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Abstract: In this paper, a distributed protocol is proposed to solve the consensus tracking
problem under heterogeneous input and communication delays. In contrast to consensus
which can be achieved even without knowledge of the communication delay, tracking a
general trajectory requires precise information about the individual delays. The proposed
protocol is customized as a tracking controller in conjunction with a consensus-based estimator
for the desired trajectory. The tracking controllers accommodate the input delays whereas
communication delays govern the stability of the estimators. The tracking problem of single-
integrator agents is first addressed and later adapted for double-integrator agents. The choice
of coupled single-integrator estimators for the double-integrator agents eases gain tuning.
Simulations are carried out to demonstrate the effectiveness of the proposed technique.
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1. INTRODUCTION

Cooperative control of multi-agent system has attracted a
lot of attention in the past decade. The study of multi-
agent cooperative control include synchronization, track-
ing, formation, flocking. Several consensus algorithms have
been used to solve these problems and can be found in
Panteley and Loria (2015); Hu (2012); Cao et al. (2013);
Tanner et al. (2007) and references therein. Consensus al-
gorithms are distributive in nature and consider exchange
of information among neighbouring agents such that all
agents in the network agree on a common value (Ren et al.,
2007; Chen et al., 2011; Qin et al., 2012). In the present
work, we mainly focus on consensus tracking which means
the whole group follows autonomously a time-varying ref-
erence trajectory. In particular, we address the effect of
both communication and input delays on the stability of
our proposed consensus tracking protocol.

The problem of consensus tracking has been addressed in
Hu (2012); Peng et al. (2013); Hu et al. (2015), where the
effect of delay is not considered. In multi-agent system, in-
stantaneous exchange of information among neighbouring
agents may not be possible leading to communication de-
lay. Delays in the actuation of an agent, (dos Santos Junior
et al., 2015) are referred as input delays. In the existing
literature, two types of consensus algorithms can be found
for accommodating communication delay. The first one
deals with the relative difference of current state of the
concerned agent and the delayed state of its neighbouring
agent (Seuret et al., 2008). The second approach considers
the relative difference of delayed state of both the con-

cerned agent and its neighbouring agent (Olfati-Saber and
Murray, 2004; Zhang et al., 2017). In our work, we con-
sider the presence of communication delay and follow the
second approach. Consensus of multi-agent system with
both communication and input delays has been studied
in Tian and Liu (2008). The authors show that consensus
conditions do not depend on communication delay. How-
ever, for the tracking problem, consensus conditions may
depend both on the communication and input delay. Tian
and Liu (2009) consider diverse input delays and solve
the tracking problem for double-integrator agents when
reference trajectory has a constant velocity. Xie and Cheng
(2014) derive conditions for trajectory tracking for double-
integrator agents in the presence of homogeneous commu-
nication delays. The work in Meng et al. (2011) addresses
tracking issues when both type of delays are present and
find conditions for uniform ultimate boundedness of the
tracking errors. To the best of our knowledge, asymptotic
convergence of the tracking error to zero in the presence
of heterogeneous communication and input delays has not
been reported yet. In De et al. (2017), a consensus-based
estimator with a tracking controller has been designed to
track a time-varying trajectory in the presence of heteroge-
neous input delays with no communication delay. In this
work, we extend the control architecture reported in De
et al. (2017) to accommodate heterogeneous communica-
tion delays. The major contributions of this paper can be
summarized as

• Necessary and sufficient conditions are derived for
tracking a time-varying trajectory in the presence
of heterogeneous communication and input delays



for the tracking controller coupled with a consensus-
based estimator.

• It is found that controller and estimator gains
are inversely proportional to the input delays and
communication delays respectively. Arbitrarily large
bounded communication and input delays can be
tolerated by suitably adjusting the gains.

• Modelling the estimator as coupled single-integrator
agents helps gain tuning for double-integrator agents.
This benefit can be extended to higher order integra-
tors.

2. PROBLEM FORMULATION

The objective of a group of autonomous agents is to track
a desired trajectory in spite of heterogeneous communi-
cation and input delays. We first design a protocol for a
group of single-integrator agents, and then, extend this
idea to double-integrator agents. In our design agent i
pursues agent i + 1 if it has no information on the de-
sired trajectory, xd(t). However, when the information on

desired trajectory is available to ith agent, it pursues the
desired trajectory.

Consider a group of N agents with single-integrator dy-

namics. The dynamics of ith agent, i = 1, 2, . . . , N is

ẋi(t) =ui

(

t− τ ini
)

(1)

where xi ∈ R is the position of ith agent, and ui ∈ R is the

control input. The control input for ith agent is delayed by
τ ini . The input delay τ ini is heterogeneous through out the
network. We also consider the presence of heterogeneous
communication delay τcomi for i = 1, 2, . . . , N when

information flows from (i + 1)th agent to ith agent over
communication channel.

Assumption 1. Both the communication delays τcomi and
input delays τ ini , ∀i are constant and bounded.

We aim to design a protocol such that for any initial
position xi(0), all agents converge to the desired trajectory,
that is,

lim
t→∞

‖xd(t)− xi(t)‖ = 0 (2)

in the presence of heterogeneous communication delays
τcomi and input delays τ ini . We make the following assump-
tion along with Assumption 1:

Assumption 2. For single-integrator agents, only ẋd(t) is
available to all agents for all time.

Next, we attempt to solve the tracking problem when the
agents have double-integrator dynamics. The dynamics of

ith agent, i = 1, 2, . . . , N is given by

ẋi(t) = vi(t),

v̇i(t) =ui

(

t− τ ini
)

,

}

(3)

where xi ∈ R and vi ∈ R are the position and velocity of

ith agent, and ui ∈ R is the control input. We make the
following assumption along with Assumption 1:

Assumption 3. For double-integrator agents, only ẍd(t) is
available to all agents for all time.

In this scenario, we aim to design a protocol such that
for any initial position xi(0) and velocity vi(0), all agents
converge to the desired trajectory, that is ∀i,

lim
t→∞

‖xd(t)− xi(t)‖ = 0,

lim
t→∞

‖ẋd(t)− vi(t)‖ = 0,

}

(4)

in the presence of heterogeneous communication delays
τcomi and input delays τ ini .

3. CONSENSUS TRACKING WITH TIME-DELAYS

To track a general desired trajectory we present a
consensus-based estimator along with a tracking controller
for each agent. The purpose of the estimator is to estimate
the desired trajectory whereas the tracking controller is
responsible to reduce the error between estimates and
actual states of the agent. When one agent has information
on the desired trajectory it updates its estimator based
on the available information. In the absence of desired
trajectory information, the ith agent updates its estimate
using the information received from agent (i + 1).

3.1 Single-integrator model

The control law for single-integrator agents is designed as

ui(t) = ẋd

(

t+ τ ini
)

−Ki (xi (t)− x̂i (t)) , i = 1, 2, . . . , N,

(5)

where x̂i (t) represents estimate of desired trajectory made

by ith agent and Ki ∈ R is the respective controller gain.
The estimator has the dynamics

˙̂xi(t) =ẋd(t) + ci (1− aid) (x̂i+1 (t− τcomi )

−x̂i (t− τcomi )) + γiaid (xd(t)− x̂i (t)) , (6)

where ci, γi ∈ R. The weight aid is 1 if ith agent has the
knowledge of xd(t), and 0 otherwise. Before deriving the
conditions on the design parameters, we present a lemma
which is essential to prove the necessary and sufficient
conditions for tracking.

This lemma extends the condition for the roots of the
quasipolynomial ρ1(s) = s+ ae−sτ to be in the open left-
half complex plane presented in De et al. (2017).

Lemma 1. The characteristic quasipolynomial ρ1(s) = s+
ae−sτ has all the roots in the open left-half complex plane

if and only if 0 < a <
π

2τ
.

Proof. We will prove this by the method of contradiction.
If a = 0, ρ1(s) will always has a root at the origin. Now
let a be negative. When τ = 0, the root of ρ1(s) is at
s = −a > 0. Therefore, the root is in the open right-half
complex plane. Let us analyze the behavior of the roots as
τ increases. For all the roots of ρ1(s) to have negative real
parts for some τ(> 0), roots in the open right-half plane
have to cross the imaginary axis from right-half to left-half
complex plane. As s = 0 cannot be a root for a < 0, the
roots will have to cross the imaginary axis at jω, ω > 0.

We get the root sensitivity
ds

dτ

∣

∣

∣

∣

s=jω

as

ds

dτ

∣

∣

∣

∣

s=jω

= −
∂ρ1(s)
∂τ

∂ρ1(s)
∂s

∣

∣

∣

∣

∣

s=jω

=
ase−sτ

1− aτe−sτ

∣

∣

∣

∣

s=jω

=
−s2

1 + sτ

∣

∣

∣

∣

s=jω

=
ω2

1 + jωτ
=

ω2(1− jωτ)

1 + ω2τ2
.



Hence, the root tendency is

RT|s=jω = sgn

[

Re

(

ds

dτ

∣

∣

∣

∣

s=jω

)]

= sgn

[

ω2

1 + ω2τ2

]

= +1. (7)

This signifies that if at least one root is in the open right-
half complex plane, then that particular root cannot cross
the imaginary axis from right to left, and hence, for a < 0
there always will be at least one root in the open right-
half complex plane for any delay 0 ≤ τ < ∞. When the
parameter a > 0, then following De et al. (2017) the delay
margin can be found as τ = π

2a . Therefore, all the roots
of ρ1(s) will be in the open left-half complex plane if and

only if 0 < a <
π

2τ
. �

Lemma 1 is useful for designing the parameters Ki and
ci. The necessary and sufficient conditions for tracking a
desired trajectory are presented in Theorem 1.

Theorem 1. Consider a group of Single-integrator agents
given by (1). The control law (5) along with the estimator
(6) solves the tracking problem if and only if

0 < Ki <
π

2τ ini
, ∀i,

0 < ci <
π

2τcomi

, if aid = 0,

γi > 0, if aid = 1







, ∀i.

Proof. We define two error variables as ǫi1(t) = xd(t) −
x̂i(t), and ǫi2(t) = xi(t) − x̂i(t). The tracking problem
can be seen as the convergence of the error variables

ǫ1(t) and ǫ2(t) to zero with ǫ1 = [ǫ11 ǫ21 . . . ǫN1]
⊤, and

ǫ2 = [ǫ12 ǫ22 . . . ǫN2]
⊤. Using (5) and (6), time derivative

of ǫi1(t) and ǫi2(t) can be found as

ǫ̇i1(t) =ẋd(t)− ˙̂xi(t)

=− ci (1− aid) (ǫi1 (t− τcomi )

−ǫ(i+1)1 (t− τcomi )
)

− γiaidǫi1(t), (8)

ǫ̇i2(t) =ẋi(t)− ˙̂xi(t)

=−Kiǫi2
(

t− τ ini
)

− ci (1− aid)

×
(

ǫi1 (t− τcomi )− ǫ(i+1)1 (t− τcomi )
)

− γiaidǫi1(t).
(9)

The dynamics of the errors can be represented as

ǫ̇(t) =

[

Γ 0
Γ 0

]

ǫ(t) +

N
∑

i=1

{[

Ci 0
Ci 0

]

× ǫ (t− τcomi )

}

+

N
∑

i=1

{[

0 0
0 Ai

]

ǫ
(

t− τ ini
)

}

, (10)

where ǫ(t) =
[

ǫ⊤1 (t) ǫ
⊤
2 (t)

]⊤
. The matrices Γ, Ci, and Ai

are defined in (11).

Γ =













−γ1a1d

. . .

−γiaid

. . .

−γNaNd













, Ci =













0 0 0 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 −ci (1 − aid) ci (1 − aid) · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 · · · 0 0













, Ai =













0

. . .

−Ki

. . .

0













. (11)

∆(s) = det





















sIN − Γ −
N
∑

i=1

Cie
−sτcom

i 0

−Γ −
N
∑

i=1

Cie
−sτcom

i sIN −
N
∑

i=1

Aie
−sτin

i





















= det

(

sIN − Γ −
N
∑

i=1

Cie
−sτcom

i

)

× det

(

sIN −
N
∑

i=1

Aie
−sτin

i

)

(12)

The characteristic quasipolynomial of (10) is conferred in
(12) and can be interpreted as

∆(s) = ρa(s).ρb(s), (13)

with ρa(s) =
∏N

i=1

(

s+ γiaid + ci (1− aid) e
−sτcom

i

)

, ρb(s)

=
∏N

i=1

(

s+Kie
−sτ in

i

)

. The error ǫ(t) decays to zero if

and only if all the roots of (13) are in the open left-
half complex plane. Following Lemma 1, the necessary and
sufficient conditions for the roots of ρb(s) to be in the open
left-half complex plane can be obtained as

0 < Ki <
π

2τcomi

, ∀i. (14)

For aid = 1, the root of
(

s+ γiaid + ci (1− aid) e
−sτcom

i

)

is
at s = −γi. This establishes that for stability γi > 0, when
aid = 1. When aid = 0, we require roots of

(

s+ cie
−sτcom

i

)

to have negative real parts. With the aid of Lemma 1, we
get condition on ci as 0 < ci <

π
2τcom

i

. Therefore, roots of

ρa(s) are in the open left-half complex plane if and only if

0 < ci <
π

2τcomi

, if aid = 0,

γi > 0, if aid = 1







∀i. (15)

The error ǫ(t) decays to zero if and only if the design
parameters satisfy (14) and (15). As ǫ(t) → 0, all agents
track the desired trajectory xd(t). �

Remark 1. Controller gains Ki and estimator gains ci can
be designed independently. Controller and estimator gains
are inversely proportional to τ ini and τcomi respectively.

Next, the objective is to develop a tracking algorithm
for double-integrator case. In view of this, the tracking
controller has been designed along with an estimator that
captures the structure of the estimator used in single-
integrator case. The estimator dynamics in this case re-
sembles two coupled single-integrator estimators.

3.2 Double-integrator model

The control law for the double-integrator agents is de-
signed as



ui(t) = ẍd

(

t+ τ ini
)

−Kip (xi (t)− x̂i (t))

−Kiv (vi (t)− v̂i (t)) , i = 1, 2, . . . , N, (16)

where x̂i (t) and v̂i (t) represent estimated position and

velocity of ith agent. The gains Kip,Kiv ∈ R are the
design parameters. The estimator has the dynamics

˙̂xi(t) =v̂i(t) + cip (1− aid) (x̂i+1 (t− τcomi )

−x̂i (t− τcomi )) + γipaid (xd(t)− x̂i (t))

˙̂vi(t) =ẍd(t) + civ (1− aid) (v̂i+1 (t− τcomi )

−v̂i (t− τcomi )) + γivaid (ẋd(t)− v̂i (t)) ,



















(17)

where cip, civ, γip, γiv ∈ R. Without loss of generality, we

can take Kip = βi

2 K
2
iv with βi ∈ R. Here, we present

a lemma that analyzes the characteristics of roots of
ρ2(s) = s2 + bse−sτ + ce−sτ . This is required to prove
the necessity and sufficiency of the obtained conditions.

Lemma 2. The characteristic quasipolynomial ρ2(s) =
s2 + bse−sτ + ce−sτ has all the roots in the open left
half complex plane if and only if b, c > 0, and τ <

1
√

b2 +
√
b4 + 4c2

2

tan−1

√

b2 +
√
b4 + 4c2

2c2
b.

Proof. Firstly for c = 0, ρ2(s) will have one root at
origin for any τ . Similar to Lemma 1, we will prove
by contradiction. When τ = 0, the roots are at s =
−b±

√
b2−4c
2 . It can be noted that there will be at least one

root in the closed right-half complex plane when at least
one of the coefficients of ρ2(s) is nonpositive. The root
sensitivity at jω crossing can be found as

ds

dτ

∣

∣

∣

∣

s=jω

=
bs2e−sτ + cse−sτ

2s+ b (−τse−sτ + e−sτ )− cτe−sτ

∣

∣

∣

∣

s=jω

=
ω2(c+ jωb)

−ω2bτ + 2c+ jω(b+ cτ)

=
ω2(c+ jωb)

(

(2c− ω2bτ)− jω(b+ cτ)
)

(2c− ω2bτ)2 + ω2(b+ cτ)2

Hence, the root tendency is

RT|s=jω = sgn

[

Re

(

ds

dτ

∣

∣

∣

∣

s=jω

)]

= sgn

[

ω2
(

2c2 + ω2b2
)

(2c− ω2bτ)2 + ω2(b+ cτ)2

]

= +1.

(18)

Presence of at least one root in the closed right-half
complex plane at τ = 0 and the root tendency given by
(18) reveals that the ρ2(s) has at least one root in the
closed right-half complex plane always. This contradicts
what we assume. Therefore, the necessary condition for
stability is that b, c > 0. Under this scenario, following De
et al. (2017) the condition for all roots to be in the open
left-half complex plane can be found as

τ <
1

√

b2 +
√
b4 + 4c2

2

tan−1

√

b2 +
√
b4 + 4c2

2c2
b.

�
Lemma 1 and 2 are useful to derive the necessary and
sufficient conditions for asymptotic convergence of our
control protocol for double-integrator case. The conditions
on the design parameters are presented in Theorem 2.

Theorem 2. Consider a group of double-integrator agents
given by (3). The control law (16) along with the estimator
(17) solves the tracking problem if and only if

0 < Kiv <

tan−1

(

2
βi

√

1+
√

1+β2

i

2

)

τ ini

√

1+
√

1+β2

i

2

, βi > 0, ∀i,

0 < cip, civ <
π

2τcomi

, if aid = 0,

γip, γiv > 0, if aid = 1







, ∀i.

Proof. We define error variables as δi1(t) = xd(t) −
x̂i(t), δi2(t) = ẋd(t) − v̂i(t), δi3(t) = xi(t) − x̂i(t),

δi4(t) = vi(t)−v̂i(t). Also, we define δ1 = [δ11 δ21 . . . δN1]
⊤
,

δ2 = [δ12 δ22 . . . δN2]
⊤
, δ3 = [δ13 δ23 . . . δN3]

⊤
and δ4 =

[δ14 δ24 . . . δN4]
⊤

to express the error dynamics in a com-
pact form. Using (16) and (17), the time derivative of
δi1(t), δi2(t), δi3(t) and δi4(t) can be found as

δ̇i1(t) =δi2(t)− cip (1− aid) (δi1 (t− τcomi )

−δ(i+1)1 (t− τcomi )
)

− γipaidδi1(t), (19)

δ̇i2(t) =− civ (1− aid) (δi2 (t− τcomi )

−δ(i+1)2 (t− τcomi )
)

− γivaidδi2(t), (20)

δ̇i3(t) =δi4(t)− cip (1− aid) (δi1 (t− τcomi )

−δ(i+1)1 (t− τcomi )
)

− γipaidδi1(t), (21)

δ̇i4(t) =−Kipδi3
(

t− τ ini
)

−Kivδi4
(

t− τ ini
)

+ δ̇i2(t).
(22)

Let us define δ(t) =
[

δ⊤1 (t) δ
⊤
2 (t) δ

⊤
3 (t) δ

⊤
4 (t)

]⊤
and hence

errors (19), (20), (21), and (22) can be expressed in a more
compact form as

δ̇(t) =







Γp IN 0 0
0 Γv 0 0
Γp 0 0 IN
0 Γv 0 0






δ(t) +

N
∑

i=1

















Cip 0 0 0
0 Civ 0 0
Cip 0 0 0
0 Civ 0 0







× δ (t− τcomi )

}

+
N
∑

i=1

















0 0 0 0
0 0 0 0
0 0 0 0
0 0 Aip Aiv






δ
(

t− τ ini
)











.

(23)

Here, all the matrices, Γp, Γv, Cip, Civ , Aip, Aiv are defined
in (25). The characteristic quasipolynomial of (23) is con-
ferred in (26).

Γp =













−γ1pa1d

. . .

−γipaid

. . .

−γNpaNd













, Cip =













0 0 0 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 −cip (1 − aid) cip (1 − aid) · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 · · · 0 0













, Aip =













0

. . .

−Kip

. . .

0













, (24)



Γv =













−γ1va1d

. . .

−γivaid

. . .

−γNvaNd













, Civ =













0 0 0 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 −civ (1 − aid) civ (1 − aid) · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 · · · 0 0




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
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
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. (25)

∆(s) = det
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N
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−sτcom

i −IN 0 0
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N
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−sτcom

i 0 0
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N
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−sτcom

i 0 sIN −IN

0 −Γv −
N
∑

i=1
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i −
N
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Aipe
−sτin
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N
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i


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
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
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
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
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(26)

We simplify the characteristic quasipolynomial as

∆(s) = det

(

sIN − Γp −
N
∑

i=1

Cipe
−sτcom

i

)

× det

(

sIN − Γv −
N
∑

i=1

Cive
−sτcom

i

)

× det













sIN −IN

−
N
∑

i=1

Aipe
−sτ in

i sIN −
N
∑

i=1

Aive
−sτ in

i













= ρ̄a(s).ρ̄b(s).ρ̄c(s), (27)

with ρ̄a(s) =
∏N

i=1

(

s+ γipaid + cip (1− aid) e
−sτcom

i

)

,

ρ̄b(s) =
∏N

i=1

(

s+ γivaid + civ (1− aid) e
−sτcom

i

)

, and ρ̄c(s)

=
∏N

i=1

(

s2 +Kivse
−sτ in

i +Kipe
−sτ in

i

)

. Our control al-

gorithm will converge if and only if all the roots of the
quasipolynomials ρ̄a(s), ρ̄b(s), ρ̄c(s) reside in the open left-
half complex plane. According to Lemma 2, the conditions
on controller gains has been found as Kip,Kiv > 0, and

τ ini <
1

√

K2

iv
+
√

K4

iv
+4K2

ip

2

tan−1

√

√

√

√

K2
iv +

√

K4
iv + 4K2

ip

2K2
ip

Kiv.

Therefore, with Kip = βi

2 K
2
iv, ρc(s) has roots in the open

left-half complex plane if and only if

0 < Kiv <

tan−1

(

2
βi

√

1+
√

1+β2

i

2

)

τ ini

√

1+
√

1+β2

i

2

, βi > 0, ∀i. (28)

The necessary and sufficient conditions for the roots of
ρ̄a(s), and ρ̄b(s) to have negative real parts can be obtained
following the proof of Theorem 1. We get the conditions
on cip and civ as

0 < cip, civ <
π

2τcomi

, if aid = 0,

γip, γiv > 0, if aid = 1







, ∀i. (29)

Therefore, error δ(t) converge to zero if and only if (28)
and (29) are satified. This means position and velocity of
each agent converges to that of desired trajectory. �

4. SIMULATION RESULTS

In this section, we show trajectory tracking for a group of 4
agents for both the single-integrator and double-integrator
case. The desired trajectory in both the cases are same
and given by xd(t) = 1 + 10 sin(t). Only agent 1 has the
knowledge of the desired trajectory xd(t).

4.1 Illustration 1: Single-Integrator Case

The communication delays and input delays are hetero-
geneous. The initial position, input delays and commu-
nication delays for each agent are tabulated in Table 1.
Without loss of generality, we can take initial estimates of
the desired trajectory as zero.

Agents State xi (t0) Input delay τ
in

i
(in seconds) Communication delay τ

com

i
(in

seconds)

Agent 1 2 0.3 1

Agent 2 5 0.6 0.5

Agent 3 12 0.9 0.7

Agent 4 15 1.2 0.1

Table 1. Initial positions, input delays and
communication delays in a group of 4 agents

According to Theorem 1, we select controller gains as
K1 = 3.6652, K2 = 1.8326, K3 = 1.2217, K4 = 0.9163 and
estimator gains as c2 = 2.1991, c3 = 1.5708, c4 = 10.9956.
As xd(t) is known to only agent 1, we have to ensure
γ1 > 0. We choose γ1 = 1. The error between the position
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Fig. 1. Error between position of agents and xd(t).

of agents and the desired trajectory is shown in Fig. 1.
It shows that the proposed control methodology ensures
trajectory tracking.



4.2 Illustration 2: Double-Integrator Case

The initial position, input delays and communication
delays are same as given in Illustration 4.1. The initial
velocity for the 4-agent system is given by v1 (t0) = 3,
v2 (t0) = 5, v3 (t0) = 6, v4 (t0) = 9. Initially, all the
estimates are zero. According to Theorem 2, we design
controller parameters as K1v = 2, K2v = 1.5, K3v = 1,
K4v = 0.5, and βi = 1, ∀i. The estimator gains are
c2p = 1.5708, c3p = 1.1220, c4p = 7.8540, c2v = 2.1991,
c3v = 1.5708, c4v = 10.9956. As only agent 1 has the
knowledge of xd(t), we need to design γ1p and γ1v. We set
these two parameters as 1. The error between the states of
each agent and the desired trajectory are shown in Figs.
2 and 3. It can be that the errors decay to zero and all
agents track the desired trajectory.
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Fig. 2. Error between position of agents and xd(t).
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5. CONCLUSION

The effect of heterogeneous input delays and communica-
tion delays in the consensus tracking problem is investi-
gated. Necessary and sufficient conditions are derived for
the proposed protocol. Controller and estimator gains are
designed independently and they have inverse relationship
with input and communication delays respectively. In fu-
ture, the effect of time-varying delays and information loss
can be investigated

REFERENCES

Cao, Y., Yu, W., Ren, W., and Chen, G. (2013). An
overview of recent progress in the study of distributed
multi-agent coordination. IEEE Transactions on Indus-
trial Informatics, 9(1), 427–438.
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