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Abstract: We consider a two-person zero-sum differential game in which a motion of the
dynamical system is described by neutral-type functional-differential equations in Hale’s form
and the quality index estimates a motion history realized up to the terminal instant of time
and includes integral estimations of control realizations of the players. The formalization of the
game in the class of pure positional strategies is given, the corresponding notions of the value
functional and optimal control strategies of the players are defined. For the value functional,
we derive a Hamilton-Jacobi type equation with coinvariant derivatives. It is proved that, if a
solution of this equation satisfies certain smoothness conditions, then it coincides with the value
functional. On the other hand, it is proved that, at the points of coinvariant differentiability, the
value functional satisfies the derived Hamilton-Jacobi equation. Therefore, this equation can be
called the Hamilton-Jacobi-Bellman-Isaacs equation for neutral-type systems.
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1. INTRODUCTION

The paper is devoted to the development of differen-
tial games theory (see, e.g., Isaacs (1965); Krasovskii
and Subbotin (1988); Osipov (1971)) and the corre-
sponding Hamilton-Jacobi (HJ) equations (see, e.g., Sub-
botin (1995); Crandall and Lions (1983); Clarke, Ledyaev,
Stern and Wolenski (1998); Lukoyanov (2000, 2003)) for
functional-differential neutral-type systems.

For a dynamical system described by neutral-type func-
tional-differential equations in Hale’s form (see Hale and
Cruz (1970)), a two-person zero-sum differential game is
considered. The optimized quality index of the control
process consists of two terms. The first one estimates the
motion history realized up to the terminal instant of time.
The second one contains an integral estimation of control
realizations of players. Within the game-theoretical ap-
proach of Krasovskii and Subbotin (1988); Krasovskii and
Krasovskii (1995), the differential game is formalized in the
classes of pure positional strategies (see also Gomoyunov,
Lukoyanov and Plaksin (2017)). Basing on the notion of
coinvariant derivatives (see Kim (1999)), for the value
functional of this differential game, a HJ type equation is
derived. The main difference between this equation and the
HJ equation for retarded functional-differential systems
(see Lukoyanov (2000, 2003)) is the presence of a new
term. It leads to difficulties in the analysis of the derived
HJ equation and motivates its study. It is proved that
a solution of this equation, satisfying certain smoothness
? This work is supported by the Grant of the President of the
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conditions, is the value functional of the initial differential
game. Moreover, it is shown that the players’ strategies
constructed by the extremal shift method in the direction
of the coinvariant gradient of this functional are optimal.
Using an appropriate notion of characteristic complexes
(see, e.g., Subbotin (1995); Lukoyanov (2000)), it is proved
that, at the points of coinvariant differentiability, the value
functional satisfies the derived HJ equation. Thus, by
analogy with Krasovskii and Subbotin (1988); Subbotin
(1995); Lukoyanov (2003), this equation can be considered
as the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation
for neutral-type systems.

2. DIFFERENTIAL GAME

We consider a two-person zero-sum differential game
for the dynamical system described by the neutral-type
functional-differential equation in Hale’s form

d

dt

(
x[t]− g

(
t, xt[·]

))
= f

(
t, xt[·], u[t], v[t]

)
,

t ∈ [t0, ϑ], x[t] ∈ Rn, u[t] ∈ U, v[t] ∈ V,
(1)

and the quality index

γ = σ
(
xϑ[·]

)
+

∫ ϑ

t∗

χ
(
ξ, xξ[·], u[ξ], v[ξ]

)
dξ. (2)

Here t is the time variable; x[t] is the value of the state
vector at the time t; t0 and ϑ are fixed instants of time;
t∗ ∈ [t0, ϑ] is the instant of the control process beginning;
h > 0 is the delay constant; xt[·] is the motion history
on the interval [t − h, t] defined by xt[ξ] = x[t + ξ],
ξ ∈ [−h, 0]; u[t] and v[t] are control actions of the first



and the second players, respectively; U and V are known
compact subsets of finite-dimensional spaces. The first
player aims to minimize the value γ of the quality index,
while the second player aims to maximize it.

Below, we denote by ‖ · ‖ and 〈·, ·〉 the Euclidean norm
and the scalar product of vectors, respectively. Also, we
denote by Lip = Lip([−h, 0],Rn) the space of all Lipschitz
continuous functions from [−h, 0] to Rn endowed with the
supremum norm ‖ · ‖∞. For a number ν > 0, we define

Dν :=
{
w[·] ∈ Lip:

∥∥w[·]
∥∥
∞ ≤ ν,∥∥w[ξ′]− w[ξ′′]

∥∥ ≤ ν∣∣ξ′ − ξ′′∣∣, ξ′, ξ′′∈ [−h, 0]
}
. (3)

Note that Dν is a compact subset of Lip.

A pair (t, w[·]) ∈ [t0, ϑ]×Lip is called a position of system
(1). The set of all positions is denoted by G = [t0, ϑ]×Lip.

It is assumed that the mappings g : G 7→ Rn, f : G× U×
V 7→ Rn, σ : Lip 7→ R and χ : G×U×V 7→ R from (1), (2)
are continuous and satisfy the following conditions:

(g) There exists h0 ∈ (0, h) such that, for any ν > 0, there
exists λg > 0 such that∥∥g(t, w[·]

)
− g
(
τ, r[·]

)∥∥
≤ λg

(∣∣t− τ ∣∣+ max
ξ∈[−h,−h0]

∥∥w[ξ]− r[ξ]
∥∥)

for all (t, w[·]), (τ, r[·]) ∈ [t0, ϑ]×Dν .

(f) There exists αf > 0 such that∥∥f(t, w[·], u, v
)∥∥ ≤ αf(1 +

∥∥w[·]
∥∥
∞

)
for any (t, w[·]) ∈ G, u ∈ U and v ∈ V.

(f, χ.1) For any ν > 0, there exist λf , λχ > 0 such that∥∥f(t, w[·], u, v
)
− f

(
t, r[·], u, v

)∥∥ ≤ λf∥∥w[·]− r[·]
∥∥
∞,∣∣χ(t, w[·], u, v

)
− χ

(
t, r[·], u, v

)∣∣ ≤ λχ∥∥w[·]− r[·]
∥∥
∞

for any (t, w[·]), (t, r[·]) ∈ [t0, ϑ]×Dν , u ∈ U and v ∈ V.

(f, χ.2) For any (t, w[·]) ∈ G and s ∈ Rn, we have

min
u∈U

max
v∈V

(〈
f
(
t, w[·], u, v

)
, s
〉

+ χ
(
t, w[·], u, v

))
= max

v∈V
min
u∈U

(〈
f
(
t, w[·], u, v

)
, s
〉

+ χ
(
t, w[·], u, v

))
.

Let an initial position (t∗, x∗[·]) ∈ G, t∗ < ϑ be chosen. By
admissible control realizations of the first and the second
players, we mean measurable functions u[·] : [t∗, ϑ) 7→ U
and v[·] : [t∗, ϑ) 7→ V, respectively. Under the conditions
above, following, for example, the scheme from Filippov
(1988) (see also Hale and Cruz (1970)), one can show
that such realizations uniquely generate from the posi-
tion (t∗, x∗[·]) the motion x[·] : [t∗ − h, ϑ] 7→ Rn of sys-
tem (1) that is an absolutely continuous function which
satisfies xt∗ [·] = x∗[·] and, together with u[·] and v[·],
satisfies equation (1) almost everywhere on [t∗, ϑ]. The
triple {x[·], u[·], v[·]} is called a control process realization.
Note that this control process realization uniquely defines
the value of quality index (2).

According to Krasovskii and Subbotin (1988); Krasovskii
and Krasovskii (1995) (see also Gomoyunov, Lukoyanov
and Plaksin (2017) for neutral-type systems), differential
game (1), (2) is posed as follows.

By a control strategy of the first player, we mean an
arbitrary function U : G 7→ U. Let us fix an initial position
(t∗, x∗[·]) ∈ G and a partition of the interval [t∗, ϑ] :

∆δ =
{
τj : τ0 = t∗, 0 < τj−τj−1 ≤ δ, j = 1, l, τl = ϑ

}
. (4)

The pair {U,∆δ} defines a control law that forms a
piecewise constant (and therefore, admissible) realization
u[·] according to the following step-by-step rule:

u[t] = U(τj , xτj [·]), t ∈ [τj , τj+1), j = 0, l − 1. (5)

This control law together with an admissible control re-
alization v[·] of the second player uniquely generate the
control process realization {x[·], u[·], v[·]} and define the
value γ = γ(t∗, x∗[·];U,∆δ; v[·]) of quality index (2).

The guaranteed result of the strategy U is defined by

ρu
(
t∗, x∗[·];U

)
= lim

δ↓0
sup
∆δ

sup
v[·]

γ
(
t∗, x∗[·];U,∆δ; v[·]

)
. (6)

The optimal guaranteed result of the first player is the
following value:

ρ◦u
(
t∗, x∗[·]

)
= inf

U
ρu
(
t∗, x∗[·];U

)
. (7)

A strategy U◦ of the first player is called optimal if

ρu
(
t∗, x∗[·];U◦

)
= ρ◦u

(
t∗, x∗[·]

)
.

Similarly, with the corresponding changes, for the second
player, we define a control strategy V : G 7→ V, control law
{V,∆δ} that forms a realization v[·] by

v[t] = V (τj , xτj [·]), t ∈ [τj , τj+1), j = 0, l − 1,

the guaranteed result of the strategy V

ρv
(
t∗, x∗[·];V

)
= lim

δ↓0
inf
∆δ

inf
u[·]

γ
(
t∗, x∗[·];u[·];V,∆δ

)
, (8)

and the optimal guaranteed result

ρ◦v
(
t∗, x∗[·]

)
= sup

V
ρv
(
t∗, x∗[·];V

)
. (9)

A strategy V ◦ of the second player is called optimal if

ρv
(
t∗, x∗[·];V ◦

)
= ρ◦v

(
t∗, x∗[·]

)
.

Due to definitions (6)–(9), we have

ρ◦v
(
t∗, x∗[·]

)
≤ ρ◦u

(
t∗, x∗[·]

)
,
(
t∗, x∗[·]

)
∈ G. (10)

If the equality ρ◦
(
t∗, x∗[·]

)
:= ρ◦u

(
t∗, x∗[·]

)
= ρ◦v

(
t∗, x∗[·]

)
holds for any (t∗, x∗[·]) ∈ G, then ρ◦ : G 7→ R is called the
value functional of differential game (1), (2).

One can show (see, e.g., Krasovskii and Subbotin (1988);
Krasovskii and Krasovskii (1995) and also Gomoyunov,
Lukoyanov and Plaksin (2017)) that the value functional
ρ◦ is continuous and has the following properties:

(ρ.1) The following equality is valid:

ρ◦
(
ϑ, x∗[·]

)
= σ

(
x∗[·]

)
, x∗[·] ∈ Lip.

(ρ.2) For any (t∗, x∗[·]) ∈ G, t∗ ∈ [t∗, ϑ], ε > 0 and
any admissible realization v[·], there exists an admissible
realization u[·] such that, for the corresponding control
process realization {x[·], u[·], v[·]}, we have

ρ◦
(
t∗, xt∗ [·]

)
+

∫ t∗

t∗

χ
(
ξ, xξ[·], u[ξ], v[ξ]

)
dξ ≤ ρ◦

(
t∗, x∗[·]

)
+ε.

(ρ.3) For any (t∗, x∗[·]) ∈ G, t∗ ∈ [t∗, ϑ], ε > 0 and
any admissible realization u[·], there exists an admissible
realization v[·] such that, for the corresponding control
process realization {x[·], u[·], v[·]}, we have

ρ◦
(
t∗, xt∗ [·]

)
+

∫ t∗

t∗

χ
(
ξ, xξ[·], u[ξ], v[ξ]

)
dξ ≥ ρ◦

(
t∗, x∗[·]

)
−ε.



Note that, for similar differential games, the questions
of existence of the value functional and players’ optimal
strategies are considered in Gomoyunov, Lukoyanov and
Plaksin (2017); Gomoyunov and Lukoyanov (2018).

3. HJBI EQUATION

Let (t, w[·]) ∈ G. Denote

X
(
t, w[·]

)
:=
{
x[·] ∈ Lip

(
[t− h, ϑ],Rn

)
: xt[·] = w[·]

}
.

Following Kim (1999); Lukoyanov (2000), a functional
ϕ : G 7→ R is called coinvariant differentiable (ci-diffe-
rentiable) at a point (t, w[·]) if there exist ∂tϕ(t, w[·]) ∈ R
and ∇ϕ(t, w[·]) ∈ Rn such that, for any x[·] ∈ X(t, w[·]),
the following relation holds:

ϕ
(
τ, xτ [·]

)
− ϕ

(
t, w[·]

)
= ∂tϕ

(
t, w[·]

)
(τ − t)

+ 〈xτ [0]− w[0],∇ϕ
(
t, w[·]

)
〉+ o(τ − t), τ ∈ [t, ϑ],

where o(τ − t) depends on the choice of the instant t and
the function x[·], and o(τ−t)/(τ−t)→ 0 as τ → t+0. The
values ∂tϕ(t, w[·]) and ∇ϕ(t, w[·]) are called ci-derivatives
of ϕ at the point (t, w[·]) (also, ∇ϕ(t, w[·]) is called the ci-
gradient of ϕ). One can show uniqueness of ci-derivatives.

Similarly, a mapping G 3 (t, w[·]) 7→ ψ = (ψ1, ..., ψn) ∈ Rn
is called ci-differentiable at a point (t, w[·]) if the function-
als ψi : G 7→ R, i = 1, n, are ci-differentiable at this point.
In this case, we denote

∂tψ
(
t, w[·]

)
=
(
∂tψ1

(
t, w[·]

)
, . . . , ∂tψn

(
t, w[·]

))
,

∇ψ
(
t, w[·]

)
=
(
∇ψ1

(
t, w[·]

)
, . . . ,∇ψn

(
t, w[·]

))
.

By the mapping g from (1), we introduce the set

G∗ =
{(
t, w[·]

)
∈ G : g is ci-differentiable at

(
t, w[·]

)
and ∇g

(
t, w[·]

)
= 0
}
. (11)

The lemma below establishes some ci-differentiability
properties of g.

Lemma 1. Let (t∗, x∗[·]) ∈ G and x[·] ∈ X(t∗, x∗[·]). Then,
for almost all t ∈ [t∗, ϑ], we have (t, xt[·]) ∈ G∗ and

∂tg
(
t, xt[·]

)
=

d

dt

(
g
(
t, xt[·]

))
. (12)

Proof. By (g), the function a[t] := g(t, xt[·]), t ∈ [t∗, ϑ],
is Lipshitz continuous. Therefore, it is differentiable for
almost all t ∈ (t∗, ϑ). Let t ∈ (t∗, ϑ) be such that da[t]/ dt
exists and y[·] ∈ X(t, xt[·]). Define

θ(τ−t) := g
(
τ, yτ [·]

)
−g
(
t, xt[·]

)
−(τ−t) da[t]/ dt, τ ∈ [t, ϑ].

From (g) it follows that

g
(
τ, yτ [·]

)
= g
(
τ, xτ [·]

)
, τ ∈ [t,min{t+ h0, ϑ}].

Hence, we have θ(τ − t)/(τ − t)→ 0 as τ → t+0. It means
that the mapping g is ci-differentiable at the point (t, xt[·]).
Further, by uniqueness of ci-derivatives, we obtain the
inclution (t, xt[·]) ∈ G∗ and equality (12). �

For differential game (1), (2), we define the Hamiltonian

H
(
t, w[·], s

)
:= min

u∈U
max
v∈V

(
〈f
(
t, w[·], u, v

)
, s〉

+ χ
(
t, w[·], u, v

))
,
(
t, w[·]

)
∈ G, s ∈ Rn. (13)

and consider, for a functional ϕ : G 7→ R, the HJ equation

∂tϕ
(
t, w[·]

)
+ 〈∂tg

(
t, w[·]

)
,∇ϕ

(
t, w[·]

)
〉

+H
(
t, w[·],∇ϕ

(
t, w[·]

))
= 0,

(
t, w[·]

)
∈ G∗, (14)

with the terminal condition

ϕ
(
ϑ,w[·]

)
= σ

(
w[·]
)
, w[·] ∈ Lip. (15)

The main difference between equation (14) and the HJ
equation for retarded functional-differential systems (see,
e.g., Lukoyanov (2000, 2003)) is the presence of the term
〈∂tg(t, w[·]),∇ϕ(t, w[·])〉. Since this term is well-defined
only for (t, w[·]) ∈ G∗, equation (14) is also considered only
for (t, w[·]) ∈ G∗. Nevertheless, a solution ϕ of problem
(14), (15) should be defined on the whole set G.

4. OPTIMAL STRATEGIES

Let us consider a functional ϕ : G 7→ R satisfying the
following smoothness conditions:

(ϕ.1) For any ν > 0, there exists λϕ > 0 such that∣∣ϕ(t, w[·]
)
− ϕ

(
τ, r[·]

)∣∣ ≤ λϕ(∣∣t− τ ∣∣+
∥∥w[·]− r[·]

∥∥
∞

)
for any (t, w[·]), (τ, r[·]) ∈ [t0, ϑ]×Dν .

(ϕ.2) The functional ϕ is ci-differentiable on the set G∗.

(ϕ.3) There exist instants t0 < t1 < . . . < tl = ϑ such that,
for any η ∈ (0,∆t), where ∆t = min{ti − ti−1, i = 1, l},
and any ν > 0, the ci-gradient ∇ϕ(t, w[·]) is uniformly
continuous on the set (∪ li=1[ti−1, ti − η]×Dν) ∩G∗.
Lemma 2. Let a functional ϕ : G 7→ R satisfy (ϕ.1) and
(ϕ.2). Then, for any ν > 0, there exists K∇ > 0 such that∥∥∇ϕ(t, w[·]

)∥∥ ≤ K∇, (t, w[·]
)
∈
(
[t0, ϑ]×Dν

)
∩G∗. (16)

Proof. Let λϕ be defined by ν∗ = ν+ ν(ϑ− t0) according
to (ϕ.1). Put K∇ = 2λϕ. Let (t, w[·]) ∈ ([t0, ϑ]×Dν)∩G∗.
If ∇ϕ(t, w[·]) = 0, then inequality (16) is obviously valid.
Let ∇ϕ(t, w[·]) 6= 0. Let functions x̃[·], x̂[·] ∈ X(t, w[·]) be
defined for τ ∈ [t, ϑ] by the following rule:

x̃[τ ] = w[0], x̂[τ ] = w[0] + ν(τ − t) ∇ϕ(t, w[·])
‖∇ϕ(t, w[·])‖

.

Let τ ∈ [t, ϑ]. Due to (ϕ.2), we have

ϕ
(
τ, x̂τ [·]

)
− ϕ

(
τ, x̃τ [·]

)
=
(
ϕ
(
τ, x̂τ [·]

)
− ϕ

(
t, w[·]

))
−
(
ϕ
(
τ, x̃τ [·]

)
− ϕ

(
t, w[·]

))
= ν

∥∥∇ϕ(t, w[·])
∥∥(τ − t) + o1(τ − t)− o2(τ − t). (17)

Moreover, since the inclusions x̃τ [·], x̂τ [·] ∈ Dν∗ are valid,
due to (ϕ.1), we obtain∣∣ϕ(τ, x̃τ [·]

)
− ϕ

(
τ, x̂τ [·]

)∣∣ ≤ λϕ(∥∥x̃τ [·]− w[·]
∥∥
∞

+
∥∥x̂τ [·]− w[·]

∥∥
∞

)
≤ 2λϕν(τ − t). (18)

Inequality (16) follows from the relations (17) and (18), if
we divide them by (τ − t) and tend τ to t. �

In order to define players’ control strategies by the ex-
tremal shift method in the direction of ∇ϕ(t, w[·]), this
ci-gradient should be defined not only for (t, w[·]) ∈ G∗
(see (ϕ.2)), but for (t, w[·]) ∈ [t0, ϑ) × Lip. Therefore, let
us define a mapping Φ: [t0, ϑ)×Lip 7→ Rn by the following
rule: if (t, w[·]) ∈ G∗, then Φ(t, w[·]) := ∇ϕ(t, w[·]); if
(t, w[·]) ∈ ([t0, ϑ)× Lip) \G∗, then

Φ
(
t, w[·]

)
:= lim

k→∞
∇ϕ
(
tk, xtk [·]

)
, (19)

where x[·] ∈ X(t, w[·]) and the sequence tk, k = 1, 2, . . . , is
such that (tk, xtk [·]) ∈ G∗ for any k = 1, 2, . . . ; tk → t+ 0



when k → ∞; and the sequence ∇ϕ(tk, xtk [·]) has a limit
when k → ∞. The existence of such a sequence follows
from Lemmas 1 and 2. Moreover, using (ϕ.3), one can
show that the value Φ(t, w[·]) does not depend on the
choice of the function x[·] ∈ X(t, w[·]) and the sequence tk,
k = 1, 2, . . ., satisfying the conditions mentioned above.

The following properties of Φ can be proved:

(Φ.1) For any ν > 0, for the number K∇ from Lemma 2,
we have∥∥Φ

(
t, w[·]

)∥∥ ≤ K∇, (
t, w[·]

)
∈ [t0, ϑ)×Dν .

(Φ.2) Let ti, i = 0, l, and ∆t be taken from (ϕ.3). Then, for
any η ∈ (0,∆t) and any ν > 0, the mapping Φ is uniformly
continuous on ∪ li=1[ti−1, ti − η]×Dν .

Let us consider the following players’ control strategies:

U◦
(
t, w[·]

)
∈argmin

u∈U
max
v∈V

s
(
t, w[·], u, v

)
,

V ◦
(
t, w[·]

)
∈argmax

v∈V
min
u∈U

s
(
t, w[·], u, v

)
,

(20)

where
(
t, w[·]

)
∈ [t0, ϑ)× Lip and

s
(
t, w[·], u, v

)
= 〈f

(
t, w[·], u, v

)
,Φ
(
t, w[·]

)
〉+χ

(
t, w[·], u, v

)
.

Theorem 1. Let a continuous functional ϕ : G 7→ R sat-
isfy HJ equation (14) with terminal condition (15) and
the smoothness conditions (ϕ.1)–(ϕ.3). Then the control
strategies U◦ and V ◦ defined by (20) are optimal, and ϕ
is the value functional of differential game (1), (2).

Proof. The proof is carried out by the scheme from
Lukoyanov (2003). Let (t∗, x∗[·]) ∈ G. If t∗ = ϑ, then the
validity of the theorem follows from (ρ.1) and (15). Let
t∗ < ϑ. In accordance with (7), (9) and (10), to prove the
theorem, it is sufficient to prove the inequalities

ρu
(
t∗, x∗[·];U◦

)
≤ ϕ

(
t∗, x∗[·]

)
≤ ρv

(
t∗, x∗[·];V ◦

)
. (21)

Let us prove the first one. Due to (6), we should show
that, for any ζ > 0, there exists δ > 0 such that the
following statement is valid. Let ∆δ be a partition (4).
Then, for the control process realization {x[·], u[·], v[·]}
generated by the control law of the first player {U◦,∆δ}
and an admissible control realization of the second player
v[·], the value γ = γ

(
t∗, x∗[·];U◦,∆δ; v[·]

)
of quality index

(2) satisfies the inequality

γ = σ
(
xϑ[·]

)
+

∫ ϑ

t∗

χ
(
ξ, xξ[·], u[ξ], v[ξ]

)
dξ

≤ ϕ
(
t∗, x∗[·]

)
+ ζ. (22)

Let X∗ be the set of all functions x[·] ∈ X(t∗, x∗[·])
satisfying the following inequality for almost all t ∈ [t∗, ϑ]:∥∥∥ d

dt

(
x[t]− g

(
t, xt[·]

))∥∥∥ ≤ αf(1 +
∥∥xt[·]∥∥∞). (23)

Here αf is taken from (f). One can show that, due to (g),
there exist a number ν > 0 such that

xt[·] ∈ Dν (24)

for any t ∈ [t∗, ϑ] and x[·] ∈ X∗, where Dν is defined by (3).

Let ti, i = 0, l, and ∆t be taken from (ϕ.3). Denote
i∗ = min{i = 1, l : t∗ < ti}. By the continuity of χ and
ϕ, due to (24), one can choose η > 0 such that∣∣∣∣ϕ(t, xt[·])+∫ t

τ

χ
(
ξ, xξ[·], u[ξ], v[ξ]

)
dξ−ϕ

(
τ, xτ [·]

)∣∣∣∣ ≤ ζ/(4l),

for any t, τ ∈ [ti − η, ti + η] ∩ [t∗, ϑ], i = i∗, l, x[·] ∈ X∗,
and any admissible realizations u[·], v[·].
Denote ζ∗ = ζ/(4(ϑ − t0)). By the continuity of f and χ,
taking (Φ.1), (Φ.2) and (24) into account, for the functions
H and s (see (13) and (20)), one can choose δ ∈ (0, η) such
that, for any x[·] ∈ X∗, i = i∗, l, t, τ ∈ [ti−1, ti] ∩ [t∗, ϑ],
u ∈ U and v ∈ V, if |t− τ | ≤ δ, then∥∥s(t, xt[·], u, v)− s(τ, xτ [·], u, v

)∥∥ ≤ ζ∗,∥∥H(t, xt[·],Φ(t, xt[·]))−H(τ, xτ [·],Φ
(
τ, xτ [·]

))∥∥≤ζ∗. (25)

Let us show that this δ satisfies the statement above. Let
∆δ be a partition (4) and the control process realization
{x[·], u[·], v[·]} be generated by the control law {U◦,∆δ}
and an admissible realization v[·]. Note that, according to
(f) and (23), we have x[·] ∈ X∗. Denote

ω[t] := ϕ
(
t, xt[·]

)
+

∫ t

t∗

χ
(
ξ, xξ[·], u[ξ], v[ξ]

)
dξ, t ∈ [t∗, ϑ].

So, we have ω[t∗] = ϕ
(
t∗, x∗[·]

)
and ω[ϑ] = γ. Due to the

choice of δ, for every i = i∗, l, there exists ki ∈ N such
that τki ∈ ∆δ and ti ≤ τki ≤ ti + η. Set ki∗−1 = 1. In
particular, we have τki∗−1 = t∗ and τkl = ϑ. According to
the choice of η, we obtain

ω[ϑ] = ω[t∗] +

l∑
i=i∗

(
ω[ti − η]− ω[τki−1 ]

)
+

l∑
i=i∗

(
ω[τki ]− ω[ti − η]

)
≤

l∑
i=i∗

∫ ti−η

τki−1

dω[ξ]

dξ
dξ + ζ/2.

Hence, to prove inequality (22), it is sufficient to show that

d

dt
ω[t]≤2ζ∗ for almost all t ∈ [τki−1

, ti−η], i = i∗, l. (26)

Let i = i∗, l and Ti be the set of all t ∈ (τki−1
, ti − η) such

that (t, xt[·]) ∈ G∗ and the derivatives dϕ(t, xt[·])/dt and
dx[t]/ dt exist. By Lemma 1 and (ϕ.1), the measure of the
set [τki−1

, ti−η]\Ti equals zero. For any t ∈ Ti, using (ϕ.2)
and (14), where, according to Lemma 1 and the definition
of Φ, we substitute dg(t, xt[·])/dt and Φ(t, xt[·]) instead
of ∂tg(t, xt[·]) and ∇ϕ(t, xt[·]), respectively, we deduce

d

dt

(
ϕ
(
t, xt[·]

))
= lim
τ→t+0

ϕ(τ, xτ [·])− ϕ(t, xt[·])
τ − t

= ∂tϕ
(
t, xt[·]

)
+ 〈 dx[t]

dt
,∇ϕ

(
t, xt[·]

)
〉

=〈 d

dt

(
x[t]−g

(
t, xt[·]

))
,Φ
(
t, xt[·]

)
〉−H

(
t, xt[·],Φ

(
t, xt[·]

))
.

Thus, for almost all t ∈ [τki−1
, ti − η], we have

d

dt
ω[t] =

d

dt

(
ϕ
(
t, xt[·]

))
+ χ

(
t, xt[·], u[t], v[t]

)
= s
(
t, xt[·], u[t], v[t]

)
−H

(
t, xt[·],Φ

(
t, xt[·]

))
.

(27)

According to definition (20) of the strategy U◦ and taking
into account definition (13) of H, for any j = ki−1, ki and
t ∈ [τj , τj+1] ∩ [τki−1

, ti − η], we obtain

s
(
τj , xτj [·], u[t], v[t]

)
= s
(
τj , xτj [·], U◦

(
τj , xτj [·]

)
, v[t]

)
≤ max

v∈V
s
(
τj , xτj [·], U◦

(
τj , xτj [·]

)
, v
)

= H
(
τj , xτj [·],Φ

(
τj , xτj [·]

))
. (28)

From (25), (27) and (28), we conclude (26). Thus, the first
inequality in (21) is proved. Due to (f, χ.2), the second
inequality in (21) can be proved in a similar way. �



5. CI-DIFFERENTIABILITY PROPERTIES OF
THE VALUE FUNCTIONAL

In order to prove the next theorem, following the ideas
from Subbotin (1995) (see also Lukoyanov (2000)), we
define auxiliary characteristic complexes and establish
stability properties of the value functional of differential
game (1), (2) with respect to these complexes.

Let us define the multivalued mappings

Ev
(
t, w[·], v

)
:= co

{
e
(
t, w[·], u, v

)
∈ Rn+1 : u ∈ U

}
,

Eu
(
t, w[·], u

)
:= co

{
e
(
t, w[·], u, v

)
∈ Rn+1 : v ∈ V

}
,(

t, w[·]
)
∈ G, u ∈ U, v ∈ V,

where e(t, w[·], u, v) := (f(t, w[·], u, v), χ(t, w[·], u, v)) and
the symbol ”co” denotes the convex hull of the correspond-
ing set. Using the properties of the functions f and χ, by
analogy with (Subbotin, 1995, p. 126), one can show that
these mappings Ev and Eu have the following properties:

(E.1) For any (t, w[·]) ∈ G, u ∈ U and v ∈ V, the sets
Ev(t, w[·], v) and Eu(t, w[·], u) are convex and compact.

(E.2) For any u ∈ U and v ∈ V, the mappings Ev(t, w[·], v)
and Eu(t, w[·], u) are upper semicontinuous in (t, w[·]) ∈ G.

(E.3) For any (t, w[·]) ∈ G, u ∈ U, v ∈ V and (f, χ) ∈
Ev
(
t, w[·], v

)
∪ Eu

(
t, w[·], u

)
, we have∥∥f∥∥ ≤ αf(1 +
∥∥w[·]

∥∥
∞

)
,

where αf is taken from (f).

(E.4) For any (t, w[·]) ∈ G and s ∈ Rn, we have

max
v∈V

min
(f,χ)∈Ev(t,w[·],v)

(
〈s, f〉+ χ

)
= H

(
t, w[·], s

)
,

min
u∈U

max
(f,χ)∈Eu(t,w[·],u)

(
〈s, f〉+ χ

)
= H

(
t, w[·], s

)
.

For any t ∈ [t0, ϑ], let us consider the set

Z(t) :=
{
z[·] ∈ Lip

(
[t− h, ϑ],R

)
: z[ξ] = 0, ξ ∈ [t− h, t]

}
.

For (t∗, x∗[·])∈G and v∈V, we denote by CHv(t∗, x∗[·], v)
the set of all pairs (x[·], z[·]) ∈ X(t∗, x∗[·])×Z(t∗) satisfy-
ing the neutral-type functional-differential inclusion

d

dt

((
x[t], z[t]

)
−
(
g
(
t, xt[·]

)
, 0
))
∈ Ev

(
t, xt[·], v

)
(29)

for almost all t ∈ [t∗, ϑ]. Similarly, for (t∗, x∗[·]) ∈ G and
u ∈ U, we denote by CHu(t∗, x∗[·], u) the set of all pairs
x[·] ∈ X(t∗, x∗[·])× Z(t∗) which satisfy the inclusion

d

dt

((
x[t], z[t]

)
−
(
g
(
t, xt[·]

)
, 0
))
∈ Eu

(
t, xt[·], u

)
(30)

for almost all t ∈ [t∗, ϑ]. Inclusions (29) and (30) are called
the upper and the lower characteristic complexes.

From the properties of the function g and (E.1)–(E.3), it
follows that the sets CHv(t∗, x∗[·], v) and CHu(t∗, x∗[·], u)
are non-empty compact subsets of Lip([t∗−h, ϑ],Rn×R).
Taking this fact into account, one can show that, due
to (ρ.2) and (ρ.3), the value functional ρ◦ satisfies the
following stability properties:

(ρ.4) For any (t∗, x∗[·]) ∈ G and v ∈ V, there exists
(x[·], z[·]) ∈ CHv(t∗, x∗[·], v) such that

ρ◦
(
t, xt[·]

)
+ z[t] ≤ ρ◦

(
t∗, x∗[·]

)
, t ∈ [t∗, ϑ]. (31)

(ρ.5) For any (t∗, x∗[·]) ∈ G and u ∈ U, there exists
(x[·], z[·]) ∈ CHu(t∗, x∗[·], u) such that

ρ◦
(
t, xt[·]

)
+ z[t] ≥ ρ◦

(
t∗, x∗[·]

)
, t ∈ [t∗, ϑ].

Theorem 2. Let the value functional ρ◦ : G 7→ R of dif-
ferential game (1), (2) be ci-differentiable at a point
(t∗, x∗[·]) ∈ G∗. Then it satisfies HJ equation (14) at this
point.

Proof. Let ∂tρ
◦
∗ := ∂tρ

◦(t∗, x∗[·]), ∇ρ◦∗ := ∇ρ◦
(
t∗, x∗[·]

)
and ε > 0 be fixed. By (E.4), there exists v∗ ∈ V such that

min
(f,χ)∈E∗

(
〈f,∇ρ◦∗〉+ χ

)
≥ H

(
t∗, x∗[·],∇ρ◦∗

)
− ε/2, (32)

where E∗ := Ev(t∗, x∗, v∗). Due to (ρ.4), one can choose
a pair (x[·], z[·]) ∈ CHv(t∗, w∗[·], v) such that inequality
(31) is valid. Taking into account ci-differentiability of ρ◦

at (t∗, x∗[·]), for any t ∈ [t∗, ϑ], we deduce

0 ≥ ρ◦
(
t, xt[·]

)
− ρ◦

(
t∗, x∗[·]

)
+ z[t]

= (t−t∗)∂tρ◦∗ + 〈x[t]−x[t∗],∇ρ◦∗〉+ z[t] + o1(t−t∗). (33)

Since (x[·], z[·]) ∈ CHv(t∗, w∗[·], v), there exist measurable

functions f̃ [·] : [t∗, ϑ] 7→ Rn and χ̃[·] : [t∗, ϑ] 7→ R such that(
f̃ [t], χ̃[t]

)
∈ Ev

(
t, xt[·], v∗

)
, t ∈ [t∗, ϑ], (34)

and

x[t] = g
(
t, xt[·]

)
+ x[t∗]− g

(
t∗, x∗[·]

)
+

∫ t

t∗

f̃ [ξ] dξ,

z[t] =

∫ t

t∗

χ̃[ξ] dξ, t ∈ [t∗, ϑ].

(35)

Since (t∗, x∗[·]) ∈ G∗, then ∂tg∗ := ∂tg(t∗, x∗[·]) exists,
and, for any t ∈ [t∗, ϑ], we have

g
(
t, xt[·]

)
− g
(
t∗, x∗[·]

)
= (t− t∗)∂tg∗ + o2(t− t∗). (36)

Denote

θ∗(t) := o1(t− t∗)/(t− t∗) + 〈o2(t− t∗),∇ρ◦∗〉/(t− t∗).
Dividing (33) by (t− t∗) and using (35), (36), we obtain

0 ≥ ∂tρ◦∗ + 〈∂tg∗,∇ρ◦∗〉+
〈 1

t− t∗

∫ t

t∗

f̃ [ξ] dξ,∇ρ◦∗
〉

+
1

t− t∗

∫ t

t∗

χ̃[ξ] dξ + θ∗(t), t ∈ (t∗, ϑ]. (37)

Due to (E.2) and (34), for ε1 = ε/(4(‖∇ρ◦∗‖ + 1)), there
exists ν > 0 such that(

f̃ [ξ], χ̃[ξ]
)
∈
[
E∗
]ε1
, ξ ∈ [t∗, t∗ + ν].

Hence, using Lemma 12 from (Filippov, 1988, p. 63) and
(E.1), we obtain that, for any t ∈ [t∗, t∗ + ν], there exists
a pair (f∗[t], χ∗[t]) ∈ E∗ satisfying the inequalities∥∥∥∥ 1

t− t∗

∫ t

t∗

f̃ [ξ] dξ−f∗[t]
∥∥∥∥≤ε1,

∣∣∣∣ 1

t− t∗

∫ t

t∗

χ̃[ξ] dξ−χ∗[t]
∣∣∣∣≤ε1.

Using these inequalities and (32), from (37) we obtain

ε ≥ ε/2 + ∂tρ
◦
∗ + 〈∂tg∗,∇ρ◦∗〉+ 〈f∗[t],∇ρ◦∗〉+ χ∗[t] + θ∗(t)

≥ ∂tρ◦∗ + 〈∂tg∗,∇ρ◦∗〉+H
(
t∗, x∗[·],∇ρ◦∗

)
+ θ∗(t).

Letting t to t∗ and, after that, ε to 0, we conclude

∂tρ
◦
∗ + 〈∂tg∗,∇ρ◦∗〉+H

(
t∗, x∗[·],∇ρ◦∗

)
≤ 0.

The inequality

∂tρ
◦
∗ + 〈∂tg∗,∇ρ◦∗〉+H

(
t∗, x∗[·],∇ρ◦∗

)
≥ 0

can be proved in a similar way on the basis of (ρ.5). �



6. EXAMPLES

Consider a two-person zero-sum differential game for
the dynamical system described by the neutral-type
functional-differential equation in Hale’s form

d

dt

(
x[t]− x[t− 1]

)
= u[t]− v[t],

t ∈ [0, 3], x[t] ∈ R, u[t], v[t] ∈ [−1, 1],
(38)

and the quality index

γ1 = σ
(
xϑ=3[·]

)
=
∣∣x[3]

∣∣2. (39)

It is known (see, e.g., Gomoyunov and Lukoyanov (2018))
that this differential game has the value ρ◦1.

Note that, for any control realization u[·] of the first player,
there exists the control realization v[·] ≡ u[·] of the second
player, and vice versa. Therefore, the value ρ◦1

(
t, w[·]

)
equals to the value of quality index (39) that corresponds
to the case when v[·] ≡ u[·]. Hence, we obtain

ρ◦1
(
t, w[·]

)
=
∣∣κ(t, w[·]

)∣∣2,
κ
(
t, w[·]

)
= w[i− t] + (3− i)w[0]− (3− i)w[−1],(

t, w[·]
)
∈ [i, i+ 1]× Lip, i = 0, 2.

(40)

According to (11) and (13), we have

G∗=
{(
t, w[·]

)
∈ G : ∃ d+

dt
w[−1]

}
, H

(
t, w[·], s

)
≡ 0, (41)

where d+w[−1]/ dt is the right-hand side derivative of the
function w[·] at the point ξ = −1. One can show that the
value functional ρ◦1 has ci-derivatives

∂tρ
◦
1

(
t, w[·]

)
= −2(3− i)κ

(
t, w[·]

)
d+w[−1]/ dt,

∇ρ◦1
(
t, w[·]

)
= 2(3− i)κ

(
t, w[·]

)
,(

t, w[·]
)
∈
(
[i, i+ 1)× Lip

)
∩G∗, i = 0, 2,

and satisfies HJ equation (14), terminal condition (15) and
the smoothness conditions (ϕ.1)–(ϕ.3). The corresponding
functional Φ (see (19)) is defined by Φ(t, w[·]) = 2(3 −
i)κ(t, w[·]). Thus, by Theorem 1, players’ optimal strate-
gies U◦ and V ◦ can be constructed for (t, w[·]) ∈ G,
κ(t, w[·]) 6= 0, by the formulas

U◦
(
t, w[·]

)
= − κ(t, w[·])
‖κ(t, w[·])‖

, V ◦
(
t, w[·]

)
=

κ(t, w[·])
‖κ(t, w[·])‖

,

and, for (t, w[·]) ∈ G, κ(t, w[·]) = 0, they can be defined,
for instance, by U◦(t, w[·]) = V ◦(t, w[·]) = 0.

As the second example, consider the differential game for
the same dynamical system (38) and the quality index

γ2 = σ
(
xϑ=3[·]

)
=
∣∣x[3]

∣∣.
The value functional of this game is

ρ◦2
(
t, w[·]

)
=
∣∣κ(t, w[·]

)∣∣,
where κ is taken from (40). Let G∗ = G0∪G−∪G+, where

G0 :=
{(
t, w[·]

)
∈ G∗ : κ

(
t, w[·]

)
= 0
}
,

G+ :=
{(
t, w[·]

)
∈ G∗ : κ

(
t, w[·]

)
> 0
}
,

G− :=
{(
t, w[·]

)
∈ G∗ : κ

(
t, w[·]

)
< 0
}
.

Note that the value functional ρ◦2 is not ci-differentiable on
the set G∗ (in particular, at the points of G0). However, on
the sets G+ and G−, the functional ρ◦2 has ci-derivatives

∂tρ
◦
2

(
t, w[·]

)
=−(3− i) d+w[−1]/dt, ∇ρ◦2

(
t, w[·]

)
=3− i,(

t, w[·]
)
∈
(
[i, i+ 1)× Lip

)
∩G+,

∂tρ
◦
2

(
t, w[·]

)
=(3− i) d+w[−1]/dt, ∇ρ◦2

(
t, w[·]

)
=−(3− i),(

t, w[·]
)
∈
(
[i, i+ 1)× Lip

)
∩G−,

and satisfies HJ equation (14). This fact illustrates the
statement of Theorem 2.

7. CONCLUSION

In the paper, the relationship between differential game
(1), (2) and HJBI equation (14) with terminal condition
(15) is given. According to Theorem 1, if this equation has
a sufficiently smooth solution, then it coincides with the
value functional, and players’ optimal control strategies
are constructed by the extremal shift in the direction of
the continued ci-gradient of this solution (20). However,
under the considered conditions, problem (14), (15) may
not have such a smooth solution (see the second example
in Section 6). This leads to the necessity of considering
an appropriate generalized solution of problem (14), (15).
This is the topic of future research.
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