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1. INTRODUCTION

The construction of quadratic Lyapunov-Krasovskii func-
tionals with a prescribed time derivative has been initiated
by Repin [1965]. A brief historic overview of the main con-
tributions in the area can be found in Kharitonov [2013],
see Section 2.13. At the very beginning it became clear that
the functionals may be used not only to check stability of
a time-delay system, but constitute a powerful tool for
analysis and design of time-delay systems Marshall et al.
[1992], Jarlebring et al. [2011], Kharitonov and Zhabko
[2003], Ochoa et al. [2013]. In applications the positive
effect of the functionals depends on the existence of re-
liable numerical procedures for the computation of delay
Lyapunov matrices. There exists a standard procedure for
the computation of the matrices for systems with delays
multiple to a basic one. In this case the computation is
reduced to evaluation of a solution of two-point boundary
value problem for an auxiliary system of ordinary matrix
differential equations Kharitonov [2013]. The computa-
tional scheme has been extended to the case of distributed
delay systems with special kernels, see Kharitonov [2006].

In this paper a new approximation scheme for the compu-
tation of delay Lyapunov matrices for the exponentially
stable systems with distributed delay is presented. An
upper estimate of the approximation error is given.

The paper is organized as follows. In Section 2 a time-
delay systems studied in the paper is described. Then an
approximate system with delays multiple to a basic one is
introduced. Section 3 is dedicated to the evaluation of the
difference of the fundamental matrices for the original and
the approximate systems. In Section 4 an upper estimate
of the approximation error of the delay Lyapunov matrix
is given. An illustrative example ends the section.

2. SYSTEM DESCRIPTION

Given a time-delay system of the form

dx(t)

dt
= A0x(t) +A1x(t− h) +

0∫
−h

G(θ)x(t+ θ)dθ, (1)

where A0 and A1 are real n × n matrices, G(θ) is a
continuous matrix valued function, h is a positive delay.
The system state xt is defined as follows

xt(θ) = x(t+ θ), θ ∈ [−h, 0].

Let N be a natural number, we approximate the dis-
tributed delay term in (1) by a finite sum of the form

N−1∑
j=0

Qjx(t− jδ),

where δ = h
N and

Qj =

−jδ∫
−(j+1)δ

G(θ)dθ, j = 0, 1, ..., N − 1;

and define a new time-delay system as follows

dz(t)

dt
= A0z(t) +A1z(t− h) +

N−1∑
j=0

Qjz(t− jδ). (2)

All delays of the new system are multiple to δ.

Remark 1. If system (1) is exponentially stable then for
sufficiently large N system (2) is also exponentially stable,
see Kharitonov [2014].

In the following we assume that systems (1) and (2) are
exponentially stable.

Denote by K0(t) and K1(t) fundamental matrices of the
systems, see Bellman and Cooke [1963]. By definition
matrix K0(t) = 0n×n for t < 0, K0(0) = I, and for t ≥ 0
the matrix satisfies the equation

dK0(t)

dt
=A0K0(t) +A1K0(t− h)

+

0∫
−h

G(θ)K0(t+ θ)dθ.

Similarly, matrix K1(t) = 0n×n for t < 0, K1(0) = I, and



dK1(t)

dt
=A0K1(t) +A1K1(t− h)

+

N−1∑
j=0

QjK1(t− jδ), t ≥ 0.

Exponential stability of the systems implies that that there
exist γ ≥ 1 and σ > 0 such that the fundamental matrices
satisfy the inequalities

‖Kj(t)‖ ≤ γe−σt, j = 0, 1. (3)

3. LYAPUNOV MATRICES

Since systems (1) and (2) are exponentially stable the
corresponding delay Lyapunov matrices of the systems can
be presented in the form

U0(τ) =

∞∫
0

KT
0 (t)WK0(t+ τ)dt,

and

U1(τ) =

∞∫
0

KT
1 (t)WK1(t+ τ)dt,

respectively.

Remark 2. Kharitonov [2013] It is known that system
(1) admits a unique Lyapunov matrix associated with a
given symmetric matrix W if and only if the the system
satisfies the Lyapunov condition, i.e., the system has no
an eigenvalue s0 such that −s0 is also an eigenvalue of the
system. The same is valid for system (2).

Define the difference

∆U(τ) =U1(τ)− U0(τ) (4)

=

∞∫
0

KT
1 (t)W∆K(t+ τ)dt

+

∞∫
0

[∆K(t)]
T
WK0(t+ τ)dt,

where ∆K(t) = K1(t)−K0(t).

4. ESTIMATION OF THE NORM ‖∆K‖

The difference

∆K(t) = K1(t)−K0(t)

satisfies the equation

d∆K(t)

dt
= A0∆K(t) +A1∆K(t− h)

+

0∫
−h

G(θ)∆K(t+ θ)dθ + F (t), t ≥ 0,

where

F (t) =

N−1∑
j=0

−jδ∫
−(j+1)δ

G(θ) [K1(t− jδ)−K1(t+ θ)] dθ.

The standard variation-of-constants formula provides the
following expression for the difference

∆K(t) =K0(t)∆K(0) +

0∫
−h

K0(t− h− θ)A1∆K(θ)dθ

+

0∫
−h

 θ∫
−h

K0(t− θ − ξ)G(ξ)dξ

∆K(θ)dθ

+

t∫
0

K0(t− ξ)F (ξ)dξ, t ≥ 0.

As ∆K(t) = 0n×n for t ∈ [−h, 0], the formula taks the
form

∆K(t) =

t∫
0

K0(t− ξ)F (ξ)dξ

and after direct computations we conclude that

∆K(t) =

N−1∑
j=0

Rj(t), t ≥ 0,

where

Rj(t) =

t−jδ∫
−jδ

K0(t− λ− jδ)

×
0∫
−δ

G(µ− jδ) [K1(λ)−K1(λ+ µ)] dµdλ.

Lemma 1. The following upper estimate holds for matrix
Rj(t),

‖Rj(t)‖ ≤
1

N2
h2γ2M(2 + at)e−σ(t−h), t ≥ 0,

where

M = max
θ∈[−h,0]

‖G(θ)‖ ,

and

a = ‖A0‖+ eσh (‖A1‖+ hM) .

Proof. First, we observe that for t < jδ matrices K1(λ) =
K1(λ+ µ) = 0n×n, and

Rj(t) = 0n×n, t ∈ [0, jδ). (5)

For t ≥ jδ the matrix can be written as

Rj(t) =

t−jδ∫
0

K0(t− λ− jδ)

×
0∫
−δ

G(µ− jδ) [K1(λ)−K1(λ+ µ)] dµdλ.

Applying inequalities (3) we obtain that for t ∈ [jδ, (j +
1)δ]

‖Rj(t)‖ ≤
2

N2
h2γ2Me−σ(t−h). (6)

In the case when t ≥ (j + 1)δ the term Rj(t) may be
written in the form



Rj(t) =

δ∫
0

K0(t− λ− jδ)

×
0∫
−δ

G(µ− jδ) [K1(λ)−K1(λ+ µ)] dµdλ

+

t−jδ∫
δ

K0(t− λ− jδ)

×
0∫
−δ

G(µ− jδ) [K1(λ)−K1(λ+ µ)] dµdλ

The first summand on the right hand side of the preceding
expression,

Rj1(t) =

δ∫
0

K0(t− λ− jδ)

×
0∫
−δ

G(µ− jδ) [K1(λ)−K1(λ+ µ)] dµdλ,

is such that

‖Rj1(t)‖ ≤ 2

N2
h2γ2Me−σ(t−h).

In the second summand,

Rj2(t) =

t−jδ∫
δ

K0(t− λ− jδ)

×
0∫
−δ

G(µ− jδ) [K1(λ)−K1(λ+ µ)] dµdλ,

the value λ ≥ δ and µ ∈ [−δ, 0], therefore the difference
K1(λ)−K1(λ+ µ) can be presented as follows

K1(λ)−K1(λ+ µ) =

λ∫
λ+µ

dK1(ξ)

dξ
dξ

=

λ∫
λ+µ

[
A0K1(ξ) +A1K1(ξ − h) +

N−1∑
i=0

QiK1(ξ − iδ)

]
dξ.

This implies that

‖K1(λ)−K1(λ+ µ)‖ ≤ γ [‖A0‖

+eσh (‖A1‖+ hM)
] λ∫
λ+µ

e−σξdξ

≤ γaδe−σ(λ−δ).

Now we estimate the second summand,

‖Rj2(t)‖ ≤ δγ2ae−σ(t−(j+1)δ)

×
t−jδ∫
δ

0∫
−δ

‖G(µ− jδ)‖ dµdλ

≤ 1

N2
h2γ2ae−σ(t−h)Mt, t ≥ (j + 1) δ.

And, finally,

‖Rj(t)‖ ≤ 2δ2γ2Me−σ(t−h) + δ2γ2aMte−σ(t−h) (7)

=
1

N2
h2γ2M(2 + at)e−σ(t−h), t ≥ (j + 1) δ.

Inequalities (5)-(7) justify the lemma statement.

Corollary 1. The difference ∆K(t) is such that the follow-
ing inequality holds

‖∆K(t)‖ ≤ 1

N
h2γ2M(2 + at)e−σ(t−h).

Proof. It follows from

∆K(t) =

N−1∑
j=0

Rj(t)

that

‖∆K(t)‖ ≤
N−1∑
j=0

‖Rj(t)‖

≤ 1

N
h2γ2M(2 + at)e−σ(t−h).

4.1 Estimation of ‖∆U(τ)‖

We now address the difference (4).

Theorem 1. The difference ∆U(τ) = U1(τ)−U0(τ) admits
an upper estimate of the form

‖∆U(τ)‖ ≤ α

N
e−σ(τ−h)

(
4 + a |τ |

2σ
+

a

2σ2

)
,

where

α = h2γ3M ‖W‖ .

Proof. It is enough to study the case when τ ≥ 0. It
follows from (4) that

‖∆U(τ)‖ ≤ ‖W‖
∞∫
0

‖K1(t)‖ ‖∆K(t+ τ)‖ dt

+ ‖W‖
∞∫
0

‖∆K(t)‖ ‖K0(t+ τ)‖ dt.

Applying Corollary 1 and inequalities (3) we arrive at the
desired result



‖∆U(τ)‖ ≤ 1

N
h2γ3M ‖W‖ e−σ(τ−h)

×
∞∫
0

(2 + at+ aτ)e−2σtdt

+
1

N
h2γ3M ‖W‖ e−σ(τ−h)

∞∫
0

(2 + at)e−2σtdt

=
1

N
h2γ3M ‖W‖ e−σ(τ−h)

(
4 + aτ

2σ
+

a

2σ2

)
.

Corollary 2. For τ ∈ [−h, h] the difference (4) is such that
the following inequality holds

‖U1(τ)− U0(τ)‖ ≤ α1

N
,

where

α1 = αeσh
(

4 + ah

2σ
+

a

2σ2

)
.

Example 1. Consider the following system:

ẋ(t) = A0x(t) +A1x(t− 1) (8)

−0.2

∫ 0

−1

[
θe−θB0 + e−θB1 +B2

]
x(t+ θ)dθ,

where

A0 =

(
−3 1
0 −4

)
, A1 =

(
2 −1
4 0

)
,

B0 =

(
4 −1
5 1

)
, B1 =

(
−2 5
5 5

)
, B2 =

(
2 −2
−3 5

)
.

Define approximate systems of the form (2) with N =
5 and N = 10. The original distributed delay system
and the approximate ones are exponentially stable. The
fundamental matrices of the systems satisfies inequality (3)
with σ = 0.4 and γ = 31.4. Let W = I2, the corresponding
Lyapunov matrix U0(τ) for system (8) has been computed
with algorithm provided in Aliseyko [2017]. Computation
of Lyapunov matrices for approximate systems has been
performed with a standard scheme for systems with delays
multiple to a basic one. On Figure 1 the components of
matrces U0(τ) and U1(τ) for N = 5 are presented.

Fig. 1. U0(τ) and U1(τ), N = 5

On Figure 2 the components of matrces U0(τ) and U1(τ)
for N = 10 are given.

It follows from Figure 3, where the graph of the norm
‖∆U(τ)‖ forN = 5 is presented, that this norm is bounded
by 0.0193.

Fig. 2. U0(τ) and U1(τ), N = 10
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Fig. 3. ‖U0(τ)− U1(τ)‖, N = 5

The corresponding graph for N = 10 is given on Figure 4,
here the norm is bounded by 0.0093.
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Fig. 4. ‖U0(τ)− U1(τ)‖, N = 10

I extend my thanks to my MS student Alexey Aliseyko
who performed all computations of the example.

5. CONCLUSION

A numerical scheme for approximation of delay Lyapunov
matrices for time delay systems with distributed delay
is given. The original system with distributed delay is
approximated by a system, where the distributed delay
terms are replaced by finite integral sums, and then a



corresponding delay Lyapunov matrix for the new system
is considered as the desired approximation of the delay
Lyapunov matrix for the original system. It is shown that
the approximation error tends to zero as the number of
partition points in the finite integral sum is increasing.
Only the case of exponentially system has been analyzed
since our study is essentially based on the integral expres-
sion for delay Lyapunov matrices. In the future research
we hope to remove this limitation constraint.
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