bound in (21) provides a tighter estimate
when α/|p| is small; in the extreme case when α = 0, i.e.,
for a pair of purely imaginary poles, which correspond to
the plant

Pτ (s) =
1

s2 + ω2
c

e−τs, ωc ≥ 0, (22)

it leads to the following corollary.

Corollary 3.5. Let Pτ (s) be given by (22). Suppose that
ki = 0. Then,

τ̄PID ≥
(√√

2− 1

)
1

ωc
. (23)

It is thus clear that for a double integrator system, i.e.,
when ωc = 0, the delay margin achievable by a PID
controller can be made infinitely large. This observation
corroborates with the results in Wei and Lin (2017); Zhou
et al. (2009, 2012), where it was shown that for systems
with unstable poles solely at the origin, an arbitrarily large
delay margin can be achieved by finite-dimensional state
feedback Zhou et al. (2009), and that for systems with
non-zero imaginary poles, only finite delay margin can be
attained Wei and Lin (2017).

3.3 A Comparison

It is instructive to compare the bounds derived herein
to those obtained elsewhere, most of which, however, are
upper bounds with pessimism undetermined and conse-
quently are unable to provide a valid comparison. Nev-
ertheless, in the recent work Wei and Lin (2017), an
assortment of lower bounds were developed for τ̄ , i.e., the
delay margin achievable by general LTI controllers. We
thus compare our results with those of Wei and Lin (2017).

The design method employed in Wei and Lin (2017) is
chiefly based on predictor state feedback, whose bounds
generally admit rather sophisticated expressions but can
be simplified as follows. In one case the bound can be
raised to

1

2
√

2(n+ 1)
n∑
i=1

pi

,

where pi are the plant unstable poles, and n is the plant
order. This case corresponds to scenarios where the delay-
free system P0(s) contains only unstable poles and not all
unstable poles pi lie on the imaginary axis. For systems
with solely imaginary poles pi, an alternative bound can
be ramped to

1√
2n

n∑
i=1

|pi|2
,

where pi are purely imaginary poles and n is the plant
order. Note that in both cases the bounds in Wei and Lin
(2017) may not perform as well, but are elevated for ease
of comparison; in other words, the actual bounds in Wei
and Lin (2017) cannot attain these quantities but instead,
are bounded from above by the two simplified expressions,
respectively. The following table provides a comparison of
the lower bounds in the corresponding cases. Note that in
the case of two real unstable poles, the bound in (9) (and



P0(s) 1
(s−p1)(s−p2)

1
s(s−p)

1
(s−p)2

1
(s−p)(s−p)

1
s2+ω2

c

Predictor State Feedback
(

1
2
√
6

)
1

p1+p2

(
1

2
√
6

)
1
p

(
1

4
√
6

)
1
p

(
1

4
√
6

)(
1

(α/|p|)

)
1
|p|

(
1

2
√
2

)
1
ωc

PID Output Feedback (9) 1
p

(
4
21

)
1
p (18) and (21)

(√√
2− 1

)
1
ωc

hence (8)) is tighter than that in Wei and Lin (2017). To
see this, one can easily verify that the function

θ2

2 + θ2 + 2
√

1 + 2θ2

is monotonically increasing, and that for θ ≥ 2,

θ2

2 + θ2 + 2
√

1 + 2θ2
≥ 2

3
>

1

2
√

6
.

Equivalently, this gives
1
p1

+ 1
p2

2 + θ2 + 2
√

1 + 2θ2
>

(
1

2
√

6

)
1

p1 + p2
.

Hence in all cases except that of complex conjugate poles,
the PID controller delivers a larger bound, whereas with
respect to complex poles, the limiting cases given in the
table (α = 0, or β = 0) show that the bounds obtained by
PID control remain advantageous under various circum-
stances.

4. CONCLUSION

In this paper we have derived explicit lower bounds on
the delay margin of second-order unstable delay systems
achievable by PID control. Unlike the upper bounds ob-
tained elsewhere, which can be used to determine the range
of delay where a delay plant cannot be robustly stabilized,
the lower bounds obtained herein serve an opposite pur-
pose: they provide a priori the ranges of delay over which
the plant is guaranteed to be stabilizable by a PID con-
troller, and hence more generally, by a finite-dimensional
LTI controller. Note that explicit, exact expressions of the
delay margin have been found previously for first-order
systems, while it is generally infeasible, if ever possible, to
stabilize plants of an higher-order by PID control, even for
plants free of delay.

When confined to second-order systems, our results are
seen in most cases to better those obtained elsewhere
using general LTI controllers, notably those of Wei and
Lin (2017) based on the design of predictor state feedback,
which typically results in high-order controllers and are
blessed with more degrees of design freedom. The implica-
tion is that in the context of using PID control, the ear-
lier bounds obtained elsewhere will be overly conservative
compared to the ones derived herein. Notwithstanding this
improvement, nonetheless, methods such as the predictor
state feedback design are broadly applicable to high-order
delay systems containing more unstable poles, while our
results are limited to systems with no more than two
unstable poles, a limitation that can be attributed to PID
control in general.
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