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Abstract: A study to which extent of parameter setting the PID controller can be designed by means of 

dominant pole assignment for non-minimum-phase plant with delay is dealt with in the paper. Two 

options of the control loop are investigated, namely with and without the measurement filtering where the 

latter leads to a neutral time delay system which therefore has to satisfy the strong stability condition. 

The control loop is described in dimensionless quantities obtained by dimensional analysis. The influence 

of filtering on the loop dynamics is investigated particularly the effect of filter absence at all. This effect 

is demonstrated by the position of neutral root chain, i.e. how far from the origin lie the roots on a 

vertical line parallel to the imaginary axis of complex plane. To show boundaries of the dominant three-

pole placement possibility in the control loop the trio of poles is placed repeatedly as long as the neutral 

root chain crosses the imaginary axis and the boundaries are mapped in the space of similarity numbers. 

Keywords: neutral time delay systems, PID controller, dominant pole placement, similarity theory, 

measurement filter. 
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1. INTRODUCTION 

The first order plant with delay is commonly used as an 

approximation of higher order dynamics. But its PID control 

loop results in a retarded time delay system only if at least a 

first order filter is involved in the controller (Åström and 

Hägglund, 2004; Larsson and Hägglund, 2011). The filter 

free application of PID to this plant always results in a 

neutral character of the control loop system (Hwang 1993; 

Kharitonov and Zhabko, 1994). In case of the non-minimum 

phase process of the second-order with right-hand-part (RHP) 

zero the PID control loop with delay becomes the system of 

neutral type (Wang et al. 2017). Typically, neutral time delay 

systems are observed when controlling communication 

systems (Olgac and Sipahi, 2004; Olgac, Vyhlídal, and 

Sipahi, 2008; Castaños et al., 2017). Both retarded and 

neutral control loop descriptions are presented in 

Hohenbichler (2009) where the strong stability notion is 

applied to generate all stabilizing PID controllers.  

The dominant pole placement is a powerful concept of PID 

controller design (Persson and Åström, 1993; Wang et al., 

2009). This concept has been successfully applied to the 

control of time delay systems (Hwang and Fang, 2009; Zítek, 

Fišer, and Vyhlídal, 2013; Srivastava et al., 2016). The 

dominant pole placement technique has also been 

supplemented by a root locus application (Michiels et al., 

2002; Wang et al., 2009). In He and Fong (2012) an 

eigenvalue-loci approach is proposed testing a posteriori the 

rightmost root on its decay rate. Due to the PID controller 

classification as the three term controller, for more details see 

Keel and Bhattacharyya (2008), just the meeting of dominant 

three-pole placement is a natural requirement on the control 

loop (Hwang 1993; Hwang and Fang, 1995). The dominant 

three-pole placement for retarded systems is presented in 

Zítek, Fišer, and Vyhlídal (2013) where the dominance 

guarantee of the trio of placed poles is based on argument 

increment principle. 

To generalize the control loop description the similarity 

theory or dimensional analysis is applied (Balaguer 2013). 

The PID control loop with delay has been designed using the 

similarity theory reducing the number of process parameters 

(Zítek, Fišer, and Vyhlídal, 2013). Advanced control loop 

description based on the dimensional analysis is presented in 

Zítek, Fišer, and Vyhlídal (2017) where the IAE optimum 

dominant poles are placed to tune PID controller gains. There 

are also intuitive approaches to dimensionless description, 

e.g. Hwang (1993) or non-dimensionalization in Castaños et 

al. (2017). 

When controlling the second-order process with the delay 

and RHP zero by the PID controller it is well-known the 

resulting control loop is rendered neutral. The so-called 

characteristic root problem of general quasi-polynomial 

functions, both retarded and neutral, was solved already in 

late forties by Chebotarev and Meiman (1949). In case of 

neutral one beside the root dominance also the strong stability 

is to be examined. The strong stability or strong stabilization 

problem attracted many researchers in the past, for more 

details see Olgac, Vyhlídal, and Sipahi (2008). To avoid a 

neutral root chain being close to the imaginary axis and thus 

preventing these large roots from the influence of the pole 

dominance the neutral control loop is worth to be 

investigated. In this point the presented paper extends the 



 

 

     

 

results of those papers Zítek, Fišer and Vyhlídal (2017),  

Fišer, Zítek and Vyhlídal (2017), related to retarded systems.  

The paper presents a study to which extent of parameter 

setting the PID controller can be designed for the non-

minimum phase processes of the second-order by means of a 

dimensionless description. Particularly the effect of the 

measurement filtering on the stability of the control loop 

system is investigated.  

2. DIMENSIONLESS CONTROL LOOP DESCRIPTION 

Consider the second-order process with the delay and an RHP 

zero (and zero initial conditions) as follows 
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where 
1 2 1
, ,a a b  are process model coefficients and   is the 

process time delay. K and C are steady-state gains 

corresponding to the control variable u and disturbance d, 

respectively. Process (1) is controlled by the PID controller 

with filtered control error 
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where , ,
P I D

r r r  are proportional, integration and derivative 

gain, respectively. The control error, e, is filtered as follows 
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under zero initial conditions. 

To investigate the impact of measurement filtering on the 

PID control loop behaviour the following transfer function 

description is considered 
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Then using (4) through (7) the disturbance transfer function 

of the PID control loop is given as ( )T s   

 ( ) 1 ( ) ( ) ( )
u

G s G s R s F s . Thus this transfer function results  
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from where the characteristic quasi-polynomial is as follows 
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To obtain the most general results of the control loop stability 

investigation by the dimensional analysis is applied to the 

control loop description in the next subsection. 

2.1 Dimensional considerations 

A dimensional investigation of PID control loop has been 

presented in Zítek, Fišer and Vyhlídal (2017). In a similar 

manner the following nine dimensional quantities 
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describing the above control loop are considered in 

dimensional investigation. The following three similarity 

numbers may then be introduced for process model (4), 
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and similarly the dimensionless parameters 
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are introduced for the controller and the filtering. For 

consistency the dimensionless variables 
2

/t t a  and 

2
a   are introduced for time and frequency, 

respectively.  , as dimensionless frequency, is referred to as 

frequency angle. Once the ultimate frequency of the plant (1), 

K
 , is assessed the ultimate frequency angle is defined as 

 
2K K
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The proportional gain 
P P

K r  , as dimensionless, is not 

involved in the dimensional treatment. 

With the above introduced quantities the control loop transfer 

function (8) is rearranged to the form 
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so that the characteristic quasi-polynomial of the control loop 

is as follows 
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where 
2

s s a .  

3. DOMINANT THREE-POLE PLACEMENT 

As in Zítek, Fišer, and Vyhlídal (2013, 2017) a trio of poles, 

i.e. roots 
321

,, sss  of 0)( sM , is placed with the request of 

their dominance by means of the controller gains 
IDP

 ,,  



 

 

     

 

setting. So these gains are to be found and for their 

assessment the product )exp()( ssM  is considered instead 

of )( sM  since the always nonzero )exp( s  cannot change 

the spectrum of )( sM  zeros. 

The trio of poles 
321

,, sss  is considered composed of one 

complex conjugate pair 

 0,,)(
2,1

  js , (15) 

and one real root 
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, 1s     , (16) 

where   is the relative damping of oscillations,   

determines their frequency and   is the ratio of the real 

coordinates of 
3

s  and 
2,1

s . 

Proposition 1. For the class of similar control loops 

described by (14) the trio of poles (15), (16) is placed by the 

controller gain setting , ,
P D I

    given as follows 
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Proof. The trio of poles is placed simultaneously by 

substituting the complex conjugate pair (15) and the third real 

pole (16) into the characteristic equation as follows 
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Set of relations (29-32) can be expressed in matrix form 
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where A  results in (20) and B  in (24). After that the 

elements of  
T

P D I
  P  are calculated by formulae 

(17), (18), and (19) when applying Cramer’s rule to (33). The 

proof is finished.   ■ 



 

 

     

 

The formulae given by (17-19) provide the placement of the 

trio of poles (15-16) to the similar control loops. However to 

ensure also the dominance of these poles this dominance can 

be proved by the argument increment rule (Zítek, Fišer, and 

Vyhlídal, 2013) and/or quasi-polynomial root finder 

(Vyhlídal and Zítek, 2009).  

In the next section the spectrum of similar control loops 

described by (14) is analysed with respect to both the 

guarantee of three-pole dominance and vanishing f . 

4. SPECTRUM-BASED ANALYSIS OF THE SIMILAR 

CONTROL LOOPS 

The fourth order of the control loop quasi-polynomial (14) is 

connected with the presence of filter )( sF . Without filtering, 

i.e. for 0f , it represents the ideal PID control of plant (4) 

and simplifies to only third order form 
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where, however, a delay term appears even with the highest 

power 3
s . Apparently this quasi-polynomial is no longer 

retarded but neutral and therefore its stability may be 

extremely sensitive to even infinitely small changes of  . To 

exclude such inadmissible property of control loop the so-

called strong stability of (34) is to be provided for any 

practical implementation of this kind of dynamics. The 

following condition is necessary for the stability and must be 

then respected in the controller tuning. 

Lemma 1. The neutral quasi-polynomial (34) is strongly 

stable if and only if its associated difference equation 
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Proof. Since the characteristic equation of (35) is 
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 the condition is proved. 

The strong stability condition (36) is investigated for both 

aperiodic ( 0 .5  ) and oscillatory ( 0 .5  ) processes. 

Particularly a sensitivity to strong stability loss is detected by 

placing variable natural frequency angle   up to 125 percent 

of ultimate frequency angle 
k

 . The similarity number of 

laggardness is considered within the range 0 .2 5, 1 .5   

and with fixed  . 

4.1 Illustrative example 

Consider process (1) with parameters 
2

1 2
1 .8  s ,  0 .7  sa a  , 

1
1 .5  s ,  1 sb    that can be described according to (10) by 

the following similarity numbers 

 0 .4 6 4 8  , 1 .1 9 5 2  , 1 .7 9 2 8  .  (37) 

With respect to identified ultimate frequency angle 

0 .7 7 2 8
k

  an accelerated control loop dynamics is assigned 

iteratively as follows  

  1, 2 3
,  ,   1, 2 , ...,

i i
s j s i N        , (38) 

where 0 .25,  1 .3   and N = 18. The natural frequency 

angles are specified 

0 .6 9 5 5 , 0 .7 7 2 8 , 0 .8 5 , 0 .8 5 7 8 , 0 .8 6 5 5 , 0 .8 7 3 3 ,

0 .8 8 1 , 0 .8 8 8 7 , 0 .8 9 6 4 , 0 .9 0 4 2 , 0 .9 1 1 9 , 0 .9 1 9 6 ,

0 .9 2 7 4 , 0 .9 3 5 1 , 0 .9 4 2 8 , 0 .9 5 0 5 , 0 .9 5 8 3 , 0 .9 6 6

i


 
 

  

 
 

.(39) 

In Fig. 1 the rightmost spectrum of the similar control loops 

is shown when filter time constant 0 .0 1 s
f

T  , i.e. f = 

0.01195. One can see that trios of poles (38) are safely 

dominant when controlling the process with the filtered PID 

controller of which gains are evaluated by (17-19). On 

contrary in Fig. 2 the spectrum of the similar control loops is 

recorded if no filter is considered, i.e. f = 0. As expected a 

neutral root chain is generated in the rightmost spectrum and 

when the condition for the strong stabilization is not satisfied 

the neutral root chain appears in the right-hand side of the 

complex plane. The neutral root chain in Fig. 2 (marked by 

black rings) is then given 

    1 ln ,   0 ,1, 2 , ...
N

k D N
s jk k      . (40) 

For moving the neutral root chain close to the imaginary axis 

the natural frequency angle necessitates to prescribe above 

125 percent of the ultimate one with respect to growing 

relative damping   and root ratio  . All the research made 

in this matter does not justify the pole placement with such a 

natural frequency assignment, for more details see Zítek, 

Fišer, and Vyhlídal (2017) and references therein. 

In Section 5 the natural frequency angle assigned by the PID 

controller setting (17-19) is mapped in space of ,   when 

the strong stability boundary is reached under the three-pole 

dominance guarantee (separately from the position of the 

neutral root chain that is potentially responsible for the 

dominance loss). 

5.  STABILITY BOUNDARY MAPPING IN THE SPACE 

OF SIMILARITY NUMBERS 

In this section the results of Example 4.1 are generalized by 

mapping the strong stability boundary in space of ,  . The 

similarity number,  , is considered to be fixed at the same 

value as in (37). First, in Fig. 3 the ultimate frequency angle 

is recorded in considered ranges of ,  . In Fig. 4 the natural 

frequency angle in relation to the ultimate one is mapped 

where both the strong stability boundary and the dominant 

three-pole placement (separate from the influence of root 

chain position) are reached. From (36) the strong stability 

boundary is met in practice when  

 1 0 .5 5 7 7
D

   .  (41) 



 

 

     

 

 

Fig. 1. Rightmost spectrum of (14) (red rings) compared with 

prescribed trios of poles (black +) 

 

Fig. 2. Rightmost spectrum of (34) and prescribed trios of 

poles together with neutral root chains 

 

Fig. 3. Mapping of ultimate frequency angle.  

 

Fig. 4. Ratio of natural frequency angle and ultimate one 

mapped on the strong stability boundary. 

 

Fig. 5. Detail of Fig. 3 with the ultimate frequency angles 

considered in Fig. 4.  

 

Fig. 6. Proportional gain setting on the strong stability 

boundary. 

In the dominant three-pole placement the relative damping 

and root ratio are kept fixed at such values to reach the strong 

stability boundary below 125 percent of the ultimate 

frequency angle as the assigned one. These values are 

0.25,  1 .3   . In Fig. 5 only the detail of Fig. 3 is shown 



 

 

     

 

 

Fig. 7. Integration gain setting on the strong stability 

boundary. 

with the ultimate frequency angles to which are the natural 

frequency angles related in Fig. 4. In Fig. 6 and 7 the rest of 

controller gains, ,
P I

  , settings are recorded leading to the 

strong stability boundary but preserving separately the three-

pole dominance. 

Although similarity number   and pole placement 

parameters ,     are assumed constant the mapping of the 

strong stability boundary is discovering enough the pitfalls of 

neutral PID control loops. 

6. CONCLUSIONS 

PID control of non-minimum phase plant (4) is tightly 

connected with the appearance of a neutral character of the 

control loop. In terms of setting the controller by means of 

the dominant pole placement this issue has been 

systematically investigated for a broad class of considered 

plants both aperiodic and oscillatory. The strong stability 

boundary has been found for varying values of prescribed 

natural frequency of the control loop. It turned out that the 

most sensitive to the strong stability loss are aperiodic plants. 

In this respect it is to realize that vanishing filtering 

necessitates higher than ultimate values of natural frequencies 

to be prescribed. The comparison of both the schemes results 

in the envisaged conclusion that the use of filtering requires 

higher values of , ,
P D I

    than the filter-free option for 

obtaining equivalent control response. 
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