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1. INTRODUCTION

The main reason of the success of Lyapunov functions
methods is probably that they allows the investigation
of the stability of dynamical systems without knowing
the solution of the equations governing the systems. This
outstanding feature is evident in the case of linear delay
free systems where the positivity of the so-called Lyapunov
matrix is a stability criterion (i.e., necessary and sufficient
condition).

More precisely, the proof that the linear system

ẋ = Ax

is stable if and only if there exist a function of the form

v(x) = xTPx that satisfies v(x) > 0, x 6= 0, and dv(x)
dt < 0,

x 6= 0, along the trajectories of the system established
in the framework of the Lyapunov framework reduces,
when the Lyapunov condition is satisfied, to solving for
any positive definite matrix Q, the algebraic equation

ATP + PA = −Q
for the unknown matrix P , and to verify its positivity.

The generalization to time-delay systems by (Krasovskii,
1956) has led to the proposal of Lyapunov-Krasovskii
functionals leading to sufficient stability conditions in the
form of linear matrix inequalities. These results range from
the early proposals of Kolmanovskii and Myshkis (1999),
Niculescu (2001), to refined conditions such as those of
Fridman (2014), Seuret and Gouaisbaut (2015), among
many others.

The converse results of the theory of Krasovskii, that
guarantee the existence of the functional when the system
is stable has been less popular, although the general form
of the functional introduced by Repin (1965) and Datko
(1972), has been a source of inspiration for the determi-
nation of sufficient stability conditions in Gu (2001), Peet
and Bliman (2011).

In the past decades, following the early works of Infante
and Castelan (1978), Huang (1989), Louisell (2001) in this
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direction, a comprehensive coverage of the case of linear
delay systems of retarded, distributed and neutral type
has been made by Kharitonov (2013). The core of the
presented results include the functional, which is obtained
from the Cauchy formula and expressed in terms of the
delay Lyapunov matrix, the construction of the Lyapunov
matrix via the three properties called symmetry, dynamic
and algebraic, and the proof of existence of a quadratic
lower bound whenever the system is stable.

These results are indeed a nontrivial extension of the linear
delay free case. They were successfully applied to problems
such as robust stability analysis (Kharitonov and Zhabko,
2003), determination of exponential estimates (Kharitonov
and Hinrichsen, 2004), computation of the H2 norm (Jar-
lebring et al., 2011), solution of the suboptimal control
problem (Santos et al., 2009) and design of predictor-
based control schemes for state and input delay systems
(Kharitonov, 2014). A notable fact is that these applica-
tions share the common assumption that the underlying
system is exponentially stable. This raises naturally the
following question: is it possible to asses the stability of
the system in this framework? Moreover, considering the
analogy with the delay free case, does a stability criterion
expressed in terms of the delay Lyapunov matrix exists?

The purpose of this paper is to summarize the advances in
the answer to this query. We introduce the basic definitions
and stability theorems for the multiple delay case in
Section 2. We outline the path to our stability conditions
and prove the necessity in Section 3. We present an infinite
and finite criterion in Section 4 and Section 5, respectively.
Finally, we give a brief overview of current advances in
Section 6 and outline possible extensions in Section 7.

Notation: The space of piecewise continuous and contin-
uously differentiable vector functions on [−H, 0] is rep-
resented by PC ([−H, 0],Rn) and C(1) ([−H, 0],Rn), re-
spectively. The vector Euclidean norm and the matrix
induced norm are both denoted by ‖ · ‖. For functions
ϕ ∈ PC([−H, 0],Rn), we use the uniform norm

‖ϕ‖
H

= sup
θ∈[−H,0]

‖ϕ(θ)‖



and the seminorm

‖ϕ‖H =

√
‖ϕ(0)‖2 +

∫ 0

−H
‖ϕ(θ)‖2 dθ.

The notation A > 0 (A > 0, A 6> 0) means that the sym-
metric matrix A is positive definite (positive semidefinite,
not positive semidefinite). The square block matrix with
i-th row and j-th column element Aij is denoted [Aij ]

r
i,j=1.

The minimum eigenvalue of a matrix A is represented by
λmin(A). The function that maps y to the least integer
greater or equal to y is denoted by dye.

2. PRELIMINARIES

2.1 Basic system definitions

Consider a linear system of the form

ẋ(t) =

m∑
j=0

Ajx(t− hj), t > 0, (1)

where A0, . . . , Am are constant real n × n matrices, and
0 = h0 < h1 < . . . < hm = H are the delays.

Without any loss of generality, the initial time instant
can be set equal to zero. The initial functions ϕ are
taken from the space of piecewise continuous functions
PC([−H, 0],Rn). The restriction of the solution x(t, ϕ) of
system (1) on the interval [t−H, t] is denoted by

xt(ϕ) : θ → x(t+ θ, ϕ), θ ∈ [−H, 0].

Definition 1. System (1) is said to be exponentially stable,
if there exist constants γ > 1 and σ > 0, such that

‖x(t, ϕ)‖ 6 γe−σt‖ϕ‖
H
, t > 0.

The matrix-function K(t), satisfying the equation

K̇(t) =

m∑
j=0

AjK(t− hj), t > 0,

with the initial conditions

K(0) = I, K(t) = 0, t < 0,

is called the fundamental matrix of system (1). It allows
an expression of the solution on [0,∞) via the Cauchy
formula:

x(t, ϕ) = K(t)ϕ(0)+

m∑
j=1

∫ 0

−hj

K(t−θ−hj)Ajϕ(θ)dθ. (2)

2.2 Converse approach framework

We remind now the main definitions and results of the
converse approach. According to Kharitonov and Zhabko
(2003), for any positive definite matrix W , the functional
satisfying

dv0(xt(ϕ))

dt
= −xT (t, ϕ)Wx(t, ϕ)

along the solutions of system (1), has the form

v0(ϕ) = ϕT (0)U(0)ϕ(0) + 2ϕT (0)·

·
m∑
j=1

∫ 0

−hj

UT (θ + hj)Ajϕ(θ)dθ +

m∑
k=1

∫ 0

−hk

ϕT (θ1)ATk ·

·
m∑
j=1

∫ 0

−hj

U(θ1 + hk − θ2 − hj)Ajϕ(θ2) dθ2 dθ1, (3)

where the matrix-valued continuous function

U(τ) =

∫ ∞
0

KT (t)WK(t+ τ)dt, τ ∈ R, (4)

is the the delay Lyapunov matrix. This definition requires
the exponential stability assumption of the system in order
to ensure convergence of the integral. This is overcome in
the next definition.

Definition 2. (Kharitonov (2013)). The delay Lyapunov
matrix U(τ), τ ∈ R, of system (1), associated with a given
symmetric matrix W , is a continuous function satisfying
the following three properties:

U ′(τ) =

m∑
j=0

U(τ − hj)Aj , τ > 0, (5)

U(τ) = UT (−τ), τ ∈ R, (6)
m∑
j=0

(
U(−hj)Aj +ATj U(hj)

)
= −W. (7)

Matrix U(τ) exists and is unique if the Lyapunov condi-
tion holds (i. e., system (1) has no eigenvalues that are
symmetric with respect to zero). It can be constructed via
the semianalytic procedure (Kharitonov, 2013) or some
numerical methods (Jarlebring et al., 2011; Huesca et al.,
2009; Kharitonov, 2013; Egorov and Kharitonov, 2016),
using the so-called dynamic (5), symmetry (6) and alge-
braic (7) properties, which play the role of the Lyapunov
equation in the delay free case.

We introduce now the quadratic functional

v1(ϕ) =v0(ϕ) +

∫ 0

−H
ϕT (θ)Wϕ(θ) dθ

=

∫ ∞
−H

xT (t, ϕ)Wx(t, ϕ)dt,

(8)

whose derivative along the solutions of system (1) is

dv1(xt(ϕ))

dt
= −xT (t−H,ϕ)Wx(t−H,ϕ).

We formulate the following stability theorem:

Theorem 3. If system (1) is exponentially stable, then
there exists α1 > 0, such that

v1(ϕ) > α1‖ϕ‖2H , ϕ ∈ PC([−H, 0],Rn). (9)

From the previous theorem, one deduce the lower bound

v1(ϕ) > α?1‖ϕ(0)‖2, ϕ ∈ PC ([−H, 0],Rn) .

Here, α?1 is a real positive number that can be computed
whether the system is stable or not. See, for instance,
Theorem 1 in (Egorov, 2016).

3. NECESSARY STABILITY CONDITIONS

3.1 The path to the necessary stability conditions

The scalar one delay equations stability criteria in Mondié
(2012) and Egorov and Mondié (2013) indicated that there
was hope in finding necessary and sufficient stability condi-
tions for broader classes of systems. However the employed
proof technique consisting on the exhaustive verification in
the space of parameters of the proposed conditions with
those known from frequency domain technique were unfit
for more complex systems.



It appeared in the early attempts reported in Mondié
et al. (2011) that the substitution of simple choices of
the initial function into the expression of the functional,
combined with the quadratic lower bound, lead to a variety
of necessary stability conditions. For example,

ϕ̂(θ) =

{
µ, θ = 0,

0, elsewhere,

where µ is an arbitrary non-zero vector, is such that
v1(ϕ̂) = µTU(0)µ. Then, the lower bound (9) and the
symmetry property of U(0) imply that a necessary sta-
bility condition of the system is U(0) > 0. A trial and
error approach lead to discover in Mondié et al. (2012)
that, in the multivariable one delay case, initial functions
of the form µeA0θ, where µ is an arbitrary non-zero vector
and A0 is the matrix parameter of the system, allowed to
put into evidence the dependence on the delay Lyapunov
matrix. A decisive step was the observation that in this
case eA0θ was indeed the expression of the fundamental
matrix K(θ), θ ∈ [0, h]. As a result of this observation, the
following initial function was introduced in Egorov and
Mondié (2014) for addressing the multiple delay case:

ψr(θ) =

r∑
i=1

K(θ + τi)γi, θ ∈ [−H, 0], (10)

where τi ∈ [0, H] and γi ∈ Rn. The key role that the
function ψr plays is described in more detail next.

3.2 A direct approach

We present a strategy that we call “direct approach” that
uncovers the form of the necessary stability conditions in
terms of the delay Lyapunov matrix, and that can be easily
extended to other classes of systems. However, this section
relies on the stability assumption of the system and cannot
be used in order to prove the stability criterion.

The following result stems from the Cauchy formula for
the fundamental matrix, as every column of K(t+ τ) is a
solution of (1) for any τ > 0.

Lemma 4. For t > 0 and τ > 0, the fundamental matrix
satisfies

K(t+ τi) =

= K(t)K(τi) +

m∑
j=1

∫ 0

−hj

K(t− θ − hj)AjK(θ + τi)dθ.

Consider (10) as initial function. From equation (2),

x(t, ψr) =

r∑
i=1

(
K(t)K(τi)

+

m∑
j=1

∫ 0

−hj

K(t− θ − hj)AjK(θ + τi)dθ

 γi.

In view of Lemma 4, this is

x(t, ψr) =

r∑
i=1

K(t+ τi)γi, t > −H. (11)

The assumption of the exponential stability of system (1)
and the substitution of (11) into (8) yield

v 1(ψr) =

∫ ∞
−H

xT (t, ψr)Wx(t, ψr)dt

=

∫ ∞
−H

(
r∑
i=1

γTi K
T (t+ τi)

)
W

(
r∑
i=1

K(t+ τi)γi

)
dt

=

r∑
j=1

r∑
i=1

γTi

∫ ∞
−H

KT (t+ τi)WK(t+ τj)dtγj ,

and the change of variable t+ τi = s gives

v1(ψr) =

r∑
j=1

r∑
i=1

γTi

(∫ ∞
τi−H

KT (s)WK(s+ τj − τi)ds
)
γj

=

r∑
j=1

r∑
i=1

γTi

(∫ ∞
0

KT (s)WK(s+ τj − τi)ds
)
γj .

By using equality (4), we get

v1(ψr) =

r∑
j=1

r∑
i=1

γiU(τj − τi)γj = γT
[
U(τj − τi)

]r
i,j=1

γ,

where γ =
(
γT1 . . . γTr

)T
. This fact and Theorem 3 suggest

that [
U(τj − τi)

]r
i,j=1

> 0,

hence we can discern that the necessary stability condition
of Theorem 3 can be written in terms of the Lyapunov
matrix, as in the case of delay free systems.

3.3 Necessary stability conditions via new properties of the
Lyapunov matrix

When seeking necessary and sufficient stability conditions,
the stability assumption is clearly ruled out. Instead of
using the integral form of functional (8), as in the previous
section, we must use expression (3) given in terms of the
delay Lyapunov matrix, which is valid whether the system
is stable or not. The substitution of the initial function ψr
given by (10), results in products of the fundamental and
the delay Lyapunov matrices. This interplay is described
by a number of properties based on Definition 2 in Egorov
and Mondié (2014). They are recalled next.

The first property, called the generalized algebraic prop-
erty, is determined for τ > 0 by

m∑
j=0

(
U(τ − hj)Aj +ATj U(τ + hj)

)
= −WK(τ).

One can see that it reduces to the algebraic property (7)
when τ = 0. The next one is given for τ1 > 0, τ2 ∈ R by

U(τ1 + τ2) =U(τ2)K(τ1)

+

m∑
j=1

∫ 0

−hj

U(τ2 − θ − hj)AjK(τ1 + θ) dθ

+

∫ 0

−τ1
KT (τ2 + θ)WK(τ1 + θ) dθ.

A key element of our approach is the bilinear functional

z(ϕ,ψ) =
v1(ϕ+ ψ)− v1(ϕ− ψ)

4
=



= ϕT (0)U(0)ψ(0)

+ ϕT (0)

m∑
j=1

∫ 0

−hj

UT (θ + hj)Ajψ(θ)dθ

+

m∑
j=1

∫ 0

−hj

ϕT (θ)ATj U(θ + hj) dθψ(0) +

m∑
k=1

∫ 0

−hk

ϕT (θ1) ·

· ATk
m∑
j=1

∫ 0

−hj

U(θ1 + hk − θ2 − hj)Ajψ(θ2)dθ2dθ1

+

∫ 0

−H
ϕT (θ)Wψ(θ) dθ.

When introducing in this functional the initial functions

ϕ(θ) = K(τ1 + θ)µ, ψ(θ) = K(τ2 + θ)η, θ ∈ [−H, 0],

with τ1, τ2 ∈ [0, H] and µ, η arbitrary non-zero vectors,
the instrumental properties introduced above allow the
following striking reduction: For any τ1, τ2 ∈ [0, H],

z (K(τ1 + θ)µ,K(τ2 + θ)η) = µTU(−τ1 + τ2)η.

The previous equality enables us to prove the necessary
conditions for the exponential stability of system (1).

Theorem 5. If system (1) is exponentially stable, then

K̂r(τ1, . . . , τr) :=
[
U(−τi + τj)

]r
i,j=1

> 0, (12)

where τk ∈ [0, H], k = 1, r, and τi 6= τj , if i 6= j.

Remark 6. Theorem 5 provides a family of necessary sta-
bility conditions, whose complexity increases with the pa-
rameter r in (12). It is worth mentioning that the case
r = 1 reduces to the simplest condition U(0) > 0, which is
necessary and sufficient for the exponential stability of the
delay free system, and that for r = 2 the stability criterion
for the single delay scalar equation is recovered.

4. INFINITE STABILITY CRITERION

The main result of this section, a stability criterion for
systems with pointwise and distributed delays, is proved
in full detail in Egorov (2014) and Egorov et al. (2017).

We recall first the following instability result, based on the
one proven in Medvedeva and Zhabko (2015).

Theorem 7. If system (1) is unstable and satisfies the
Lyapunov condition, then for every α1 > 0 there exists
a function ϕ̂ ∈ C(1)([−H, 0],Rn) such that v1(ϕ̂) 6 −α1.

A key result in the proof is that it is possible to approxi-
mate any continuously differentiable function by a function
of the form (10) with equidistant points τi.

Lemma 8. For any ϕ ∈ C(1)([−H, 0],Rn) and any ε > 0,
there exists a function ψr of the form (10) with

τi = (i− 1)δr, i = 1, r, δr =
1

r − 1
H, (13)

such that ‖ϕ− ψr‖H < ε.

Then, by introducing the matrix

Kr = K̂r
(

0,
1

r − 1
H, . . . ,

r − 2

r − 1
H,H

)
,

and using Theorem 7 and Lemma 8, it is shown that the
necessary stability condition of Theorem 5 is also sufficient
for large enough r.

Theorem 9. System (1) is exponentially stable if and only
if the Lyapunov condition holds and for every natural
number r

Kr > 0. (14)
Moreover, if the Lyapunov condition holds and system (1)
is unstable, then there exists a natural number r such that

Kr 6> 0.

In order to use Theorem 9 for determining the stability of
the system, one requires an infinite number of mathemat-
ical operations, as condition (14) demands to be tested
for every natural r. Although the theorem states that
for every unstable system there exists a number r such
that condition (14) does not hold, it does not provide any
estimate of such number.

5. FINITE STABILITY CRITERION

In this section, we present the finite stability criterion
introduced in Egorov (2016) for systems of the form (1).
The following auxiliary results are instrumental in the
proof.

Lemma 10. There exists a number α2 > 0 such that

|z(ϕ,ψ)|6 α2‖ϕ‖H ‖ψ‖H ,
|v1(ϕ)|6 α2‖ϕ‖2H ,

for any ϕ,ψ ∈ PC ([−H, 0],Rn).

Consider now the compact set

S = {ϕ ∈ C(1) ([−H, 0],Rn) :

‖ϕ‖H = ‖ϕ(0)‖ = 1, ‖ϕ′‖ 6M},
where M =

∑m
i=0 ‖Ai‖. The following theorem relates the

function v1 with functions from the set S:

Theorem 11. System (1) is exponentially stable if and only
if the Lyapunov condition holds and there exists a positive
number α1 such that for any ϕ ∈ S, v1(ϕ) > α1.

For a fixed ϕ ∈ S, we construct the function ψr in (10) as:

(1) Set τ1, . . ., τr, as in (13).
(2) Choose the vectors γi, i = 1, r, such that

ϕ(−τi) = ψr(−τi), i = 1, r.

The next lemma shows that every function from the set S
can be approximated by a function ψr constructed by the
previous steps. Unlike in Lemma 8, here, an approximation
error bound is provided.

Lemma 12. For every ϕ ∈ S,

‖ϕ− ψr‖H 6
(M + L)eLH

1/δr + L
,

where L is such that ‖K ′(t)‖ 6 L, t ∈ (0, H).

The finite stability criterion is established next with the
help of Theorem 11 and Lemma 12.

Theorem 13. System (1) is exponentially stable if and only
if the Lyapunov condition holds and

Kr − α1Ar > 0,

where
Ar =

[
KT (τi)K(τj)

]r
i,j=1

,

r = 1 + dHeLH(M + L)
(
α+

√
α(α+ 1)

)
−HLe,

and α = α2/α1 and α1 ∈ (0, α?1).



In Theorem 13 the stability criterion now also depends on
the fundamental matrix. While it is true that the number
r can be very large, a fact of theoretical significance is
that one can determine the stability of the system with
a finite number of mathematical operations. It is worth
mentioning that in illustrative examples in Cuvas et al.
(2017), the stability region is achieved with small r.

6. OVERVIEW OF THE STATE OF THE ART

We have been able to use the above approach to present
necessary and in some cases necessary and sufficient sta-
bility conditions for a number of classes of systems with
delays. We outline next the progress made up to now as
well as ongoing research.

6.1 Systems with pointwise and distributed delays

The above results are extended with no difficulties in
Cuvas and Mondié (2016) and Egorov et al. (2017) to the
case of systems with distributed delays of the form

ẋ(t) =

m∑
j=0

Ajx(t− hj) +

∫ 0

−H
G(θ)x(t+ θ)dθ,

where G ∈ PC ([−H, 0],Rn×n).

6.2 Systems of neutral type

We also have obtained in (Gomez et al., 2017b) necessary
stability conditions of the same kind for systems of neutral
type equations with multiple commensurate delays:

d

dt

(
m∑
i=0

Dix(t− ih)

)
=

m∑
i=0

Aix(t− ih),

where D0 = I, Di, Ai, i = 0,m, belong to Rn×n, and h > 0
is the basic delay. They generalize those first obtained for
the single delay case (Gomez et al. (2017a)). The neutral
case is, as usual, more tricky, and special care has to
be paid to the jump discontinuities of the system. Some
advances on the finite stability criterion for systems with
one delay are presented in Gomez et al. (2018) for the case
in which the matrix D satisfies ‖D‖ < 1.

6.3 Linear periodic systems with delays

In Gomez et al. (2016), inspired by the developments
of converse results presented in Letyagina and Zhabko
(2009), we study systems described by

ẋ(t) =

m∑
j=0

Aj(t)x(t− hj), (15)

where Aj(t), j = 0,m, are matrices of continuous co-
efficients with period T , i.e., Aj(t) = Aj(t + T ), with
range in Rn×n, and 0 = h0 < h1 < . . . < hm = H
are constant delays. The stability conditions are similar
to those obtained in the time-invariant case.

Theorem 14. Let system (15) be exponentially stable,
then, the following condition holds for any positive integer
r, τi ∈ [0, H], i = 1, r, and t0 ∈ [0, T ):

K̂r(t0, τ1, . . . , τr) =
[
U(t0 − τi, t0 − τj)

]r
i,j=1

> 0.

In this case, the bi-dimensional delay Lyapunov matrix is
the solution of a partial differential system with boundary
conditions, which makes its computation a challenging
issue that is under investigation.

6.4 Integral and continous time difference equations

In our recent work, we have applied the so-called direct
approach to non-differential linear systems, namely, differ-
ence equations of the form

x(t) =

m∑
j=1

Ajx(t− hj),

where x(t) ∈ Rn, A1, . . ., Am are constant real n × n
matrices, and 0 = h0 < h1 · · · < hm = H are the delays,
and also to integral equations of the form

x(t) =

∫ 0

−H
G(θ)x(t+ θ)dθ,

with kernel G ∈ PC ([−H, 0],Rn×n), and delay H. We
have used the so-called direct approach to determine
successfully the form of the necessary stability conditions
in Rocha et al. (2016) and del Valle et al. (2018), namely,
for any τi ∈ [0, H], i = 1, r, τi 6= τj , if i 6= j,

K̂r(τ1, . . . , τr) = [F (τi, τj)]
r
i,j=1 > 0,

where F (τi, τj) = U(0)− U(−τi)− U(τj) + U(τj − τi). In
the case of the difference equation in continuous time, we
have introduced the Dini upper right-hand derivative of a
functional to address the jump discontinuities inherent to
this class of systems. The obtained conditions are different
from those for differential systems. It may be possible to
obtain conditions in the simpler form (12).

7. FUTURE DIRECTIONS OF RESEARCH

As a conclusion, we would like to outline future directions
of research in the area. First, the remaining gaps in the
sufficiency should be filled by addressing the particular
issues raised by each case. Second, the complexity in the
numerical construction of the delay Lyapunov matrix de-
serves attention, as the NP-hard nature of delay systems
resurfaces in this task. Indeed, the applicability of the
conditions highly depends on this construction. Finally,
we believe that it is possible to use our approach to find
necessary/necessary and sufficient stability conditions for
other classes of linear systems, such as those of fractional
order, stochastic systems, or some classes of partial differ-
ential equations, by developing first the Cauchy formula,
the fundamental and Lyapunov matrix definition, and the
corresponding stability theorems of the converse approach.
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Santos, O., Mondié, S., and Kharitonov, V. (2009). Linear
quadratic suboptimal control for time delays systems.
Int. J. of Control, 82(1), 147–154.

Seuret, A. and Gouaisbaut, F. (2015). Hierarchy of
LMI conditions for the stability analysis of time-delay
systems. Systems and Control Letters, 81, 1–7.


