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Abstract: In this paper, we investigate the effect of input time-delay on the cluster consensus
of multi-agent systems operating in continuous-time. Contrary to the studies on cluster/group
consensus in the literature, the clusters are not pre-determined. We investigate the stability
of a multi-agent network with fixed input time-delay. The analysis yields the upper bound of
time-delay that does not affect the number of clusters and convergence properties of the agents.
Theoretical results are illustrated via several simulations.
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1. INTRODUCTION

Recently, the distributed consensus problem, one of the
most studied in multi-agent systems, has been the center
of interest due to a wide range of applications in different
disciplines including biology, physics, formation of mobile
robots, control engineering, wireless sensor networks (Ren
and Beard (2005), Olfati-Saber et al. (2007), Jadbabaie
et al. (2003), Akar and Shorten (2008)).

In the literature, there is a vast amount of studies on
complete consensus in which all agents of a multi-agent
system converge to a single final value. However, it is also
possible that agents in a multi-agent system may go to
different consistent states which are called clusters. Every
cluster attains a consensus state which differs from those
reached by other clusters. This phenomenon is referred to
as cluster consensus.

In this paper, the focus is to study the effect of input delay
that may lead to instability in a multi-agent system. Some
related studies which are on either complete consensus or
cluster consensus are briefly reviewed below.

Olfati-Saber and Murray (2004) study consensus problems
in networks of agents with or without time-delays. Multi-
agent systems they investigate can be under fixed or
switching topologies, directed or undirected information
exchange. They derive the maximum time-delay that can
be tolerated by a multi-agent system. The maximum time-
delay is inversely proportional to the largest eigenvalue of
the Laplacian system matrix. However, the result on time-
delay in the study is only valid for single consensus multi-
agent systems evolving over undirected graphs.

Lin and Jia (2008) investigate the average-consensus prob-
lem of multi-agent systems that can be under switching
topologies and time-delays in continuous-time networks.
Time delay can be constant or time-varying. They propose
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a Lyapunov-Krasovskii function to guarantee average-
consensus of the agents under arbitrary switching topol-
ogy. Sufficient conditions are stated in terms of linear
matrix inequalities (LMIs) for directed networks.

Chen et al. (2017) study the delay effect on group con-
sensus of second-order multi-agent systems. They con-
sider a multi-agent network as an interconnection of two
sub-groups and construct a consensus protocol for each
sub-group to reach two different final values. They not
only obtain consensus conditions without time-delays, but
also delay-dependent conditions are stated by frequency-
domain analysis.

Hu and Hong (2007) investigate leader-following coor-
dination problem of multi-agent systems with coupling
time-delays. In the multi-agent systems they discuss,
agents have second-order dynamics, connections of agents
are directed, and coupling-time delay is time varying.
Lyapunov-Razumikhin functions are used to deal with
convergence and stability problems of multi-agent systems
with coupling-time delays in continuous-time networks.

In this paper, we investigate the effect of input delay on
a multi-agent system that has cluster consensus property.
The main aim of the paper is to determine the interval of
fixed input time-delay that has no effect on the number of
clusters and does not change the elements of the groups.
Moreover, we do not artificially divide the system into
clusters. We extend the study (Develer and Akar (2018))
that is discussed for continuous-time networks without
time-delay.

The rest of the paper is organized as follows. In Section 2,
we review some concepts from graph theory and formulate
the distributed cluster consensus problem. In Section 3,
the effect of input delay on multi-agent systems which
converge to clusters is investigated. Simulation studies
are given in Section 4. Finally, there are some concluding
remarks in Section 5.



2. MATHEMATICAL PRELIMINARIES

Let G = (V, E , A) be a weighted directed graph (digraph)
that represents the interaction topology of a multi-agent
system with n nodes. The digraph consists of the set of
nodes V = {v1, v2, . . . , vn}, set of edges E ⊆ V × V and
a weighted adjacency matrix A = [aij ] ∈ Rn×n with
nonnegative elements. The node indices belong to a finite
index set I = {1, 2, . . . , n}. A directed edge is denoted by
eij = (vj , vi) and exists if node vi receives information
from node vj . The adjacency element, aij , is the weight
for the edge, eij , and positive, i.e., eij ∈ E ⇔ aij > 0
∀i, j ∈ I. In this paper, we assume that all nodes have self
loops, i.e., aii > 0 for all i ∈ I. The set of neighbors of node
vi is defined by Ni = {vj |eij ∈ E}. A digraph is said to
be strongly connected, if every node can reach every other
node. If there exists at least one node that can reach other
nodes in the digraph, the digraph has a spanning tree.

The degree matrix is an n× n diagonal matrix defined as
∆ = [∆ij ] = diag{∆ii}. The in-degree of node vi, denoted
by degin(vi), is the number of its inward edges and the out-
degree of node vi, denoted by degout(vi), is the number of
its outward edges. degin(vi) and degout(vi) are defined as
follows:

degin(vi) =

n∑
j=1

aij , degout(vi) =

n∑
j=1

aji. (1)

The degree matrix for a digraph is defined as

∆ij :=

{
degin(vi), i = j,

0, i 6= j.
(2)

The Laplacian of G is defined by

L = ∆−A. (3)

2.1 Distributed Consensus

Consider a multi-agent system consisting of n agents with
linear dynamics in continuous-time. The dynamics of node
vi are described by

ẋi(t) = ui(t), i ∈ I (4)

where xi(t) is the state of node vi at time t, and ui(t) is
the system input described as follows:

ui(t) =
∑
j∈Ni

aij(xj(t)− xi(t)), i ∈ I. (5)

Assumption 1. aij > 0 if eij ∈ E , and aij = 0 if eij /∈ E
for i = 1, 2, . . . , n.

Assumption 1 implies that the information coming from a
neighbor should have positive weighting.

The dynamics of the multi-agent system (4) with the
system input (5) is equivalent to

ẋ(t) = −Lx(t) (6)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state
vector of the digraph G at time t, and L = ∆−A = [lij ] ∈
Rn×n is defined by

lij =

{∑n
k=1,k 6=i aik, if i = j

−aij , otherwise.
(7)

If Assumption 1 holds, lii ≥ 0 and lij ≤ 0.

Remark 1. A crucial property of the Laplacian matrix,
L, is that each row of L adds up to zero. Then, π =
[1, 1, . . . , 1]T ∈ Rn is an eigenvector of L associated with
the eigenvalue λ = 0, i.e., Lπ=0.

2.2 Cluster Consensus States

In this part, we introduce the definition of the cluster
consensus problem that will be studied in this paper and
review some definitions that will be useful to determine
the number of clusters.

Definition 2. (Cluster Consensus) The network in (4) is
said to go to K disjoint clusters, C = {C1, C2, . . . , CK}, if
it satisfies the following properties for any initial condition
[x1(0), x2(0), . . . , xn(0)]T and for all weighted adjacency
elements that obey Assumption 1:

•
⋃K
p=1 Cp = V ,

• Cp ∩ Cq = ∅, for p 6= q, and p, q = 1, 2, . . . ,K,
• limt→∞ xi(t) = cp, ∀vi ∈ Cp, i = 1, 2, . . . , n, and
cp 6= cq for p 6= q, p, q = 1, 2, . . . ,K.

To investigate the cluster consensus problem for directed
networks, the concepts of primary and secondary layer
subgraphs are used.

Definition 3. (Erkan et al. (2018)) (Primary layer sub-
graphs) Let G=(V,E) be the graph. There exist l1 (l1 ≥ 1)
subsets in the vertex set V such that each subset V1,i,
i = 1, 2, ..., l1, is the largest possible subset that has a span-
ning tree for its subgraph G1,i, and for all va ∈ V1,i and
vb /∈ V1,i, we have (va, vb /∈ E). We say G1,i, i = 1, 2, .., l1
are the primary layer subgraphs of G where the number
of primary layer subgraphs is denoted by l1.

Remark 4. For a network, the primary layer subgraphs of
the graph are denoted as G1,1, G1,2, . . . , G1,l1 .

Definition 5. (Erkan et al. (2018)) (Secondary layer sub-
graph) Let V̄ be the set which consists of the nodes that
are not in the primary layer subgraphs, i.e., V̄ = V \⋃l1
i=1 V1,i. Then there exist l2 subsets in V̄ such that

each subset V2,i, i = 1, 2, ..., l2, has a spanning tree for
its subgraph G2,i and for the root of this spanning tree,
va ∈ V2,i, there exist at least two nodes in two different
subgraphs (either primary or secondary layer) vb and vc
such that (vb, va) ∈ E and (vc, va) ∈ E . For all vd ∈ V2,i\va
and ve ∈ V \V2,i, we have (ve, vd) /∈ E . We define the subset
V2,i, i = 1, 2, ..., l2 as the secondary layer subgraphs of G.

Remark 6. For a network, the secondary layer subgraphs
of the graph are denoted as G2,1, G2,2, . . . , G2,l2 .

The primary and secondary layer subgraphs of a given
network can be determined by applying the algorithm of
Erkan et al. (2018). Once these subgraphs are obtained,
the following lemma gives the number of clusters in a
continuous-time multi-agent network.

Lemma 7. (Develer and Akar (2018)) The number of clus-
ters for a continuous-time multi-agent network with di-
graph G = (V, E) can be computed as

K = l1 + l2 (8)

where l1 and l2 are the number of primary and secondary
layer subgraphs, respectively.



3. CLUSTER CONSENSUS WITH TIME-DELAYS

The objective of this paper is to investigate the effect of
fixed input time-delay on directed network topology such
that the network goes to K ≥ 2 clusters. If there exists a
fixed input time-delay on a system input, (4) becomes

ẋi(t) = ui(t− τd) (9)

where

ui(t− τd) =
∑
j∈Ni

aij(xj(t− τd)−xi(t− τd)), i ∈ I, (10)

and τd is the fixed input time-delay.

By taking the Laplace transform of the above equation,
we obtain

sXi(s)− xi(0) = Ui(s)e
−τds

=
∑
j∈Ni

aij(Xj(s)−Xi(s))e
−τds (11)

where Xi(s) and Ui(s) are the Laplace transforms of xi(t)
and ui(t), respectively.

Equation (11) can also be rewritten in matrix form as

X(s) = (sI + e−τdsL)−1x(0). (12)

Now, the analysis of cluster consensus for a multi-agent
system with time-delay becomes a stability problem of the
following MIMO (multiple-input multiple-output) transfer
function:

H(s) = (sI + e−τdsL)−1. (13)

Theorem 8. A multi-agent network with fixed input time-
delay τd > 0 is stable if and only if the following condition
is satisfied:

• τd ∈ (0, τ∗) with τ∗ = min
k

[
1
|λk| arctan

(∣∣∣ Re{λk}
Im{λk}

∣∣∣)]
where λk is a nonzero eigenvalue of L.

Furthermore, the network results in l1 + l2 clusters where
l1 and l2 are the number of primary and secondary layer
subgraphs, respectively.

Proof. There are two parts of the proof which are sta-
bility of a multi-agent system with fixed input time-delay
and the effect of the delay on the number of clusters.

i) Stability of a multi-agent system with fixed input
time-delay:

From Olfati-Saber and Murray (2004), the condition for
stability of the MIMO transfer function, H(s), is

s = 0 or s+ λke
−τds = 0 for s 6= 0. (14)

Unlike the analysis by Olfati-Saber and Murray (2004),
eigenvalues of L can be complex since the graph of the
system is directed, i.e. λk = Re{λk}+ jIm{λk}. In order
to determine the upper bound of time-delay τd, we need
to get the smallest value of τd that is larger than zero such
that (14) has a zero on the imaginary axis. Then, (14) can
be rewritten as

jw + (Re{λk}+ jIm{λk})e−jτdw = 0. (15)

Expanding (15) yields

jw + (Re{λk}+ jIm{λk})(cos(τdw)− jsin(τdw)) = 0

jw +Re{λk}cos(τdw)− jRe{λk}sin(τdw)+

jIm{λk}cos(τdw) + Im{λk}sin(τdw) = 0.
(16)

Real and imaginary parts of (16) must be zero individually:

j(w −Re{λk}sin(τdw) + Im{λk}cos(τdw)) = 0. (17)

Re{λk}cos(τdw) + Im{λk}sin(τdw) = 0. (18)

From (18), we have

Re{λk}
Im{λk}

= −sin(τdw)

cos(τdw)
= −tan(τdw). (19)

Substituting (19) into (17), we obtain

w = Re{λk}sin(τdw)− Im{λk}cos(τdw)

Re{λk} = −wcos(τdw)

Im{λk} = wsin(τdw)

w2 = Re{λk}2 + Im{λk}2

w = |λk|.

(20)

After finding w in terms of λk, from (19) we get

τdw = arctan
(
− Re{λk}
Im{λk}

)
τd =

1

w
arctan

(
− Re{λk}
Im{λk}

)
τd =

1

|λk|
arctan

(
− Re{λk}
Im{λk}

)
.

(21)

We know that non-zero eigenvalues of the Laplacian ma-
trix have positive real-parts and τd > 0. So, if Im{λk} > 0,
w = −|λk|, otherwise w = |λk|. Then, the smallest value
of τ∗ > 0 satisfies the following equation:

τ∗ = min
k

[
1

|λk|
arctan

(∣∣∣Re{λk}
Im{λk}

∣∣∣)]. (22)

Moreover, if τd = τ∗ holds, the response of the system
becomes oscillatory.

ii) The effect of the time-delay on the number of clusters:

In the previous part, the interval of time-delay that can
be tolerated by a multi-agent system is given. We now
investigate the number of clusters in the multi-agent
system with fixed input time-delay.

Let I1 = {1, 2, . . . , l1} and I2 = {1, 2, . . . , l2} be the
index sets of the primary and secondary layer subgraphs,
respectively. n1,i, i ∈ I1 denotes the number of nodes
in the i-th primary layer subgraph and n2,j , j ∈ I2
denotes the number of nodes in the j-th secondary layer

subgraph. Let ñ1 =
∑l1
i=1 n1,i and ñ2 =

∑l2
j=1 n2,j be

the total number of nodes in the primary layer subgraphs
and the secondary layer subgraphs, respectively. Based on
the primary and secondary layer decompositions of the
network, the delayed consensus system can be represented
as

ẋp(t) =−Lpxp(t− τd) (23a)

ẋs(t) =−Lsxs(t− τd)− Lspxp(t− τd) (23b)



where xp(t) ∈ Rñ1×1 and xs(t) ∈ Rñ2×1 are the state
vectors for the primary and secondary layer subgraphs at
time t, respectively; and the system matrices are given as

Lp =

L1,1 . . . 0
...

. . .
...

0 . . . Ll1,l1


ñ1×ñ1

,

Lsp =

 Ll1+1,1 . . . Ll1+1,l1
...

. . .
...

Ll1+l2,1 . . . Ll1+l2,l1


ñ2×ñ1

,

Ls =

 Ll1+1,l1+1 . . . Ll1+1,l1+l2
...

. . .
...

Ll1+l2,l1+1 . . . Ll1+l2,l1+l2


ñ2×ñ2

.

We investigate separately the primary and secondary layer
dynamics.

Lp contains l1 Laplacian matrices corresponding to l1
primary layer subgraphs. Each primary layer subgraph
dynamics can be expressed as

ẋp,i(t) = −Li,ixp,i(t− τd) i = 1, 2, . . . , l1

where xp,i is the state vector for the i-th primary layer
subgraph. Each primary layer subgraphs with time-delay
reaches consensus which results in l1 clusters in l1 primary
layer subgraphs since each primary layer subgraph is
independent of each other.

The equilibrium point of the secondary layer dynamics in
(23b) can be calculated as

x̄s = −L−1s Lspx̄p (24)

where x̄p and x̄s are the equilibrium points of the delayed
primary and secondary layer subgraphs, respectively. De-
veler and Akar (2018) show that Ls is well-defined. Also,
it can be demonstrated that each row of L−1s Lsp adds up
to -1.

The number of clusters in the delayed secondary layer
subgraphs is l2 since the number of the delayed primary
layer subgraphs does not change.

Consequently, a multi-agent system with fixed input time-
delay is stable if and only if τd ∈ (0, τ∗) and the time-
delay does not affect the number of clusters in the system
satisfying Lemma 7.

Remark 9. In case all eigenvalues of L are real, i.e.,
Im{λk} = 0 for all k, from (22) we have τ∗ = min

k

π
2λk

which agrees with Olfati-Saber and Murray (2004).

4. SIMULATION ANALYSIS

Consider the network with 12 nodes and 19 edges in Fig.
1. The state values for the network without any time-delay
are shown in Fig. 2 for randomly selected initial state
values, and the following Laplacian matrix:

01 02

03 04

05

0607 08

09 10 11

12

G1,1

G1,2

G2,1

G2,2

G1,3

G2,3

G2,4

Fig. 1. A directed graph with 12 nodes and 19 edges

L =



0 0 0 0 0 0 0 0 0 0 0 0
0 2 -2 0 0 0 0 0 0 0 0 0
0 -10 10 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -13 13 0 0 0 0 0 0 0
0 0 0 0 -13 33 0 0 -12 0 0 -8
-13 -2 0 0 0 0 40 -10 0 0 -5 0
0 0 -1 0 0 0 0 17 -16 0 0 0
0 0 0 -14 0 0 -11 0 42 0 -17 0
0 0 0 0 0 0 0 0 -10 10 0 0
0 0 0 0 0 0 0 0 0 0 17 -17
0 0 0 0 0 0 0 0 0 -17 -6 23



(25)

The above Laplacian matrix is randomly formed from the
elements of the weighted adjacency matrix, aij , which
satisfy Assumption 1. As shown in Fig. 2, the network
converges to 7 clusters, 3 of which are from primary layer
subgraphs and the other 4 of which are from secondary
layer subgraphs. Clusters are labelled as G1,1, G1,2, G1,3

for the primary layer subgraphs and G2,1, G2,2, G2,3, G2,4

for the secondary layer subgraphs.

4.1 Case with τd < τ∗

The eigenvalues of the Laplacian matrix used for the
network in Fig. 1 are (33, 43.1021 + j7.0639, 43.1021 -
j7.0639, 2.4858, 12, 19.9808, 20.1647 + j5.4505, 20.1647
- j5.4505, 13, 0, 0, 0). From Theorem 8, we can obtain
the smallest τd = τ∗ that is larger than zero as 0.03224
for λk = 43.1021 − j7.0639, w = |λk| or λk = 43.1021 +
j7.0639, w = −|λk|.
In the case where τd is selected as 0.02500, i.e., τd is below
the upper bound, the state values are shown in Fig. 3. As it
can be seen, the system reaches cluster consensus without
any change in the clusters.

Fig. 4 shows the state values of the network with input
time-delay, τd, that is equal to 0.0300. Still, there is no
change in any cluster. It implies that if τd < τ∗ holds, the
cluster agreement is achieved.
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Fig. 2. Simulation results of the network in Fig. 1 without
any input time-delay
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Fig. 3. Simulation results of the network in Fig. 1 with
input time-delay τd = 0.0250

4.2 Case with τd = τ∗

For the upper bound τd = τ∗ = 0.03224, the simulation
results are depicted in Fig. 5 which shows the oscillatory
behaviour as expected.

4.3 Case with τd > τ∗

The result is illustrated in Fig. 6 for the network with
τd = 0.03500 > τ∗ = 0.03224. Exceeding the limit, τ∗,
brings instability to the network.

4.4 Case with Time-Varying Delay

Now, consider the case where the input time-delay is time
varying but does not exceed the limit, τ∗, e.g. τd(t) =
0.016(1 + sin(2πt)) < τ∗ where τd(t) is shown in Fig. 7.
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Fig. 4. Simulation results of the network in Fig. 1 with
input time-delay τd = 0.03000
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Fig. 5. Simulation results of the network in Fig. 1 with
input time-delay τd = 0.03224

As shown in Fig. 8, the system exhibits stable behaviour,
which is to be theoretically justified.

5. CONCLUSION

In this paper, we have discussed the effect of fixed input
time-delay on continuous-time multi-agent networks. We
have presented a theorem which gives the interval of time-
delay that can be tolerated by a multi-agent system before
it becomes unstable.

Our ongoing study is to investigate the effect of commu-
nication time-delay which can be caused by information
propagation from one node to another in continuous-time
networks.
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Fig. 6. Simulation results of the network in Fig. 1 with
input time-delay τd = 0.0350
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Fig. 7. Input time-delay τd(t) = 0.016(1 + sin(2πt))
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