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Abstract: In this paper, a modification of the Krasovskii theorem for a nonlinear class of
systems is presented. The idea is to replace the positive definiteness condition of the functional
with this condition on the special Razumikhin-type set of functions only while retaining the other
classical conditions. The result is motivated by the fact that this idea leads to the necessary
and sufficient stability condition for linear time-invariant systems. Moreover, this condition
is constructive and allows us not only to directly analyze the stability but also to find the
robustness bounds on the matrix parameters and on the delays and to construct the exponential
estimates for solutions. An overview of these results for linear systems is also presented.
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1. INTRODUCTION

The Lyapunov-Krasovkii functionals approach is the most
powerful tool in the stability analysis of time-delay sys-
tems, especially in a nonlinear case or when time-varying
perturbations in the linear systems are studied. In this
approach, the criteria for stability are expressed in terms
of some properties of the functionals and their derivatives
along the solutions of a system. In particular, a linear
system is exponentially stable, if and only if there ex-
ists a positive definite functional with a negative definite
derivative along the solutions, as stated in the well-known
Krasovskii theorem.

For linear systems, Krasovskii theorem has motivated an
idea to use the functionals with prescribed derivative
which was developed in Repin (1965) and Infante & Caste-
lan (1978). In later works, the derivative was set either as a
negative definite quadratic form of the vector z(¢) (Huang,
1989) or as a negative definite quadratic functional of
the true state x; (Kharitonov & Zhabko, 2003). Although
in both cases the obtained functional is positive definite
if the system is exponentially stable, only the second
one, which was called the functional of complete type,
admits a quadratic lower bound and, therefore, allows us
to solve the various problems in applications. In particular,
complete-type functionals make it possible to obtain the
exponential estimates for solutions (Kharitonov & Hinrich-
sen, 2004), to analyze the robustness with respect to the
coefficients (Kharitonov & Zhabko, 2003) and the delays
(Kharitonov & Niculescu, 2003), to find the critical values
of delay (Ochoa et. al, 2013), to compute the norm of the
transfer matrix (Jarlebring et al., 2011), etc. In Egorov &
Mondie (2013) and Egorov et al. (2017), an interesting
approach allowing to apply these functionals directly to
the stability analysis is presented.

In this paper, we present a modification of the Krasovskii
theorem for a general class of systems. The main idea

is to require a functional to be positive definite on the
set of functions satisfying the Razumikhin-type condition
(see Razumikhin, 1956) only instead of the set of all func-
tions, which, in a combination with the negativeness of
the derivative and the other classical conditions, leads to
a sufficient condition of asymptotic stability. The linear
case serves as a motivation for such formulation, since
the condition becomes necessary and sufficient for linear
systems (Medvedeva & Zhabko, 2015b) and gives a con-
structive technique for the stability analysis (Medvedeva &
Zhabko, 2013). Moreover, the functional with a derivative
prescribed as —x” (t)Wx(t), where W is a positive definite
matrix (see Huang, 1989), is shown to admit a quadratic
lower bound on the abovementioned Razumikhin-type set
of functions (Medvedeva & Zhabko, 2015b), and, therefore,
to be effective in applications along with the complete-type
functional.

The paper is organized as follows. Sections 2 and 3 are
dedicated to a nonlinear class of systems and state the
main result. Subsequent sections give an overview on the
joint Lyapunov—Krasovskii and Razumikhin approach for
linear time-invariant systems. In particular, in Section 4 we
present the exponential stability and instability criteria.
In Section 5, we describe the methodology for the stability
analysis which is based on the above criteria. An important
point is that we show how the obtained sufficient stability
condition is connected with the necessary one. In Section 6,
we use our methodology to obtain the stability regions in
the space of parameters in a number of examples. Finally,
in Section 7 we show that our approach makes it possible
to apply the functional from Huang (1989) to the robust
stability analysis with respect to unknown parameters
in the matrices, to analysis of systems with uncertain
delays and to construction of the exponential estimates
for solutions.

Notation. PC([—h,O],R") stands for the space of the
piecewise continuous functions defined on [—h,0] with



the norm [lp[l = supge(_p,g lp(0)[, where [| - || is the
Euclidian norm; z(t, o, ¢) denotes the solution of a time-
delay system with an initial time instant ¢ = ¢y and an
initial function ; x; stands for the state of a time-delay
system, i.e. the function z(¢t+0), 6 € [—h,0]; 0y, is the zero
function: 0,(0) =0, 6 € [—h,0].

2. PRELIMINARIES

Consider a time-delay system

B(t) = f(t, ), (1)
where the functional f(t,¢) is defined for ¢ > 0 and
¢ € PC([—h,0],R™) and satisfies the following conditions:
A. Tt is continuous in both arguments;

B.VH > 0 3M(H) > 0 such that ||f(t,¢)| < M(H)
Vt>0,Ve e PC([—h,0],R") with |¢|, < H;

C.VH >03L(H) > 0 such that
) —

1t @) = £ < LH) o = Plln
vVt > 0, Vgo ¢ € PC([~h,0],R") such that [|¢]l, < H,
el <

D. f(t, Oh)
solution.

= 0Vt > 0, i.e. system (1) has a trivial

Assumptions A—C ensure the uniqueness and continuity of
a solution for every initial instant ¢ty > 0 and every initial
function ¢ € PC([—h, 0], R"), see Kharitonov (2013), p. 6.

The basic stability definitions are recalled below, see,
for instance, Kharitonov (2013). The trivial solution of
system (1) is said to be stable (in the Lyapunov sense), if
Vitg > 0,Ve > 030 > 0 such that Vo € PC([fh,O],]R”)
with ||¢|ln < 0 we have ||z(t,to, )| < € YVt > to. The
trivial solution of system (1) is asymptotically stable, if,
in addition, 3A > 0 such that ||z(¢,t0, )|l P 0, if
lelln < A. The trivial solution of (1) is exponentially
stable, if there exist Ag > 0, v > 1 and ¢ > 0 such that
(¢, 0, )| < 76 —0 ol > to, (2)
Vto > 0, Vo € PC([~h,0,R™) with [[¢]s < A A

function vy (x) (||z|| < H) is called positive definite, if it is
continuous, and vy (x) > 0 for z # 0, v1(0) = 0.

3. MAIN RESULT

Introduce the following Razumikhin-type set of functions:
S = {p € PC([~h,0],R")| ¢l = 0 (0)I| < H}.
Theorem 1. The trivial solution of system (1) is asymptot-
ically stable, if there exists a functional v(t,¢) such that

the following conditions hold:

1. The functional is continuous in ¢ at point ¢ = 0p
uniformly with respect to ¢ > 0, and v(¢,05) =0V ¢ > 0;

2. There exist H > 0 and a positive definite function vy (z),
|z|| < H, such that

v(t, ) = v1(p(0)),
3. The functional is differentiable along the solutions of
system (1), and

WL < (e,

where w(x), ||z|| < H, is a positive definite function.

t>0, peSs.

t>0,

Proof. The proof is based on the proofs of the classical
results on the Lyapunov stability, see Theorems 1.4 and
1.8 in Kharitonov (2013).

Part 1. In this part, we prove that the trivial solution
of system (1) is stable. Suppose, by contradiction, that
there exist tgp > 0 and €1 > 0 (e1 < H) such that for any
6 > 0 there exist an initial function ¢ € PC([—h,0],R"),
llolln < 0, and t1 > to for which || (t1,t0,¢)|| = €1. Set
A= min vi(x)>0.
llz]|=e1

By continuity of functional v(tg, ¢) at point ¢ = 0, there
exists 01 > 0 such that v(tg, ) < A, if ||¢||n < 1. Assume
that 6; > e;. Then, take an initial function ¢ € S such
that ||e(0)|| = |l¢lln = e1. For this function, v(tg,p) =
v1(¢(0)) = A by the second condition of the theorem. From
the other hand, since ||¢||n < 01, we have v(to, ¢) < A. The
obtained contradiction proves that §; < ;.

According to our assumption, there exist an initial func-
tion ¢ € PC([-h,0,R"), |§ln < 01, and t; > to
such that ||z(t1,t0,®)|| = e1. Due to continuity of the
solution, there exists a time instant t* > t; such that
lz(t*, to, @)|| = €1 and ||z(t, to, 9)|| < €1 for ¢ < t*. Hence,
Ty« €5, and

vl(x(t*ato, SZ)) < v(t*vxt* (t07 SZ)) < ’U(t07 &)7

the last due to the third condition of the theorem. From
the other hand,

vi(z(t*, 10, 9)) 2 A,

hence v(tp,p) = A. The contradiction ends the proof of

the first part.

Part 2. In this part, we prove that the trivial solution of
system (1) is asymptotically stable. By the first condition
of the theorem, there exists n > 0 such that for every
initial function ¢ € PC([—h,0],R"), |l¢lln < n, we get
[v(t, )] < B for any t > 0, where B > 0. As previously
proved, for a tg > 0 there exists § > 0 such that for
every initial function ¢ € PC([—h,0,R"), [l¢]ln < 6,
we have ||z(t,to, )| < n for any ¢ > to. Assume that
llolln < 6. We need to prove that ||z(¢,to, ¢)]| T 0.

Suppose, by contradiction that there exists a 8 > 0 and a
sequence {t;}1 such that |tj+1 —tj| > h for every j and

[z(t5,t0, 0)I| = 5, =12,.

First we prove that there exists a 7 > 0 such that

p
Hx(t7t05¢)” 257 te

Indeed, let t € [t;,t; + 7]. Then,
t
f(sa xs(th @))dsa

tj

it +7), j=1,2.. (3

l’(t,to,(ﬁ) = $(tj7t0790) +

and hence

(. t0, @) — x(t5, b0, P)I| < M(n)(t —t;) < M(n)T.
This implies that

[2(t,to, p)|| = [l2(tj,to, )| = M(n)T >

\
SRS

: . p
if r < . We set 7 = min ,h}, then holds
01() gy ) then )
and different intervals [t;,t; + 7] do not have common

points.




Integrating the third condition of the theorem, we obtain

o(to,9) > vlt, za(to, ) + / w(a(s, to, 9))ds.

to
Here v(t,x4(to, ) > —B, as [|z:(to, )|l < n for any
t > to. Next,

t N@®)  t4r
[ wlatstaends >3- [ wlatsitae)ds > N (),
to j=1 t;
where
= min w(x)>0,
Z<l=ll<n

and N(t) is a number of intervals [t;,t; + 7] C [0,]
(j=1,2,...), N(t) P +o00. Hence,
— 400

v(to, ) > —B + TyN(t) T +00,
and we arrive at the contradiction. O
4. STABILITY THEOREMS FOR LINEAR SYSTEMS

4.1 Ezponential Stability Criterion

There is a certain problem to converse Theorem 1 since
there is no functional corresponding to the necessary and
sufficient stability conditions in the general case. However,
the result admits a conversion for a linear system of the

form
m

() =) Aja(t —hy), (4)
§=0

where A; are the constant matrices, and 0 = hy < hy <

. < hy = h are the constant delays, for which the
following criterion is satisfied. We consider system (4) in
the remaining of the paper.

Theorem 2. (Medvedeva & Zhabko, 2015b) Given a posi-
tive definite matrix W, system (4) is exponentially stable,
if and only if there exists a functional vg(y) such that the
following conditions hold:

d
1. dvo(@e) _ —T(t)Wx(t) along the solutions of (4);
2. there exists a p > 0 such that
vo(p) = plle(0)]?
for every function ¢ € S, i.e. such that ||¢(0)|| = ||¢]|lx.

Remark 3. As it follows from the proof, Theorem 2 re-
mains true if we add the following conditions on the
derivative to the set S :

m k
o9 < (S 1430) HeOI0 € [-h.0l, k=12,
=0

It is well-known (see Kharitonov & Zhabko, 2003) that the
functional satisfying the first condition of Theorem 2 is of
the form

vo(ze) = 2 (1)U (0)a(t)

+2xT(t)§:/0

U(—G — hj)Aj.T(t + e)de

j=1"—h;
m m 0
+> ) a1t +6,)AF (5)
k=1j=1""hx

where U(7), 7 € [—h,h], is the Lyapunov matrix asso-
ciated with W, i.e. the matrix satisfying the following

equations:
m

U'(r) = ZU(T —hj)A;, T >0
=0

U(=r)=U"(), 7> 0; (6)
D [U(=hj)A; + AJUT (=hy)] = =W.
§=0
The Lyapunov matrix exists and is unique, if system
(4) satisfies the Lyapunov condition, i.e. the system has

no eigenvalue s such that —s is also an eigenvalue, see
Kharitonov (2013).

4.2 Instability Criterion

For the sake of completeness, we present the criterion for
instability here.

Theorem 4. (Zhabko & Medvedeva, 2016) Let system (4)
satisfy the Lyapunov condition. Given a positive definite
matrix W, system (4) is unstable, if and only if there exists
a functional vy () such that the following conditions hold:

d
1. dvo(z:) = —2T(t)W=x(t) along the solutions of (4);

2. there exist a ¢ > 0 and a function ¢ € S such that
v () < —ul|2(0)]*.

5. METHODOLOGY FOR STABILITY ANALYSIS

Theorem 2 opens a constructive way to analyze the sta-
bility of system (4). To avoid cumbersome computations,

we describe methodology for the case m = 1. First of
all, divide the interval [—h,0] into N equal parts by the
points 0; = —jA, j = 0,N, where A = h/N. Then,

take a function ¢ € S and construct for it the spline

approximation ¢(6), 8 € [—h, 0], satisfying the equalities:
q(0;) = ¢(0;), d'(6;) =¢'(6;), j=0,N.

These equalities ensure the smoothness of the spline, and

we choose the spline consisting of cubic polynomials, as

there are 4 conditions at each interval of partition. Direct

calculations lead to the following formula:

(s +0;) = g1(s)p(0;) + g2(s)p(0;+1) + g3(s)¢' (6;)
+ 94(S)§0/(9j+1)? ERS [_Aa0]7 j = 07N - 17
where
g1(s) = —(25 +3A)s2 /A + 1, ga(s) = 1 — g1 (s),
93(5) = (s + A)f(5), ga(s) = sf(s). f(s) = (s +A)s/A%
By Taylor formula, using the constraint on 4th derivative
of ¢, see Remark 3, we estimate an approximation error:

[1(s + 0,)[| = [ (s + ;) — als + 0)[| < Cx(5) [0 (O)],
0 =B K o) + 1l ©

x(s) = 7+ 653A + 7s2A%, s € [-A,0], j=0,N — 1.
Next, substitute approximation ¢ into the functional and
take the error into account. For example, for the second
summand of the functional we have

207 (0) / Oh UT (0 + h)A,p(0)dd



i/°

UT (s +JjA)A1p(s+ On—j)ds

j=17-4
N
0> |L! )+ L p(On—j11)
j=1
LBJ (9]\] ) + L 4 (9N7j+1) + Tl, where

0
L = / ar(s)UT (s + jA)dsAy, k=1,4,
-A

N0
Ty = 257 (0) Z/ U7 (s + jA) Aun(s + Ox—;)ds
-A
Applying formula (7), we obtain

N 0
IT:] < ZOHAJIZ/A 1U (s + 5A)[Ix(s)ds]| 0 (0)>.
j=1""

Transforming the other summands of functional (5) in the
same way, we get the following:

UO(@) = A(p7 @) + Ta
where A(p, ) is a quadratic form, p = ¢(0), and @ is the
vector obtained by a concatenation of vectors ¢(6;) for
j = 1,N and ¢/(6;) for j = 0, N, the total dimension
of @ is (2N + 1)n. The variable T denotes the group of
summands depending on the error of approximation 7(9)
for which there exists a bound of the form

—6]|p||?, where § > 0.
Hence, functional (5) admits a quadratic lower bound

vo(p) = Alp, @) — d|lplI>, €S

According to Theorem 2 and Remark 3 for k = 1, we get
the following stability condition: If there exists N € N such
that

[in Alp,¢) =6 >0, (®)

pli=

| |<1, j=T,nN,
|p5|<K, j=nN+1,2N+1)n

then system (4) (m = 1) is exponentially stable, here @,
denotes jth component of the vector @.

Remark 5. It is worthy of mention that the value of § tends
to zero as N — +oo, and besides that, the minimum of
A in (8) is always positive, if the system is exponentially
stable. Hence, the value of N such that (8) is positive
knowingly exists for an exponentially stable system.

Remark 6. It follows from the above that

() < Alp, @) +68lp1*.
Hence, if we replace “—” with “4” and “> 0” with “< 0”
in (8), then we obtain a sufficient condition for instability
in accordance with Theorem 4.

Remark 7. Coefficients of the quadratic form A(p, ) and
the parameter § depend on the Lyapunov matrix defined
by equations (6). However, there is no effective technique
to compute this matrix in the case when the delays h;
are noncommensurate in the present time, except for a
numerical approach for exponentially stable systems in
Egorov & Kharitonov (2016). In Zhabko & Medvedeva
(2016), a modification of the methodology of Section 5
for this case which is based on a modification of functional
(5) is presented.

6. EXAMPLES

In each example, we set N, and check stability condition
(8) at the points of a grid in a region at the space of param-
eters of the system. The points where (8) holds along with
the curves of D-subdivision are depicted on figures. To
compute the Lyapunov matrix, the semianalytic method
(see Kharitonov, 2013) with W = T is used.

Ezample 8. In Egorov & Mondie (2013),
region for equation
(t) = —2z(t) + ax(t — 1) + bz (t — 2)

was analyzed. The region obtained by the methodology of
Section 5 with N = 25 is presented on Fig. 1. Note that
there are some points which are located within the stability
region but are not identified by our approach, as for these
points a larger value of N is required. For example, for the
point a = 4, b = —7/3 minimum (8) becomes positive with
N = 34.

the stability

Fig. 1. Example 8, stability region obtained with N = 25

Ezxample 9. Consider an equation

&(t) = —x(t) + x(t — h1) — x(t — ha),
for which the stability regions at the space of delays h;
and hy were studied in Cicco et al. (2011). The results of
verification of condition (8) together with the results of
Cicco et al. (2011) are represented on Fig. 2.

Fig. 2. Example 9, stability region obtained with N = 20

Ezample 10. The classical well-known linearized equation
of motion of the inverted pendulum is of the form

. g9 1.
]
l L



where ¢ is the angle of the pendulum deviation from the
vertical line, [ is the length of the pendulum, and g is the
gravitational acceleration. Consider the simplest control
law

u(t) = Cﬂp(t — h) + CQ@(t — h) — €1u(t) — EQ’[L(t),
which represents acceleration of pivot of the pendulum,
here 1, e5 > 0 are chosen sufficiently small so that the
exponential stability of the closed-loop system of the 4th
order is equivalent to the exponential stability of

(t) = (g‘}l (1)) (1) + (Clo/l Cf/l> wt—h), (9)

where x = (go, gb)T. We choose ¢; = —10, ¢ = —12,
and analyze the stability of system (9) in the space of
parameters [ and h. It seems that the stability region
obtained by condition (8) with N = 20 coincides with
the exact one, see Fig. 3. In Table 1, we set | = 3, and

Fig. 3. Example 10, stability region obtained with N = 20

find the values hy such that minimum (8) is positive for
h € [0, hy] with different values of N. We conclude that
the sequence of values hy converge to the exact critical
delay value with increase of V.

Table 1. Example 10, stability boundaries with
respect to delay for [ = 3

N 1 5 10 15 20 24
hy | 0.079 | 0.175 | 0.289 | 0.390 | 0.420 | 0.423

7. APPLICATIONS

In this section, we present a number of applications of
Theorem 2. Note that we use functional (5), and there is no
need in the functionals of complete type in our approach.

7.1 Robustness Bounds

Together with system (4), consider a perturbed system

m
9(t) = (Aj+ Aj)y(t — hy),
j=0
here A; are the constant perturbation matrices.

Theorem 11. (Medvedeva & Zhabko, 2015a) Let system
(4) be exponentially stable. If

i >\min W
S Ay < 2minUV)
=0

(10)

—_— 11
Sl (11)

where M = |[U(0)||, « =1+ >_ ||A;||h;, then system (10)
=1

remains exponentially stable.
Remark 12. Note that M = m{zgi] WU ()| = [[U)]], see
T7€|0,

Egorov & Mondie (2015).

An idea of the proof of Theorem 11 is as follows. First, as in
the classical approach, we differentiate original functional
(5) along the solutions of system (10):

dv(zi(tyt) _ _yT(t)Wy(t) + 1(ye),

(12)

where
m

() =2 [; Ayt - h»]Tw(yt), and

m .0
wlo) =UOO+ [ V0= h) Ayt +0)db
k=1" ~hk

see Kharitonov & Zhabko (2003). Then, we obtain the
following estimate:

/ (¥ ()Wy(s) = Uys))ds > P/ ly(s)|*ds — @, (13)
0 0

where ¥ is a bounded expression which depends on the
initial function and does not depend on t. It is proven
that p > 0, which is equivalent to (11), is a sufficient
condition for the exponential stability of system (10). In
other words, we replace the classical condition, namely,
the negativeness of the derivative of functional along the
solutions of perturbed system, with the negativeness of the
“principal” part of the integral of this derivative.

7.2 Analysis of Systems With Uncertain Delays

Here we consider a perturbed system of the form

g(t) = > Ayt —h;—n;), t>0, (14)
=0

where 7); are the constant delay perturbations.
Theorem 13. (Alexzandrova € Zhabko, 2018) Let system
(4) be exponentially stable. If n; > —h;, j =0, m, and
= Armn(I/V)
A < —=,
;}h]]‘” il 2YaMK

where K = )" ||4,], @ and M are defined in Theorem 11,
7=0
then system (14) remains exponentially stable.

This result is also based on formulae (12) and (13), with
the difference in the functional

o) =23 (wlt — hy —ng) —ylt — b)) ATel)
§=0

and some technical details. It is worthy of mention that
Theorems 11 and 13 both can be extended to the case of
time-varying perturbations.

An important point is that an iterative application of The-
orem 13 with respect to one parameter leads to the critical
value of this parameter. For example, set h; = ~;h, where
h > 0 is a basic delay, and consider the perturbations



of the form n; = ~;8, j = 0,m, denote & = a(h) and
M = M(b). Let system (4) be exponentially stable for
b = ho. Introduce the quantities

m -1
Br = Amin(W) [QQ(hk—l)M(bk—l)KZ’Yj”Aj} €k

=0

k
be=bo+ > B, k=12 ..
j=1
with e, > 0 for every k, e -——+ 0. Then, as shown in
—+00

Alexandrova & Zhabko (2018)
lim by = b,

k—+o00

where b is the critical value of basic delay, i.e. the value
under which the exponential stability is lost by the system.

7.8 Ezponential Estimates

This section is devoted to estimation of the decay rate
o and the y-factor from formula (2) (to = 0) for an
exponentially stable system (4). To estimate the decay
rate, we make the change of variable y(t) = e“*x(t), where
o > 0, then

y(t) = (Apg+ol)y

) + Zec’hﬂAJy(t — hj).
j=1

System (15) can be perceived as a perturbed system of the

form (10), and, as a direct consequence of Theorem 11, we

obtain that system (15) is exponentially stable, if
)\min w
Ry=o+ z Amin(W)

2aM
The o such that ( 16) holds thus constitutes a lower bound
for the decay rate of system (4).

Theorem 14. (Medvedeva & Zhabko, 2015a) Let system (4)
be exponentially stable. Then, for every solution of (4),

Vo —o
Jalt. O <[22 el ¢330,

Here o is such that inequality (16) holds,

(a —|—az

on = )\mm(

(15)

=114, < (16)

DA+ Ry S 14, 112),
Jj=1

)5/4, Where 0 > 0 is a solution of equation

aK el =1/26.

Note that, as for the case of perturbations in delays, we
are able to construct the sequence of estimations {oy}
converging with £ — 400 to the exact value of decay
rate & applying (16) iteratively (see Medvedeva & Zhabko,
2015a, for the details), here & is the spectral abscissa of
the system. However, increase of ¢ will lead to increase of
Vs, i.e. to increase of the y-factor.
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