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1 Introduction

This paper reconsiders the stability conditions of the delay Cournot oligopoly models studied by
Howroyd and Russel (1984) ("HR" henceforth). Constructing n-firm Cournot oligopoly models
in a continuous-time framework, HR provides a sufficient condition for stability under circum-
stances in which each firm experiences delays in implementing information on its own output
(i.e., implementation delay) and in collecting information on its competitors’ outputs (i.e., in-
formation delay). Further, HR shows that the information delays do not affect stability when
each firm has instantaneous knowledge on its own output. Based on these results, we move one
step forward and investigate a sufficient and necessary condition for stability. To simplify the
complicated problem, we draw attention only to a Cournot duopoly in this study.

Oligopoly theory has a long history since the pioneering work of Cournot (1838). Its stability
properties are first investigated by Theocharis (1960). It is shown that only the number of the
firms involved in a market determines stability of a linear Cournot oligopoly in a discrete-time
framework: the steady state is stable in the duopoly, marginal stable in the triopoly and unstable
if the number is more than three. McManus and Quandt (1961) and Hahn (1962) prove asymp-
totically stability in the continuous-time adjustment process with demand and cost functions
having the appropriate slopes. Okuguchi (1976) summarizes the early results on static and dy-
namic oligopolies. Okuguchi and Szidarovszky (1999) discuss their multiproduct generalization.
During the last two decades, an increasing attention has been given mainly to discrete-time non-
linear dynamics. Bischi et al. (2010) give a comprehensive summary of the newer developments.
However, in most of these models the availability of instantaneous information was assumed to
the firms about the actions of the competitors. Data collection about the compatitors needs
time, and then finding optimal decisions and implementing them are additional reasons why the
firms use delayed information on the actions of the competitors and also on their own decision
variables. If discrete time scales are selected, then the delays are assumed to be positive integers,
so the delay models can be rewritten as higher dimensional models without delays. In the contin-
uous case delay differential equations are used. As the same as an ordinary differential equation,
the stability of a delay differential equation depends on the location of the roots of the associated
characteristic equation. In consequence, the roots are functions of delays and thus the stability
may change as the length of delay changes. Such phenomena are referred to as stability switchis.
For differential equations with one delay, Cooke and Grossman (1982) improve the key techniques
to utilize. However, concerning multi-delay dynamics, it has not been discussed until quite re-
cently. This is because the inclusion of multiple delays in equations makes the detail descriptions
of the dynamic process too complicated and in addition, no mathematical methods are available
for dealing with such delay dynamic models, although importance of multiple delays inherent in
the process of obtaining information has been realized. Only recently, Gu et al. (2005) develop a
methodology to construct the stability switching curves in the two-delay models. Based on this
work, Lin and Wang (2012) suggest an algorithm for the three delay case. These curves show
where the system can lose or gain stability. See Matsumoto and Szidarovszky (2015) and Gori
et al. (2015) that adopt the methods for analyzing delay dynamics of Cournot duopoly. Also see
Matsumoto et al. (2018), Gori et al (2017, 2018) and some papers in Matsumoto et al. (2016)
for further applications of the methods to another economic models.

In this paper, we present different Cournot duopoly models with multiple delays as special
cases of a general n-firm oligopoly. The first model includes both of the implementation and
information delays, the second model possesses only the information delays and the third model
is endowed with only the implementation delays. Applying the Lin-Wang method, we analytically
and numerically investigate stability of these models and find that the delay models may explain
various dynamics ranging from simple to complex behavior under Cournot competition.
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This paper is organized as follows. Section 2 is divided into three subsections. In the first,
we build a delay duopoly model based on HR’s n-firm Cournot model and specify the parameter
values and illustrate the stability switching curve under identical parameter condition. In the
second, we focus on the special case where the firms have only information delays and confirm
the corresponding HR result. In the third, we turn attention to a case where the firms have
only implementation delays, the case which HR does not consider, to detect the properties of the
information delay. In Section 3, we numerically examine how the stability properties change when
certain nonlinearities are introduced into the adjustment process and the identical conditions are
taken away. In the final section, concluding remarks and further research directions are given.

2 Delay Models

Constructing a Cournot profit maximizing model in which n firms have linear price and quadratic
cost functions, HR derives a linear best reply function of firm i as

x∗i = αi − βi

n�

j �=i

xj for i, j = 1, 2, ...n (1)

where αi and βi are positive constants and xj is output of firm j. More precisely, in an n-firm
linear Cournot oligopoly the price function is assumed to be

p

�
n�

i=1

xi

�

= A−B
n�

i=1

xi

where A is the maximum (or reservation) price, −B is the marginal price and Cixi is the cost
of firm i with zero fixed cost (which would have no effects on the optimal behavior of the firm).
The profit of this firm is

πi(xi, x−i) = xi



A−Bxi −B
n�

j �=i

xj − Ci



 .

where −i denotes the set of the competitors of firm i. With given outputs of the competitors
the first order conditions of optimality imply that

∂πi
∂xi

= A− 2Bxi −B
n�

j �=i

xj − Ci = 0

so the profit maximizing output of firm i is given as

x∗i =
A− Ci

2B
− 1

2

n�

j �=i

xj

which is called the best reply of firm i and is identical to equation (1) with

αi =
A− Ci

2B
and βi =

1

2
.

If quadratic cost functions are assummed, then similarly to the previsous case, the best reply
function still has the form (1) with slightly different parameters αi and βi.
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In conventional Cournot oligopoly, it is usually assumed that the firms have full information
on their own outputs but only imperfect information on their competitors’ outputs. In reality,
the firms also use delayed information on their own outputs since finding optimal decisions and
their implementations need time. Therefore the best reply of each firm depends on past output
of the firm and on past outputs of its competitors. Concerning the continuous-time adjustment
of output, it is assumed that firm i adjusts its output at time t at a rate proportional to the
difference between its best reply output and its actual output at some preceding times,

dxi(t)

dt
= ki [x∗i (t− τ ib)− xi(t− τ ia)] for i = 1, 2, ..., n (2)

where (τ ib, τ ia) ≥ 0 denotes delays and ki > 0 is the adjustment coefficient. If the best reply of a
firm is higher than the observed output, then the firm wants to increase its output level at time
t, if the best reply is smaller, then the firm wants to decrease its output level, and if they are
equal, then the firm believes that it is on its optimal output level, so does not want to change
its output level. If there are no delays τ ib = τ ia = 0 for all i, then (2) can be reduced to the
traditional output adjustment system.

After determining Cournot-Nash equilibrium output xei as the solution of equations

xei + βi

n�

j �=i

xej = αi for i, j = 1, 2, ..., n

HR provides a sufficient condition for stability of the equilibrium point,

τ i ≤
1

2ki
for i = 1, 2, ...n (3)

under the parametric assumption
(n− 1)βi < 1.

It is very difficult to derive sufficient and necessary conditions for stability of the equilibrium
point of equation (2) because of the variable number of firms and the 2n different delay parame-
ters. Therefore in this study we focus on the two-firm case in which −i contains only one firm
which is denoted by j (j �= i). In the special case of a linear duopoly with product differentiation
(i.e., Bi �= B̄i), the unit prices are as follows:

pi(xi, xj) = A− 2Bixi − B̄ixj for i, j = 1, 2 and j �= i

so the profit of firm i becomes

πi(xi, xj) = xi
�
A−Bixi − B̄ixj − Ci

	

and the first order conditions imply that

A− 2Bixi − B̄ixj − Ci = 0.

Therefore the best reply of firm i is as follows:

x∗i =
A− Ci

2Bi
− B̄i

2Bi
xj

which is the duopoly version of equation (1) with

αi =
A− Ci

2Bi
and βi =

B̄i
2Bi

.
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We will derive sufficient and necessary conditions for stability of the various versions of the delay
HR model in the duopoly framework (i.e., n = 2) in which the Cournot-Nash equilibrium outputs
are explicitly obtained,

xe1 =
α1 − α2β1
1− β1β2

and xe2 =
α2 − α1β2
1− β1β2

.

To avoid negative output, we impose the following conditions on the parameters.

Assumption 1. β1β2 < 1 and β2 ≤
α2
α1
≤ 1

β1
.

To obtain the adjustment process of output, we substitute the delayed best replies x∗i (t−τ ib) =
αi − βixj(t − τ ib) for i = 1, 2 into the delay differential equations (2) and consider its duopoly
version in a more general way:

dx1
dt

= k1 [α1 − x1(t− τ1a)− β1x2(t− τ1b)] ,

dx2
dt

= k2 [α2 − β2x1(t− τ2b)− x2(t− τ2a)] ,

(4)

where τ1a and τ2a are the delays in own outputs of the firms and τ1b and τ2b are the delays in
the outputs of the competitors. In real economies such delays have to be taken into account.
Delays in the own outputs of the firms are present since data collection and implementation
need time. In the case of delays in the outputs of the competitors the delayed price information
is an additional factor. From the price the firms are able to assess industry output and the
competitor’s output is obtained by the difference of the industry output and the firm’s own
output. The delays τ1a and τ2a on the firms own outputs are called the implementation delays
and delays τ1b and τ2b on the best responses are called the information delays. It is, however,
analytically intractable to analyze the asymptotic behavior of system (4) in general because of
the presence of four distinct delays. Instead, three special cases will be examined and show how
different delays affect the asymptotical behavior of the equilibrium.1

2.1 Model I (Duopoly version of the Howroyd-Russel model)

To have a duopoly version of the HR model, we assume that τ1a = τ1b = τ1 ≥ 0 and τ2a =
τ2b = τ2 ≥ 0 leading to a model with only two delays. The stability properties of the equilibrium
depend on the eigenvalues of the associated homogenous system,

dx1
dt

= k1 [−x1(t− τ1)− β1x2(t− τ1)] ,

dx2
dt

= k2 [−β2x1(t− τ2)− x2(t− τ2)] .

(5)

With an exponential solution for the form

xi = eλtξi,

the characteristic equation of (5) is derived as

det




λ + k1e

−λτ1 k1β1e
−λτ1

k2β2e
−λτ2 λ + k2e

−λτ2



 = 0

1HR considers the case where the delay in the own output of firm k is the same as the delays in its competitors,
τkj = τk for j = 1, 2, ..., n. We adopt the same assumption in the following.
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or
P0(λ) + P1(λ)e−λτ1 + P2(λ)e−λτ2 + P1(λ)e−λ(τ1+τ2) = 0 (6)

where
P0(λ) = λ2, P1(λ) = k1λ, P2(λ) = k2λ, P1(λ) = k1k2(1− β1β2).

The dynamic system (5) describes the case where the firm believes that the delay of the competi-
tor is the same as its own. Notice that even if the firms can correctly predict the delays of their
competitors, the dynamic results to be obtained are the same. This is because the corresponding
dynamic system is constructed by interchanging the delays in the off-diagonal outputs of system
(5) and thus the characteristic equation of the new system is identical with equation (6) implying
that the resultant (local) dynamics is the same. Also notice that this similarity holds only in the
duopoly framework.

If the characteristic equation (6) has roots only with the negative real parts, then the zero
solution of delay system (5) is locally asymptotically stable. Thus our problem is to determine
parametric conditions under which all roots of the characteristic equation lie in the left half of
the complex plane. As a benchmark, suppose that τ1 = τ2 = 0. Then (6) becomes

λ2 + (k1 + k2)λ + k1k2(1− β1β2) = 0

where the two roots of this equation are real and negative if β1β2 < 1. Hence Assumption 1
guarantees stability of the stationary point of the duopoly model with no-delay. We now suppose
that τ1 ≥ 0 and τ2 ≥ 0 but not τ1 = τ2 = 0. It is assumed that (τ1, τ2) varies continuously in
R2+ = {(τ1, τ2) | τ1 ≥ 0 and τ2 ≥ 0)}. Since λ = 0 is not a root of (6), the number of eigenvalues
having a positive real part can change only if an eigenvalue appears on or crosses the imaginary
axis. Therefore in order to study stability, we need to find all pure complex roots of equation
(6). We thus look for a pair of delays for which (6) has purely imaginary roots. Since roots of
real function always come in conjugate pairs, it can be assumed, without loss of generality, that
λ = iω with ω > 0. Substituting it into (6) presents the form

P0(iω) + P1(iω)e−iωτ1 + P2(iω)e−iωτ2 + P1(iω)e−iω(τ1+τ2) = 0 (7)

with
P0(iω) = −ω2, P1(iω) = ik1ω, P2(iω) = ik2ω, P1(iω) = k1k2(1− β1β2). (8)

Applying the method developed by Lin and Wang (2012), we derive the set of (τ1, τ2) for
which the delay dynamic system (5) loses stability. Equation (7) can be rewritten as

�
P0 + P1e

−iωτ1
	

+
�
P2 + P1e

−iωτ1
	
e−iωτ2 = 0 (9)

where the arguments of P0, P1, P2 and P1 are omitted for the sake of simplicity. Since


e−iωτ2



 =
1, equation (9) has solution for τ1 if and only if



P0 + P1e
−iωτ1



 =


P2 + P1e

−iωτ1




or equivalently,

�
P0 + P1e

−iωτ1
	 �

P̄0 + P̄1e
iωτ1

	
=
�
P2 + P1e

−iωτ1
	 �

P̄2 + P̄1e
iωτ1

	
,

where over-bar indicates complex conjugate. After some algebra, the last equation has the form

|P0|2 + |P1|2 − |P2|2 − |P1|2 = 2A1 (ω) cosωτ1 − 2B1(ω) sinωτ1 (10)
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with
A1 (ω) = Re

�
P2P̄1 − P0P̄1

	
and B1(ω) = Im

�
P2P̄1 − P0P̄1

	
.

The left hand side of equation (10) depends only on ω and the right hand side is a simple
trigonometric equation for τ1 with any fixed value of ω. Denoting the left hand side by f(ω), we
first check the existence of solutions for equation (10).

Using (8), we can confirm that

P2P̄1 − P0P̄1 = ik1ω
�
k22 (1− β1β2)− ω2

�

implying that
A1 (ω) = 0 and B1(ω) = k1ω

�
k22 (1− β1β2)− ω2

�
.

We examine the case of B1(ω) = 0 and then the case of B1(ω) �= 0 in the following.

Case I. A1 (ω) = B1(ω) = 0
Let ω0 be the positive solution of B1(ω) = 0,

ω0 = k2



1− β1β2 > 0.

Substituting Pj(iω) for j = 0, 1, 2, 3 defined in (8) into f(ω) gives

f(ω) = ω4 +
�
k21 − k22

	
ω2 − (k1k2)

2 (1− β1β2)
2 .

Then solving f(ω) = 0 for ω2 yields a positive solution

ω2+ =
−
�
k21 − k22

	
+

�
(k21 − k22)

2
+ 4 (k1k2)

2
(1− β1β2)

2

2
> 0

that is reduced to ω20 if k1 = k2 and not equal to it if k1 �= k2. We then have two possibilities.
First, if k1 �= k2, then f(ω) �= 0 for ω = ω0. Thus there is no solution for τ1 since equation
(10) is contradicted. On the other hand, if k1 = k2, then f(ω) = 0 for ω = ω0. Thus τ1 > 0 is
arbitrary, and the corresponding values of τ2 can be obtained from equation (9) as

e−iωτ2 = −P0(iω) + P1(iω)e−iωτ1

P2(iω) + P1(iω)e−iωτ1
(11)

where the absolute value of the right hand side is unity for all values of τ1. Therefore there are
infinitely many solutions of τ2 because of periodicity of trigonometric functions. A locus of τ1
and τ2 satisfying (11) is called a crossing curvi on which roots of (7) cross the imaginary axis
when τ2 changes and τ1 is fixed (or alternatively τ1 changes and τ2 is fixed). Since the zero
solution of (5) is locally asymptotically stable with no delays and its stability depends on the
lengths of the positive delays, there may be the curve on which the stability of the zero solution
changes. We call such a curve a stability switching curvi. The result obtained is summarized as
follows:

Theorem 1 If thi adjustmint coifficiints of thi two firms ari idintical (i.i., k1 = k2), thin thi
crossing curvi in Casi I is discribid by (τ1, τ

ℓ
2(τ1)) whiri

τ ℓ2(τ1) =
1

ω0

�
arg

�
−P2(iω0) + P1(iω0)e

−iω0τ1

P0(iω0) + P1(iω0)e−iω0τ1

�
+ 2ℓπ

�
for ℓ = 0, ±1, ±2, ... (12)
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Case II. [A1 (ω)]
2

+ [B1(ω)]
2
> 0

We have already known that A1 (ω) = 0 for any ω ≥ 0 and B1(ω) �= 0 for ω �= ω0. There
exists ϕ1(ω) such that

ϕ1(ω) = arg
�
P2P̄1 − P0P̄1

�
=






π

2
if B1(ω) > 0 or ω < ω0,

3π

2
if B1(ω) < 0 or ω > ω0,

implying that

sin [ϕ1(ω)] =
B1(ω)

�
[B1(ω)]2

and cos [ϕ1(ω)] =
A1(ω)

�
[B1(ω)]2

= 0.

Using these relations, Equation (10) is reduced to

|P0|2 + |P1|2 − |P2|2 − |P1|2 = 2

�
[B1(ω)]

2
cos (ϕ1(ω) + ωτ1) (13)

that can be rewritten as

|P0|2 + |P1|2 − |P2|2 − |P1|2

2

�
[B1(ω)]

2
= cos [ϕ1(ω) + ωτ1] .

A sufficient and necessary conditions for the existence of τ1 ≥ 0 satisfying the above equation is




|P0|2 + |P1|2 − |P2|2 − |P1|2



 ≤ 2

�
[B1(ω)]

2

or

F (ω) =
�
|P0|2 + |P1|2 − |P2|2 − |P1|2

�2
− 4 [B1(ω)]

2 ≤ 0.

With the notation of x = ω2, the right hand side of F (ω) is reduced to the following form

g(x) = x4 + a1x
1 + a2x

2 + a1x + a0

where the coefficients are defined as

a1 = −2(k21 + k22),

a2 = (k21 − k22)
2 + 2 (k1k2)

2 (3 + β1β2) (1− β1β2) ,

a1 = −2(k21 + k22) [k1k2 (1− β1β2)]
2
,

a0 = [k1k2 (1− β1β2)]
4
.

Solving g(x) = 0 yields four real solutions,

x1 =
1

2

�
k21 + k22 − 2k1k2β1β2 − (k1 − k2)

√
d1
�
,

x2 =
1

2

�
k21 + k22 − 2k1k2β1β2 + (k1 − k2)

√
d1
�
,

x1 =
1

2

�
k21 + k22 + 2k1k2β1β2 − (k1 + k2)

√
d2
�
,

x4 =
1

2

�
k21 + k22 + 2k1k2β1β2 + (k1 + k2)

√
d2
�
,
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where both discriminants are positive,

d1 = (k1 + k2)
2 − 4k1k2β1β2 > 0

and
d2 = (k1 − k2)

2 + 4k1k2β1β2 > 0.

Positive solutions of xi = ω2 are denoted by ωi where

ω1 < ω4 and ω1 � ω2 according to k1 � k2.

The interval [ω1, ωi] ∪ [ωj , ω4] is denoted by Ω in which F (ω) ≤ 0 and ωi = ω1 and ωj = ω2 if
k1 > k2 and ωi is interchanged with ωj if the inequality is reversed.

Let us define ψ1(ω) by

|P0|2 + |P1|2 − |P2|2 − |P1|2 = 2


B1(ω)2 cos [ψ1(ω)] . (14)

So

ψ1(ω) = cos−1

�
|P0|2 + |P1|2 − |P2|2 − |P1|2

2


B1(ω)2

�

.

Comparing the right hand side of (13) with that of (14) yields

τ±1,n(ω) =
1

ω
[±ψ1(ω)− ϕ1(ω) + 2nπ] . (15)

Returning to (7), we can see that it can be alternatively put as
�
P0 + P2e

−iωτ2
	

+
�
P1 + P1e

−iωτ2
	
e−iωτ1 = 0.

In the similar way as shown for τ1, we can find the critical values of τ2 as

τ±2,m(ω) =
1

ω
[±ψ2(ω)− ϕ2(ω) + 2mπ] (16)

where

A2(ω) = Re
�
P1P̄1 − P0P̄2

�
= 0,

B2(ω) = Im
�
P1P̄1 − P0P̄2

�
= k2ω

�
k21(1− β1β2)− ω2

�
,

ψ2(ω) = cos−1

�
|P0|2 − |P1|2 + |P2|2 − |P1|2

2


B2(ω)2

�

and

ϕ2(ω) = arg
�
P1P̄1 − P0P̄2

�
=






π

2
if B2(ω) > 0,

3π

2
if B2(ω) < 0.

To define ψ2(ω), we need a condition similar to F (ω) ≤ 0, that is,

G(ω) =
�
|P0|2 − |P1|2 + |P2|2 − |P1|2

�2
− 4 [B2 (ω)]

2 ≤ 0.

Since it can be shown that F (ω) = G(ω), solutions of F (ω) = 0 solve G(ω) = 0. The results
obtained so far are summarized as follows:
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Theorem 2 From (15) and (16), thi following pair of dilays

�
(τ±1,m(ω), τ∓2,n(ω)) | ω ∈ Ω

�

is thi sit of all crossing curvis on thi (τ1, τ2) plani for iquations (5).

We will now turn to the special case of identical adjustment coefficients by considering
the above-mentioned two cases further by performing numerical simulations to visualize the
theoretical results obtained in Theorems 1 and 2. For this purpose, we make the following
assumption of identical adjustment coefficients under which we examine Case I and then Case
II.

Assumption 2. k1 = k2 = k

In Case I, an explicit form of τ ℓ2 with ℓ = 0 described by (12) is derived as follows. Applying
Euler’s formula to the left hand side of (11) and substituting Pi defined in (8) into the right hand
side lead to

cosωτ2 − i sinωτ2 =

�
ω2 − kω sinωτ1

	
− ikω cosωτ1

k2(1− β1β2) cosωτ1 + i (kω − k2(1− β1β2) sinωτ1)
. (17)

Multiplying by conjugate of denominator, the new denominator becomes

D1 = k2
�
k2(1− β1β2)

2 − 2kω(1− β1β2) sinωτ1 + ω2
�
.

The new numerator is denoted as N1 + iM1 with

N1 = −(kω)2β1β2 cosωτ1

and
M1 = −kω

�
k2(1− β1β2) + ω2

�
+ (kω)

2
(2− β1β2) sinωτ1.

Comparing the left hand side of (17) with N1/D1 + iM1/D1 yields

cosωτ2 =
N1

D1
and sinωτ2 = −M1

D1
(18)

where the graphs of N1/D1 and −M1/D1 as functions of τ1 are illustrated in Figure 1 for τ1 ∈
[0, 2π] under the following benchmark parameter values k = 1, α1 = α2 = 9 and β1 = β2 = 1/2.
These values are repeatedly used in the following numerical calculations. Each of the red N1/D1

curve and the blue −M1/D1 curve intersects the horizontal axis twice at the following points,

τB1 ≃ 1.81, τD1 ≃ 5.44 and τA1 ≃ 1.65, τC1 ≃ 1.98.

We will refer to the dotted red curve later.
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Figure 1. Graphs of N1/D1 (red) and −M1/D1 (blue)

It is observed that cosωτ2 < 0 and sinωτ2 > 0 for τ1 ∈ (0, τA1 ). Hence solving cosωτ2 =
N1/D1 and sinωτ2 = −M1/D1 for τ2 yields

τ c2(τ1) =
1

ω
cos−1

�
N1

D1

 
and τs2(τ1) =

1

ω

�
π − sin−1

�
−M1

D1

 �
(19)

where the superscripts c and s stand for cos and sin, respectively. In the same way, cosωτ2 < 0
and sinωτ2 < 0 for τ1 ∈ (τA1 , τ

B
1 ) that present

τ c2(τ1) =
1

ω

�
2π − cos−1

�
N1

D1

 �
and τs2(τ1) =

1

ω

�
π − sin−1

�
−M1

D1

 �
. (20)

For τ1 ∈ (τB1 , τ
C
1 ), cosωτ2 > 0 and sinωτ2 < 0 gives

τ c2(τ1) =
1

ω

�
2π − cos−1

�
N1

D1

 �
and τ s2(τ1) =

1

ω

�
2π + sin−1

�
−M1

D1

 �
. (21)

Finally for τ1 ∈ (τC1 , τ
D
1 ) ∪ [τD1 , 2π], cosωτ2 > 0 and sinωτ2 > 0 generate

τ c2(τ1) =
1

ω
cos−1

�
N1

D1

 
and τ s2(τ1) =

1

ω
sin−1

�
−M1

D1

 
. (22)

Since τs2(τ1) = τ c2(τ1) holds for any τ1 ∈ [0, 2π], the solution can be denoted by τ2(τ1).
The locus of (τ1, τ2(τ1)) for τ1 ∈ [0, 2π] constructs the stability switching curve in Case I

that is illustrated by two black curves in Figure 2. More precisely, the upper convex-shaped
curve consists of three segments, each of which is described by (19), (20) and (21) whereas the
lower concave-shaped curve is described only by (22).2 It is numerically confirmed that the upper
curve passes through point

�
2π/3

√
3, 4π/3

√
3
	
at which the blue curve ends and the orange curve

starts and that the lower curve passes through point
�
4π/3

√
3, 2π/3

√
3
	
at which the green curve

starts and the red curve ends.
In Case II with Assumption 2, solving F (ω) = 0 yields simplified solutions,

ω1 = ω2 = k



1− β1β2, ω1 = k(1−


β1β2) and ω4 = k(1 +



β1β2),

implying that
Ω = [ω1, ω1] ∪ [ω2, ω4].

2However, only some parts of the curves are illustrated for graphical simplicity.
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Since ω0 = ωi for i = 1, 2,

Bi(ω) > 0 for ω ∈ [ω1, ω1) implying ϕi(ω) = π/2,

Bi(ω) < 0 for ω ∈ (ω2, ω4] implying ϕi(ω) = 3π/2.

In Figure 2, the blue and red curves are described by the pairs of

�
τ+1,0(ω), τ−2,1(ω)

	
and

�
τ−1,1(ω), τ+1,0(ω)

	
for ω ∈ [ω1, ω1]

starting at point (π, π) for ω = ω1. On the other hand, the green and orange curves are described
by the pairs of

�
τ+1,1(ω), τ−2,1(ω)

	
and

�
τ−1,1(ω), τ+2,1(ω)

	
for ω ∈ [ω2, ω4]

ending at point (π/3, π/3) for ω = ω4. Hence the stationary point is stable in the lower-left
region surrounded by the two black, orange and green curves. The hatched square is the region
satisfying the HR conditions, (3). Notice that the square is inside the stable region we have just
obtained. This is because HR derives one sufficient condition whereas we derive the sufficient
and necessary condition. We will refer to the vertical dotted lines at τ1 = π/3 and τ1 = 4π/3

√
3

and points a, b, c later when we will perform numerical simulations.

Theorem 3 Thi iquilibrium point of dynamic systim (5) is locally asymptotically stabli for
(τ1, τ2) in thi rigion boundid by thi stability switching curvi that consists of thi black, orangi
and griin curvis in thi non-nigativi quadrant of (τ1, τ2).

Figure 2. Division of the (τ1, τ2) plane

2.2 Delay Duopoly Model II

In the previous section the combined effect of the identical information and implementation delays
was examined without discovering which delay is more responsible for the complex dynamics
being observed. One simple way is to consider models where only one type of delays is present
and examine the long-term behavior of the simplified models. HR also examines the case where

12



each firm has delayed information on its competitor’s outputs but instantaneous knowledge of
its own output. In a perfect world, the best reply of firm i depends on the current level of output
of the competitor j, xj(t) whereas, in the real world, this information may not be available and
firm i takes the delayed output xj(t − τ i) as a proxy for xj(t).

3 Thus, the homogenous system
of the corresponding delay differential equations with n = 2 is

dx1
dt

= k1 [−x1(t)− β1x2(t− τ1)] ,

dx2
dt

= k2 [−β2x1(t− τ2)− x2(t)] ,

(23)

where only the non-diagonal variables are delayed. This is a special case of equation (4) with
τ1a = τ2a = 0, τ1b = τ1 and τ2b = τ2. The characteristic equation is

det




λ + k1 k1β1e

−λτ1

k2β2e
−λτ2 λ + k2



 = 0

or
λ2 + k1k2 + (k1 + k2)λ− k1k2β1β2e

−λτ = 0 (24)

where τ = τ1 + τ2 > 0. Since τ1 can be different from τ2, firms have heterogenous abilities
to gather information about competitor’s output. However this heterogeneity does not affect
local stability. As seen in equation (24), only the value of the sum of these delays can affect
local stability of the equilibrium. Dynamic system (23) with two different delays, τ1 and τ2, is
essentially the same as a dynamic system with a single delay τ . Suppose λ = iω with ω > 0
is a root of (24) for some τ and substitute it into (24) that can be separated to the real and
imaginary parts,

−ω2 + k1k2 − k1k2β1β2 cosωτ = 0,

(k1 + k2)ω + k1k2β1β2 sinωτ = 0.

Moving the non-trigonometric terms to the right hand side and adding the squares of the two
equations yield a biquadratic equation of ω

ω4 +
�
k21 + k22

	
ω2 + (k1k2)

2 �
1− (β1β2)

2
�

= 0

where the last term is positive due to Assumption 2. Positive coefficients of this equation imply
that no real solutions exist, therefore there are no pure imaginary roots for equation (24).

In other words, there are no roots of (24) that cross the imaginary axis when τ increases.
Therefore no stability switch can occur, no matter how the delays are chosen. Such delays are
called harmliss. This is the same as the result shown by HR in a different way and can be
summarized as follow.

Theorem 4 Thi iquilibrium point of dynamic systim of (23) is locally asymptotically stabli
rigardliss of thi valuis of τ1 and τ2.

3This justification for Model II is suggested by a referee.
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2.3 Delay Duopoly Model III

Model I indicates that the coexistence of the implementation and information delays can destabi-
lize the equilibrium. On the other hand, Model II suggests that the information delay alone does
not affect stability of the equilibrium. As natural consequence, it is worth while looking more
carefully into the role of the implementation delays. For this purpose we consider the case where
only implementation delay is present. We note that it is hard to justify its economic application
however it might explain long-term dynamics if both types of delays are present. Therefore, we
consider the case in which each firm has delayed knowledge of its own output but instantaneous
knowledge of its competitors’ outputs. In this way, we can shed light on the actual role of the
implementation delay where the homogeneous dynamic system is constructed in the following
way,

dx1
dt

= k1 [−x1(t− τ1)− β1x2(t)] ,

dx2
dt

= k2 [−β2x1(t)− x2(t− τ2)]

(25)

where the diagonal variables are delayed. This case also has mathematical interest to see how
different delay structure changes the dynamic properties of the equilibrium. With the same
procedure above, we obtain the characteristic equation,

det




λ + k1e

−λτ1 k1β1

k2β2 λ + k2e
−λτ2



 = 0

that is equivalent to the equation

P0(λ) + P1(λ)e−λτ1 + P2(λ)e−λτ2 + P1(λ)e−λ(τ1+τ2) = 0 (26)

where
P0(λ) = λ2 − k1k2β1β2, P1(λ) = k1λ, P2(λ) = k2λ, P1(λ) = k1k2.

Although each firm has a delay only in its own output, the characteristic equation (26) has the
similar form to (7) in which each firm has not only the implementation delay on its own output
but also the information delay on its competitor’s output. Supposing λ = iω with ω > 0 and
then following the same procedure as in Section 2, we have

|P0(iω)|2 + |P1(iω)|2 − |P2(iω)|2 − |P1(iω)|2 = 2A1 (ω) cosωτ1 − 2B1(ω) sinωτ1

with

A1 (ω) = Re
�
P2(iω)P̄1(iω)− P0(iω)P̄1(iω)

�
= 0,

B1(ω) = Im
�
P2(iω)P̄1(iω)− P0(iω)P̄1(iω)

�
= k1ω

�
k22 − k1k2β1β2 − ω2

	
.

As before, we first consider the case of A1(ω) = B1(ω) = 0. It can be confirmed that A1(ω) = 0
always and B1(ω) = 0 holds for ω = ω0 where

ω20 = k22 − k1k2β1β2.

On the other hand, |P0(iω)|2 + |P1(iω)|2 − |P2(iω)|2 − |P1(iω)|2 = 0 for ω = ω+ where

ω2+ =

�
k22 − 2k1k2β1β2 − k21

	
+

�
(k22 − 2k1k2β1β2 − k21)

2
+ 4 (k1k2)

2 [1− (β1β2)
2]

2
.
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If k1 = k2 = k, then ω0 and ω+ are the same

ω0 = ω+ = k



1− β1β2

and this equality does not hold if k1 �= k2. Hence, under the identical coefficient assumption, the
stability switching curve is obtained as

e−iω0τ2 = −P0(iω0) + P1(iω0)e
−iω0τ1

P2(iω0) + P1(iω0)e−iω0τ1
. (27)

As in the same analysis of Section 2.1, equation (27) can be rewritten as

cosω0τ2 − i sinω0τ2 =

�
ω20 + k2β1β2 − kω0 sinω0τ1

	
− ikω0 cosω0τ1

k2 cosω0τ1 + i (kω0 − k2 sinω0τ1)
. (28)

Multiplying conjugate of denominator to the denominator and numerator of the right hand side
of (28) leads to the new denominator

D1 = k2
�
k2 − 2kω0 sinω0τ1 + ω20

	
(29)

and the new numerator
N1 + iM1

where
N1 = k4β1β2 cosω0τ1

and
M1 = −kω0

�
k2 + ω20 + k2β1β2

	
+ k2

�
2ω20 + k2β1β2

	
sinω0τ1.

Hence from the left hand side of (28) we have

cosω0τ2 =
N1

D1
and sinω0τ2 = −M1

D1
(30)

where
N1

D1
=

k2β1β2 cosω0τ1
k2 − 2kω0 sinω0τ1 + ω20

= −N1

D1

and
M1

D1
=
−2kω0 + (k2 + ω20) sinω0τ1
k2 − 2kω0 sinω0τ1 + ω20

= −M1

D1
.

Comparing (30) with (18) reveals that in Figure 1, the M1/D1 curve is identical with theM1/D1

blue curve whereas theN1/D1 curve corresponds to the dotted red curve, that is, a horizontal-line
mirror image of the N1/D1 red curve.

We now turn attention to the case of [B1(ω)]
2
> 0. As is shown above, we should have

F (ω) =
�
|P0|2 + |P1|2 − |P2|2 − |P1|2

�2
− 4 [B1(ω)]

2 ≤ 0

where F (ω) can be factored as

F (ω) = Fa(ω) · Fb(ω) · Fc(ω) · Fd(ω)
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with
Fa(ω) = ω2 + (k1 + k2)ω + k1k2 (1 + β1β2) ,

Fb(ω) = ω2 − (k1 + k2)ω + k1k2 (1 + β1β2) ,

Fc(ω) = ω2 + (k1 − k2)ω − k1k2 (1− β1β2) ,

Fd(ω) = ω2 − (k1 − k2)ω − k1k2 (1− β1β2) .

Solving each Fi(ω) = 0 for i = a, b, c, d yields two solutions and totally eight solutions are
obtained,

ωa± =
k1 + k2 ±



(k1 + k2)2 − 4k1k2 (1 + β1β2)

2
= k

�
1± i



β1β2

	
,

ωb± =
−(k1 + k2)±



(k1 + k2)2 − 4k1k2 (1 + β1β2)

2
= k

�
−1± i



β1β2

	
,

ωc± =
k1 − k2 ±



(k1 − k2)2 + 4k1k2 (1− β1β2)

2
= ±k



1− β1β2,

ωd± =
−(k1 − k2)±



(k2 − k1)2 + 4k1k2 (1− β1β2)

2
= ±k



1− β1β2.

Notice that the right most forms are obtained under the identical coefficient assumption. We see
F (ω) > 0 for ω �= ω0, implying no occurrence of the stability switch in the case of [B1(ω)]2 > 0.

Returning to Figure 1 and (30), the stability switching curve with B1(ω) = 0 illustrated in
Figure 3(A) is constructed as follows. Since cosωτ1 > 0 and sinωτ1 > 0 for τ1 ∈ (0, τA1 ), we
have

τA2 (τ1) =
1

ω0
cos−1

�
N1

D1

 
(31)

that describes the concave-shaped negative slope red curve in the lower-left corner. Since the
stationary state is stable below the curve and unstable above, this is the stability switching curve
on which the real part of an eigenvalue is zero, that is, stability is just lost. At τ1 = τA1 , the
corresponding value of τ1 jumps up to the y-value of point A. Notice that HR’s stability condition
is satisfied in the small solid rectangular and is strictly below the curve. Since cosωτ2 > 0 and
sinωτ2 < 0 for τ1 ∈ (τA1 , τ

B
1 ) and cosωτ1 < 0 and sinωτ1 < 0 for τ1 ∈ (τB1 , τ

C
1 ),

τB2 (τ1) = τC2 (τ1) =
1

ω0

�
2π − cos−1

�
N1

D1

 �

where τB2 (τ1) for τ1 ∈ (τA1 , τ
B
1 ) describes the blue segment between A and B whereas τC2 (τ1) for

τ1 ∈ (τB1 , τ
C
1 ) describes the magenta segment between B and C. Further cosωτ1 < 0 and

sinωτ1 > 0 for τ1 ∈ (τC1 , τ
D
1 ) and cosωτ1 > 0 and sinωτ1 > 0 for τ1 ∈ (τD1 , 2π) presents the

form of

τD2 (τ1) = τE2 (τ1) =
1

ω0
cos−1

�
N1

D1

 

where τD2 (τ1) for τ1 ∈ (τC1 , τ
D
1 ) describes the orange segment between C and D whereas

τE2 (τ1) for τ1 ∈ (τD1 , 2π) describes the green segment between D and E. Finally,

τA
′

2 (τ1) =
1

ω0

�
cos−1

�
N1

D1

 
+ 2π

�

describes the red segment that shifts the τA2 (τ1) curve upward with 2π and the right most red
curve is described by τA2 (τ1) for τ1 ∈ (2π, 9.80). It is to be noticed that the y-value of point E is
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τE2 = τA2 (2π). On the winding downward-sloping curve located above-rightward of the stability
switching curve, one of the eigenvalues is purely imaginary but the equilibrium is already unstable
there and no stability switch occurs.

Theorem 5 Thi stability switching curvi of dynamic systim (25) is discribid by

τA2 (τ1) =
1

ω0
cos−1

�
N1

D1

 
for τ1 ∈ (0, τA1 ).

To compare the stability switching curve of Model I with that of Model III, we enlarge the
lower-left corner of Figure 3(A) and put the red stability switching curve (31) on the black
stability switching curve of Model I in Figure 3(B). Due to the different shapes of these two
curves, the region of (τ1, τ2) is divided into five subregions. Both models are stable in region
labelled by [S] and unstable in region [U ], indicating that roughly speaking, the delays make the
equilibrium unstable when their lengths are relatively large and do not affect stability when they
are smaller. Furthermore, with careful observations, we can see the following different roles of the
information delays depending on the relative magnitude of the implementation delays although
the information delays alone are harmless according to Theorem 4:

(i) Destabilizing role: In region [A], Model I with information delays is unstable and Model
III with no information delays is stable, implying that the information delays destabilize
Model I when τ1 and τ2 are symmitric in the sense that they have similar values.

(ii) Stabilizing role: On the other hand, in regions [B1] and [B2], Model I is stable and Model
III is unstable, implying that the information delays stabilize Model I when τ1 and τ2 are
asymmitric in the sense that one of them takes a larger value and the other smaller value.

We summarize these results as follows:

Proposition 1 Whin thi dynamical systim (5) has both of thi implimintation and information
dilays, thi information dilays bicomi distabilizirs whin both dilays taki similar valuis and
stabilizirs whin thiy havi diffirint valuis.

(A) Model III (B) Models I and III
Figure 3. Stability switching curves
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3 Numerical Simulations

So far we have imposed the identical coefficient assumption of k1 = k2 on the output adjustment
process and confine attention to a small neighborhood of the equilibrium point. In this section
we modify the dynamic equations and numerically confirm the theoretical results obtained. To
this end, we first introduce some nonlinearities into Models I and III to examine global behavior.
Second, we take away the assumption of identical speeds of adjustment (i.e., Assumption 2) and
then consider how the non-identical coefficients affect the shape of the stability switching curves
and the resultant dynamics.

3.1 Global Dynamics

Since the corresponding nonhomogeneous systems of (5) and (25) are still linear, trajectories
generated by these systems are divergent when the systems are locally unstable. To avoid such
uninteresting and unrealistic dynamics, we introduce some nonlinearities and see the effects
caused by the delays on global dynamics. The nonlinearity that we consider comes from an idea
of a flexible adjustment, that is, the output adjustment responds positively to the gap between
the optimal and actual outputs and the degree of responsiveness depends on the level of output
in the following way,

Ki(xi) = ki

�
a2

�
a1 + a2

a1e−(xi−x
∗

i
) + a2

− 1

 
+ 1

�
.

It can be checked that

Ki(x
∗
i ) = ki, lim

xi→∞
Ki(xi) = ki (1 + a1) and Ki(0) = ki

�
a2 (a1 + a2)

a1ex
∗

i + a2
+ 1− a2

�
> 0

where a1 = 1 and a2 = 1 are assumed in the following numerical simulations.
Model I is now nonlinearized as

dx1
dt

= K1 [x1(t)] [−x1(t− τ1)− β1x2(t− τ1) + α1] ,

dx2
dt

= K2 [x2(t)] [−β2x1(t− τ2)− x2(t− τ2) + α2] ,

(32)

both of which can be reduced to (5) by linear approximation in the neighborhood of the equilib-
rium point.4 We perform two simulations. In the first simulation, we choose τ2 as a bifurcation

4To do output adjustment in system (32), the firms do not need the current output values and the derivatives
ẋ1(t) and ẋ2(t). The following method can be used. Rewrite the equations as

ẋk(t)

xk(t)
= Kk [−xk(t− τ k)− βkxj(t− τ k) + αk] for i = 1, 2 and j �= i

and integrating both sides in interval [0, t]

ln[xk(t)] = ln[xk(0)] +Kk

� t

0

[−xk(s− τ k)− βkxj(s− τ k) + αk] ds

showing that to obtain xk(t) only delayed output values are needed. In the more general case of equations

ẋk(t) = f [xk(t)] [−xk(t− τ k)− βkxj(t− τ k) + αk] for i = 1, 2 and j �= i

numerical methods such as the Euler method or any higher oder Runge-Kutta type method can be used, which
gives the output values, xk(0), xk(h), xk(2h), ...with a step size h and at each step only earlier output values
are used (see for example, Szidarovszky and Yakowitz, 1978). Here τ1 and τ2 have to be integer multiples of h,
otherwise the values of xk(t − τ k) and xj(t − τj) are obtained by interpolation. Bischi et al. (2010) introduced
this general output adjusting form with sign-preserving speeds of adjustments.
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parameter and increase the value of τ2 from 0 to 5 with an increment of 0.01 along the verti-
cal dotted line at τ1 = π/3 ≃ 1.05 in Figure 2. For each value of τ2, the fully delayed system
(32) is simulated for 0 ≤ t ≤ 1000. We generate 1000 data of x2(t) from the solutions for
t ∈ [900, 1000] by changing t with an increment of 0.1 and then plot the local maximum and
minimum out of the data vertically just above the point τ2, to illustrate the corresponding bifur-
cation diagram with respect to τ2 in Figure 4(A). The vertical line at τ1 = π/3 passes through
the point at which the orange and green curve are connected (i.e., τa2 = π/3), crosses the orange
curve at τ b2 ≃ 2.02 and then crosses the black curve at τ c2 ≃ 2.28. Figure 4(A) indicates that
the equilibrium point is stable for τ2 < τa2 and loses stability at the first intersection at point
a = (π/3, τa2). The equilibrium point bifurcates to a limit cycle for τ2 ∈ (τa2, τ

b
2) and then regains

stability when it arrives at the second intersection (π/3, τ b2).
5 For further increases of τ2 the sys-

tem loses stability again at (π/3, τ c2) and the corresponding bifurcation gets a bit complicated.
In particular, a limit cycle with two extremum (one maximal and one minimal) emerges first and
then it turns to be a cycle with four extremum that then becomes the one with six extremum
and so on. The system does not regain stability for values of τ2 larger than τ c2.

In the second simulation, we change the value of τ1 to 4π/3
√

3 ≃ 2.42 and repeat the
same procedure to obtain the bifurcation diagram illustrated in Figure 4(B). The starting point
(4π/3

√
3, 0) is located in the region to the right of the lower black curve in Figure 2, the equilib-

rium point is locally unstable and Figure 4(B) indicates the birth of a limit cycle at this point.
As the value of τ2 increases along the vertical dotted line at τ1 = 4π/3

√
3, the correspond-

ing limit cycle gradually shrinks and discontinuously jumps to a different limit cycle at point
(4π/3

√
3, τa2) where τa2 = 2π/3

√
3 ≃ 1.21. Further increasing τ2 leads to complicated dynam-

ics through a period-doubling cascade. Notice that τ i has exactly the same effect as τ j as the
stability switching curve is symmetric with respect to the diagonal. These numerical results are
summarized as follow: In the dynamic process of nonlinearized Model I, (1) the delay has the
dual roles of destabilizer and stabilizer according to its length when the stationary state is locally
stable at the starting point and (2) increasing a value of delay can generate complex dynamics
involving chaotic behavior when the stationary state is locally unstable at the starting point.

(A) τ1 = π/3 (B) τ1 = 4π/3
√

3
Figure 4. Bifurcation diagrams of the nonlinear Model I

5 It is possible to determine directions of the stability switch analytically. See Lin and Wang (2012) for
theoretical foundation and Matsumoto and Szidarovszky (2015) for its application.
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We now turn attention to the nonlinearized Model III,

dx1
dt

= K1 [x1(t)] [−x1(t− τ1)− β1x2(t) + α1] ,

dx2
dt

= K2 [x2(t)] [−β2x1(t)− x2(t− τ2) + α2] .

Two simulations are performed for the new Model III.6 The first simulation is presented in Figure
5(A) in which the value of τ2 increases from 0 to 3 along the vertical dotted line at τ1 = 1 in
Figure 3(A). The system is asymptotically stable for the starting point of τ1 = 1 and τ2 = 0
and remains stable until point (1, τA2 ) where point a is on the stability switching curve in Figure
3(A). As is seen, at a critical value τA2 , the stationary state loses stability and bifurcates to a
limit cycle. Notice that the stability regain does not occur and thus the delay does not have the
dual roles. As seen in Figure 4(A), making τ2 larger than the critical value of τA2 increases the
number of extremum of the limit cycle. In the second simulation, we change the fixed value of
τ1 to 2 and repeat the same procedure. However, to avoid graphical congestion of Figure 3(A),
the line at τ1 = 2 is not illustrated. The resultant dynamics illustrated in Figure 5(B) in which
the system is unstable and its dynamic behavior gets complicated as τ2 increases, that is, we
alternatively have windows for complex dynamics and the one for a periodic limit cycle.

Proposition 2 In thi dynamic prociss of nonliniarizid Modil III, (1) stability is lost at τ2 = τA2
and nivir rigainid sinci thi dilay crossis thi stability switching curvis only onci whin thi
stationary stati is stabli at thi starting point; (2) as τ2 incriasis, dynamics altirnatis bitwiin
complicatid bihavior and piriodic cyclic bihavior with incriasing thi piriodic numbir.

(A) τ1 = 1 (B) Bifurcation diagram
Figure 5. Bifurcation diagrams of the nonlinear Model III

3.2 Non-Identical Coefficients

We now use the non-identical adjustment coefficients to see how such asymmetry affects the
results obtained. We have already shown that the stability switching curves in Case I (that is,
the black curves in Figure 2) can be constructed only under the symmetry Assumption 2. It is

6Matsumoto and Szidarovszky (2015) also consider dynamics of a delay nonlinear model of Cournot duopoly
having the similar structure. However the growth rate of outputs is determined by a product of the marginal
profit and an adjustment function depending on the level of output. As a natural consequence of the different
adjustment process, it has different dynamic behavior.
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expected that the stability switching curves obtained in Case II may be distorted. In order to
illustrate the effect of different speeds of adjustment, we present numerical simulations concerning
the shape of the stability switching curves and the dynamics of the nonlinearized Model I. The
values of the coefficients are k1 = 3/2 and k2 = 1 in the first simulation and are changed to
k1 = 1/2 and k2 = 1 in the second.

In the first simulation, solving F (ω) = 0 determines the interval Ω = [ω1, ω1]∪ [ω2, ω4] where

ω1 ≃ 0.589, ω1 ≃ 0.840, ω2 ≃ 1.340, ω4 ≃ 1.911.

Notice that ω1 �= ω2 when k1 �= k2. In Figure 6(A) stability switching curves are illus-
trated as solid curves in the same color as in Figure 2, that is, the blue curve is described
by
�
τ+1,0(ω), τ−2,1(ω)

	
for ω ∈ [ω1, ω1] and the red curve exists outside the designated region

whereas the green and orange curves are given by
�
τ+1,1(ω), τ−2,1(ω)

	
and

�
τ−1,1(ω), τ+2,1(ω)

	
for

ω ∈ [ω2, ω4] and they end at the same point (τ∗1(ω4), τ
∗
2(ω4)).

7 The nonlinear system (32) is
asymptotically stable in the lower-left region surrounded by these curves. It is seen that the
shaded rectangular, HR’s stability region, is still inside it. The stability switching curves with
k1 = k2 = 1 are also illustrated as the dotted curves in the same color. Comparing the new sta-
bility region with the old one reveals that the asymmetric coefficients shift the solid orange curve
leftward and the solid green curve downward, resulting in a shrink of the stability region. On
the other hand, a part of the solid blue curve is located above the dotted black curve, indicating
an enlargement of the stability region. As far as the current example is concerned, the increase
seems to be larger than the decrease. Thus the stability region becomes smaller. It is not sure
if this result is specific or general. The bifurcation diagram with respect to τ2 in Figure 6(B)
is constructed along the vertical dotted line at τ1 = τ∗1(ω4). The vertical line intersects these
stability switching curves three times at the following values of τ2,

τa2 ≃ 0.822, τ b2 ≃ 1.325 and τ c2 ≃ 2.36

which are at the connecting point of the green and orange curves, on the orange curve and on the
blue curve, respectively. Stability is lost at τ2 = τa2 and regained at τ2 = τ b2 while a limit cycle
is born for τ2 ∈ (τa2, τ

b
2). Stability is lost again at τ2 = τ c2 and not regained for any τ2 > τ c2. The

diagram indicates that a limit cycle becomes more distorted as the value of τ2 is getting larger.

(A) Stability switching (B) Bifurcation diagram
Figure 6. k1 = 1.5 and k2 = 1

In the second simulation, the different value of k1 presents different solutions for F (ω) = 0,

ω1 ≃ 0.317, ω1 ≃ 0.411, ω2 ≃ 0.911, ω4 ≃ 1.183.

7Needless to say, τ∗
1
(ω4) = τ

+

1,1(ω4) = τ
−
1,1(ω4) and τ

∗
2
(ω4) = τ

−
2,1(ω4) = τ

+

2,1(ω4).
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In Figure 7(A) the red curve is described by
�
τ−1,1(ω), τ+1,0(ω)

	
for ω ∈ [ω1, ω1] and the region

surrounded by the orange, green and red curves is the stability region that includes the shaded
rectangular region. As in Figure 6(A), the stability switching curves with k1 = k2 = 1 are
illustrated as the dotted curves in the same color. It is seen that decreasing the value of k1
shifts the solid green curve upward and makes the slope of the solid orange curve flatter. As
a result, the stability region is increased in one part and decreased in the other part. In the
current example, the stability region becomes larger. The bifurcation diagram with respect to τ1
in Figure 7(B) illustrates the change of dynamical behavior of the nonlinearized Model I as the
length of the delay τ1 is varied along the horizontal dotted line at τ2 = τ∗2(ω4). It is observed that
the bifurcation diagram in Figure 7(B) is similar to the diagrams in 6(B). In particular, stability
is lost at τ1 = τa1 and regained at τ1 = τ b1 whereas a limit cycle emerges for τ1 ∈ (τa1, τ

b
1). It is

lost again at τ1 = τ c1. and never regained for any τ1 > τ c1. A limit cycle emerges for τ1 > τ c1 and
becomes larger with increasing the number of the extrema as τ1 gets larger than τ c1.

We summarize the effect caused by different coefficients: Non-identical coefficients of k1 and
k2 change the shape of the stability switching curve and it depends on the relative magnitude of
the coefficients whether the stability region becomes larger or smaller.

(A) Stability switching curve (B) Bifurcation diagram
Figure 7. k1 = 0.5 and k2 = 1

4 Concluding Remarks

In this paper we have analyzed the dynamics of three different types of the Cournot duopoly
model with multiple discrete delays, Model I with the implementation and information delays,
Model II with only the information delays and Model III only with the implementation delays.
For stability analysis, we adopted the linear models that were used by HR and constructed
the stability switching curve on which stability was lost or gained. For global dynamics, we
nonlinearized the models and performed numerical simulations. In doing so, we demonstrated
three main results:

(i) In Model I, the delays has the dual roles of destabilizer and stabilizer and complicated
dynamics involving chaotic behavior can emerge for larger values of the delays.

(ii) In Model II, the information delays alone do not affect stability.

(iii) In Model III, the implementation delays can destabilize the otherwise stable stationary
state, however, they do not have the dual roles.
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