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The aim of this abstract is to show a robust PID design where the gain margin is preserved under
saturation. We use results presented in [2] and [4] to the design of PID controllers by means of
the convex-concave procedure (CCP) [1, 3].

The design of the PID controller is based on maximising its low-frequency gain subject to
predefined stability margins as in [1]. Additional constraints are imposed to guarantee the closed
loop stability in presence of saturation and delay. These requirements are taken from [4] and [2].

The proposed methodology is available for any plant and any controller structure with affine
parameters. In this manuscript, we consider the closed-loop system composed by the following
plant and controller as an example:

• plant P (s) = ke−sh

τs+1
with k, h, τ ≥ 0;

• PID controller C(s) = kp + ki
s

+ kds.

Let G(s) = C(s)P (s), and x =
[
kp ki kd

]T
.

In [4], the stability of the closed-loop interconnection between G ∈ RH∞ with delay and sat-
uration can be guaranteed by conditions on the linear system G(jω), where the Off-Axis Circle
Criterion (OACC) can be used to show that the plant satisfies the Kalman Conjecture. Fur-
thermore, it can be proved that the same conclusion is valid when an integrator is introduced, if
lims→0 sG(s) > 0 [2]. Then, the conditions are represented below.

=
(
GωGωω

)
=

k2(xTQ1x)

ω2(τ 2ω2 + 1)3
≤ 0, (1)

|G(jω)|
dω

=
k(xTQ2x)

ω2(τ 2ω2 + 1)
3
2

√
k2dω

4 − 2kdkiω2 + k2i + k2pω
2
≤ 0, (2)

where Q1 and Q2 can be obtained by straightforward calculation.
These two conditions are equivalent to

xTQix ≤ 0 (i = 1, 2). (3)

In general, both conditions are non-convex functions, but they can be rewritten as a difference of
convex functions.
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Figure 1: Nyquist Plots under Different Constraints

Given a symmetric matrix Q with positive and negative eigenvalues, its LDU factorisation sat-
isfies U = LT , and D is a diagonal matrix with both positive and negative eigenvalues. Therefore,

Q = L(Dp +Dn)LT , (4)

where D is decomposed into a diagonal matrix with positive values Dp and the other one with
negative values Dn. In this way, Q is separated into a positive semidefinite matrix Qp = LDpL

T

and a negative semidefinite matrix Qn = LDnL
T . This decomposition serves to find convex

approximation of the non-convex conditions presented before.
A linear approximation with respect to a point xk of the non-convex term xTQnx is used below

to obtain a convex expression.

xTQpx+ xTQnx ≤ xTQpx+ 2xTkQnx− xTkQnxk ≤ 0. (5)

This convex approximation is used in order to apply the CCP to the following non-convex
optimisation problem.

Let
minimise

x
− ki

subject to ||S||∞ ≤Ms;

||T ||∞ ≤Mt;

=
(
GωGωω

)
≤ 0;

|G(jω)|
dω

≤ 0.

(6)

See [1] for the motivation of the previous problem and a brief exposition of the CCP.
Let k = τ = h = 1, and Ms = Mt = 1.6. The figure below shows the Nyquist plots of G(jω)

with PID controllers with different constraints.
In this figure, the blue corresponds to the solution with the first two constraints, and the red

corresponds to the solution with all constraints. It is clear the kink in the blue curve is avoided
in the red. Moreover, as illustrated by the red curve, the closed-loop system with saturation and
delay is stable according to the OACC (dashed line). However, without the two last constraints,
the argument is invalid for systems with nonlinearities.
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