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Abstract: In this paper, the problem of robust stabilization is considered for a class of uncertain
neutral time–delay dynamical systems with the unknown bounds of delayed state perturbations.
By introducing an adaptation law with σ–modification to update the unknown bounds, some
continuous adaptive robust state feedback control schemes with a rather simple structure are
proposed. The proposed adaptive robust control schemes can guarantee that the solutions of
uncertain neutral time–delay systems converge uniformly exponentially towards a ball, and can
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Finally, the simulations of a numerical example are provided to demonstrate the validity of the
theoretical results of the paper.
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1. INTRODUCTION

Strictly speaking, some degree of time delays should be
involved in almost all of practical engineering systems,
such as chemical processes, economic systems, communi-
cation networks, biological systems, rolling mill systems,
and so on. It is well known that the existence of the de-
lays should lower the performances of engineering control
systems, and even results in the instability of such control
systems. Thus, the robust stabilization problem of time–
delay dynamical systems with delayed state perturbations
has attracted much attention, and some approaches have
been developed to designing the robust control schemes
so that the stability can be guaranteed for time–delay
dynamical systems with delayed state perturbations (see,
e.g. some standard references: Wu and Mizukami (1996),
Oucheriah (2000), Niculescu (2001), Niu et al. (2005), Lin
et al. (2005), and the references therein).

On the other hand, there are also some time–delay dy-
namical systems which are described by neutral functional
differential equations. In general, such a class of time–delay
dynamical systems is called neutral time-delay systems
where the derivatives of the state with time–delay are
also included (see, e.g. Kolmanovskii and Nosov (1986),
Hale and Lunel (1993)). In the control literature on un-
certain delay–time dynamical systems, many adaptive ro-
bust control schemes have been proposed for the time–
delay systems described retarded functional differential
equations (see, e.g. Wu (2000a, 2009, 2012, 2013, 2017),

Hua et al. (2008), Zhang et al. (2015), and the references
therein). However, there are few results on adaptive robust
stabilization of uncertain neutral time–delay dynamical
systems since the derivatives of the delayed state appear
at the systems (see, e.g. Sun and Zhao (2004), Moezzi and
Aghdam (2013), and the references therein). In Sun and
Zhao (2004), for instance, a class of adaptive robust state
feedback control laws with switching type is proposed for
uncertain neutral time–delay dynamical systems, which
might result in the chattering of the state responses. In
a recent work (Moezzi and Aghdam (2013)), a continuous
adaptive robust control scheme is proposed to guarantee
some type of stability of uncertain neutral time–delay dy-
namical systems. However, the control schemes proposed
in Moezzi and Aghdam (2013) have a relative complicated
structure so that it is difficult to implement such a class
of control schemes in practical engineering systems.

In this paper, we also consider the problem of robust
stabilization for a class of uncertain neutral time–delay
dynamical systems with the unknown bounds of delayed
state perturbations. For such a class of uncertain neutral
time–delay dynamical systems, we want to develop a
class of continuous state feedback control schemes with a
rather simple structure. For this purpose, by introducing
an adaptation law with σ–modification to update the
unknown bounds, we propose some continuous simple
adaptive robust state feedback control schemes which can
guarantee that the solutions of uncertain neutral time–
delay systems converge uniformly exponentially towards a
ball, in the presence of delayed state perturbations.



The remainder of the paper consists of the following parts.
In Section 2, the problem to be tackled is described. In
Section 3, a class of continuous state feedback control
schemes with a rather simple structure is constructed.
In Section 4, a numerical example is given, and the
corresponding simulations are provided to demonstrate
the validity of the theoretical results. Finally, the paper
concludes in Section 5 with some remarks.

2. PROBLEM FORMULATION

We consider a class of uncertain neutral time–delay dy-
namical systems described by

ẋ(t) =Ax(t) +Dẋ(t−h0) +Bu(t)

+
ν∑

j=1

∆Gj(ς, t)x(t−hj) (1)

where t ∈ R+ is the “time”, x(t) ∈ Rn is the current value
of the state, u(t) ∈ Rm is the control vector, A, B, and D
are some constant matrices of appropriate dimensions, and
∆Gj(·), j = 1, 2, . . . , ν, are the system uncertainties, which
are assumed to be continuous in all their arguments. Here,
the uncertain parameter ς(t) is any bounded function in
the time. Moreover, for each j ∈ {0, 1, 2, . . . , ν}, the time
delay hj is assumed to be any nonnegative constant.

The initial condition for system (1) is given by

x(t) = ξ(t), t ∈ [t0−h̄, t0] (2)

where h̄ = max
{
hj , j = 0, 1, 2, . . . , ν

}
and ξ(t) is a given

continuous function on [t0 − h̄, t0].

Now, the problem is to synthesize a state feedback con-
troller u(t) such that some types of stability of uncertain
neutral delay system (1) can be guaranteed in the presence
of the uncertainties and delayed state perturbations.

Before proposing our state feedback control scheme, we
introduce for (1) the following standard assumptions.

Assumption 2.1. For the uncertain matrices, there exist
some continuous and bounded matrix functions Hj(·) of
appropriate dimensions such that

∆Gj(ς, t) = BHj(ς, t), j = 1, 2, . . . , ν

In this paper, we want to synthesize some types of stabi-
lizing state feedback controllers of uncertain neutral time–
delay systems with unknown upper bounds of uncertain-
ties. More concretely speaking, the unknown upper bounds
of the uncertainties are described in the following form.

ρj(t) :=max
ς
λmax

(
Hj(ς, t)H

⊤
j (ς, t)

)
, j = 1, 2, . . . , ν

where λmax(·) stands for the maximum eigenvalue of
the matrix (see, e.g. Wu (2000b)). Here, for each j ∈
{0, 1, 2, . . . , ν}, the function ρj(t) is assumed to be com-
pletely unknown. Moreover, the uncertain ρj(t) is also

assumed, without loss of generality, to be uniformly con-
tinuous and bounded for any t ∈ R+.

Assumption 2.2. There exist some symmetric positive
definite matrices P ∈ Rn×n, R ∈ Rn×n, S ∈ Rn×n, and
some positive constants η and κ such that the following
conditions can be satisfied.

PA+A⊤P + PADR−1D⊤A⊤P

+S + S⊤ − ηPBB⊤P < 0 (3a)

2D⊤SD − 1

2
e−κh0S +R ≤ 0 (3b)

In addition, we also introduce the following standard as-
sumptions in the control literature on robust stabiliza-
tion of uncertain neutral time–delay systems (see, e.g.
Kharitonov et al. (2005) and the references therein).

Assumption 2.3. It is assumed that the norm of the
constant matrix D is less than one; i.e. ∥D∥ < 1.

Moreover, we also introduce a stability definition.

Definition 2.1. (Exponential boundedness) Consider the
retarded functional differential equation

dx(t)

dt
= f(t, xt) (4)

with the initial condition

x(t) = χ(t), t ∈ [t0 − h, t0]

where xt := x(t+ θ), θ ∈ [−h, 0].

Then, the dynamical systems described by (4) are said
to be exponentially bounded, if there exist some positive
constants ε, α, and κ(δ) > 0 such that for any δ > 0 and
for any t > t0, ∥∥x(t)∥∥ ≤ κ(δ)eα(t−t0) + ε (5)

where sup
τ∈[t0−h, t0]

∥∥x(τ)∥∥ < δ .

Moreover, if for any t0 ∈ R+, inequality (5) holds, then
the dynamical systems described by (4) are also said to be
uniformly exponentially bounded.

3. SIMPLE CONTROL SCHEMES

Before giving the main result of this paper, we first
introduce some definitions on the unknown upper bounds
of the uncertainties and delayed state perturbations.

In this paper, since the upper bound ρj(t) has been
assumed to be continuous and bounded for any t ∈ R+,
it is obvious that there exist some positive constants ρ∗j ,
j = 1, 2, . . . , ν, which are defined by

ρ∗j :=max
{
ρj(t) : t ∈ R+

}
(6)

Here, it is also obvious that the constants ρ∗j , j =
1, 2, . . . , ν, are still unknown. Therefore, such unknown



upper bounds can not be directly employed to construct a
state feedback controller.

For our synthesis method, we also introduce a definition
on the unknown upper bounds in the form of

ψ∗ := ϱ−1

{
η + 2ν

ν∑
j=1

eκhjρ∗jλ
−1
min(S)

}
(7)

where ϱ, η, and κ are any given positive constants. It is
obvious from (7) that ψ∗ is still an unknown positive
constant.

Moreover, for simplicity, we also define

Πh0(x(t)) = x(t)−Dx(t−h0) (8)

Now, for the uncertain neutral time–delay systems de-
scribed by (1), we proposed the robust state feedback
control schemes in the form of

u(t) = p(x(t), ψ̂(t), t)

=− 1

2
ϱ ψ̂(t)B⊤P Πh0(x(t)) (9)

where ψ̂(t) is the estimate of the unknown ψ∗ which is
updated by the following adaptive law:

dψ̂(t)

dt
= −γσψ̂(t) + γϱ

∥∥B⊤P Πh0(x(t))
∥∥2 (10)

where γ and σ are any given positive constants.

By applying (9) to (1), we can obtain an uncertain closed–
loop neutral time–delay system of the form

ẋ(t) =Ax(t)− 1

2
ϱ ψ̂(t)BB⊤P Πh0(x(t))

+Dẋ(t−h0) +
ν∑

j=1

∆Gj(ς, t)x(t−hj) (11)

On the other hand, by defining ψ̃(t) := ψ̂(t) − ψ∗, from
(10) we can also have the error systems on adapation law,
described by the following equation.

dψ̃(t)

dt
= −γσψ̃(t) + γϱ

∥∥B⊤P Πh0(x(t))
∥∥2− γσψ∗ (12)

In the following, by (x, ψ̃)(t) we denote a solution of
the closed–loop neutral time–delay systems and the error
systems described by (11) and (12). Then, the following
theorem can be obtained which shows the solutions of
the closed–loop neutral time–delay systems and the error
systems are uniformly exponentially bounded.

Theorem 3.1. Consider the adaptive closed–loop neutral
time–delay dynamical systems described by (11) and (12).
Suppose that Assumptions 2.1 to 2.3 are satisfied. Then,
the solutions (x, ψ̃) (t; t0, x(t0), ψ̃(t0)) of the closed–loop
neutral time–delay neutral systems described by (11) and
the error systems described by (12) are uniformly expo-
nentially bounded in the presence of the uncertainties and
delayed state perturbations.

Proof : For the neutral time–delay dynamical systems
described by (11) and (12), we construct a Lyapunov–
Krasovskii functional candidate of the form:

V (x, ψ̃) =Π⊤
h0
(x(t))P Πh0(x(t)) +

1

2
γ−1ψ̃2(t)

+
1

2

t∫
t−h0

eκ(s−t) x⊤(s)Sx(s)ds

+
1

2

ν∑
j=1

ν−1

t∫
t−hj

eκ(s−t) x⊤(s)Sx(s)ds (13)

where P ∈ Rn×n and S ∈ Rn×n, are some positive definite
matrices, and κ is any given positive constant.

Let (x(t), ψ̃(t)) be the solution of (11) and (12) for t ≥ t0.
Then by taking the derivative of V (·) along the trajectories
of (11) and (12) we can obtain that for t ≥ t0,

dV (x, ψ̃)

dt
=Π⊤

h0
(x(t))

(
PA+A⊤P

)
Πh0(x(t))

+2Π⊤
h0
(x(t))PADx(t−h0)

−ϱ ψ̂(t)Π⊤
h0
(x(t))PBB⊤P Πh0

(x(t))

+2Π⊤
h0
(x(t))P

ν∑
j=1

∆Gj(ς, t)x(t−hj)

+
1

2
x⊤(t)Sx(t)− 1

2
e−κh0x⊤(t−h0)Sx(t−h0)

− 1

2
κ

t∫
t−h0

eκ(s−t)x⊤(s)Sx(s)ds

+
1

2

ν∑
j=1

ν−1x⊤(t)Sx(t)

− 1

2

ν∑
j=1

ν−1e−κhjx⊤(t−hj)Sx(t−hj)

− 1

2

ν∑
j=1

κν−1

t∫
t−hj

eκ(s−t) x⊤(s)Sx(s)ds

+γ−1ψ̃(t)
dψ̃(t)

dt
(14)

Notice the fact that for any positive definite matrixM > 0,

2X⊤Y ≤ X⊤MX + Y ⊤M−1Y, ∀X,Y ∈ Rl

Then, we can obtain two inequalities in the form of

2Π⊤
h0
(x(t))PADx(t−h0) ≤ x⊤(t−h0)Rx(t−h0)

+Π⊤
h0
(x(t))PADR−1D⊤A⊤P Πh0(x(t)) (15)

and

2Π⊤
h0
(x(t))P

ν∑
j=1

∆Gj(ς, t)x(t−hj)



≤
ν∑

j=1

2νeκhjΠ⊤
h0
(x(t))P∆Gj(ς, t)S

−1

×
(
∆Gj(ς, t)

)⊤
P Πh0(x(t))

+
1

2

ν∑
j=1

ν−1e−κhjx⊤(t−hj)Sx(t−hj) (16)

Therefore, substituting (15) and (16) into (14) yields that
for t ≥ t0,

dV (x, ψ̃)

dt
≤Π⊤

h0
(x(t))

(
PA+A⊤P

)
Πh0(x(t))

+Π⊤
h0
(x(t))PADR−1D⊤A⊤P Πh0(x(t))

−ϱ ψ̂(t)Π⊤
h0
(x(t))PBB⊤P Πh0(x(t))

+
ν∑

j=1

2νeκhjΠ⊤
h0
(x(t))P∆Gj(ς, t)S

−1

×
(
∆Gj(ς, t)

)⊤
P Πh0(x(t))

+
1

2
x⊤(t)Sx(t)− 1

2
e−κh0x⊤(t−h0)Sx(t−h0)

− 1

2
κ

t∫
t−h0

eκ(s−t) x⊤(s)Sx(s)ds

+
1

2

ν∑
j=1

ν−1x⊤(t)Sx(t) + x⊤(t−h0)Rx(t−h0)

− 1

2

ν∑
j=1

κν−1

t∫
t−hj

eκ(s−t)x⊤(s)Sx(s)ds

+γ−1ψ̃(t)
dψ̃(t)

dt

=Π⊤
h0
(x(t))

(
PA+A⊤P

+PADR−1D⊤A⊤P
)
Πh0(x(t))

+

ν∑
j=1

2νeκhjΠ⊤
h0
(x(t))P∆Gj(ς, t)S

−1

×
(
∆Gj(ς, t)

)⊤
P Πh0(x(t))

+x⊤(t−h0)Rx(t−h0)

+x⊤(t)Sx(t)− 1

2
e−κh0x⊤(t−h0)Sx(t−h0)

−ϱ ψ̂(t)Π⊤
h0
(x(t))PBB⊤P Πh0(x(t))

− 1

2
κ

t∫
t−h0

eκ(s−t) x⊤(s)Sx(s)ds

− 1

2

ν∑
j=1

κν−1

t∫
t−hj

eκ(s−t)x⊤(s)Sx(s)ds

+γ−1ψ̃(t)
dψ̃(t)

dt
(17)

It can be observed that

x⊤(t)Sx(t) = 2Π⊤
h0
(x(t))SDx(t−h0)

−2Π⊤
h0
(x(t))SDx(t−h0) + x⊤(t)Sx(t)

≤Π⊤
h0
(x(t))

(
S + S⊤

)
Πh0

(x(t))

+2x⊤(t−h0)D⊤SDx(t−h0) (18)

Thus, applying (18) into (17) yields that for t ≥ t0,

dV (x, ψ̃)

dt
≤Π⊤

h0
(x(t))

(
PA+A⊤P + S + S⊤

+PADR−1D⊤A⊤P
)
Πh0(x(t))

+x⊤(t−h0)
(
2D⊤SD − 1

2
e−κh0S +R

)
x(t−h0)

+
ν∑

j=1

2νeκhjΠ⊤
h0
(x(t))P∆Gj(ς, t)S

−1

×
(
∆Gj(ς, t)

)⊤
P Πh0(x(t))

−ϱ ψ̂(t)Π⊤
h0
(x(t))PBB⊤P Πh0

(x(t))

− 1

2
κ

t∫
t−h0

eκ(s−t) x⊤(s)Sx(s)ds+ γ−1ψ̃(t)
dψ̃(t)

dt

− 1

2

ν∑
j=1

κν−1

t∫
t−hj

eκ(s−t)x⊤(s)Sx(s)ds (19)

On the other hand, from Assumption 2.1, it can be
obtained that

Π⊤
h0
(x(t))P∆Gj(ς, t)S

−1
(
∆Gj(ς, t)

)⊤
P Πh0(x(t))

≤ ρ∗jλ
−1
min(S)Π

⊤
h0
(x(t))PBB⊤PΠh0(x(t)) (20)

Thus, by substituting (20) into (19) we can obtain that

dV (x, ψ̃)

dt
≤−Π⊤

h0
(x(t))Q̃Πh0(x(t))

+x⊤(t−h0)
(
2D⊤SD − 1

2
e−κh0S +R

)
x(t−h0)

+ηΠ⊤
h0
(x(t))PBB⊤PΠh0(x(t))

+2ν
ν∑

j=1

eκhjρ∗jλ
−1
min(S)Π

⊤
h0
(x(t))PBB⊤PΠh0(x(t))

−ϱψ̂(t)Π⊤
h0
(x(t))PBB⊤PΠh0(x(t))

− 1

2
κ

t∫
t−h0

eκ(s−t) x⊤(s)Sx(s)ds+ γ−1ψ̃(t)
dψ̃(t)

dt

− 1

2

ν∑
j=1

κν−1

t∫
t−hj

eκ(s−t)x⊤(s)Sx(s)ds (21)



where

−Q̃ := PA+A⊤P

+PADR−1D⊤A⊤P + S + S⊤ − ηPBB⊤P

It is obvious from Assumption 2.2 that Q̃ is a positive
definite matrix. Therefore, from (7), (21) and Assumption
2.2 we can obtain that for t ≥ t0,

dV (x, ψ̃)

dt
≤−λmin

(
Q̃
)∥∥∥Πh0(x(t))

∥∥∥2
+

(
η + 2ν

ν∑
j=1

eκhjρ∗jλ
−1
min(S)

)∥∥B⊤P Πh0(x(t))
∥∥2

−ϱψ̂(t)Π⊤
h0
(x(t))PBB⊤PΠh0(x(t))

− 1

2
κ

t∫
t−h0

eκ(s−t) x⊤(s)Sx(s)ds+ γ−1ψ̃(t)
dψ̃(t)

dt

− 1

2

ν∑
j=1

κν−1

t∫
t−hj

eκ(s−t)x⊤(s)Sx(s)ds

= −λmin

(
Q̃
)∥∥∥Πh0

(x(t))
∥∥∥2

+ϱψ∗∥∥B⊤P Πh0(x(t))
∥∥2− ϱψ̂(t)

∥∥B⊤P Πh0(x(t))
∥∥2

− 1

2
κ

t∫
t−h0

eκ(s−t) x⊤(s)Sx(s)ds+ γ−1ψ̃(t)
dψ̃(t)

dt

− 1

2

ν∑
j=1

κν−1

t∫
t−hj

eκ(s−t)x⊤(s)Sx(s)ds (22)

Then, by introducing (12) into (22) we can obtain the
following inequality:

dV (x, ψ̃)

dt
≤−λmin

(
Q̃
)
λ−1
max

(
P
)
Π⊤

h0
(x(t))P Πh0(x(t))

− 1

2
σψ̃2(t)− 1

2
κ

t∫
t−h0

eκ(s−t) x⊤(s)Sx(s)ds

− 1

2

ν∑
j=1

κν−1

t∫
t−hj

eκ(s−t)x⊤(s)Sx(s)ds+
1

2
σ
∣∣∣ψ∗

∣∣∣2 (23)
Thus, from (23) we can further obtain that for t ≥ t0,

dV (x, ψ̃)

dt
≤ −αV (x, ψ̃) + ε̃ (24)

where

α :=min
{
λmin

(
Q̃
)
λ−1
max

(
P
)
, σγ, κ

}
ε̃ :=

1

2
σ
∣∣∣ψ∗

∣∣∣2
For the sake of convenience, we define

V (t) := V (x(t), ψ̃(t)))

Thus, from (24) we can obtain that for any t ≥ t0,

dV (t)

dt
≤ −αV (t) + ε̃ (25)

which results in an inequality on V (t) as follows. That is,
for any t ≥ t0,

V (t)≤ exp{−α(t− t0)}V (t0) + ε̃α−1 (26)

It is obvious from (13) and (26) that for any t ≥ t0,

lim
t→∞

∥∥∥Πh0(x(t))
∥∥∥ = lim

t→∞

∥∥∥x(t)−Dx(t−h0)
∥∥∥

≤
√
ε̃α−1λ−1

min(P ) := θ∗ (27)

In the light of Assumption 2.3, by employing the similar
method which has been used in Moezzi and Aghdam
(2013) and Kharitonov et al. (2005), we can obtain that
for any t ≥ t0,∥∥∥x(t)∥∥∥ ≤ θ∗

(
1 +

ε̃

1−∥D∥

)
+ ∥ξ(0)∥χe−γ∗t (28)

where χ and γ∗ are two positive constants. It follows
from (13), (26) and (28) that (x, ψ̃) (t; t0, x(t0), ψ̃(t0))
of the closed–loop neutral time–delay neutral systems
described by (11) and the error systems described by (12)
are uniformly exponentially bounded in the presence of
the uncertainties, external disturbance, and delayed state
perturbations. Thus, we complete this proof. ∇∇∇

4. ILLUSTRATIVE EXAMPLE

In this section, similar to Moezzi and Aghdam (2013) we
also consider the following numerical example.

ẋ(t) =

[
0 1

1 2

]
x(t) +

[
0.1 0

0 0.1

]
ẋ(t−h0) +

[
0

1

]
u(t)

+

3∑
j=1

∆Gj(ς, t)x(t−hj) (29)

where the neutral delay h0 is set as h0 = 0.5, and for
simulation, the uncertain ∆Gj(ς, t), j = 1, 2, 3, are given
as follows.

∆G1(ς, t) =

[
0 0

ς(t) ς(t)

]
, ∆G2(ς, t) =

[
0 0

0 ς(t)

]

∆G3(ς, t) =

[
0 0

1.5ς(t) ς(t)

]

Thus, similar to Moezzi and Aghdam (2013), in the light of
Assumption 2.2, the following parameters can be obtained.

P =

[
0.0154 0.0279

0.0279 0.0581

]
, η = 250.56, κ = 1.0

That is, such parameters will guarantee that the condition
described by (3) can be satisfied.



For the adaptation law described by (10), we choose

γ = 0.5, σ = 0.15, ϱ = 20

Thus, the adaptive robust controllers described by (9) and
(10) can guarantee the uniform ultimate boundedness of
uncertain neutral time–delay systems.

For simulation, the uncertain time–varying parameter ς(t),
the constant time delays hj , and initial conditions are
given as follows.

h0 = 0.5, h1 = 1.0, h2 = 2.0, h3 = 3.0

x(0) = [ 8.0 cos(t) −8.0 cos(t) ]
⊤
, t ∈ [−h̄, 0]

ψ̂(0) = 8.0, ς(t) = 0.1 sin(2t)

The simulation results have been shown in Figs.1–2 for
this numerical example. The state responses of system
(29) have been depicted in Fig.1, which shows the stability
of the closed–loop neutral time–delay systems under the
simple adaptive robust control schemes described by (9)
and (10). In addition, the control input has been shown
in Fig.2, which is also convergent toward zero as the state
variables decrease. From Fig.1 and Fig.2, we can observe
that the proposed adaptive robust control schemes with
a rather simple structure indeed make it stable for the
uncertain neutral time–delay systems.

(The details of the illustrative numerical example
and the figures of the simulation will be displayed
in the oral presentation.)

5. CONCLUDING REMARKS

In this paper, the problem of robust stabilization has
been considered for a class of uncertain neutral time–
delay dynamical systems with the unknown bounds of
delayed state perturbations. Some continuous adaptive
robust state feedback control schemes with a rather simple
structure have been proposed. It has shown that the pro-
posed adaptive robust control schemes can guarantee that
the solutions of uncertain neutral time–delay systems con-
verge uniformly exponentially towards a ball, and can be
easily implemented in practical engineering control prob-
lems because of their simplicity. Moreover, the method
employed in this paper can be applied to a rather large
class of uncertain neutral time–delay dynamical systems,
and be expected to obtain some interesting results.
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