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Abstract: A novel engineering model reduction method is proposed in this paper that can be
applied to a chemical reaction network (CRN) with chains of linear reactions. The reduced model
is a delayed CRN with possibly different delays but with less state variables than the original
model. As the first step of the model reduction, a decomposition method is also developed to
transform chains with joint reactions into independent chains of linear reactions. The well known
example of McKeithan’s network is used as a case study to illustrate the basic concepts and the
design method.
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1. INTRODUCTION

Mathematical models of complex nonlinear systems de-
rived from engineering principles most often have a large
number of state variables that makes them unsuitable
for dynamic analysis, model-based control, diagnosis or
parameter estimation. Therefore, the need arises to derive
more simple versions from these detailed dynamic models
that have the same or similar dynamical properties but
can be handled by the tools and techniques of nonlinear
systems and control theory. Therefore, the aim of model
reduction for dynamic analysis and control purposes is to
decrease the number of state variables using engineering
judgement and operating experience about the parameters
of the different mechanisms present in the system.
Chemical Reaction Networks (CRNs) form a wide class of
positive (or non-negative) systems attracting significant
attention not only among chemists but in numerous other
fields such as physics, or even pure and applied mathe-
matics where nonlinear dynamical systems are considered.
Beside pure chemical reactions, CRNs are often used to
model the dynamics of intracellular processes, metabolic
or cell signalling pathways [Haag et al., 2005]. Although
chemical reaction network models originate from chemical
reaction kinetics, the increasing interest in the systems and
control community towards reaction networks as a well-
defined special class of positive nonlinear systems is clearly
shown by recent tutorial and survey papers, see e.g. the
papers of Sontag [2001], Angeli [2009], Chellaboina et al.
[2009].
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Because of the high complexity of (bio)chemical reaction
networks, different effective model reduction methods have
been developed utilizing their specialities (see [Hangos,
2010] for a review). Majority of the approaches use the
multiscale nature of such CRNs when fast and slow reac-
tions are both present and preserve the type of nonlineari-
ties (e.g. polynomial) present in the original model. Besides
of the usual steady-state approximation based reduction
method, more advanced reduction schemes are also pro-
posed, see e.g. Cappelletti and Wiuf [2017] for a recent
paper. Another widely applied reduction method for CRNs
is the so called variable lumping (see in Farkas [1999] and
in Li et al. [1994] for the nonlinear CRN case) that can
be applied for state variables with similar dynamics. A
model reduction method of complex balanced CRNs based
on algebraic approaches has been proposed in Rao et al.
[2013], that results in a similar structure than variable
lumping.
An alternative way of achieving the reduction of the num-
ber of state variables in CRNs is to allow the introduction
of delay into the reduced model. In order to have an
equivalent dynamics of the non-intermediate species in
the original and reduced models, distributed delays are
proposed in e.g. [Hinch and Schnell, 2004] or [Leier et al.,
2014]. Motivated by this approach and by the so called
chain method used for approximated finite delays with a
chain of linear reactions (see e.g. Repin [1965] or Krasznai
et al. [2010]), the aim of our paper is to propose a model
reduction method applicable to CRNs with linear reaction
chains.

2. BASIC NOTIONS

In this section, we will introduce the basic notions of
chemical reaction networks with and without of time delay.



We will also present our previous result to approximate
time delayed CRNs with ordinary differential equations
(ODEs).

2.1 CRNs with mass action law

A CRN obeying the mass action law is a closed system
where chemical species X1, X2, . . . , Xn take part in r
chemical reactions. An elementary reaction step has the
form

C
κ

GGGGGAC ′, (1)

where C and C ′ are the source and product complexes,
respectively. They are defined by the linear combinations
of the species C =

∑n
i=1 yiXi and C ′ =

∑n
i=1 y

′
iXi

where the nonnegative integer vectors y and y′ are called
stoichiometric coefficients. The positive real number κ is
the reaction rate coefficient.
The reaction rate ρ of an individual reaction (1) obeying
the so-called mass action law can be described as

ρ(x) = κ

n∏
i=1

xyi

i = κxy,

where x1, x2, . . . , xn are the concentration of species
X1, X2, . . . , Xn.
The dynamics of a mass action CRN can be described by
a system of ordinary differential equations as follows

ẋ(t) =
r∑

k=1
κk (x(t))yk [y′k − yk] , t ≥ 0, (2)

where x(t) ∈ Rn+ is the n dimensional nonnegative state
vector which describes the concentrations of species. In
the kth reaction, nonnegative integer vectors yk and y′k
denote the stoichiometric coefficients of source and prod-
uct complexes, respectively, and the positive number κk is
the reaction rate coefficient.

Reaction graph Similarly to Feinberg [1979] and many
other authors, we can represent the set of individual
reaction steps by a weighted directed graph called reaction
graph. The reaction graph consists of a set of vertices
and a set of directed edges. The vertices correspond to
the complexes, while the directed edges represent the

reactions, i.e. if we have a reaction C
κ

GGGGGAC ′ then there

is an edge in the reaction graph between the complexes C
and C ′ with the weight κ.

Example 1. (Chain of linear reactions). Let us consider the
simple case, when n species participate in n− 1 first order
(i.e. linear) chemical reactions. Then, the dynamics can be
described by ODEs as follows

ẋ1(t) = −κ1 x1(t),
ẋi(t) = κi−1 xi−1(t)− κi xi(t) i = 2, ..., (n− 1),
ẋn(t) = κn−1 xn−1(t).

(3)

The corresponding reaction graph of the CRN (3) has the
form

X1
κ1

GGGGGGAX2
κ2

GGGGGGA . . .
κn−2

GGGGGGGGGAXn−1

κn−1
GGGGGGGGGAXn.

2.2 Delayed chemical reaction networks

It has been long noticed in chemical reaction networks,
in particular enzyme kinetics, that enzyme-catalysed re-
actions deviated from the mass action law. Here one often
faces with reactions that have a certain dormant period,
i.e. there is a time delay between the availability of the
reactants and the starting of the reaction itself. This may
be a consequence of non-modelled slow initializing reaction
steps that produce an enzyme or a catalyst to the reaction.
Therefore, the usual notion of CRNs have been extended
by introducing delays into the dynamics of the reactions
(see e.g. [Mincheva and Roussel, 2007] or [Erneux, 2009]),
where examples of such kinetic schemes can also be found.
Besides of the above mentioned slow initialization steps,
other mechanisms, such as the fixed lifetime of the enzyme-
substrate complex that leads to the product with this fixed
delay (see [Hinch and Schnell, 2004]) or a slow inter cellular
convection can also be considered as the cause of the
apparent delays. In these cases, too, delays are most often
associated to or approximated with a series of activation
steps that form a chain of linear activation reactions
involving species that are difficult or even impossible to
measure.
Motivated by the above, we can extend CRN models
with delays in such a way, that each reaction has also a
nonnegative real number associated to it that represents
the time delay of the reaction

C
κ, τ

GGGGGGGGAC ′.

The dynamics of a CRN with time delay will be considered
in the form of delay differential equations (DDEs) as
follows

ẋ(t) =
r∑

k=1
κk [(x(t− τk))yk y′k − (x(t))yk yk] , t ≥ 0, (4)

where the nonegative real numbers τ1, τ2, . . . , τr represent
the time delays. In the special case, when each τk is zero,
the DDEs of the delayed CRN (4) reduces to the ODEs of
the undelayed CRN model (2).
Solutions of (4) are generated by initial data x(t) = θ(t)
for −τ ≤ t ≤ 0, where τ is the maximum delay and θ is a
nonnegative vector-valued continuous initial function over
the time interval [−τ, 0].

Reaction graph with time delay We can simply extend the
reaction graph of a CRN with time delays. In this case, it
is a directed and labelled multigraph, where the label of
an edge is not only the reaction rate constant, but also
the time delay. Reactions with same source and product
complexes, but different time delays occur as parallel edges
in the reaction graph.
Recently, stability analysis results have appeared in [Lip-
ták et al., 2018b] for this class, too.

2.3 The chain method

The analysis of nonlinear delayed differential equations
is generally difficult due to the infinite dimension of



the phase-space, see [Fridman, 2014]. To overcome this
difficulty, delayed terms are approximated by a sequence of
first order differential equations (see [Repin, 1965]), thus
one can approximate delayed differential equations by a
set of ODEs. It was shown in Repin [1965] that if the
initial function of the delayed system is sufficiently smooth,
then the solution of the approximating ODE converges
uniformly to the solution of the original delayed model on
any finite time interval.
In the paper of Lipták et al. [2018a], we have presented
a method to approximate delayed reactions with linear
reaction chains. For simplifying the notations, only the
rth reaction with positive time delay τr

Cr
κr, τr

GGGGGGGGGGAC ′r

is considered here, that is replaced by the chain of Nr
elements

Cr
κr

GGGGGGAV
(r)

1

κ̃r
GGGGGGA · · ·

κ̃r
GGGGGGAV

(r)
Nr

κ̃r
GGGGGGAC ′r.

To describe the dynamics of the approximation, we in-
troduce a new n dimensional nonnegative approximat-
ing state vector z ∈ Rn+ and the scalar variables
v

(r)
1 , v

(r)
2 , . . . , v

(r)
Nr

with the initial conditions

z(0) = θ(0) and v(r)
i (0) = κr

∫ −(i−1)κ̃−1
r

−iκ̃−1
r

(θ(s))yrds.

Then, the equations of the approximation have the form

ż(t) =
r−1∑
k=1

κk [(z(t− τk))yky′k − (z(t))ykyk]−

− κr(z(t))yryr + κ̃rv
(r)
Nr

(t)y′r,

(5)

and
v̇

(r)
1 (t) = κr(z(t))yr − κ̃rv(r)

1 (t)
v̇

(r)
i (t) = κ̃rv

(r)
i−1(t)− κ̃rv(r)

i (t), 2 ≤ i ≤ Nr,
(6)

where the reaction rate coefficient of the chain is κ̃r = Nr

τr

and the chain has Nr ≥ 1 elements. The new state vector
z(t) uniformly converges to the original one x(t) on a finite
time interval when Nr goes to infinity.

3. MODEL REDUCTION OF CRNS USING DELAYS

The aim of model reduction for dynamic analysis and
control purposes is to reduce the number of state variables
such that the dynamic properties of the input-output model
remains close to that of the original detailed one. This
implies that certain state variables, that determine the
output of the model should remain unchanged while the
reduction may leave out some of the other, non-interesting
state variables.
Motivated by the mechanisms behind delayed chemical
reactions in Subsection 2.2 and by the approximation of
delayed CRNs in Subsection 2.3, we may introduce delays
into the reduced model in order to decrease the number
of its state variables that appear as intermediate, usually
non-measurable concentrations in the linear chains of the
model. If the delay does not destroy the nice dynamic
properties (e.g. structural stability) of the model (see

[Lipták et al., 2018b] for such a sub-class of CRNs), the
reduced model with a delay may be advantageous for
controller design purposes, too. This motivates the model
reduction method proposed here.

3.1 The reduction method

The reduction method can be applied for CRNs which have
independent linear reaction chains (i.e. the intermediate
complexes of the chains have only one incoming reaction
and outgoing reaction) with large number of intermediates
and with same reaction constants.
For each chain of linear reactions the method consists of
three consecutive steps.
G1 The kth chain is identified in the form

Ck
κk

GGGGGGAV
(k)

1

κ̃k
GGGGGGA · · ·

κ̃k
GGGGGGAV

(k)
Nk

κ̃k
GGGGGGAC ′k,

where V
(k)

1 , V
(k)

2 , . . . , V
(k)
Nk

denote the intermediate
first order complexes of the chain.

G2 Delete all intermediate complexes (species) and all
reactions adjacent to them belonging to the chain.

G3 Insert a new delayed reaction between the entrance
Ck and exit C ′k of the chain to obtain

Ck
κk, τk

GGGGGGGGGGAC ′k,

where the time delay is computed as τk = Nkκ̃
−1
k .

G4 Determine the initial function for the remaining state
variables.

3.2 Decomposing linear complexes

In this subsection, we will present a simple procedure to
decompose a first order complex with a single incoming
and multiple outgoing reactions into an equivalent model
with new independent first order complexes that have
a single incoming and a single outgoing reaction. By
applying this procedure multiple times on a given CRN
with linear joint complexes participating in chains of linear
reactions, we can get an equivalent CRN with first order
chains of independent linear complexes. Therefore, this
method can be used as a preprocessing step before the
model reduction.
Let us consider a first order complex U (i.e. U is a specie
and it does not appear in any other complexes) with a
single incoming reaction

Cin
κin

GGGGGGGAU, (7)

and multiple outgoing reactions

U
κout,i

GGGGGGGGGACout,i, i = 1, . . . , N. (8)

Let us replace the complex U with a set of first order com-
plexes V (1), V (2), . . . , V (N) such that the corresponding
state variables are v(i) = κout,i

κsum
u with κsum =

∑N
i=1 κout,i.

Then, the new reactions have the form

Cin

κout,i

κsum
κin

GGGGGGGGGGGGGAV (i)
κsum

GGGGGGGGGACout,i, i = 1, . . . , N. (9)



This way the reactions V (i)
κsum

GGGGGGGGGACout,i, i = 1, . . . , N

in (9) become mutually independent, i.e. they do not have
any common complex. At the same time, we can get back
the original concentrations and dynamics of the original
reactions (7)-(8) by applying the equation u =

∑N
i=1 v

(i).
Fig. 1 illustrates the decomposition method when N = 2.

Fig. 1. Decomposition of the reactions (a) into independent
ones (b)

4. CASE STUDY

The proposed model reduction method will be illustrated
using the famous kinetic proofreading model proposed
by McKeithan [1995]. This CRN is a simple way to
describe how a chain of modifications of the T-cell receptor
complex, via tyrosine phosphorylation and other reactions,
may give rise to both increased sensitivity and selectivity
of the response.
The proposed reduction method with delay is applied to
this CRN, and the dynamic response of the original and
reduced models are compared.

4.1 McKeithan’s network

The specieX1 represents the concentration of T-cell recep-
tor (TCR), and X2 denotes a peptide-major histocompat-
ibility complex (MHC). The constant κ1 is the association
rate constant for the reaction which produces an initial
ligand-receptor complex U1 from TCRs and MHCs. The
various intermediate T-cell receptor complexes are denoted
by U1, U2, . . . , UN and the final complex is denoted by
X3. McKeithan postulates that the recognition signals are
determined by the concentrations of the final complex X3.
Clearly, the species X1, X2 and X3 are of primary interest
for this model, where X3 is the model output.
The constants κp are the rate constants for each of the
uniform steps of phosphorylation or other intermediate
modifications, and the constants κ−1 are uniform dissocia-
tion rates. Fig. 2 shows the reaction graph of the network.
The dynamics of the McKeithan’s network can be de-
scribed by an ODE in the form

ẋ{1,2}(t) = −κ1x1(t)x2(t) + κ−1x3(t) + κ−1

N∑
i=1

ui(t),

ẋ3(t) = −κ−1x3(t) + κpuN (t),
with the intermediates

u̇1(t) = −(κp + κ−1)u1(t) + κ1x1(t)x2(t),
u̇i(t) = −(κp + κ−1)ui(t) + κpui−1(t), 2 ≤ i ≤ N,

where the states x1, x2, x3 and u1, u2, . . . , uN are the con-
centrations of the species.

Fig. 2. The reaction graph of the McKeithan’s network

4.2 Model reduction with delay

In order to apply the model reduction method described
in Subsection 3.1, we introduce an equivalent CRN of the
McKeithan’s network, where the network is decomposed
into independent chains of linear reactions.

Decomposition of the chains The decomposition uses
the procedure for decomposing linear complexes described
before in Subsection 3.2 in an iterative way starting
from the final intermediate complex UN and processing
backwards the complexes.
For this, we introduce a set of new state variables
v

(1)
1 , v

(2)
1 , v

(2)
2 , v

(3)
1 , v

(3)
2 , v

(3)
3 , . . . , v

(N)
1 , v

(N)
2 ..., v

(N)
N ,

v
(N+1)
1 , v

(N+1)
2 , . . . , v

(N+1)
N such that v(j)

i = α
(j)
i ui where

α
(j)
i is defined for 1 ≤ i ≤ min(j,N) as follows

α
(j)
i =


κ−1

κp

(
κp

κp + κ−1

)j−i+1
if 1 ≤ j ≤ N(

κp
κp + κ−1

)j−i
if j = N + 1

.

This results in the following relation between ui and v(j)
i

N+1∑
j=i

v
(j)
i = ui, i = 1, . . . , N.

By using the new variables v
(j)
i and introducing the

notation κ̃ = κp + κ−1, we get the following ODEs

ẋ{1,2}(t) = −κ1x1(t)x2(t) + κ−1x3(t) + κ̃

N∑
i=1

v
(i)
i (t),

ẋ3(t) = −κ−1x3 + κ̃v
(N+1)
N ,

with the intermediates
v̇

(j)
1 (t) = −κ̃v(j)

1 (t) + α
(j)
1 κ1x1(t)x2(t), j = 1, . . . , N + 1

v̇
(j)
2 (t) = −κ̃v(j)

2 (t) + κ̃v
(j)
1 (t), j = 2, . . . , N + 1,

v̇
(j)
3 (t) = −κ̃v(j)

3 (t) + κ̃v
(j)
2 (t), j = 3, . . . , N + 1,

...
v̇

(N)
N (t) = −κ̃v(N)

N (t) + κ̃v
(N)
N−1(t),

v̇
(N+1)
N (t) = −κ̃v(N+1)

N (t) + κ̃v
(N+1)
N−1 (t).

Fig. 3 shows the corresponding reaction graph where the
N + 1 linear chains are independent.

Reducing the chains of independent linear reactions Exe-
cuting repeatedly the steps of our model reduction method
for each of the independent chains of linear reactions in
Fig. 3, one can arrive at the reaction graph of the reduced
CRN that is seen in Fig. 4.
In the reduced model, we have N different time delays and
the ith time delay is τi = iκ̃−1. The reduction results in a



Fig. 3. The reaction graph of the transfomed McKeithan’s
network. The chains of linear reactions become inde-
pendent

Fig. 4. The reaction graph of the reduced McKeithan’s
network using delays

delay differential equation system with only 3 states. The
equations have the form
ż{1,2}(t) = −κ1z1(t)z2(t) + κ−1z3(t)

+
N∑
i=1

α
(i)
1 κ1z1(t− τi)z2(t− τi),

ż3(t) = −κ−1z3(t) + α
(N+1)
1 κ1z1(t− τN )z2(t− τN ).

where z1, z2, and z3 are the concentration of species Z1,
Z2, and Z3 in the reduced model, that approximate the
states X1, X2, and X3 in the original model.
The initial function θ is a a nonnegative vector-valued
continuous function over the time interval [−τN , 0]. The
initial function has to fulfill the following conditions:
C1 θ(0) = x(0),
C2 α

(N)
1
α

(N)
i

κ1
∫ −(i−1)κ̃−1

−iκ̃−1 θ1(s)θ2(s)ds = ui(0),
C3 θ is a continuous function.
Remark Note, that a similar structure has been obtained
for the McKeithan’s network using a stochastic model
and a stochastic reduction method by Leier et al. [2014].
However, instead of the fixed delays associated with the
reduced reaction steps in our approach, the authors used
distributed delays: this way they did not approximate the
solution but computed it in an other equivalent way.

4.3 Analyzing the dynamic responses of the original and
the reduced model

In this subsection, we will compare the original and
reduced McKeithan’s network using simulation in the time
domain.
Initial function We used an initial function that describes
the situation when a signal arrives at the start of the
reaction network. This is described with the following
sigmoid function in the species Z1 (∼ X1) and Z2 (∼ X2)

θ(t) = 1
1 + e−50t

[ 20
10
0

]
,

while the concentration of the final complex Z3 (∼ X3) is
zero. This situation is depicted in Fig. 5.
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Fig. 5. Plot of the initial function θ of the reduced order
McKeithan’s network. The blue, green, and red lines
show the values θ1(t), θ2(t), and θ3(t), respectively

The response of the reduced model In order to show the
effect of the key model parameters on the approximation
error, we have investigated two different cases where the
obtained delay in the reduced models were the same but
with different conditions.
• Low chain length case with N = 6, κp = 20, κ−1 = 1,

and κ1 = 1, with the time plot seen in Fig. 6.
• Long chain length case with N = 15, κp = 50,
κ−1 = 1, and κ1 = 1, where the time plot is depicted
in Fig. 7.

It is seen that a good agreement has been found between
the responses of the original and reduced model in the
critical concentration of specie X3, i.e. between x3(t) and
z3(t).

5. CONCLUSIONS

A model reduction method is proposed in this paper that
can be applied to a chemical reaction network (CRN)
with chains of linear reactions. For CRNs with chains that
contain joint linear reactions, a decomposition method is
also developed to transform them into independent chains
of linear reactions. This decomposition can be used as the
first step of the model reduction.
The proposed method reduces the chains with linear
reactions into a single reaction with time delay, therefore
one obtains a delayed CRN with possibly different delays
but with much less state variables than the original model.
The well-known McKeithan’s network is used as a case
study to illustrate the basic concepts and the reduction
method. Simulation results show that the concentrations
in the reduced model approximate well the original ones
for a realistic sigmoid type initial function.
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Fig. 6. Time plot of the original and reduced McKeithan’s
network when N = 6, κp = 20, κ−1 = 1, and κ1 = 1.
The blue, green, and red lines show the values of
x1(t), x2(t), and x3(t), respectively. The dashed lines
of the same color correspond to the same values in the
reduced model.
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Fig. 7. Time plot of the original and reduced McKeithan’s
network when N = 15, κp = 50, κ−1 = 1, and κ1 = 1.
The blue, green, and red lines show the values of
x1(t), x2(t), and x3(t), respectively. The dashed lines
of the same color correspond to the same values in the
reduced model.

Further work will be directed to generalize the proposed
approximation method such that we allow different reac-
tion rate coefficients in the linear chains. Furthermore, we
would like to determine the reduction error in the function
of chain lengths and reaction rate coefficients.
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