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Abstract: This work proposes a tuning methodology for the Cascade Proportional Integral
Retarded (CPIR) controller applied to a class of second order systems. Unlike the Proportional
Integral Retarded (PIR) control law, the CPIR is composed of two nested loops, each of them
having its own controller. The inner loop is regulated through an Integral Retarded (IR)
Controller and the outer loop uses a proportional (P) controller. It is worth remarking that
the stability of both loops must be simultaneously guaranteed, a problem not appearing in the
PIR controller. The proposed tuning methodology is based on the spectral abscissa analysis of
the Outer loop. The IR controller tuning rules and a double root placement analysis in the CPIR
quasy-polynomial allows writing an analytical form of the P proportional gain. Subsequently,
this gain is computed by solving a transcendental nonlinear equation. The proposed tuning
method is assessed by means of experiments in a laboratory prototype.
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integral retarded control.

1. INTRODUCTION

Several delay-based algorithms have been proposed includ-
ing the Proportional Retarded (PR) Suh and Bien (1979);
Villafuerte et al. (2013) and the Proportional-Integral-
Retarded (PIR) Chen (1987); Ramírez et al. (2016). It
is worth noting that tuning of some of these controllers
relies on the use of the spectral abscissa analysis meth-
ods. Moreover, these control laws are the counterparts of
the standard Proportional Derivative (PD) and Propor-
tional Integral Derivative (PID) controllers. Delay-based
controllers exhibit measurement noise filtering properties
making unnecesary the use of filters as it has been shown
in Ramírez et al. (2015) for the Integral retarded (IR)
controller applied to the velocity control of servodrives,
which is traditionally performed by Proportional Integral
(PI) controllers using filtered measurements. Two prob-
lems arise when introducing a time-delay in a feedback
control law. The first difficulty is related to closed-loop
stability, and it happens owing to the infinite number
of roots generate by the time-delay. Another key issue
is the tuning procedure for the above algorithms. Those
problems are addressed in the case of the PR Villafuerte
et al. (2013), IR Ramírez et al. (2015), and PIR Ramírez
et al. (2016) controllers by imposing a dominant triple
root in the closed-loop system that produces the maximum
exponential decay rate. Moreover, these references give
explicit tuning rules for computing the controllers gains as
well as the time delay. Recently, a Cascade Proportional
Integral Retarded (CPIR) algorithm has been proposed
López et al. (2017). It corresponds to the time-delay ver-
sion of the Cascade Proportional-Proportional Integral (P-
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PI) algorithm widely used in practice for controlling servo-
drives Ellis (2012). In the P-PI controller, a proportional
controller closes an outer position loop, and an inner PI
controller regulates a velocity loop The cascade nature of
the P-PI controller offers several advantages. The velocity
and position loops are easily tuned, and the servodrive
may function in velocity mode by simply disconnecting
the position loop. The CPIR controller mimics the above
scheme by using an IR controller in the inner velocity
loop while keeping the P controller in the outer loop.
However, the fact the velocity and position loops of the
CPIR controller may function independently complicates
its tuning. Note that if the tuning of the IR controller
renders the velocity loop stable, then, it does not imply
a stable position loop. In the same way, tuning of the
position loop does not guarantee a stable velocity loop.
This problem has been tackled in López et al. (2017)
by tuning the IR controller in the velocity loop using
the tuning rules proposed in Ramírez et al. (2015), and
subsequently tuning the P controller closing the position
loop by numerically minimizing a performance index. The
purpose of this work is to propose a new tuning procedure
for the CPIR controller, which is based on the analytic
formulae previously proposed in Ramírez et al. (2015) and
Ramírez et al. (2016). Unlike the approach in López et al.
(2017), the tuning procedure does nor rely on minimizing a
numerical index. Instead, the dominant roots of the inner
loop quasipolynomial, together with the tuning rules of the
IR and the PIR controllers allow writing the outer loop
quasipolynomial as a function of the position controller
proportional gain. Subsequently, this gain is computed by
solving a transcendental nonlinear equation. The outline
of the work is as follows. After describing the servodrive
model and the IR and PIR controllers, the proposed tuning
procedure is described in detail. Later, an experimental
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Fig. 1. CPIR block diagram.

study allows assesing the performance of a DC servodrive
in closed loop with the CPIR controller tuned under the
proposed procedure. The paper closes with some remarks
and mentions the future work on the matter.

2. CPIR CONTROLLER TUNING

2.1 Servodrive model, IR and PIR controllers

Consider the dynamics of a servodrive
ÿ(t) + aẏ(t) = bu(t) + c (1)

with a > 0, b 6= 0 and c > 0 a constant disturbance,
in closed loop with the CPIR controller depicted in Fig.1.
The IR controller regulates the inner loop fed with velocity
measurements and has three parameters to tune, i.e. the
gains Ki and Kir, and the time-delay h. The outer loop
is closed through a P controller with gain Kp and is fed
with position measurements. The equation describing the
CPIR controller is

u̇(t) = (Ki −Kir)Kpe(t)−Kirẏ(t− h) +Kiẏ(t) (2)
Define the position error as e(t) = r−y(t) with r a constant
desired position. Taking the time derivative of e(t) and
using (1) produces the next error dynamics

ë(t) = −aė(t)− bu(t)− c (3)
Now, define

z(t) = −bu(t)− c (4)
Introducing the above definition into (3) produces

ë(t) = −aė(t) + z(t) (5)
The time derivative of (4) considering control law (2) in
terms of position error is
ż(t) = −b(Ki −Kir)Kpe(t) + bKir ė(t− h)− bKiė(t) (6)

Therefore, equations (5) and (6) define the position loop
dynamics related to the CPIR controller. Its stability is
defined by the roots of the next characteristic quasipoly-
nomial
P (s) = s3 + as2 + sb(Ki −Kire

−sh) + bKp(Ki −Kir)
(7)

It is also possible to obtain from Fig.1 the velocity loop
quasipolynomial associated to the IR controller

V (s) = s2 + as+ b(Ki −Kire
−sh) (8)

2.2 The tuning method

At this point, it is worth recalling the tuning rules for the
IR controller proposed in Ramírez et al. (2015)

Fig. 2. Behavior of the roots of quasipolynomial (14) for
Kp ∈ (0, 10] and and σint = 34.9015.
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The term σd corresponds to the desired dominant triple
root for the velocity loop. Assume that the IR controller
is tuned according to (9), hence, (8) is stable. On the
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Note that the quasipolynomial (14) depends only on σint
and Kp. Then, it is necessary to find values of these terms
to ensure the stability of the quasipolynomial (14).

A portrait of the root locus for the quasipolynomial
(14) is shown in Fig.2. It is produced using the QPMR
software Vyhlídal and Zítek (2014) for Kp ∈ (0, 10] and
σint = 34.9015. From this figure, it is easy to see that
the quasipolynomial (14) has a double root at s = −σext.
This fact will be used in the sequel to obtain an analytical
expression for Kp in terms of σext and σint. Therefore,
let s = −σext the desired double dominant root for the
position loop. Introducing the change of variable s→ (s−
σext) into the characteristic quasipolynomial (14) yields
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The fact that (14) has a double root s = σext implies that
P̂ (s, σint, σext,Kp) has two roots at s = 0. Therefore, the
following holds

P̂ (s, σint, σext,Kp) |s=0 = 0 (16)
d

ds
P̂ (s, σint, σext,Kp) |s=0 = 0 (17)

The next expression for Kp follows from (16)

Kp =
σext(σ

2
ext − aσext + γ − 2σ2

inte
−β+σext

σint )

γ − 2σ2
inte

−β (18)

with

γ =
a2

4
+ σ2

int (19)

Besides, from (17) a transcendental equation in terms of
σext follows

3σ2
ext− 2aσext+ γ − 2e

−β+σext
σint (σextσint+ σ2

int) = 0 (20)
Note that σext is a design parameter set beforehand.
Consequently, it is necessary to solve (18) and (20) for
Kp and σint. To this end, define the following

σext = l
a

2
(21)

σint =

(
l − 1

l

)
kσext (22)

The term l > 1 is a scaling factor representing how fast
is the desired position loop response with respect to the
servodrive open-loop response, whereas k is a scaling factor
between σint and σext. Substituting σext and σint given in
(21) and (22) into (20) produces

14a2k2(l − 1)2 − 2e
1
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(
1

4
a2k2(l − 1)2 +

1

4
a2k(l − 1)l

)
+
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4
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4
= 0 (23)

Solving (23) for l yields

l =
e+ ek2 − 2e1/kk2

3e− 2e1/kk + ek2 − 2e1/kk2
(24)

Therefore, a constant known value l, obtained from (21) by
setting a value of σext, produces a transcendental equation
to be solved for k. Subsequently, using (22) it is possible
to compute σint. Finally, the value of this last term allows
computing Kp through (18), and Ki, Kir and h using (9)-
(11). The flowchart depicted in Fig.3 resumes the tuning
procedure for the CPIR controller.

It is worth noting that the position and velocity loop
controllers share the same value of the time delay h. On
the other hand, any numerical root-finding algorithm like
the Newton or bisection methods could be used for solving
(23).

3. EXPERIMENTS

3.1 Experimental setup

Fig.(4) depicts the setup used for the experiments. The ser-
vodrive is composed of a brushed DC servomotor Clifton
Precision motor JDTH-2250-BQ-IC driving a brass disk,a

Fig. 3. CPIR tuning flowchart.

tachogenerator an optical encoder, and a Copley Controls
power amplifier working in current mode. A ServoToGo
data acquisition card STGII-8, located inside a personal
computer reads the optical encoder and the voltage pro-
duced by the tachogenerator, and sends voltage control
signals to the power amplifier. The Matlab/Simulink soft-
ware together with the WINCON real time environment
support the coding and executing of the controllers, which
are implemented using the Euler method with a sampling
period fixed to 1ms.

3.2 CPIR tuning

The parameters of the servodrive model (1) are a = 0.197
and b = 50.98. The CPIR controller (2) is tuned using the
methodology presented in Fig.(3). In order to find the root
of the transcendental equation (24), it is solved through



Fig. 4. Experimental setup.

Table 1. Tuning of CPIR controller applied to
the servodrive.

σext l k σint

5 50.7614 3.8906 19.0697
10 101.5228 3.8623 38.2425
25 253.8071 3.8455 95.7587

Table 2. Tuning of CPIR controller applied to
the servodrive.

σext Kp Kir Ki h

5 2.1389 5.2215 7.1336 0.0524
10 4.2776 21.0524 28.6872 0.0261
25 10.6937 132.2044 179.8695 0.0104

the Matlab function fzero, which uses a combination
of bisection, secant, and inverse quadratic interpolation
methods.

The results are presented in Tables (1) and (2). Note
that the value of the scaling factor k is larger than 1
and remains almost constant. Note also that the proposed
tuning method produces dominant roots for the velocity
loop σint that are approximately four times the value of
the dominant roots of the position loop defined by σext.

3.3 Experimental results

The real-time response of the servodrive in closed loop
with the CPIR controller tuned according to the proposed
method is depicted in Fig.5 to Fig.7. In all the cases the
step response did not show overshoots and the maximum
value of the control signal and velocity response increases
for large values of σext. In order to assess the performance
of the velocity loop, a variant of the CPIR controller,
namely the Cascade Nonlinear Proportional Integral Re-
tarded (CNPIR) controller, is also tested. This controller
is shown in Fig 8. The main difference between the CPIR
and CNPIR controllers is a saturation function applied to
the position error defined by

Sat(x) =

{
x if |x| ≤ 1
−1 if x < −1
1 if x > 1

(25)

Hence, if the position error is small, i.e. if |e(t)| ≤ G, then
the CNPIR controller behaves like the CPIR controller.
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Fig. 5. Servomotor step reponses using the CPIR controller
for diferent values of σext.
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Fig. 6. Control signals for the servomotor step reponse
using the CPIR controller for diferent values of σext.
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Fig. 7. Velocity response corresponding to the inner loop of
the servomotor using the CPIR controller for several
values of σext.

Otherwise, the position loop is disconnected and the
velocity loop works alone having a set point velocity value
1/G.

Fig.9 displays the response of the CPIR and CNPIR
controllers for a step input of 15 rev/s and G = 0.1. This
value produces a position error large enough to enable the
saturation function work in its nonlinear part, and then
to make the velocity loop work alone. Note that the CPIR
controller exhibits a large overshoot whereas the output
generated by the CNPIR controller smoothly reach the
set point value. The graphs corresponding to the control
signals for both controllers is shown in Fig.10.

4. CONCLUSION

The experimental results show that the tuning procedure
developed for the Cascade Proportional Integral Retarded
(CPIR) controller and applied to the position control of
a servodrive produces non-overshooting responses. More-
over, tuning of the CPIR controller only requires solving
a nonlinear algebraic equation, a procedure easily per-
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Fig. 8. Cascade Nonlinear Proportional Integral Retarded
controller.
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Fig. 9. Servomotor step reponses using the CPIR and
CNPIR controllers for σext = 5.

t(s)0 1 2 3 4 5

C
o
n
t
r
o
l
 
S
i
g
n
a
l
 
(
V
)

-5

0

5

CPIR
CNPIR

Fig. 10. Servomotor step reponses using the CPIR and
CNPIR controllers for σext = 5.

formed using standard software like Matlab or on-line
solvers available in the web. Future work includes a CPIR
controller analysis using an antiwindup scheme and appli-
cations to more complex systems like robot manipulators
and quadrotors.
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