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Abstract: An observer for nonlinear systems with delayed measurements is proposed. The
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1. INTRODUCTION

Use of state feedback is the norm in the modern control
theory and applications. However, availability of all states
of the controlled system is not usual. Rather, in most cases,
the values of the unmeasurable states have to be estimated
using so-called observer. In the linear case, this task was
solved by Luenberger. To estimate the states of a nonlinear
system, various methods were developed. First, one can use
a linear robust observer where the nonlinearity is treated
as an uncertainty. Another approach uses the so-called
high gain observers, see e.g. Khalil (2001). A drawback
of this method is a rather strong sensitivity to noise.

An alternative approach was proposed by Kazantsis and
Kravaris in Kazantzis and Kravaris (1998). The main
idea was to find a nonlinear counterpart of the Sylvester
equation proposed by Luenberger for the linear case. The
solution of this equation, which is a partial differential
equation (PDE) in the nonlinear case, is a diffeomorphism
between the observer and the observed system.

Time delays occur in many practical applications. Hence
the need for reconstruction of the state values for such
systems. As the number of results is huge, only some of
them can be mentioned here. In many cases, the results are
obtained using the Lyapunov-Krasovskii or Razumikhin
functionals in combination with linear matrix inequalities.
As an example of such papers, see Mahmoud (2011). Paper
Ghanes et al. (2016) presents an observer for a nonlin-
ear time-delay system with unknown parameters. State
reconstruction in presence of quantized measurements is
investigated in Rehák (2017); analysis of the impact of
imprecisely known value of the delay is presented there as
well. An observer for polynomial systems is described in
Rehák (2015).

Observers for systems with delayed output have been stud-
ied for a long time. Cacace et al. (2010) presents an ob-
server for a nonlinear system with output measurements.
This design method uses exact feedback linearization as

the main tool. The time delay might be time-varying.
An observer for nonlinear systems with delayed output
is presented in Germani et al. (2002): Here, a cascade
observer is proposed and convergence of this scheme is
proved. The same idea is used also in Kazantzis and Wright
(2005). This idea was generalized for systems with multiple
delays in Cacace et al. (2014). A predictor for systems
with delayed measurements is proposed e.g. in Khosravian
et al. (2015). Borri et al. (2017) shows an application of
observers in biology (to the model of an artificial pan-
creas). Recently, an observer designed via the Immersion &
Invariance Principle was proposed in Murguia et al. (2016).

As a method to obtain the solution describing the diffeo-
morphism between the observer and the observed system,
Kazantzis and Kravaris (1998) proposes a method based
on the Taylor expansions. However, to prove existence of
the approximation of the solution, the Lyapunov auxil-
iary theorem was used. This theorem, in turn, has rather
restrictive assumptions - the observed system must be
either exponentially stable around the equilibrium or all
eigenvalues of its linearization around the origin must have
positive real parts. This drawback was removed in the
paper Sakamoto et al. (2014) where the diffeomorphism
was found using an iterative method, originally proposed
for computation of stable, center-stable etc. manifolds
Sakamoto and Rehák (2011). This method is based on a
successive solution of ordinary differential equations and
gained promising results in controlling practical systems,
see Tran et al. (2017). The aforementioned equation is
related to the PDE that arises in the nonlinear output reg-
ulation problem. This PDE was numerically solved using
the finite-element method (FEM) in Rehák and Čelikovský
(2008); Rehák et al. (2009), further details concerning its
solution were presented in Rehák (2011). These results are
a base for FEM-based computing of the diffeomorphism
first introduced in Kazantzis and Wright (2005).

The contribution of the paper can be summarized into the
following points:



• To provide a method for the nonlinear observer de-
sign that is easy to implement and has guaranteed
convergence on a predefined set,
• To prove existence of the nonlinear observer under

less restrictive conditions than in the original papers
Kazantzis and Kravaris (1998); Kazantzis and Wright
(2005),
• To give the reader a self-contained tutorial for imple-

mentation of the presented method.

Notation:

(1) The norm ‖.‖ is the quadratic norm; in case of
matrices, ‖A‖ is the square root of the maximal
eigenvalue of the matrix ATA.

(2) If f : [−τ,∞) → R is a continuous function then
‖f‖∞ = sup{|f(t)|, t ∈ [−τ, 0]} (the quantity τ > 0
will be specified in the sequel).

(3) The time argument is often omitted: f = f(t); the
time delay is written in the subscript: fτ = fτ (t) =
f(t− τ).

(4) The symbol x may represent either a function x :
R → Rn which is a solution of (1) or a vector from
Rn. The meaning will be clear from the context.

2. PROBLEM SETTING

The problem setting is based on the papers Kazantzis
and Kravaris (1998); Kazantzis and Wright (2005). Hence,
the presentation is kept rather short without dealing with
details.

The plant to be observed is described by the equation

ẋ = F (x), y = Cxτ , (1)

where F : Rn → Rn is a sufficiently smooth function
with F (0) = 0. Since we will deal with the linear terms
in the Taylor polynomial of F in a different way than with
the remaining part, it is useful to introduce the matrix
A ∈ Rn×n and a function f : Rn → Rn vanishing at
the origin together with its first derivatives so that for all
x ∈ Rn holds F (x) = Ax + f(x). Then the equation (1)
can be reformulated as

ẋ = Ax+ f(x), yτ = Cxτ , x(0) = x0 (2)

where x(t) ∈ Rn, A ∈ Rn×n, C ∈ R1×n.

These assumptions will be crucial in the subsequent text:
Assumptions:

(1) The pair (C,A) is observable.
(2) For any initial condition x0 ∈ Rn, a unique solution

x : R→ Rn, x(0) = x0 exists.
(3) The time delay in the output equation τ ≥ 0 is

assumed to be constant and known.

Remark 2.1. A more general form of the output equation
is y = h(xτ ) for a differentiable function h. However,
for the sake simplicity, we assume the output equation
is linear. Results similar to those presented in this paper
could be derived for the more general function h using the
same procedure.

The observer of the system (2) is described by the equation
˙̂x = Ax̂+ f(x̂) + L(x̂)(yτ − ŷτ ), ŷ = Cx̂ (3)

where the continuous function L : Rn → Rn×1 must be
found so that the observation error e(t) = x(t) − x̂(t)
converges to zero for t→∞.

Consider a matrix Ã with all eigenvalues in the open left
half-plane. Now we can define the following auxiliary n-
dimensional system by

ż = Ãz + bCxτ . (4)

Let the mapping T : Rn → Rn be defined as T (x0) =
x(−τ) with x being solution of (2) with initial condition
x(0) = x0. Note that this mapping is well defined thanks
to uniqueness of the solution of the differential equation
(2). Consider the PDE

∂Φ

∂x
(Ax+ f(x)) = ÃΦ(x) + bCT (x). (5)

Let the function Φ : Rn → Rn given by the equation (5)
be diffeomorphism defined as follows:

z = Φ(x) (6)

Let also the vector b ∈ Rn be such that the pair (b, Ã) is
observable.

Proposition 2.2. If this condition is satisfied, then the
observer (3) defined with

L =
(∂Φ

∂x

)−1

b (7)

guarantees convergence of the error to zero.

Proof: Define ẑ = Φ(x̂). Then, using (6), one has

d

dt
(z − ẑ)

=
d

dt
(Φ(x)− Φ(x̂))

=(
∂

∂x
Φ(x))ẋ− (

∂

∂x
Φ(x̂)) ˙̂x

=
∂

∂x
Φ(x)(AΦ(x) + f(x))

− ∂

∂x
Φ(x̂)

(
AΦ(x̂) + f(x̂)− (

∂Φ

∂x
(x̂))−1b(Cxτ − Cx̂τ )

)
=
∂Φ

∂x
(x)(AΦ(x) + f(x))

− ∂Φ

∂x
(x̂)(AΦ(x̂) + f(x̂))− bCxτ + bCx̂τ

=ÃΦ(x) + bCxτ − ÃΦ(x̂) + bCx̂τ + bCxτ − bCx̂τ
=Ã(z − ẑ). (8)

As Ã is Hurwitz and Φ is a diffeomorphism, convergence
of e = x− x̂ to zero for t→∞ is guaranteed.

3. DIFFEOMORPHISM Φ

The mapping Φ can be found analytically in the linear
case. As the result of this case is important even for the
nonlinear observer, it is handled here separately. Note that,
for linear system (1), T (x) = e−Aτx for every x. The
observed system and the observer are given in the linear
case by the following equation:

ẋ = Ax, ˙̂x = Ax̂+ bC(xτ − x̂τ ) (9)

Then the manifold is defined as

z = Φ̄x, Φ̄ ∈ Rn×n (10)

where the equation (5) attains the form

Φ̄A = ÃΦ̄ + bCe−Aτ . (11)

The observer is then in the form
˙̂x = Ax̂+ Φ̄−1b(yτ − ŷτ ) (12)



Equation (11) is a Sylvester equation, hence the solution

exists if and only if the matrices A and Ã have no common
eigenvalues. This can be easily achieved since the matrix
Ã is a design parameter.

Let us focus attention on the nonlinear case. Assume the
matrix Φ̄ satisfies (11). Let us decompose the (unknown)
mapping Φ into the linear part Φ̄ and the remaining
higher-order terms as follows:

Φ(x) = Φ̄ + φ(x). (13)

The function f is continuously differentiable such that
f(0) = 0, ∂f

∂x (0) = 0. Using this notation, equation (5)
can be rewritten as

(Φ̄ +
∂φ

∂x
)(Ax+ f(x)) = Ã(Φ̄x+ φ(x)) + bCT (x). (14)

Let x be a solution of the system (1) such that x(0) = x0.
Then

T (x0) = xτ = e−Aτx0 −
∫ t

t−τ
eA(t−s)f(x(s))ds. (15)

Using (11) one can rewrite (14) into

∂φ

∂x
(Ax+ f(x)) =Ãφ(x)− Φ̄f(x)

+ bC
(
T (x)− e−Aτx

)
. (16)

Finding a solution the equation (16) involves two impor-
tant issues: first, finding the mapping T . The following one
is solving the equation (16) with this function T .

4. COMPUTATION OF THE FUNCTION T

The approximation of the function T is constructed using
a sequence of functions ξm, m ∈ N defined in the sequel.

Definition of the mapping T implies: T (x(t)) = x̃(t − τ)
where the function x̃ obeys the equation

˙̃x = Ax̃+ f(x̃), x̃(0) = x(t) (17)

which can be reformulated as

˙̃x(t′) = e−At
′
x̃(0)−

∫ t−τ

t

e−A(t′−s)f(x̃(s))ds. (18)

Equation (18) allows to define an iterative formula for
computation of the mapping T as follows: let x ∈ Rn.
Consider first the following function sequence:

(1) Define the function ξ0(x, t) as ξ0(x, t) = e−Atx, t ∈
(−τ, 0).

(2) Let ξm(x, t) be defined. Then

ξm+1(x, t) = e−Atx+

∫ t

t−τ
eA(t−s)f(ξm(x, s))ds.

(19)

Denote α = sup{‖eAt‖, t ∈ [−τ, 0]}.
Assumption: there exists a positive constant κ so that for
every x1, x2 ∈ Rn holds

‖f(x1)− f(x2)‖ ≤ κ‖x1 − x2‖. (20)

Theorem 4.1. Let the sequence of functions ξm(x, t) be
defined as above and let the condition τκα < 1 is satisfied.
Then for every x ∈ Rn, the sequence of functions ξm(x, .)
converges uniformly in t on the interval (−τ, 0).

Proof: Consider the difference ‖ξm+1(x, t)− ξm(x, t)‖ for
a fixed x ∈ Rn and fixed arbitrary t ∈ [−τ, 0]. Then, using
(20) one obtains

‖ξm+1(x, t)− ξm(x, t)‖

=‖
∫ t

t−τ
eA(t−s)

(
f(ξm(x, s))− f(ξm−1(x, s))

)
ds‖

≤
∫ t

t−τ
‖eA(t−s)‖κ‖ξm(x, .)− ξm−1(x, .)‖∞

≤τκα‖ξm(x, .)− ξm−1(x, .)‖∞.
As this holds for all t ∈ [−τ, 0], we obtain

‖ξm+1(x, .)− ξm(x, .)‖∞ ≤ τκα‖ξm(x, .)− ξm−1(x, .)‖∞.
If τκα < 1 then there exists a continuous function
ξ(x, .) and ξm(x, .) → ξ(x, .) uniformly in the second
argument. 2

Remark 4.2. Note that uniform convergence of the above
sequence with respect to x was not proved.

Let ξ(x, t) = limm→∞ ξm(x, t). Theorem 4.1 guarantees
continuity of the function ξ(x, t) in the second argument.

The function T is defined by

T (x) = ξ(x,−τ)− e−Aτx. (21)

Remark 4.3. It is easy to prove that if f is such that

lim‖x‖→0
‖f(x)‖
‖x‖k is finite (that means, f is an O(‖x‖k)

function), then ξk− e−Aτ (regarded as functions of x with
parameter t) have also this property for every t.

To obtain a precise value of the function T , values of the
function ξ(x, t) need to be evaluated for all x ∈ Rn. Since
this is not possible, one has to choose a bounded domain
Ω ⊂ Rn such that 0 ∈ Ω so that all trajectories of the
system lie in this domain. Then, one selects a finite set
Ωf ⊂ Ω so that points of Ωf are ”well distributed” within
Ω. Then, one computes the value of the function T for
all points from the set Ωf . Then, an interpolation of the
set T (Ωf ) is used as the approximation of the function T .
Two points are to be emphasized:

• To obtain a precise value T (x), an infinite number
of iterations is necessary. Hence one has to take a
sufficiently large number of iterations as the approx-
imation of this value.

• Choice of the domain Ω as well as the finite set Ωf
depends on the specific example. No detailed hint
can be given, rather an expertise of the algorithm’s
behavior with a couple of trials and errors would lead
to a desired result.

5. SOLUTION OF THE EQUATION (16)

Solvability of the equation (16) is the issue solved in this
section. Note the equation (5) is linear PDE. Nevertheless,
it is rather non-standard: it is a first-order equation,
however, it does not correspond to first-order PDEs met
in physics, e.g. in form of conservation laws. (see also
Sakamoto et al. (2014); a similar equation was solved in
Rehák (2011)).

First, denote

β(x) = xTAT + fT (x). (22)



Let φ = (φ1, . . . , φn)T . Then one can write every element
of (16) in form

β(x)∇φi(x)−
n∑
j=1

Ãijφj(x) = −Φ̄if(x)− Ti(x) (23)

where Φ̄i denotes the ith row of the matrix Φ̄ and Ti(x)
stands for the ith element of the vector T (x).

For simplicity, assume first the matrix Ã is diagonal:
Ãii = diag(a1, . . . , an). Then one can write for the function
φi, i ∈ {1, . . . , n}:

β(x)∇φi(x)− aiφi(x) = −Φ̄if(x)− Ti(x) (24)

so that all elements of the vector function φ are computed
independently.

Conditions for solvability of the equation (24) are summa-
rized in Lemma 1.6 in Roos et al. (1996). Details can also
be found in Rehák (2011), here as Lemma II.1. For the
reader’s convenience, this lemma is repeated here.

Lemma 5.1. Let Ω ⊂ Rn be a domain with Lipschitz
boundary, 0 ∈ Ω, let n(x) be the outward normal vector
at the point x ∈ ∂Ω. Denote by Γ− the following set:
Γ− = {x ∈ ∂Ω|n(x).β(x) < 0}. Further assume

ai −
1

2
divβ(x) > ω (25)

for some ω > 0. Then the ith equation in (24) is solvable
with boundary conditions φi(x) = 0, x ∈ Γ−.

In the case the matrix Ã is not diagonal but has real
eigenvalues, it can be transformed into the Jordan canon-
ical form using a similarity transformation: Ã = Γ−1JΓ.
As shown in Rehák (2011), this transformation changes
equation (16) into

β(x̄)∇x̄φi(x̄)− Jφ(x̄) = right hand side (26)

where the operator ∇x̄ denotes the ∇-operator with
derivatives with respect to the new coordinates x̄, the
right-hand side does not depend on the function φ. Assume
the matrix J can be decomposed into M blocks with
dimensions n1, . . . , nM . Then the equations containing
derivatives of the functions φn1 , . . . , φnM

have the same
form as the equations (24), hence they can be solved as

described in the above case of diagonal matrix Ã. In the
next step, the functions φn1−1, . . . , φnM−1 are found by
solving the following equation:

β(x)∇φni−1(x)−aiφni−1(x)−φni
= −Φ̄ni−1f(x)−Tni−1(x).

(27)
Thus, the function φni−1 can be computed with knowledge
of function φni

. In the next step, the function φni−2 is
found using the same reasoning.

On the other hand, if the matrix Ã has complex eigen-
values, Theorem 5.1 cannot be used as this theorem deals
only with scalar equations with real coefficients. On the
other hand, the matrix Ã is a design parameter, thus it
can be chosen so that its eigenvalues are real.

Lemma 5.1 constitutes a basis for application of the Finite
Element Method for the solution of (24). There exists a
large number of commercial or free software to solve this
problem.

Let us formulate solvability conditions in terms of matrices
A, Ã and the function f :

Lemma 5.2. Let

ai − TraceA > 0. (28)

Then there exists a neighborhood of the origin U so that
the condition (25) is satisfied in U .

Proof: First, note that divβ(x) = TraceA + divf(x). Let
ωi = ai−TraceA. As the derivatives of the smooth function
f vanish at the origin there exists a neighborhood of the
origin U so that ‖f(x)‖ < ωi for all x ∈ U , hence (25)
holds. 2

The following theorem summarizes the main result of the
paper.

Theorem 5.3. Let (28) hold for all i = 1, . . . , n. Suppose
Φ̄ is the solution of (11) and φ solves (16). Suppose also

the matrix Ã has real eigenvalues. Then the observer (3)
with

L(x̂) =
(

Φ̄ +
∂φ

∂x
(x̂)
)−1

b (29)

guarantees limt→∞ ‖e(t)‖ = 0.

Proof: Follows from the Lemma 5.2, Theorem 5.1 and
Proposition 2.2. 2

Remark 5.4. Due to the observability assumption for the
pair (C,A), the matrix Φ̄ is nonsingular. As the mapping
φ contains terms of order higher than 1, the inversion in
the formula (29) is well defined on a neighborhood of the
origin.

Remark 5.5. If the delay is present, the mapping T must
be found. This is a nontrivial task since in the nonlinear
case, this mapping cannot be determined analytically.
Usually, a numerical approximation must be used. First,
a finite set of initial conditions ∆ ⊂ Rn is chosen. For
every ξ ∈ ∆, the solution of (2) on the interval [−τ, 0]
with terminal condition x(0) = ξ is found. Clearly, T (ξ) =
x(−τ) − e−Aτξ. Hence, one takes approximation of T
computed from the finite number of values T (ξ).

Remark 5.6. Kazantzis and Kravaris (1998) presents solv-
ability conditions of the linear equation (11) obtained
using the Lyapunov’s auxiliary theorem. The conditions
derived this way are rather restrictive as the observed sys-
tem (2) must have all eigenvalues with negative real part or
all eigenvalues must have positive real part. Theorem 5.1
implies solvability of the equation (11) under the weaker
condition (28).

Remark 5.7. The boundary condition on Γ− (if necessary)
brings some unwanted error in. In the ideal case, the
equation is solved on the whole space Rn so that this con-
dition is not needed. However, numerical experiments show
that significant influence of these boundary conditions is
restricted only on a narrow region around the border of Ω.

6. EXAMPLE

The example system is given by the equations

ẋ1 =x2

ẋ2 =− x1 − x3
1

y =x1,τ

where the observation delay is τ = 0.15s. In this case,
C = (1, 0).



We choose

Ã =

(
−1 0
0 −2

)
, b =

(
0.18
0.18

)
Then, for the solution of equation (11) holds

Φ̄

(
0 1
−1 0

)
=

(
−1 0
0 −2

)
Φ̄+

(
0.18 0
0.18 0

)
exp
((

0 −0.25
0.25 0

))
(30)

and solvability conditions are satisfied. Thus, equation (30)
has the solution

Φ̄ =

(
0.1675 −0.0125
0.103 0.0260

)
.

The iterations were carried out for values of x in the
rectangular grid

G = {(xi, yj)|xi = −2+0.1i, yj = −2+0.1j, i, j = 0, . . . , 40}.

Practical simulations reveal this convergence is quite
fast as shown in Figure 1. This figure depicts iterations
ξk(x,−0.15) for x = (−1.5, 1). One can see that after 5
iterations, the values in the iterations does not change. A
similar picture could be done for all initial values in the
set G.

Interpolation of the results yields(
T (x)

)
1

=− 0.0110x3
1 + 0.0016x2

1x2 − 0.0002x1x
2
2(

T (x)
)

2
=0.142x3

1 − 0.0314x2
1x2 + 0.004x1x

2
2 − 0.0003x3

2.

Solution of the equation (16) on the set Ω = {x ∈
Rn|‖x‖ ≤ 2} and subsequent interpolation by a third order
polynomial yields

φ1(x1, x2) =0.011x3
1 − 0.0013x2

1x2 + 0.0022x1x
2
2

− 0.0024x3
2

φ2(x1, x2) =− 0.0088x3
1 + 0.0154x2

1x2 − 0.0239x1x
2
2

+ 0.0246x3
2.

First order terms are missing thanks to the definition of
the function φ. Note the function φ contains no second
order terms due to absence of second order terms in the
functions f and T . The observer is constructed using the
function φ as shown in equation (12). The PDE (16) was
numerically solved using the finite-element method. The
software package Comsol Multiphysics was used. Figure
2 shows the function φ1 computed by this numerical
software.

The results of simulations are in figures 3 and 4. Fig. 3
shows the state x2 (dashed line) and its estimate (solid
line). The observation error e2 = x2 − x̂2 is depicted in
Fig. 4.

7. COMPARISON WITH THE METHOD BASED ON
TAYLOR EXPANSIONS

Paper Kazantzis and Wright (2005) (and, in the delay-free
case, Kazantzis and Kravaris (1998)) use expansions to
Taylor polynomials to find the solution of the equation
(5). The right-hand side as well as the function f are
approximated by their Taylor polynomials, the solution
is sought also in form of a Taylor polynomial. This is
probably the most widely used method for solution of
PDEs of this type. While this method is easy to explain,
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it has several drawbacks. First, the result is only local; it
is not easy to determine how well the Taylor polynomials
approximate the solution at points not equal to the origin.
This uncertainty increases with increasing distance from
the origin. In contrast, the method presented here gives
results whose precision on an a-priori given set (the set
Ω) can be easily verified. Moreover, computation of the
Taylor polynomials requires lengthy calculations, they are
difficult to obtain without help of a symbolic software.

Note also the condition τκα < 1 in Theorem 4.1 restricts
the maximum allowable time delay. For larger delays, one
might divide this delay into ν shorter segments: 0 > τ1 >
· · · > τν−1 > τν = −τ such that this condition is satisfied
on every interval (τi, τi−1). Then, it is possible to compute
T 1 on the interval (0, τ1) using the procedure described in
Section 4. After that, one computes T 2(x) using the value
T 1(x) etc. This stepwise computation can be in some sense
be regarded as a counterpart of the cascading observers
described by e.g. Cacace et al. (2014).

8. CONCLUSIONS

A numerical method for design of a nonlinear observer with
delayed measurements was presented. The method is based
on solution of a partial differential equation using finite-
element method. Conditions of convergence of the method
were derived. Viability of the method was illustrated by
an example.
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