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Abstract:
This study extends a recent anti-windup scheme by using Smith predictor based controller
approach and by redesigning the transfer functions within the anti-windup structure. We
present simulation studies for a system including time delay and integrator to illustrate that our
extended structure successfully accomplish accurate tracking under the saturation nonlinearity.
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1. INTRODUCTION

The presence of actuator saturation frequently causes per-
formance degradations or even instability and this phe-
nomenon is called as windup see e.g. Kapila and Grigo-
riadis (2002) and Tarbouriech et al. (2011). Rich vari-
ety of anti-windup control mechanisms have been devel-
oped to deal with actuator saturation since the 1950’s
(Barbu et al., 2000; Lozier, 1956). Anti-windup architec-
ture mainly focuses on the tracking error when controller
operates at the actuator limits. One of the primary ad-
vantages of anti-windup scheme is that it helps to recover
from saturation quickly.

The actuator saturation is ignored at first to design the
stabilizing anti-windup controller. In other words, by elim-
inating the saturation, controller is designed in the linear
phase and then the adverse effect of the saturation on
system performance is reduced via anti-windup compen-
sation. There have been highly promising anti-windup
techniques depending on the performance requirements
and system nonlinearities, see e.g. Kothare et al. (1994)
for a review of early techniques.

Many existing anti-windup methods exclusively focus on
eliminating the effect of saturation for the stable per-
formance of control systems without considering specific
tracking challenges (Galeani et al., 2006; Borisov et al.,
2016). In this regard, internal model principle approach
for the anti-windup compensator design is a significant
technique for tracking and rejecting problems of the ref-
erence signal (Song et al., 2015). This approach is mainly
based on a controller design to provide closed loop stability
and to regulate the tracking error when specific system
parameters are perturbed (Francis and Wonham, 1976). In
contrast, there also exist internal model based solutions for
the saturation control without aiming high performance
tracking (Weston and Postlethwaite, 2000; Sornmo et al.,
2013; Gayadeen and Duncan, 2016).

Another general approach to the anti-windup strategy is
the conditioning technique which considers the controversy
between actual input of a process and desired output
of the controller under the actuator saturation (Hanus
et al., 1987). Early applications of this technique have been
introduced by Hanus et al. (1987) and Doyle et al. (1987).
The improved version of conditioning scheme was also
presented in Turner and Postlethwaite (2004) by proposing
a low order anti-windup compensator and further devel-
oped by Turner et al. (2007) considering the robustness
issue. An innovative anti-windup conditioning method for
the time delay plants and controllers involving delayers
in their structure is analyzed in Źıtek et al. (2014). This
technique is developed on internal model control loop with
the delay operation by tuning the anti-windup scheme
parameters and optimized on the basis of absolute error
integral criterion (Źıtek et al., 2014).

Recently, a unified anti-windup strategy to handle the
input constraints such as magnitude or rate saturation for
the dead-time plants has been developed and presented in
Flesch et al. (2017). An anti-windup block proposed in this
study does not address the time delay problem, instead
Filtered Smith Predictor is used as a dead-time compen-
sator. The proposed strategy is capable of updating the
actual control action to prevent any violation due to input
constraints for the time delay plants (Flesch et al., 2017).

Different than these approaches, anti-windup mechanism
developed in Liu et al. (2016) includes saturation com-
pensation blocks, internal model units as well as robust
anti-windup compensator design and proven work well for
finite dimensional plants. Compared to classical and more
widely used anti-windup mechanisms, the one proposed
in Liu et al. (2016) achieves better tracking of sinusoidal
reference inputs, while taking robustness considerations in
mind, see a recent application paper, Liu et al. (2018), for
these claims. In this study, we extend their design to plants
with time delay and integral action (i.e. unstable pole at



s = 0). For this purpose we use a modified Smith predictor
form for the class of plants considered.

Brief description of the anti-windup scheme proposed in
Liu et al. (2016) for delay-free systems is given in Section 2.
Section 3 covers the basic steps of Smith predictor-based
controller design to extend the anti-windup scheme and
summary of the novel structure. We present the results
of simulation studies in Section 4. Finally, concluding
remarks and future directions are provided in the last
section.

2. ROBUST ANTI-WINDUP SCHEME

The anti-windup structure introduced in Liu et al. (2016)
includes parallel internal model units and robust anti-
windup compensator for high precision trajectory track-
ing. The reference signal illustrated in Fig. 1 is defined
based on the exogenous dynamical system equation in the
form

R(s) = Λ(s)−1R0(s) (1)

where R0(s) and R(s) represent Laplace transform of the
signals r0(t) and r(t), respectively, and Λ(s)−1 represents
the dynamics of the exogenous system and typically Λ
has roots on the Im-axis (see Section 3 and Section 4 for
examples).
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Fig. 1. The block diagram of a parallel internal model
control structure.

The aim is to minimize the tracking error, e(t), shown in
Fig. 1 as much as possible while satisfying the conditions:

i. Considering zero tracking signal (r(t) = 0), the un-
forced closed-loop system is asymptotically stable,

ii. Considering any initial conditions of the plant, the
closed-loop system satisfies limt→∞ e(t) = 0.

The plant transfer function G(s) and internal model unit
F (s) in Fig. 1 are defined as

G(s) =
B(s)

A(s)
,

F (s) =
B(s)

A(s)

P (s)

Q(s)
= G(s)

P (s)

Q(s)
,

(2)

where A, B, P , Q are polynomials, and A has no roots in
the closed right half plane. Note that the plant is assumed
to be stable.

Lemma 1. (Liu et al., 2016) A stabilizing controller, C(s),
achieves asymptotic tracking performance if the condition

(1 + F (s)) = A(s)−1Λ(s) (3)

holds.

The unknown polynomials in the definition of internal
model unit are P (s) and Q(s). Basically, choosing Q(s) =

1 gives the definition of numerator polynomial P (s) by
using Lemma 1:

P (s) =
Λ(s)−A(s)

B(s)
. (4)

The anti-windup scheme with the internal model structure
is designed based on a standard mixed sensitivity mini-
mization H∞ problem in order to optimize the stabilizer
design with the performance requirements and robustness
against uncertainties. Accordingly, the aim is to find a
stabilizing controller K(s) for the mixed sensitivity mini-
mization problem

inf
Kstab.GA

∥∥∥∥∥
[
W1S
W2T

]∥∥∥∥∥
∞

(5)

where S = (1 + KGA)−1 and T = 1 − S are denoted
as the sensitivity and complementary sensitivity transfer
functions of the augmented system GA, which is defined
as

GA(s) =
G(s)

1 + F (s)
. (6)

Here W1(s) is denoted as the performance weighting
function and poles of W1(s) contain the poles of Laplace
transform of the reference signal (i.e., typically poles of W1

include roots of Λ). Besides, W2(s) is the robustness weight
and defined as the upper bound of the multiplicative plant
uncertainty.

In addition to internal model unit, robust anti-windup
compensator θ1(s) and θ2(s) are also designed based on a
criteria to guarantee the stability of closed loop system.
The anti-windup structure including all components is
illustrated in Fig. 2.
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Fig. 2. Anti-windup tracking control architecture with the
internal model structure.

Note that sat(.) is denoted as saturation operator which
is expressed by the relationship between controller output
u and plant input um as

sat(u) := um =

 σ1, if u 6 σ1
u, if σ1 < u < σ2
σ2, if u ≥ σ2

where the limits σ1 and σ2 are determined based on the
system specifications.

The filters θ1(s) and θ2(s) are defined by the following:

θ1(s) = θ̃1(s)(1 + F (s))

θ2(s) = G(s)
(

1 +
θ1(s)

1 + F (s)

)
= G(s)(1 + θ̃1(s)(s))

(7)



where θ̃1(s) is determined as

θ̃1(s) =
γ

(1 + αs)(1 + βs)
(8)

for α > 0, β > 0 and γ is to be determined from the
following.

Achieving robust stability and tracking the sinusoidal
reference signal with the proper choices of (θ1, θ2) are the
main subjects in the design which can be described as

f(γ) =
∥∥∥Wa(s)(1 + θ̃1(s)(s))

∥∥∥
∞

(9)

where Wa(s) represents the additive plant uncertainty
bound. Liu et al. (2016) propose to minimize f(γ) by
choosing the optimal values of α, β and γ.

3. EXTENDED ANTI-WINDUP COMPENSATOR VIA
SMITH PREDICTOR-BASED CONTROLLER DESIGN

The goal in this section is to extend the above design to
systems with time delay and integrator action.

3.1 Smith Predictor-Based Controller

The main advantage of the Smith predictor-based design
for the dead-time systems is that time delay is effectively
taken outside the characteristic equation of the closed
loop system and also every stabilizing controller can be
expressed in terms of a predictor structure (Mirkin and
Raskin, 2003).

Consider a plant transfer functions in the form

P (s) =
K

s
R0(s)e−Tds (10)

whereK is the gain of the nominal plant, Td > 0 is the time
delay in the system and R0(s) represents the minimum
phase transfer function which has the form

R0(s) =

n∏
k=1

(s2/ω̃2
k) + 2ζ̃k(s/ω̃k) + 1

(s2/ω2
k) + 2ζk(s/ωk) + 1

where 0 < ω̃k < ωk are the resonant and anti-resonant
frequencies, and ζ̃k, ζk are the damping factors which take
values between 0 and 1.

Proposed Smith predictor-based model controller struc-
ture is illustrated in Fig. 3-A as well as the controller itself
is given in Fig. 3-B. Using the structure in Fig. 3-B, the
Smith predictor-based controller can be defined as

C1(s) =
R̂0(s)−1

K

 C0(s)

1 + C0(s) 1−e−T̂ds

s

 (11)

where R̂0(s)−1 includes the estimated values of the param-

eters ωi, ζi, ω̃i, ζ̃i for i = 0, 1, ..., n whereas R0(s) consists
of the real values of these parameters. We define C0(s) as
the free part of the controller which is designed based on
delay free part of the plant. In the stability analysis of the
closed loop feedback system, typically H(s) is chosen as 1
since it does not contribute to the system stability.

In the design of Smith predictor controller, we consider
that the system successfully follows ramp and sinusoidal
reference input r(t), since our aim is to achieve perfect
steady-state tracking. In order to satisfy this, C1(s) must
have poles at s = 0 and at the periodic signal frequencies
s = ±jωd.
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Fig. 3. (A) Feedback system, (B) Smith predictor-based
controller

i. Steady-state tracking of a ramp r(t):

lim
s→0

C1(s) =∞

which gives

1 + C0(0)T̂d = 0 =⇒ C0(0) = − 1

T̂d
. (12)

ii. Steady-state tracking of a sinusoidal r(t):

lim
s→jωd

C1(s) =∞

which is equivalent to

C0(jωd) = − jωd

1− e−T̂djωd

. (13)

This is true if estimated parameters are exact correct
parameters: K = K̂, Td = T̂d. The characteristic equation
of the closed loop system illustrated in Fig. 3 is computed
using the definitions of plant and controller given in (10)
and (11). The characteristic equation 1 + C1(s)P (s) = 0
is equivalent to

1 +
1

s
C0(s) = 0 (14)

which means C0(s) must be designed to stabilize the
integrator.

In summary, C0(s) must stabilize the non-delayed plant
1/s and satisfy conditions (12) and (13). An appropriate
controller can be found from the classical controller pa-
rameterization, see e.g. Taşdelen and Özbay (2013), where
a robustness analysis is given for the parameter mismatch.
Our objective is to use this controller structure to extend
the anti-windup compensator design of Liu et al. (2016).
At this point we should note that even in the case R0 is
bi-proper, the plant (10) is strictly proper, therefore, using
a proper controller leads to a retarded delay system.

3.2 Extension of the Anti-Windup Structure

We present a novel anti-windup compensator combined
with Smith predictor-based controller design for the dead-
time systems. The general idea behind this extension
is to develop a relationship between these two different



approaches in order to redesign the proposed anti-windup
structure described in Section 2.

The known parameters in the design are the plant transfer
function P (s), additive uncertainty bound Wa(s), satura-
tion limits of the actuator and desired sinusoidal reference
r(t). Based on these parameters, we mainly focus on the
redesign of internal model unit F (s), robust stabilizer
K(s), augmented system transfer function GA(s) and anti-
windup compensators θ1(s) and θ2(s) given in Fig. 2 via
Smith predictor-based design.

The relationship is established by analyzing closed loop
transfer functions of these two approaches. The transfer
function T (s) for the Smith predictor design is divided into
two parts by applying inner-outer factorization. As stated
above, the controller to be designed must have poles at s =
0 and s = ±jωd where ωd is the frequency of the reference
signal. With the same strategy, anti-windup controller
must also have poles at these desired locations. By using
this idea, controller in Fig. 1 is rewritten to eliminate
the exogenous term by incorporating the integrator to
the controller structure. To include the other roots (s =
±jωd), remaining part of the controller is formulated as a
function, which to resemble the outer part of T (s).

The detailed calculations for the new definitions of these
transfer functions are provided in Öztürk (2017), here we
mainly describe the final forms. Internal model unit is
redefined as

F (s) =
1

s
Waw(s)e−Tds . (15)

Waw(s) is a stable transfer function defined as −sTso(s)
where Tso(s) is the outer part of the Smith predictor-
based design closed loop transfer function. The stabilizer
is divided into two parts, K0(s) and K1(s), which are
determined as

K(s) = K0(s)K1(s) =
C0(s)

1 + 1
sC0(s)

(K−1R0(s)−1) . (16)

For the augmented system transfer function GA(s), novel
definition of the internal model unit (15) is used in (6).
Similarly, the compensator θ1(s) and θ2(s) are described
using (15) in the definitions provided in (7). Finally, the
new anti-windup controller (equivalent of C(s) in Fig. 1
using the new definitions) has the form

Caw(s) =
K(s)

1− Tso(s)e−Tds
(17)

where Tso(s) =
C0(s)

1
s

(1+C0(s)
1
s )

represents the outer closed-

loop Smith predictor-based transfer function, which im-
plies that the design of C0 is such that it does not contain
any zeros in the open right half plane. Note that C0(s) is a
stabilizing controller for 1/s and an example for its design
will be provided in Section 4.

4. NUMERICAL RESULTS ON THE CASE STUDY

This section discusses the application of anti-windup con-
troller structure on a plant including time delay and inte-
gral term. We present the simulation studies we performed
with and without the extended structure.

4.1 Design of C0

In order to apply the new scheme, we have to design
the stabilizing controller C0(s), and calculate the transfer
functions in Fig. 2. As described, C0(s) must be designed
to stabilize 1/s. If we assign P1(s) = 1/s, then the set of
controllers stabilizing the plant P1(s) can be parametrized
as

C0 =
X +DpQ

Y −NpQ

where Np(s) = 1
s+a and Dp(s) = s

s+a . The parameter
a > 0 is determined based on the desired pole locations of
the closed loop system.

In this system X(s) = a and Y (s) = 1 solve the Bezout
equation. Consequently, the stabilizing controller can be
rewritten in the following form

C0(s) =
a+ s

s+aQ(s)

1− 1
s+aQ(s)

(18)

and the problem reduces to designing a stable Q(s) satis-
fying tracking requirements. In order to achieve high per-
formance tracking, the plant or controller should include
poles at the periodic signal frequencies. As in (12) and
(13), in the design of C0(s), we determine two interpolation
conditions

C0(0) = − 1

Td
, C0(jω) = − jω

1− e−Tdjω
(19)

where ω is the frequency of periodic reference signal of
interest and using (18), the interpolation conditions are
translated to

Q(0) = a(1 + aTd)

Q(jω) =
(jω + a− ae−jωTd)(jω + a)

jωe−jωTd
.

(20)

Hence, the problem can be redefined as designing a sta-
ble Q(s) which satisfies the conditions in (20) and then
designing the appropriate C0(s) described in (18).

By considering the known roots (0,±jω), minimum degree
of Q(s) is postulated as two. In order to guarantee the
stability of Q(s), roots of the denominator polynomial are
chosen to place the closed loop system poles at the desired
locations based on the given input signal. We determine
that Q(s) has the form

Q(s) =
bs2 + cs+ d

s2 + es+ f
(21)

where e, f > 0 are free parameters. Once these are chosen,
the other parameters are determined by employing the
interpolation conditions defined in (20). Also, one has to
check that the resulting C0 does not have zeros in the right
half plane. Otherwise, the free parameters can be changed
or the order of Q can be increased to gain more freedom.

4.2 Simulation Results

Simulation studies are performed both using the extended
anti-windup structure and using only controller and plant
without anti-windup scheme. We simulate the following
plant transfer function,



P (s) =
7.1

(
1 + 2 ζn (s/ωn) + (s/ωn)2

)
s
(
1 + 2 ζd (s/ωd) + (s/ωd)2

) e−hs (22)

where ζn = 0.08, ωn = 175, ζd = 0.02, ωd = 285 and
h = 8.1ms. Note that the transfer function has the form
described in (10) and saturation limits of the actuator are
[−1, 1](V ). The additive upper bound Wa(s) is described
by considering the cumulative error differences between
frequency response tests conducted on the real hardware
and designed plant transfer function:

Wa(s) =
0.011 (1 + s/20)(

1 + 2 ζd,a (s/ωd,a) + (s/ωd,a)2
) (23)

where ζd,a = 0.01 and ωd,a = 280 rad/sec. The aim using
additive upper bound is to calculate optimal values of α,
β and γ given in (8).

The reference input is described as r(t) = 50sin(ωt +
π/2)(mm) for ω = 1.5 rad/sec and free parameters in Q(s)
and C0(s) are determined as a = 2, e = 4, f = 1. Free part
of the controller C0(s) can be calculated using stable Q(s)
and Bezout equation polynomials X(s), Y (s), Np(s) and
Dp(s):

C0(s) =
−123.46 (1 + s/0.253)

(1− s/0.014)

×
(
1 + 1.471(s/1.392) + (s/1.392)2

)(
1− 0.09 (s/1.494) + (s/1.494)2

) .
Finally, internal model unit F (s) is calculated using (15)
and found as

F (s) =
−1.0588

(
1 + 1.471 (s/1.392) + (s/1.392)2

)
(1 + s/3.732) (1 + s/2)2

e−hs .

Time delay in this expression is replaced with its rational
equivalent obtained via second order Pade approximation
in order to solve the H∞ control problem (5) (tough there
are direct H∞ design methods for systems with delays see
e.g. Foias et al. (1996)). The aim here is to obtain low
order stabilizers; for this reason we are choosing a finite
dimensional approximation (Pade is widely used and read-
ily available in Matlab, there are various other methods as
well, see e.g. Michiels et al. (2011) and references therein).

Stabilizer parameters K0(s) and K1(s) are also computed
from equation (16):

K0(s) =
s (1 + s/0.253)

(
1 + 1.471 (s/1.392) + (s/1.392)2

)
(1 + s/3.732) (1 + s/2)2 (1 + s/0.268)

,

K1(s) =
0.14

(
1 + 0.04 (s/285) + (s/285)2

)(
1 + 0.016 (s/175) + (s/175)2

) .

We further recall equation (6) to calculate the augmented
transfer function GA(s):

GA(s) =
−128.8 (1 + s/3.732) (1 + s/2)2

s (1− s/0.36)
(
1 + 0.06 (s/1.49) + (s/1.49)2

)
×
(
1 + 0.016 (s/175) + (s/175)2

)(
1 + 0.04 (s/285) + (s/285)2

) e−hs .
Anti-windup compensators θ1(s) and θ2(s) are also derived
with the corresponding definitions as

θ1(s) =
−5.35 (1− s/0.36)

(
1 + 0.06 (s/1.49) + (s/1.49)2

)
(1 + s/40) (1 + s/20) (1 + s/3.732) (1 + s/2)2

,

θ2(s) =
706.27

(
1 + 0.016 (s/175) + (s/175)2

)
s (1 + s/40) (1 + s/20)

e−hs .
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Fig. 4. System output under the effect of input saturation
when there is no anti-windup structure. The tracking
error is also represented in the second graph.

In the simulation analysis, we first examine the system
behavior in the effect of input saturation without anti-
windup controller structure. The resulting system output
together with the reference sinusoidal signal is illustrated
in Fig. 4. Note that there is a significant difference between
the output and desired input which can be seen clearly in
the second graph. Tracking error is approximately 24mm.
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Fig. 5. System output under the effect of input saturation
when extended anti-windup structure is operating.
The tracking error is also represented in the second
graph.

Fig. 5 illustrates the system output when we use the
proposed anti-windup architecture. The output recovers
from nonlinearity after around 7.28 seconds and tracking
error converges to zero accurately.



By comparing the system output results depending on the
anti-windup and without anti-windup studies, the system
successfully recovers nonlinearity after a time and min-
imizes the tracking error when we apply the extended
architecture. Measured system output follows the desired
sinusoidal reference with the acceptable performance de-
spite the saturation nonlinearity and time delay.

5. CONCLUSION AND FUTURE WORK

The proposed anti-windup mechanism in Liu et al. (2016)
including internal model structure together with the ro-
bust anti-windup compensator is used to allow high track-
ing performance, however, this method is not applicable
for the dead-time systems. The present work fills this
gap by focusing on how the adverse effects of actuator
saturation can be suppressed independently of time delay
in the system. Motivated by the Smith predictor-based de-
sign strategy of Taşdelen and Özbay (2013), we employed
a new anti-windup mechanism applicable for the dead-
time systems by extending the anti-windup architecture.
Robustness to parameter mismatch in the plant and in-
ternal structure of the controller is analyzed and stability
conditions are determined in Öztürk (2017). The longer
term goal of this study is to design a Smith predictor-like
controller based on the extended anti-windup scheme for
the plants including more than one pole at C+.
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