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Abstract: Our work is based on the observation that delay-differential equations can be recast
as partial differential equations of two variables. Thus the numerical solution of the delay
equation can be thought of as a spatio-temporal process, and snapshot based methods like
Proper Orthogonal Decomposition and Dynamic Mode Decomposition allow us to compute the
eigenvalues of the evolution operator. The rightmost eigenvalues of the Hayes equation can be
well approximated.
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1. INTRODUCTION

Analysis of delay-differential equations is an ever-growing
field. Our goal is to understand whether delay equations
can be better understood or represented in terms of a
natural “basis” (Asl and Ulsoy [2003], Amann et al. [2007],
Michiels et al. [2011]). The general form of scalar delay-
differential equations is

dx(t)

dt
= f(x(t), x(t− τ)), (1)

x(t) = θ(t), −τ ≤ t ≤ 0, (2)

where θ(t) is the initial function. By introducing the so-
called shift of time u(t, s) = x(t + s), the initial value
problem Eqs. (1, 2) can be recast into the following partial
differential equation (Bellen and Maset [2000])

∂u(t, s)

∂t
=
∂u(t, s)

∂s
, s ∈ [−τ, 0], (3)

∂u(t, s)

∂t

∣∣∣∣
s=0

= f(u(t, 0), u(t,−τ)), (4)

u(0, s) = θ(s), s ∈ [−τ, 0]. (5)

The u(t, s) function can be viewed as a spatio-temporal
representation of the initial value problem Eqs. (1, 2),
where the variable s is the spatial dimension. The solution
of Eqs. (1, 2) at time tk is written into a column vector
(called a snapshot)

xk = [u(tk, s1), u(tk, s2), ..., u(tk, sn)]
T
. (6)

A snapshot matrix X can be constructed from these
snapshots

X =

 x1 x2 . . . xm

 . (7)

This representation of the problem allows us to apply snap-
shot based approaches like Proper Orthogonal Decompo-
sition (Kutz [2013]) and Dynamic Mode Decomposition
(Schmid [2010], Kutz et al. [2016], Tu et al. [2013]).

2. PROPER ORTHOGONAL DECOMPOSITION

Proper orthogonal decomposition (POD) is a powerful
dimensionality reduction technique. The singular value
decomposition

X = UΣV ∗ (8)

yields the matrix U that contains the orthogonal spatial
modes (POD basis), Σ that contains the singular values
σi, while all the temporal information is contained in
matrix V and (∗ denotes the conjugate transpose). The
singular values in Σ have an intuitive meaning, they are
proportional with the energy content (L1 norm of the
singular values) of the corresponding modes in U . With
the orthogonal basis contained in U , it is possible to obtain
a reduced order model of the DDE through Galerkin
projection. The solution u(t, s) can be expanded in terms
of n POD modes as

u(t, s) ≈
n∑
i=1

ai(t)φi(s), (9)

where n is the number of POD modes and the φi’s belong
to the orthogonal set of POD modes. The corresponding
ai(t)’s can be determined by the Galerkin method. First,
substituting Eq. (9) into Eq. (3) we get

n∑
i=1

φi(s)
∂ai(t)

∂t
=

n∑
i=1

ai(t)
∂φi(s)

∂s
. (10)

Projection of Eq. (10) onto the POD basis functions φj ,
j = 1, ..., n yields

daj(t)

dt
=

1

〈φj(s), φj(s)〉

n∑
i=1

ai(t)

〈
∂φi(s)

∂s
, φj(s)

〉
. (11)

This set of ordinary differential equations can be written
in matrix form

da

dt
= La, (12)



where a = [a1, a2, ..., an]
T

and the elements of L are given
by

Lij =

〈
∂φi(s)
∂s , φj(s)

〉
〈φj(s), φj(s)〉

. (13)

The boundary conditions (4,5) enter into matrix L
through relationship (8) between POD modes φi(s) and
the snapshot matrix X. The matrix L is a finite dimen-
sional approximation of the infinitesimal generator of the
DDE. By computing the spectra of L we can approximate
the rightmost eigenvalues of the original system.

3. DYNAMIC MODE DECOMPOSITION

Dynamic mode decomposition (DMD) provides an alter-
native way to construct reduced order model of dynamic
system from numerical data. Initially DMD was developed
to decompose fluid flows and find spatio-temporal coherent
structures (Schmid [2010]), however it became popular
soon in a more general context (Brunton et al. [2016], Hua
et al. [2016], Proctor and Eckhoff [2015]). DMD is based on
the assumption that the snapshots xk in the data matrix
Eq. (7) are connected by a linear map

xk+1 = Axk. (14)

In order to compute matrix A we construct the two
matrices

X1 =

 x1 x2 . . . xm−1

 , (15)

X2 =

 x2 x3 . . . xm

 . (16)

from the data matrix X (see Eq. (7)). These matrices are
connected by (assuming an underlying linear process)

X2 = AX1. (17)

The singular value decomposition of X1 is given by

X1 = U1Σ1V
∗
1. (18)

Matrix A is computed as (+ denotes the Moore-Penrose
pseudoinverse)

A = X2X
+
1 = X2V 1Σ

−1
1 U∗

1. (19)
If the underlying delay equation Eq. (1) is linear (i.e.
f(x(t), x(t − τ)) = ax(t) + bx(t − τ)), then A is a
finite dimensional approximation of its evolution operator.
The eigenvalues of A approximate the spectrum of the
evolution operator, which is related to the spectrum of Eq
(1) by the exponential transform.

4. NUMERICAL RESULTS

We demonstrate the methods described in Sec. 2 and Sec.
3 on the Hayes equation (Hayes [1950]), which is one of
the simplest delayed system in the following form

dx(t)

dt
= ax(t) + bx(t− τ). (20)

The infinitely many eigenvalues of the Eq. (20) satisfy the
characteristic equation:

λ− a− be−λτ = 0. (21)

We numerically solved the Eq. (20) with parameters a =
−3, b = −3.5 and τ = 1 for t ∈ [0, 10] and initial function

Fig. 1. The normalized singular values of X

φ(t) = 1. This numerical solution xnum(t) was used to
generate POD and DMD results.

4.1 POD results

The energy content of the POD modes are depicted in
Fig. (1). The first four POD modes contain 98.87% of the
energy, these are illustrated in Fig. (2). We used these
four modes for the expansion (9) and after projecting
Eq. (20) onto these modes we get the following system
of ordinary differential equations (the initial function is
similarly projected, resulting in the initial conditions)

d

dt

 a1a2a3
a4

 =

−0.05 1.84 0.01 −0.01
−3.24 −0.11 −0.02 −0.02
−0.59 −3.24 −1.09 6.06
−1.75 −1.06 −10.51 −1.17


 a1a2a3
a4

 . (22)

The solutions of Eq. (22) are shown Fig. (3). Eigenvalues
of the coefficient matrix in Eq. (22) are approximating
the eigenvalues of the evolution operator of Eq. (20). In
Fig. (5) we compared these 4 approximate eigenvalues
(2 complex pairs) with those obtained from the Matlab
package published by Breda et al. [2014] (a homotopy-
based method to find the spectrum of delay equations is
described in Surya et al. [2017]). By increasing the number
of POD modes gives a more accurate approximation for the
rightmost eigenvalues. Near the eigenvalues the magnitude
of the characteristic function (21) is small. Thus substitut-
ing the computed eigenvalues into (21) should result in a
residual of small magnitude. This is shown in Fig. (6) for
increasing number of POD modes.

4.2 DMD results

When the pseudo-inverse X+
1 calculated, a rank reduced A

(denoted by Ã) can be computed by truncating the matri-
ces U1, V 1 and Σ1. For example, a rank-4 approximation
of A is given by

Ã =

 0.9971 −0.0800 −0.0215 0.0371
0.0464 0.9950 −0.0850 0.0057
0.0004 −0.0008 0.9324 0.2509
−0.0003 0.0005 −0.1454 0.9660

 . (23)

The computation of the DMD modes ψi (which come in
conjugate transpose pairs) is described in Section 1.4 of



Fig. 2. The first four POD modes

Fig. 3. The ai(t) functions corresponding to the first 4
POD modes

Fig. 4. Numerical solution and POD approximation

Fig. 5. Comparison of the computed eigenvalues

Fig. 6. Residual at the approximated rightmost eigenvalue

Fig. 7. Real part of the first two DMD mode pairs

Kutz et al. [2016]. The real part of the first two DMD
mode pairs and the real part of their amplitudes are shown
in Figs. (7) and (8), respectively. The numerical solution
xnum (t) and its approximation computed by DMD are

shown in Fig. (9). Eigenvalues of Ã are approximating
the eigenvalues of Eq. (20) (Fig. (10)). By increasing

the rank of Ã, the DMD gives better approximation
for the rightmost eigenvalues. Near the eigenvalues the
magnitude of the characteristic function (21) is small.
Thus substituting the computed eigenvalues into (21)
should result in a residual of small magnitude. This is
shown in Fig. (11) for increasing number of POD modes.



Fig. 8. The amplitudes of the first two DMD mode pairs

Fig. 9. Numerical solution and DMD approximation

Fig. 10. Comparison of the computed eigenvalues

5. DISCUSSION AND CONCLUSION

Two data-driven methods were presented to compute
the eigenvalues (and rightmost eigenvalues in particular)
of delay-differential equation based on snapshots of the
numerical solution xnum(t). This was shown by solving the
Hayes equation for a parameter pair (a, b), but numerical

Fig. 11. Residual at the approximated rightmost eigen-
value

Fig. 12. The stability chart of the Hayes equation, colored
by the number of POD modes used to reconstruct the
original data less than 0.1% error. The thick dashed
line is the stability boundary.

experiments show that our findings apply well for other
parameter pairs. Further investigations in the range of
applicability and error estimation will be the topic of a
full research paper.

There is an interesting connection between the energy
content of the POD modes and the stability of the Hayes
equation. We found that in the stable region more POD
modes were needed to reach a certain energy content.
We attribute this to the fact that in the unstable region
the most unstable modes overwhelm the others. The
region where already one mode captured the behavior
of the system, we found a single positive real leading
eigenvalue, while where the dynamics was approximated
by two modes, the leading eigenvalues were a complex
conjugate pair. In Fig. (12) we depict how many POD
modes needed to reconstruct to 99.99% of the energy
content for a given (a, b) parameter pair.
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