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Abstract: Two important characteristics of a connected vehicle system are string stability
(i.e., disturbance in state variables should not propagate along the platoon) and robustness to
parametric uncertainties. In this paper, we study these properties for a platoon of vehicles
driving on a single-lane straight road. Specifically, we model individual vehicle’s dynamics
by the Classical Car-Following Model (CCFM) and the Modified Optimal Velocity Model
(MOVM). These models capture the reaction delays inherent in such a setting. First, we focus
on string stability. For both models, we derive a sufficient condition for string stability. We
then concentrate on the robustness to uncertainties in the parameters of the said models. For
both models, we derive bounds on the reaction delay to ensure (a) pairwise robust stability, and
(b) platoon robust stability, when the remaining model parameters lie in an interval. Finally,
we compare our results with conditions for these models to be locally asymptotically stable.
This brings forth the additional constraints imposed on the reaction delay to achieve string
and robust stability. Our results may provide design guidelines for futuristic connected vehicle
systems. Additionally, from a technological perspective, our results suggest the sufficiency of
using only on-board sensors for all forms of local stability except platoon robust stability.
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1. INTRODUCTION

In the context of futuristic smart cities, intelligent trans-
portation systems would play a central role. Specifically,
the use of connected systems of autonomous vehicles is
seen as a prospective solution to (a) reducing congestion
via proper resource utilization, and (b) ensuring human
safety (Greengard, 2015). Thus, gaining a good under-
standing of connected vehicle systems is imperative. To
that end, such systems are popularly modeled as dynam-
ical systems in the literature. Several models — known as
car-following models — have been studied in the literature;
see (Bando et al., 1998; Gazis et al., 1961; Kamath et al.,
2015; Orosz and Stépéan, 2006; Unwin and Duckstein, 1967;
Zhang and Jarrett, 1997) and references therein.

An important characteristic of most car-following models
is the spatially local interaction among vehicles. In par-
ticular, each vehicle updates its acceleration based on the
acceleration, velocity and distance of the vehicle directly
ahead. Hence, the primary focus in the literature has
been on pairwise stability of car-following models; that is,
does the interaction between consecutive vehicles lead to
asymptotically stable dynamics for the given pair? How-
ever, it is known that a connected vehicle system which is
pairwise stable need not be string stable (Peppard, 1974),
i.e., disturbances in the state variables may propagate
down the platoon despite being pairwise stable. Further,
it would also be useful to study robustness of connected
vehicle systems to parametric uncertainties.

Motivated by the above stability considerations, we study
string stability and robustness to parametric uncertain-

ties of a platoon of vehicles traversing a single-lane
straight road. We make use of two car-following models
with delayed feedback to describe the vehicular dynamics
— the Classical Car-Following Model (CCFM) (Kamath
et al., 2016) and the Modified Optimal Velocity Model
(MOVM) (Kamath et al., 2017). Our analyses may provide
design guidelines for futuristic connected vehicle systems.
Additionally, our results suggest that all forms of stabil-
ities other than platoon robust stability can be achieved
using only on-board sensors.

The CCFM, which was proposed in (Gazis et al., 1961),
aims to mimic the behavior of a human driver. While
early studies (see (Gazis et al., 1961; Herman et al., 1959;
Unwin and Duckstein, 1967)) used transform techniques
to analyze the CCFM, Zhang et al. modeled the CCFM
as a dynamical system in addition to generalizing the
model (Zhang and Jarrett, 1997). The CCFM was further
generalized in (Kamath et al., 2015) and again in (Kamath
et al., 2016), the last of which we study in this paper.
On the other hand, the MOVM follows from a car-
following model proposed in the Physics literature called
the Optimal Velocity Model (OVM) (Bando et al., 1998).
While the latter was proposed for vehicles traveling on a
circular loop (thus yielding periodic boundary conditions),
the former captures the dynamics of a vehicular platoon
on a straight road.

For the CCFM and the MOVM, conditions for local sta-
bility, non-oscillatory convergence and the rate of con-
vergence have been studied (Kamath et al., 2016, 2017).
Therein, the authors also show that both models lose local



stability via a Hopf bifurcation. Specifically, the impact
of reaction delays on the qualitative dynamical properties
of both models has been highlighted. Further, it is seen
that integrating a Proportional Derivative Acceleration
(PDA) controller in the OVM has a positive impact on
its dynamical properties (Ge and Orosz, 2014). Motivated
by this, Kamath et al. incorporate the PDA controller in
the CCFM (Kamath et al., 2018). Therein, the authors
analytically bring forth the degradation caused to the
performance of the CCFM in several measures of interest,
including string and robust stability.

In this paper, we first derive sufficient conditions for
string stability of the CCFM and the MOVM. In the con-
text of the CCFM, our results generalize those presented
in (Sipahi and Niculescu, 2008; Zhang and Jarrett, 1997).
In the context of the MOVM, to the best of our knowledge,
our result is the first of its kind.

Next, we show that the CCFM cannot be robust stable for
arbitrary non-negative values of the reaction delay. Hence,
we find bounds on the reaction delay when other model
parameters are uncertain in an interval. Specifically, we
derive a sufficient condition each for the CCFM and the
MOVM to be (a) pairwise, and (b) platoon robust stable.

Related work on string and robust stability

String stability has been studied both in the context
of connected vehicles (Sipahi and Niculescu, 2008) and
general interconnected systems (Feintuch and Francis,
2012; Swaroop and Hedrick, 1996). In the specific context
of connected vehicles, Klinge et al. and Middleton et
al. study models without delays (Klinge and Middleton,
2009; Middleton and Braslavsky, 2010) while Sipahi et al.
account for reaction delays (Sipahi and Niculescu, 2008).
Further, the authors in (Ploeg et al., 2014) have extended
the classical definition of string stability based on the
‘Hoo-norm to the general £, string stability for non-linear
systems. However, we restrict ourselves to the classical
definition, and our work is closely related to that presented
in (Sipahi and Niculescu, 2008). For a recent exposition of
string stability as applied to connected vehicle systems,
refer to (Besselink and Johansson, 2017) and references
therein.

Robust stability analysis has been extensively studied
for systems without delays; see (Mackenroth, 2013) and
references therein. Several results have been extended to
systems with delays in state and input; see (Kharitonov,
1999; Kharitonov and Melchor-Aguilar, 2000) and refer-
ences therein. Additionally, the book chapter (Niculescu
et al., 1998) serves as an excellent reference for robust sta-
bility analysis of time-delayed systems. We apply results
from (Kharitonov, 1999; Kharitonov and Melchor-Aguilar,
2000) to the transportation scenario for obtaining bounds
on the reaction delay, when other parameters lie in an
interval.

The remainder of this paper is organized as follows. In
Section 2, we describe the setting for our work, and
describe the models to be analyzed. We then present our
results on string and robust stability in Sections 3 and 4
respectively. We then compare various notions of stability
in Section 5. Finally, we conclude the paper in Section 6.

2. MODELS

In this section, we explain the setting for our work and
also describe the dynamical models for the vehicles.

2.1 Setting

We consider a platoon of connected vehicles traveling on a
single-lane, straight road without overtaking. Specifically,
we assume that N vehicles follow a lead vehicle, whose
dynamics is assumed to be known. Further, we assume that
each vehicle is well modeled by an ideal point, i.e., it has
zero length. We also assume an arbitrary reference on the
road, and measure the distance of each vehicle with respect
to this reference. In particular, for the i** vehicle, we
denote this distance at time ¢ as x;(t). Following standard
convention, we denote the velocity and acceleration of the
it" vehicle at time t by @;(t) and #;(t) respectively. We
also restrict ourselves to leader profiles such that, for some
0<T < o0, Zo(t) =0 and d(t) = ¢ > 0 V¢t > T. That
is, the lead vehicle reaches a steady cruising behavior in
finite time.

Note that as t — oo, z;(t) — oo for each i. Hence, to
work with bounded state variables, we define the relative
spacing (headway) and the relative velocity between the
(i—1)t" and i*" vehicles at time t as y;(t) = z;_1(t) —4(t)
and v;(t) = 9;(t) = £;-1(t) — & (t) respectively. We work
with these variables throughout the paper. We also use SI
units throughout.

We now briefly describe the models that capture the
dynamics of individual vehicles in the platoon. For a
detailed discussion on the CCFM and the MOVM, the
reader is referred to (Kamath et al., 2016) and (Kamath
et al., 2017) respectively.

2.2 The Classical Car-Following Model (CCFM)

The Classical Car-Following Model (CCFM) was proposed
by Gazis et al. (Gazis et al., 1961). A general version incor-
porating heterogeneity in reaction delays and headways,
in addition to delayed self-velocity term was proposed
in (Kamath et al., 2016). We make use of this general
model, whose evolution equations are given by

0i(t) = Bim1(t — Tim1)vi—1(t — 7i—1) — Bi(t — T)vi(t — 7)),
Yi(t) =vi(t), (1)
for i € {1,2,...,N}. Here,

Bi(t) = a (@o(t) — vo(t) : vi(t)) 7
(yi(t) + bi)

where, o; > 0 and 7; > 0 are the sensitivity coefficient
and the reaction delay of the i*" vehicle respectively, and
1 >0 and m € [—2,2] are model non-linearity parameters.
Further, b; > 0 represents the desired headway between
the (i — 1) and i*" vehicles. Note that, for the CCFM,
y;(t) represents the variation of the headway about its

equilibrium value b; and does not itself represent the
headway (Kamath et al., 2016).

The CCFM is described by a system of non-linear delay
differential equations. We linearize (1) about a desired
equilibrium and conduct a local analysis to obtain design
guidelines. To that end, note that v = 0 and y; = 0,



for each 7 is an equilibrium for the CCFM. Linearizing
system (1) about the said equilibrium, we obtain

0i(t) = Bi_1vi1(t — Tim1) = Bivi(t — 7),

Yi(t) = vi(t),
where 8 = a;(29)™/(b;)! > 01is the equilibrium coefficient
of the i*" vehicle. Here, the variables vg, 19, 3 are intro-
duced for notational brevity, and set to zero. Note that,
in the vicinity of the equilibrium, stability of the relative
velocity (v;) does not depend on y;. Hence, we may drop

the variables {y;} ;. The resulting linearized CCFM may
be succinctly written in matrix form as

N
V() =Y AV(t—m), (2)
=0

where V(t) = [v1(t) v2(¢) - -- vn(¢)] is the state vector at
time ¢, and the dynamics matrices are given by

_Bika k :.7 = 13

A I

(Ao)s; {0, otherwise,
- ?a k :j = ia

(Ai)ka ﬂ;;l, k:i,j:i—l, fOI‘lSiSN,
0, otherwise.

2.8 The Modified Optimal Velocity Model (MOVM)

The Modified Optimal Velocity Model (MOVM) (Kamath
et al., 2017) is a recent variant of the Optimal Velocity
Model (OVM) (Bando et al., 1998). The evolution equa-
tions for the MOVM, that capture the dynamics of a
platoon traveling on straight road, are given by

0i(t) =a(V(yic1(t — im1)) — V(yi(t — 1)) —vi(t — 7)),

Yi(t) =vi(t), (3)
fori e {1,2,...,N}. Here, a > 0 is the common sensitivity
coefficient of the drivers, and 7; > 0 is the reaction delay
of the i*" driver and we define and set vy, 7o,y to zero
for notational brevity. Further, V : Ry — R, is the
Optimal Velocity Function (OVF) that decides the velocity
a vehicle must aim to achieve, given the headway. In the
literature, an OVF is commonly assumed to satisfy the
following axioms:

(i) Monotonic increase,
(ii) Bounded above, and,
(iii) Continuous differentiability.

Consequently, an OVF is invertible. For some commonly
used OVFs, see (Kamath et al., 2017) and references.

The MOVM too is described by a system of non-linear
delay differential equations. Similar to the CCFM, we
conduct a local analysis. To that end, note that v = 0 and
yr = V~Y(io) is the unique equilibrium for the MOVM.
Linearizing system (3) about the said equilibrium, we
obtain the evolution equation in matrix form as

S(t) = ZBiS(t—n), (4)

where S(t) = [v1(t) -+ vy (t) ui(t) -+ - un(t)] is the state
vector at time ¢, with u;(t) = y;(t) —y} being the deviation
of the " vehicle’s headway from its equilibrium. The
dynamics matrices are given by

B — |OvxN Onxn
7 |Inxn Onxn]’

—a, k:]:Z7

—d, k=i,j=N+1 .
Bk = ’ ’ Tfor1<i<N-1
Biki =g keit1,j=i OTISES

0, elsewhere,

—a, k=j=N,

0, elsewhere,

where Oy« n and Iy« n denote zero and identity matrices
of order N x N respectively, and d = aV' (V~1(iy)). Note
that V' denotes derivative with respect to a state variable.

3. STRING STABILITY

In this section, we derive conditions for string stability of
the CCFM and the MOVM. As mentioned in the Intro-
duction, pairwise stability of vehicles generally does not
guarantee that disturbances in state variables do not am-
plify down the platoon. Thus, we need to also ensure that
the platoon remains string stable (or chain stable (Sipahi
and Niculescu, 2008) /stable-over-cars (Zhang and Jarrett,
1997)). We make use of spectral-domain techniques; specif-
ically, we derive conditions to ensure that the magnitude-
squared Bode plot remains bounded above by unity for all
frequencies (Sipahi and Niculescu, 2008).

3.1 The CCFM

We begin with the closed-loop pairwise dynamics of the
CCFM. Individual equations in (2) are of the form

0i(t) = Bi_yvi-1(t = Tic1) — Bivi(t — ), (5)
for i € {1,2,---,N}. Applying Laplace transform, and
simplifying, we obtain the transfer function for pairwise
interactions as
Vi F et
() = oL Bl T
Vici(s) s+ Bie=*m
for each ¢. Substituting s = jw in the above equation and
simplifying, we obtain

SN2 (B1)*
|H;(jw)|

T P+ (B — 2B sinwr)

For the CCFM to be string stable, we require |H;(jw)|? <
1 Vw > 0, for each i. Note that sin(wr;) > —1 for any
choice of w and 7;. Hence, we have

(B-1)? ‘
W+ ? < |H;(jw)]? Yw > 0.
If we can ensure that |Hj, (jw)|? < 1 Vw > 0, we obtain
a necessary condition for string stability of the CCFM.
To that end, note that |Hy, (jw)|? is a decreasing function
in w, with the maxima occurring at w = 0. Therefore, it
suffices to ensure |Hj,(0)|> < 1. This yields the condition
1 < B, for each i. That is, the CCFM cannot be string
stable if 3f ; > BF for some i. Therefore, to obtain a
condition for string stability of the CCFM, we henceforth
impose the necessary condition 3/ ; < [, for each 1.

Therefore, from (6), an upper bound for |H;(jw)|? is

, (B;)?
[Hi(jw)]? < w? + (B7)2 — 2wp sin(wr;)

)

(6)

|Hy, (jw)]* £

(7)



For a transfer function of the form depicted by the Right
Hand Side (RHS) above, the necessary and sufficient
condition for string stability was derived in (Sipahi and
Niculescu, 2008) to be

1

However, (7) represents an upper bound on the magnitude-
squared Bode plot of the CCFM. Therefore, a sufficient
condition for string stability of the CCFM is,

1
Br_1 < B}, and Bf1; < 3 Y 4. (8)

Remark 1. The inequalities in (8) may be interpreted
as imposing a platoon-wide and a pairwise constraint
respectively. That is, the first inequality implies that
the equilibrium coefficients must be non-increasing in the
vehicle index (platoon-wide constraint), while the second
inequality provides a bound on parameters of individual
vehicles (pairwise constraint).

Remark 2. For the uniform traffic flow (i.e., b; = b Vi),
the platoon-wide condition can be interpreted as follows.
Vehicles farther away from the lead vehicle must be able to
accelerate/decelerate faster (larger values of «;) to ensure
string stability.

Remark 3. Condition (8) generalizes the result in (Sipahi
and Niculescu, 2008) to transfer functions of the form (6).

3.2 The MOVM

We begin with the closed-loop pairwise dynamics of the
MOVM. On combining the i** and the (N +i)" equations
from (4), we obtain

’lh(t) = dui_l(t — 7'7;_1) — duz(t — Ti) — avi(t — 7'7)
On applying Laplace transform, we obtain

U;(s de™5Ti-1
Hy(s) = 20
Uials) &+ (as + d)e
for each 4. Substituting s = jw and simplifying, we obtain
the magnitude-squared frequency response as

2 d
Hi ] = )
mG) = =5
where a(w) = w?(w? — 2awsin(wT;) — 2d cos(w;) + a?).
Note that finding a condition for |H;(jw)|?> < 1 Vw > 0
is equivalent to finding a condition for a(w) > 0 Vw >

0. Since w? is always non-negative, it suffices to fin

d
condition such that w? —2aw sin(wT;) —2d cos(wT;)+a? >
Vw > 0 holds. Finding such a condition seems to b
analytically intractable. Hence, we now derive a sufficient
condition for string stability of the MOVM as follows.
Note that wr; > sin(wr;) and cos(wr;) < 1 Vw,7; > 0.
Substituting these in the above, we find a condition such
that w? — 2am,w? — 2d + a? > 0 holds Yw > 0. That
is, we need to find a condition such that (1 — 2a7;)w? +
(a> —2d) > 0 Vw > 0. Geometrically, this condition
mandates that the described parabola lies above the w-
axis. To satisfy this, we require 1 — 2a7; > 0 (the parabola
faces above) and a?—2d > 0 (the vertex of the parabola lies
above the w-axis). Combining these conditions, we state a
sufficient condition for string stability of the MOVM: for
each i, we require

a
0
e

1
a® > 2d and at; < 7 (9)

Remark 4. Similar to Remark 1, the first inequality in the
above condition may be thought as imposing a platoon-
wide constraint, while the second inequality enforces a
pairwise constraint.

4. ROBUST STABILITY

In this section, we consider parametric uncertainties in
the CCFM and the MOVM. Specifically, we assume that
the model parameters other than the reaction delay lie
in an interval. We then derive bounds on the reaction
delay such that the CCFM and the MOVM will remain
locally asymptotically stable for any value of the remaining
parameters. Specifically, we consider two types of robust
stability; namely, (a) pairwise and (b) platoon.

4.1 The CCFM

The characteristic equation for the CCFM is given by (Ka-
math et al., 2015, Equation (8))

s+ ple " =0. (10)

Note that this is of the form p(s) + g(s)e™*™ = 0, where
p(s) = s and q(s) = 5;. Here, deg(p) > deg(q), and p(s) is
a stable polynomial. Therefore, the necessary and sufficient
condition for the CCFM to be robust stable independent
of the delay is |p(jw)| > |¢(jw)| Vw > 0 (Kharitonov,
1999, Section 3). This simplifies to 5 /w < 1 Vw > 0.
Clearly, this is not true. Hence, the CCFM cannot be
robust stable independent of the delay. Therefore, we
next derive conditions for delay-dependent robust stability.
Specifically, we consider that the equilibrium coefficient

realizes as 3 € [gj,ﬁ;"], for each 1.

Delay-dependent pairwise robust stability:  For systems
with characteristic equations of the form (10), a sufficient
condition for pairwise stability is 8;7; < 1 (Kharitonov
and Melchor-Aguilar, 2000, Lemma 3). Therefore, a suffi-
cient condition for delay-dependent pairwise robust stabil-
ity of the CCFM is that, for each i, we require

Bimi < 1. (11)
Delay-dependent platoon robust stability:  To obtain a
sufficient condition for delay-dependent platoon robust
stability, we consider the evolution of the overall platoon
captured by (2), instead of pairwise interactions as done in
Section 4.1.1. For systems of this form, a sufficient condi-
tion for local stability is Zﬁio lAi]|7 < 1 (Kharitonov and
Melchor-Aguilar, 2000, Theorem (6)). Using the Frobenius
norm of a matrix, we obtain a sufficient condition for
delay-dependent platoon robust stability of the CCFM as

N
Y Bimi<1. (12)
i=1

4.2 The MOVM

We now derive the corresponding conditions for the
MOVM. We assume that the parameters realize as a €
[a,a] and d € [d, d].



Delay-dependent pairwise robust stability:  Pairwise in-
teractions for the MOVM are captured by the following
evolution equations

@i(lf) _ 00 ’Ui(t) + —a —d ’Ui(t—Ti)
()|~ [10] ui(t) 0 0 |u(t—m)
Therefore, applying (Kharitonov and Melchor-Aguilar,
2000, Theorem (6)) with the Frobenius norm, a sufficient

condition for delay-dependent pairwise robust stability of
the MOVM is that, for each i, we require

Ti\/a2+a2 < 1.
Delay-dependent platoon robust stability: The evolution
equations of the MOVM are given by (4). For systems
of this form, a sufficient condition for local stability is
ZZN:O | B;||7: < 1 (Kharitonov and Melchor-Aguilar, 2000,
Theorem (6)). Using the Frobenius norm of a matrix,

a sufficient condition for delay-dependent platoon robust
stability of the MOVM can be shown to be

gy
( a +d)ZTZ<1
=1

Remark 5. From (11) to (14), it is clear that conditions
for platoon robust stability are relatively stringent in com-
parison to their pairwise counterparts. Moreover, platoon
robust stability can be considered as a robust version of
string stability.

(13)

(14)

5. COMPARISON OF RESULTS

In this section, we compare our conditions for string
stability and robustness derived in the previous sections
with those of local pairwise stability and non-oscillatory
condition derived in (Kamath et al., 2016) for the CCFM
and in (Kamath et al., 2017) for the MOVM.

For the CCFM, we assume that g = g* Vi, for ease of
comparison. Thus, (8) represents the necessary and suf-
ficient condition for string stability. Further, for pairwise
robust stability captured by (11), we use * as a proxy
for 5* to facilitate comparison. That is, we assume that
the parameter is fixed at “worst possible” value. Finally,
the CCFM will be locally pairwise stable if and only
if (Kamath et al., 2016, Equation (21))
B < g Vi, (15)
Let Si, denote the set of all reaction delay values of the
ith vehicle that satisfy property k € {LS, SS, RS}, where
LS : local pairwise stability, SS : string stability and RS :
pairwise robust stability. Then, from equations (8), (11)
and (15), we note that: Ssg, C Sgs;, C Srs, for each 1.
In other words, when the reaction delay of a given vehicle
satisfies the condition for string stability of the CCFM, it
automatically satisfies other criteria as well.

We now summarize the results for the MOVM; it will be

(i) locally pairwise stable if and only if
x7i < tan”? (%) Vi,
d
a2 + 4d?)

where x = \/a(a—i— >

(16)

(ii) string stable if
a?>>2d and ar; < % Vi.

(iii) pairwise robust stable if
Va2 +d?<1Va.

We now make use of a stability chart to understand
the inclusion of various stability conditions. To that end,
recall from Section 2 that d = aV (V~!(i¢)). Denote
V' (V~1(i0)) by d. Then, d = ad. Note that d depends
on the OVF and the cruise velocity of the lead vehicle. For
the case of pairwise robust stability, we assume that a is

fixed. We also use d as a proxy to denote d.

To obtain the stability chart, we fix a = 4 and vary d in
the interval [1,2]. Note that this variation conforms with
the platoon-wide constraint a? > 2d imposed by string
stability. We then compute various bounds on the reaction
delay using the scientific computation tool MATLAB; we
denote by 7 the bound on the reaction delay for property
k € {LS,SS, RS}, where LS : local pairwise stability, S :
string stability and RS : pairwise robust stability.

<
S
— T
o -- Tss
.- N
)
<
: N ~
S Sl
S < T
A RN
= ‘ —
1 1.5 - 2
Model parameter, d
Fig. 1. Stability chart: Diagram depicting the boundaries

of local pairwise stability (715), string stability (7ss)
and pairwise robust stability (7rs) for the MOVM.

Figure 1 portrays the ensuing stability chart. As can be
seen from this diagram, if the reaction delay satisfies
the condition for pairwise robust stability, it satisfies the
remaining conditions as well.

Remark 6. From equations (8), (9), (11), (13), (15) and
(16), we note that pairwise stability (both, local and ro-
bust) and string stability can be ensured in a decentral-
ized manner using only on-board sensors. This is because
each vehicle requires information from the vehicle directly
ahead only. However, as seen from (12) and (14), ensur-
ing platoon robust stability requires each vehicle to be
equipped with advanced communication devices.

6. CONCLUDING REMARKS

In this paper, we studied two important properties of con-
nected vehicle systems; namely, string stability and robust-



ness to parametric uncertainties. Specifically, we consid-
ered a platoon of vehicles traveling on a straight road with
no overtaking. We modeled the dynamics of individual
vehicles by the Classical Car-Following Model (CCFM)
and the Modified Optimal Velocity Model (MOVM).

First, we derived conditions for string stability of both
models using spectral-domain techniques. Specifically, for
the CCFM, we first derived a necessary condition for
string stability. When this condition holds, we derived a
sufficient condition for string stability of the CCFM, which
generalizes known results in the literature. For the MOVM,
we derived a sufficient condition for string stability. To the
best of our knowledge, such a result is the first of its kind.
Our analyses clearly bring forth the platoon-wide and
pairwise constraints imposed by the derived conditions.

Next, we derived conditions for both models to be ro-
bust to parametric uncertainties. In particular, we derived
bounds on the reaction delay when the remaining param-
eters lie in an interval. For both models, we derived a
sufficient condition each for (a) pairwise robust stability,
and (b) platoon robust stability.

Finally, we compared our results with necessary and suffi-
cient conditions for each model to remain locally pairwise
stable. For the CCFM, we inferred that string stability
imposes the most stringent conditions on the reaction
delay, while for the MOVM, it is pairwise robust stability.

In addition to possibly providing design guidelines for con-
nected vehicle systems, our analyses suggest the possibility
of achieving pairwise (both, local and robust) and string
stabilities in a decentralized manner; i.e., with only on-
board sensors. However, for the entire platoon of connected
vehicles to be robust stable, each vehicle should be in-
stalled with additional communication devices.
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