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1. INTRODUCTION

Stability properties of neutral-type systems with delays
have been studied in the last decades due to their effec-
tiveness in describing a wide variety of physical phenomena
(see, for example, Kolmanovskii and Myshkis (1999)). A
powerful tool to analyze this class of systems has been
the Lyapunov-Krasovskii functionals (see Niculescu (2001)
and Fridman (2014)).

The first contribution addressing the computation of
Lyapunov-Krasovskii functionals for neutral-type systems
with prescribed derivative was presented in Castelan and
Infante (1979). Based on the same ideas, the so-called
functionals of complete type were introduced later for the
one delay case in Rodriguez et al. (2004), Kharitonov
(2005), and for the scalar case with multiple delays in
Velázquez-Velázquez and Kharitonov (2009). One char-
acteristic of the functionals of complete type introduced
there is that they are determined by the delay Lyapunov
matrix, which is solution of three equations, known as
dynamic, symmetry and algebraic properties, and plays
the role of the analogous of the Lyapunov matrix in
the delay free case. This approach has been successfully
applied to the estimation of exponential decay rate by
Kharitonov (2005), computation of critical frequencies and
parameters in Ochoa et al. (2013) and robust stability
analysis by Alexandrova (2018), just to name a few. A
comprehensive study of functionals of complete type and
the delay Lyapunov matrix is available in the book by
Kharitonov (2013).

The extension of the well-known stability criterion for
delay free systems, which is given in terms of a matrix
V , solution of the Lyapunov equation ATV + V A = −W ,
has been subject of study in the last years. Recently,
in the Lyapunov-Krasovskii functionals of complete type
framework, necessary stability conditions for neutral-type
systems have been presented in Gomez et al. (2017c)
for one delay and in Gomez et al. (2017b) for multiple
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commensurate delays. The main characteristic of them is
that, as in the delay free case, they depend uniquely on
the delay Lyapunov matrix. A natural query is whether
it is possible to obtain also sufficient stability conditions
given in terms of the delay Lyapunov matrix or not.

A positive answer has been given for the retarded type case
in Egorov et al. (2017), where an infinite stability criterion
(i.e., it is such that an infinite number of mathematical
operations is needed in order to check the stability of
the system) is presented. Nevertheless, its infinite nature
makes it only theoretical. In Egorov (2016), this draw-
back is eliminated by considering initial functions from
a compact set and approximating them by a particular
class of functions that depends on the fundamental matrix
of the system, and a finite stability criterion (i.e. that
requires only a finite number of mathematical operations)
is obtained. However, the problem remains open for the
neutral case.

Inspired by the ideas introduced in Egorov (2016) and
Alexandrova and Zhabko (2016), we present a finite stabil-
ity criterion for neutral-type systems with a single delay,
which is given in terms of the positivity of a matrix
constructed with the delay Lyapunov and fundamental
matrices. It is worth mentioning that up to our knowledge,
no stability criterion for neutral-type systems within the
time-domain approach has been reported in the literature
until now.

The rest of the paper is organized as follows. In the next
section, we introduce some basic facts on the system. The
fundamental framework of the delay Lyapunov matrix and
Lyapunov-Krasovskii functionals is presented in Section 3.
The necessary stability conditions depending on the delay
Lyapunov matrix are recalled in Section 4. In Section 5, we
provide some auxiliary results that allow us to obtain the
main contribution of the paper: a new stability criterion
for neutral-type systems with a single delay, which is
presented in Section 6. We illustrate the result with one



example and conclude with some final remarks in Section
7 and Section 8, respectively.

Notation: The space of Rn-valued piecewise continuous
and continuously differentiable functions on [−h, 0] is de-
noted by PC ([−h, 0],Rn) and C(1) ([−h, 0],Rn), respec-
tively. For vectors and matrices, we use the Euclidian
norm, denoted by ‖ · ‖, and for functions, we use the norm

||ϕ||h = max

{
||ϕ(0)−Dϕ(−h)||, sup

θ∈[−h,0]
||ϕ(θ)||

}
.

The evaluation of the function G at point t on the right-
hand (left-hand) side is denoted by G(t + 0) (G(t − 0)).
The notation Q > 0 means that matrix Q is positive
definite. The maximum (minimum) eigenvalue of a matrix
Q is represented by λmax(Q) (λmin(Q)). The function that
maps x to the least integer greater or equal to x is denoted
by dxe. The square block matrix with i− th row and j− th
column element Qij is represented by [Qij ]

r
i,j=1.

2. BASIC FACTS ON THE SYSTEM

Consider the neutral-type delay system

d

dt
(x(t)−Dx(t− h)) = A0x(t) +A1x(t− h), (1)

where D, A0 and A1 belong to Rn×n and h > 0 is the delay.
The solution x(·, ϕ) of system (1) is piecewise continuous
and satisfies the following:

(1) x(θ, ϕ) = ϕ(θ), θ ∈ [−h, 0],
(2) sewing condition: the function x(t, ϕ)−Dx(t− h, ϕ)

is continuous with respect to t (right continuous at
t = 0),

(3) x(·, ϕ) satisfies system (1) almost everywhere.

The initial function belongs to the space PC([−h, 0],Rn)
and the restriction of the solution x(t, ϕ) to the interval
[t− h, t] is denoted by

xt(ϕ) : θ → x(t+ θ, ϕ), θ ∈ [−h, 0].

Definition 1. System (1) is exponentially stable if there
exist constants η > 0 and σ > 0 such that

‖x(t, ϕ)‖ ≤ ηe−σt‖ϕ‖h, t ≥ 0.

The fundamental matrix of system (1) is reminded in the
next definition.

Definition 2. (Bellman and Cooke (1963)) The matrix K
is known as the fundamental matrix of system (1) and is
solution of the equation

d

dt
(K(t)−DK(t− h)) = A0K(t) +A1K(t− h), a.e.

with the initial condition K(0) = I and K(t) = 0 for t < 0.

The value of the fundamental matrix at points t = jh,
j = 0, 1, . . ., coincides with the right-hand side value, i. e.
K(jh) = K(jh+ 0). The sewing condition implies that

∆K(jh) = Dj , j = 0, 1, 2 . . . ,

where ∆K(jh) = K(jh)−K(jh− 0).

It follows from Definition 2 that for t ∈ [0, h], the
fundamental matrix is given by

K(t) =

{
eA0t, t ∈ [0, h),

eA0h +D, t = h.

A well-known assumption in the stability study of sys-
tem (1) is the Schur stability of matrix D (see Hale
and Verduyn-Lunel (1993), Fridman (2014)). An upper
estimate of the norm of this matrix is required in the
subsequent results and one way for computing it is given
in the next lemma.

Lemma 1. (Kharitonov et al. (2006)) A Schur stable ma-
trix D admits the following upper bound:

‖Dk‖ ≤ dρk,

with ρ ∈ (0, 1) and d =

√
λmax(Q)

λmin(Q)
, where Q ∈ Rn×n is a

positive definite matrix solution of

DTQD − ρ2Q < 0.

3. DELAY LYAPUNOV MATRIX FRAMEWORK

The delay Lyapunov matrix, denoted by U , is introduced
in the next definition.

Definition 3. (Kharitonov (2013)) The delay Lyapunov
matrix U(τ), τ ∈ [−h, h], associated with a positive
definite matrix W , is a continuous matrix which satisfies:

(1) Dynamic property: For τ ∈ (0, h),

U ′(τ)−U ′(τ − h)D = U(τ)A0 +U(τ − h)A1, (2)

(2) symmetry property: For τ ∈ [−h, h],

UT (τ) = U(−τ), (3)

(3) algebraic property:

∆U ′(0)−DT∆U ′(0)D = −W, (4)

where ∆U ′(0) = U ′(+0)− U ′(−0).

The next theorem provides a criterion for the existence
and uniqueness of matrix U .

Theorem 2. (Kharitonov (2013)) System (1) admits a
unique Lyapunov matrix associated with a symmetric ma-
trix W if and only if the system satisfies the Lyapunov
condition, i.e., if there exists ε > 0 such that the sum of
any two roots s1 and s2 of the spectrum of system (1)
satisfies |s1 + s2| > ε.

The functional v0 that satisfies
d

dt
v0(xt(ϕ)) = −xT (t, ϕ)Wx(t, ϕ),

for ϕ ∈ PC ([−h, 0],Rn), is determined by the delay
Lyapunov matrix associated with the matrix W as follows
(Kharitonov (2013), Gomez et al. (2016)):

v0(ϕ) = (ϕ(0)−Dϕ(−h))
T
U(0) (ϕ(0)−Dϕ(−h))

+ 2 (ϕ(0)−Dϕ(−h))
T
∫ 0

−h
F1(−h− θ)ϕ(θ)dθ

+

∫ 0

−h

∫ 0

−h
ϕT (θ1)F2(θ1 − θ2)ϕ(θ2)dθ2dθ1

−
∫ 0

−h
ϕT (θ)DT∆U ′(0)Dϕ(θ)dθ,

where

F1(τ) =

{
U(τ)A1 + U ′(τ)D, τ ∈ [−h, h]\Ω,
0, τ ∈ Ω,

F2(τ) =

{
AT1 F1(τ)−DTF ′1(τ), τ ∈ [−h, h]\Ω,
0, τ ∈ Ω,



where Ω = {−h, 0, h}. Based on v0, the following key
functional was introduced in Gomez et al. (2017c):

v1(ϕ) = v0(ϕ) +

∫ 0

−h
ϕT (θ)Wϕ(θ)dθ, (5)

whose derivative is
d

dt
v1(xt(ϕ)) = −xT (t− h, ϕ)Wx(t− h, ϕ). (6)

We now introduce the bilinear functional

z(ϕ1, ϕ2) =

= (ϕ1(0)−Dϕ1(−h))
T
U(0) (ϕ2(0)−Dϕ2(−h))

+ (ϕ1(0)−Dϕ1(−h))
T
∫ 0

−h
F1(−h− θ)ϕ2(θ)dθ

+

∫ 0

−h
ϕT1 (θ)FT1 (−h− θ)dθ (ϕ2(0)−Dϕ2(−h))

+

∫ 0

−h

∫ 0

−h
ϕT1 (θ1)F2(θ1 − θ2)ϕ2(θ2)dθ2dθ1

−
∫ 0

−h
ϕT1 (θ)∆U ′(0)ϕ2(θ)dθ,

where ϕ1, ϕ2 ∈ PC ([−h, 0],Rn), which also plays a key
role in Gomez et al. (2017c). It is closely related to v1:
v1(ϕ) = z(ϕ,ϕ). We provide an upper bound for the
previously mentioned functionals.

Lemma 3. For any ϕ1, ϕ2 ∈ PC ([−h, 0],Rn),

|v1(ϕ)| ≤ β2‖ϕ‖2h,
|z(ϕ1, ϕ2)| ≤ β2‖ϕ1‖h‖ϕ2‖h,

where

β2 = ‖U(0)‖+ 2hf1 + h2f2 + h‖∆U ′(0)‖,
with

f1 = sup
τ∈(0,h)

‖F1(τ)‖, f2 = sup
τ∈(0,h)

‖F2(τ)‖.

In the next theorem, it is shown that the functional v1
satisfies a quadratic lower bound.

Theorem 4. If system (1) is exponentially stable,

v1(ϕ) ≥ β? ‖ϕ(0)−Dϕ(−h)‖2 , ϕ ∈ PC ([−h, 0],Rn) ,

where β? =
β

2
and β > 0 is such that

P (β) =

(
W 0
0 W

)
+ β

(
AT0 +A0 −AT0D +A1

−DTA0 +AT1 −AT1D −DTA1

)
≥ 0.

Proof. Consider the functional

ṽ1(ϕ) = v1(ϕ)−1

2

∫ 0

−h
ϕT (θ)Wϕ(θ)dθ−β

2
‖ϕ(0)−Dϕ(−h)‖2.

Differentiating this functional with respect to the time, we
obtain

d

dt
ṽ1(xt) = −1

2
x̂T (t)P (β)x̂(t),

where x̂(t) =
(
xT (t) xT (t− h)

)T
. As system (1) is expo-

nentially stable, x(t)→ 0 as t→∞, and

lim
t→∞

∫ t

0

d

ds
ṽ1(xs)ds = −ṽ1(ϕ),

hence,

ṽ1(ϕ) = lim
t→∞

∫ t

0

1

2
x̂T (s)P (β)x̂(s)ds ≥ 0,

which implies that

v1(ϕ) ≥ β

2
‖ϕ(0)−Dϕ(−h)‖2.

Remark 5. Since the greater the number β? is, the
stronger the inequality, we take β as the first value for
which the determinant of the matrix P (β) is zero.

4. NECESSARY STABILITY CONDITIONS

Let us introduce the following function, which depends on
the fundamental matrix of system (1):

ψr(θ) =

r∑
i=1

K(τi + θ)γi, θ ∈ [−h, 0], (7)

where γi ∈ Rn and τi ∈ [0, h], i = 1, r. In Gomez et al.
(2017c), by the introduction of new properties of the delay
Lyapunov matrix U that connect it with the matrix K, the
next equality is obtained:

v1(ψr) = γT [U(τj − τi)]ri,j=1 γ, (8)

where γ =
(
γT1 . . . γTr

)T
and τi ∈ [0, h], i = 1, r. This

equality is used in order to get a family of necessary
stability conditions in terms of the delay Lyapunov matrix
U for system (1). We recall it in the next theorem, which
can be directly deduced from Theorem 4 and equality (8).

Theorem 6. (Gomez et al. (2017c)) If system (1) is expo-
nentially stable, then the following condition holds:

[U(τj − τi)]ri,j=1 > 0,

where τi ∈ [0, h], i = 1, r and τi 6= τj if i 6= j.

Theorem 6 and function (7) are the starting point for
obtaining the stability criterion presented in Section 6.

5. AUXILIARY RESULTS

We define the set of initial functions

S = {ϕ ∈ C(1) ([−h, 0],Rn) :

‖ϕ‖h = ‖ϕ(0)‖ = 1, ‖ϕ′‖ ≤ µM}

with M = ‖A0‖+‖A1‖ and µ =
d

1− ρ
, where the numbers

d and ρ are given by Lemma 1. Notice that, like in Egorov
(2016), the set S is also compact.

We present some auxiliary results related to the set S that
are crucial in the attainment of the stability criterion. We
introduce first a stability condition in terms of functional
(5) and then we show that any arbitrary function from the
set S can be approximated by a function of the form (7).

5.1 Sufficient stability condition in terms of v1

The next lemma is useful for proving Theorem 8 below.

Lemma 7. (Gomez et al. (2017a)) Let P and Q be real
matrices. If det(P + iQ) = 0, then there exist two vectors
C1 and C2 such that

(1) (P + iQ)(C1 + iC2) = 0.



(2) ‖C1‖ = 1.
(3) ‖C2‖ ≤ 1.
(4) CT1 C2 = 0.

The basic idea of the following result is borrowed from
Alexandrova and Zhabko (2016).

Theorem 8. Assume that matrixD is Schur stable. System
(1) is exponentially stable if the Lyapunov condition holds
and there exists β1 > 0 such that for any ϕ ∈ S

v1(ϕ) ≥ β1. (9)

Proof. Assume by contradiction that system (1) is not
exponentially stable but the Lyapunov condition and in-
equality (9) hold. It means that there exists an eigenvalue
λ = α+ iβ with α > 0, and two vectors C1, C2 ∈ Rn that
satisfy conditions of Lemma 7 such that

x(t, ϕ) = eαtφ(t), φ(t) = cos (βt)C1 − sin (βt)C2, (10)

is a solution of system (1) on t ∈ (−∞,∞). The initial
function corresponding to solution (10) is given by

ϕ(θ) = x(θ, ϕ), θ ∈ [−h, 0].

Let us prove first that ϕ ∈ S. By Lemma 7, no-
tice that ‖ϕ(0)‖ = 1 and ‖φ(t)‖2 = cos2(βt)‖C1‖2 +
sin2(βt)‖C2‖2 ≤ 1. The last inequality implies that
max
t∈R
‖φ(t)‖ = 1, hence

‖x(t)‖ = eαt ‖φ(t)‖ ≤ 1, t ≤ 0.

Now, since x(t, ϕ) satisfies (1) for t ∈ (−∞,∞), we have

‖ẋ(t)−Dẋ(t− h)‖ ≤
≤ ‖A0‖ ‖x(t)‖+ ‖A1‖ ‖x(t− h)‖ ≤M, t ≤ 0.

The previous expression means that there is a function ξ
that satisfies ‖ξ(t)‖ ≤M for t ≤ 0 and

y(t) = Dy(t− h) + ξ(t), (11)

where y(t) = ẋ(t). Notice that

y(t) =

∞∑
j=0

Djξ(t− jh)

satisfies (11), indeed, by substituting it into (11), we get

y(t)−Dy(t−h) =

∞∑
j=0

Djξ(t−jh)−
∞∑
j=1

Djξ(t−jh) = ξ(t).

As matrix D is Schur stable, the sum converges and, by
Lemma 1, there are constants ρ ∈ (0, 1) and d ≥ 1 such
that

∥∥Dj
∥∥ ≤ dρj , hence

‖y(t)‖ ≤
∞∑
j=0

dρjM = µM, t ≤ 0.

From the previous inequality we arrive at

‖ϕ′(θ)‖ = ‖y(θ)‖ ≤ µM, θ ∈ [−h, 0].

Now, from equality (6),

v1(ϕ) = v1(xT ) +

∫ T−h

−h
xT (t, ϕ)Wx(t, ϕ)dt,

where T = 2π/β if β 6= 0, and T = 1 if β = 0. Since T is
the period of the function φ(t), we have x(T+θ) = eαTϕ(θ)
and

v1(xT (ϕ)) = e2αT v1(ϕ),

which implies that,

v1(ϕ) = − 1

e2αT − 1

∫ T−h

−h
xT (t, ϕ)Wx(t, ϕ)dt ≤

≤ −λmin(W )

e2αT − 1

∫ T−h

−h
‖x(t)‖2dt.

The previous inequality contradicts the assumption and
ends the proof.

5.2 Approximation of functions from the set S

Consider a function ϕ ∈ S. We construct the function ψr
given by (7) as in Egorov (2016):

(1) Set τi = (i− 1)δr, where δr =
h

r − 1
and r ≥ 2.

(2) Choose vectors γi, i = 1, r, such that

ψr(−τi) = ϕ(−τi). (12)

Constructing the function ψr in such a way enables us to
approximate any function ϕ from the space S and provide
an estimate of the error, denoted by Rr = ϕ− ψr.
Lemma 9. For every ϕ ∈ S

‖Rr‖h = ‖ϕ− ψr‖h ≤ εr,
where

εr =
(µM + L)eLh

1/δr + L
,

with L such that ‖K ′(t)‖ ≤ L, t ∈ (0, h).

Proof. By equation (12), Rr(−τi) = 0, hence,

‖Rr‖h = sup
θ∈[−h,0]

‖ϕ(θ)− ψr(θ)‖

= max
i∈{2,...,r}

sup
θ∈(−τi,−τi−1)

‖ϕ(θ)− ψr(θ)‖.

As ‖ϕ′(θ)‖ ≤ µM , then

‖ϕ(θ)− ϕ(−τi)‖ ≤ µM(θ + τi), θ ∈ (−τi,−τi−1). (13)

Observe that ‖K ′(t)‖ ≤ L, for t ∈ (0, h), implies that

‖K(t1)−K(t2)‖ ≤ L|t1 − t2|, t1, t2 ∈ (0, h). (14)

Now, take a number i ∈ {2, . . . , r}. From (12), (13) and
(14), we obtain the next sequence of inequalities:

‖ϕ(θ)− ψr(θ)‖ = ‖ϕ(θ)− ϕ(−τi) + ψr(−τi)− ψr(θ)‖
≤ ‖ϕ(θ)− ϕ(−τi)‖+ ‖ψr(−τi)− ψr(θ)‖

≤ (τi + θ)

(
µM + L

r∑
k=i

‖γk‖

)
, θ ∈ (−τi,−τi−1).

We look for an upper bound estimate of ‖γk‖. By equation
(12), we have

‖γr‖ = ‖ϕ(−τr)‖ ≤ ‖ϕ(0)‖ = 1,

and for i = 2, r − 1
r∑
k=i

K(τk − τi)γk = γi +

r∑
k=i+1

K(τk − τi)γk = ϕ(−τi).

In view of the previous equality, we obtain

‖γi‖ =

∥∥∥∥∥ϕ(−τi)−
r∑

k=i+1

K(τk − τi)γk

∥∥∥∥∥ =



=‖ϕ(−τi)− ϕ(−τi+1) + ψr(−τi+1)

−
r∑

k=i+1

K(τk − τi)γk‖ ≤ ‖ϕ(−τi)− ϕ(−τi+1)‖

+

r∑
k=i+1

‖K(τk − τi+1)−K(τk − τi)‖ ‖γk‖

≤µMδr + Lδr

r∑
k=i+1

‖γk‖.

Using the preceding inequality, one can prove by induction
that

‖γi‖ ≤ δr (µM + L) (1 + δrL)
r−i−1

, i = 2, r − 1,

therefore,

µM + L

r∑
k=2

‖γk‖ ≤

≤ µM + Lδr (µM + L)

r−1∑
k=2

(1 + δr)
r−k−1

+ L.

Expanding the sum and rearranging terms in the right
hand side, we arrive at

µM + L

r∑
k=2

‖γk‖ ≤ (µM + L) (1 + Lδr)
r−2

.

Finally, since (τi + θ) ≤ δr for θ ∈ (−τi,−τi−1), we have

‖Rr‖h ≤ max
i∈{2,...,r}

sup
θ∈(−τi,−τi−1)

(
µM + L

r∑
k=i

‖γk‖

)
δr

≤δr(µM + L)

1 + Lδr

(
1 +

Lh

r − 1

)r−1
≤ (µM + L)eLh

1/δr + L
.

Remark 10. The estimate of the supremum norm of the
error Rr is of the same form as the one obtained in Egorov
(2016) for the retarded type case, except for the term µ,
which indeed is related to the matrix D.

6. STABILITY CRITERION

We set τi as in Subsection 5.2 and consider the matrices
with constant coefficients

Kr = [U(τj − τi)]ri,j=1 =

[
U

(
j − i
r − 1

h

)]r
i,j=1

,

and

Ar =
KT (τ1)K(τ1) KT (τ1)K(τ2) . . . KT (τ1)K(τr − 0)

? KT (τ2)K(τ2) . . . KT (τ2)K(τr − 0)
...

. . .
...

? ? . . . KT (τr − 0)K(τr − 0)

 .

Henceforth, we assume that K1 = U(0). In the next
theorem, we provide the main result of the paper: a new
stability criterion for system (1) for the case in which
‖D‖ < 1.

Theorem 11. Assume that matrix D satisfies ‖D‖ < 1.
System (1) is exponentially stable if and only if the
Lyapunov condition and the following hold:

Kr − β1Ar > 0, (15)

where

r = 1 +
⌈
eLhh (µM + L)

(
α+

√
α(α+ 1)

)
− Lh

⌉
, (16)

with α =
β2

β1(1− ‖D‖)2
. Here, β1 ∈ (0, β?), β? is provided

by Theorem 4 and β2 is given by Lemma 3.

Proof. Necessity: Consider the function (7). By the initial
conditions of the fundamental matrix and from the fact
that τr = h, the following chain of equalities holds for
every γi ∈ Rn, i = 1, r:

ψr(0)−Dψr(−h) =

r∑
i=1

K(τi)γi −D
r∑
i=1

K(τi − h)γi =

r∑
i=1

K(τi)γi −DK(τr − h)γr =

r−1∑
i=1

K(τi)γi +K(h− 0)γr,

which implies that

‖ψr(0)−Dψr(−h)‖2 = γTArγ,

where γ =
(
γT1 . . . γTr

)T
. By Theorem 4 and equality (8),

we have, for every γ ∈ Rnr such that γTArγ > 0,

γTKrγ − β1γTArγ = v1(ψr)− β1‖ψr(0)−Dψr(−h)‖2

> v1(ψr)− β?‖ψr(0)−Dψr(−h)‖2 ≥ 0.

For the case in which γTArγ = 0, γ 6= 0, the inequality
γTKrγ − β1γTArγ > 0 remains true, since from Theorem
6, for every number r, Kr > 0.

Sufficiency: Consider a function ϕ ∈ S and Rr = ϕ − ψr
and observe that

v1(ϕ) = z(ψr +Rr, ψr +Rr)

= z(ψr, ψr) + 2z(ψr, Rr) + z(Rr, Rr)

= v1(ψr) + 2z(ϕ,Rr)− v1(Rr).

By construction, ψr(0) = ϕ(0), ψr(−h) = ϕ(−h), and
‖ϕ(0)‖ = 1, hence, from Lemma 3 and the fact that
‖D‖ < 1, we get

v1(ϕ) ≥ v1(ψr)− β1‖ψr(0)−Dψr(−h)‖2

+ β1‖ϕ(0)−Dϕ(−h)‖2 − 2β2‖Rr‖h − β2‖Rr‖2h ≥
≥ v1(ψr)− β1‖ψr(0)−Dψr(−h)‖2

+ β1(1− ‖D‖)2 − 2β2‖Rr‖h − β2‖Rr‖2h.
For the number r given by (16), it follows from Lemma 9
that

‖Rr‖h ≤
(µM + L)eLhh

r − 1 + Lh
≤ β̄1

β2 +
√
β2(β2 + β̄1)

,

where β̄1 = (1 − ‖D‖)2β1. Notice that, from the above
inequality, we have

β̄1 − 2β2‖Rr‖h − β2‖Rr‖2h ≥ 0.

Therefore,

v1(ϕ) ≥ v1(ψr)− β1‖ψr(0)−Dψr(−h)‖2

= γTKrγ − β1γTArγ ≥ λmin (Kr − β1Ar) ‖γ‖2.
As 1 = ‖ψr(0)‖2 = γT

[
KT (τi)K(τj)

]r
i,j=1

γ,

1 ≤ λmax

([
KT (τi)K(τj)

]r
i,j=1

)
‖γ‖2,

which implies that there exists a number γ̃ > 0 such that
‖γ‖ ≥ γ̃, and in turn that

v1(ϕ) ≥ β̃,
with β̃ = λmin (Kr − β1Ar) γ̃2 > 0. As ‖D‖ < 1 implies
Schur stability of the matrix D, one can use Theorem 8



and the previous inequality to conclude that system (1) is
exponentially stable.

Notice that the number r, which depends on the parame-
ters of the system, determines the size of the matrix Kr −
β1Ar and in turn the numerical complexity. Indeed, one
can see from equation (16) that r increases (or decreases)
as the delay does.

7. EXAMPLE

We analyze system (1) with delay h = 1 and matrices

D =

(
0 0
0 0.1

)
, A0 =

(
−0.1 0

0 p

)
, A1 =

(
−0.2 0.1
0.1 0

)
, (17)

for two different values of the parameter p ∈ R. The
parameters to be calculated in order to use Theorem 11
are shown next. For p = −0.2,

β? = 1.1432, β2 = 5.7693, M = 0.4414, L = 0.2443,

and for p = 0.1,

β? = 1.4388, β2 = 6.4521, M = 0.3414, L = 0.1105.

The number µ = 1.1292 remains equal in both cases.
Table 1 shows the computed number r and the mini-
mum eigenvalue of Kr − β1Ar. According to the obtained
results, it follows from Theorem 11 that system (17) is
exponentially stable for p = −0.2 and unstable for p = 0.1.
This is corroborated by the spectral abscissa computed via
the QPmR (Quasi-Polynomial Mapping Based Rootfinder)
algorithm (Vyhĺıdal and Źıtek (2009)).

Table 1. Stability test of system (17)

Parameter Number r λmin (Kr − β1Ar) Spectral abscissa

p = −0.2 r = 14 0.0195 −0.0518
p = 0.1 r = 8 −48.7391 0.1968

8. CONCLUSIONS

A new exponential stability criterion for neutral type delay
systems is presented. As in the delay free case, the nec-
essary and sufficient stability condition requires checking
the positive definiteness of a special matrix constructed
in terms of the delay Lyapunov and fundamental matrices
and whose dimension depends on the system parameters.

Future work includes the non-trivial extension to the
multiple delay case and the generalization to the case in
which the matrix D does not satisfy ‖D‖ < 1.
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