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Abstract: The pseudospectral abscissa is a powerful tool in the evaluation of the robustness of a
dynamical system’s stability, as it provides a worst-case analysis of the stability of a system when
this includes potential uncertainties on parameters. In this paper we consider systems of DDAEs
(Delay Differential Algebraic Equations) that incorporate real-valued structured uncertainties
on the system matrices and on the delay terms. We propose a robust stabilisation approach for
a system of DDAESs, which is based on the optimization of the pseudospectral abscissa with
respect to a fixed set of tunable design or controller parameters. Given the non-smoothness
nature of the pseudospectral abscissa, standard optimization methods are not efficient and we
make use of bundle gradient methods. This approach proves to be very effective, and particularly
useful in the design of robust static or dynamic fixed-order controllers for a system of DDEs
(Delay Differential Equations) of retarded type. The approach fully exploits the structure on
the uncertainty and the property that in applications perturbations are usually real valued, i.e.,
the uncertainty is not over-bounded and the employed robust stability criterion is necessary and

sufficient.
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1. INTRODUCTION

The stabilisation of linear time-delay systems is a topic of
major concern in control systems theory and a substantial
amount of results have contributed to develop and par-
tially solve this problem; without being exhaustive, possi-
ble approaches for stabilisation are the use of Lyapunov-
Krasovskii functionals and LMI conditions (see for in-
stance Fridman and Shaked (2002); Pepe et al. (2008);
Seuret and Johansson (2009)), the direct eigenvalue opti-
mization (Vanbiervliet et al. (2008)), the continuous pole
placement method (Michiels et al. (2002)) and the Smith
predictor (Palmor (1996); Michiels and Niculescu (2003)).
We refer the reader interested in a general overview on
the many different stabilisation methods to the mono-
graphs by Niculescu (2001), Gu et al. (2003) and Michiels
and Niculescu (2007). Controllers used in the stabilisation
can also be divided in finite-order and infinite-order con-
trollers. In this work we consider stabilization problems
where the closed loop systems takes the form

Bi(t) = Ao(p)z(t) + Y Aip)a(t —m:(p), (1)
=1

where F € R™ " is allowed to be a singular matrix,
x(t) € R™ is the state variable, Ag(p),..., Amn(p) € R™*",
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0 < 7(p) < -+ < Tm(p) are the delay terms, and p € R"»
represent the set of design or controller parameters.
Ideally, a dynamical system is stabilized as soon as all
the roots of its characteristic equation lie in the open
left-half of the complex plane; equivalently, it is stable
when its spectral abscissa, i.e. the supremum of the real
parts of its characteristic roots, is negative. Therefore,
the stabilization of a dynamical system can be carried
out by optimizing its spectral abscissa w.r.t some control
or design parameter, as explained in Vanbiervliet et al.
(2008). However, this method does not guarantee the ro-
bustness of the achieved stability condition, and potential
uncertainties affecting the system may push one or more
eigenvalues to cross the imaginary axis and thus generate
an instability in practical applications. Let us then intro-
duce some uncertainties on the matrices coefficients and
the delay terms of system (1), which then reads

Ei(t) = (AO () + BO5AOCO)x(t)+

> (Aip) + BSACa(t — (rv) +57). (2)

=1

where B;, 6A4;, C; are real-valued shape matrices of ap-
propriate dimensions for all i = 0,...,m, and 7; € R are
such that |07 < |m;| foralli=1,...,m.

The general forms (1) and (2) may arise as the feedback
interconnection of a plant model and a controller with a
fixed-order or structure, where p represents the parameter-



ization of this controller (see below and Section 6 for an ex-
ample). Note that these general forms also allow to address
problems where delays are used as controller parameters.
In the following example we show a classic example of an
uncertain system with static feedback controller that can
be recast using DDAEs.

Ezxample 1. Consider the system with uncertainties

{:'U(t) =(A+06A)x(t) + (B+06B)u(t — 7+ d71) 3)
y(t) = (C+0C)x(t),
with static controller

u(t) = Ky(t). (4)
Defining the new state variable & := (z,y,u)T, the system
can be recast as follows

1007 A0 0 I n’
looo]g(ﬂ:( C—-I0|+|0]sA4]0 >§(t)+
000 0 K —I 0 0
——
=F :=Ap :=Bg8AgCo
000 0 A
+< 000|+|I]|d6C|O )g(t)+
1000 0 0
—_——— ——— —
=A, :=B16A:C
00 B I 0
+< 000|+|0[6B]|O )g(t—7+67).
1000 0 I
N—_——
=As :=B28A3C>

We needed to introduce the zero matrix A; because the
uncertainties d A, §C' are independent one from each other,
and they define differently structured perturbations on
the Ag matrix. In the last equation we reformulated the
original problem in form of DDAEs with perturbations
as in (2), where p is the vectorization of the controller
parameters in K. Analogously, we can recast in the general
form (2) a system with dynamic controller. Notice that if
one substitutes control law (4) in the system of DDAE (3),
then the representation (2) is not valid anymore, since the
uncertainty 0 B cannot be decoupled from the controller
parameters in K; the adopted reformulation in a DDAE
framework then allows us to solve this problem.

Assuming a bound € on the size of the (constant) uncer-
tainties 0 A;, d7; affecting the system, the pseudospectral
abscissa is defined as the rightmost eigenvalue generated
by all the considered e-bounded perturbations. Therefore,
the pseudospectral abscissa is by definition an adequate
measure to evaluate the robustness of a system stability.

The main contribution of this paper is the proposal of
a method to robustly stabilise a system of DDAEs by
minimizing the pseudospectral abscissa of the system with
respect to the fixed set of parameters p. Among the many
algorithms in literature for the pseudospectral abscissa
computation, we refer the reader to Guglielmi and Lubich
(2013) and Michiels and Guglielmi (2012); the former ex-
ploits unstructured real-valued perturbation of a standard
eigenvalue problem, whereas the latter applies to nonlinear
eigenvalue problems (e.g. polynomial and delay eigenvalue
problems) whose matrices are perturbed by unstructured
complex-valued matrices. The real-valued feature of the
former and the nonlinearity structure of the latter are si-
multaneously taken into account in the method developed
in Borgioli et al. (2017), which we adopt in this work.

Moreover, this method also takes into account structured
perturbations on the system matrices, namely it allows to
include an uncertainty on a single coefficient or block of a
matrix. It is worth to remark that this algorithm is par-
ticularly convenient as real-valued perturbations are more
realistic than complex-valued ones, and it also preserves
the nonlinear structure of the eigenvalue problem associ-
ated with the system. As a second major contribution, in
this paper we also include uncertainties affecting the delay
terms.

As well known, the pseudospectral abscissa is by definition
a continuous but only almost everywhere differentiable
function, whose local minima are often points of non-
differentiability: for this reason, standard optimization
points cannot be applied efficiently, and we make use of
the HANSO method (Hybrid Algorithm for Nonsmooth
Optimization) introduced in Lewis and Overton (2009),
that consists in the BFGS method for nonsmooth problems
coupled with the gradient sampling method.

The paper is structured as follows: in the following sec-
tion we formally introduce the uncertainties of the delay
eigenvalue problem associated with system (2) and the
pseudospectral approach which we use to analyze the ro-
bustness of a system stability; in Section 3 we illustrate
the method to compute the pseudospectral abscissa; in
Section 4 we briefly describe the smoothness properties
of the pseudospectral abscissa and provide the derivative
of the pseudospectral abscissa w.r.t. design or controller
parameters that we use in the optimization; finally in
Section 5 we show the applicability of this method to
linear delay systems with static or dynamic controllers and
present some numerical experiments.

2. THE PSEUDOSPECTRAL APPROACH

In this and the subsequent section we consider the charac-
terization and computation of the pseudospectral abscissa
for a fixed value of controller or design parameters p.
Therefore, for sake of clarity, we omit the dependence on
p in the notations.

We consider here the delay eigenvalue problem associated
with the system of perturbed equations (2), where we
allow real-valued, structured perturbations on the system
matrices and real-valued perturbations on the delay terms:

M()\)y = <)\E - (Ao + BoéAoCo)—

m
— Z(Az + Bi(SAiCi)e_/\(nJr&n) ) Yy = 0, (5)
i=1
where E, Ag,...,Amn, D, T1,.-.,Tm are defined as before,
yeC™ \eC, B;, 04;, C; are real-valued shape matrices
of appropriate dimensions for all i = 0,...,m, and d7; € R
are such that [07;] < |r;| for alli =1,...,m.

Matrices B;, C; define the structure of the perturbation
on each matrix A; of the system, that is usually different
from one matrix to another. Therefore the size of each
matrix §A; may differ, i.e. 04; € RPi*% ¢ =0,...,m. In
the following, we will indicate the domain of matrices 6 A;
as R* := RPOX(IO X oo X Rme(Im.

We now want to set up a scalar measure of the overall
uncertainty affecting our system; we first define the set of
all the uncertainties on our system



A= ((5A0,...,(5Am,(57'1,...,(5Tm),
=AA =AT

and then, after introducing weights w;, v; € RT U {+o00},
we define the global norm

[ wo [[6 A0l T

W, |\6Am||F (6)

1)1|(5T1|

1Al gion, =

Um|6Tm| 1l

where ||| » indicates the matricial Frobenius norm. From
this definition, we naturally obtain that matrices A; and
delay terms 7; remain unperturbed when the correspond-
ing weight w; or v; are set equal to +00. Moreover an
e-bounded set of perturbations A is such that
€ € 1=0,...,m

0A|p < —, |07l < —, for . 7777

A < o ol < o or G2
At this point we can define the real-valued, structured e-
pseudospectrum as the following set

A, = U {/\ € C: det M()\) :o}, (7)
A eR* xR™

[Allgion <

and the e—pseudospectral abscissa function a. as
ae :=sup{R(A): X € A}

In the following, we present the two assumptions on which
the rest of the paper grounds: from Michiels (2011) we
inherit and adopt throughout the paper the following
assumption.

Assumption 2. The matrix UT AyV is nonsingular.

With this assumption, the reformulation of DDAEs as a
set of delay differential equations of retarded type coupled
with a set of delay difference equations is well-posed.
Considering system (1), let rank(F) = n — v and let
U, V € R™" be respectively a (minimal) basis for the
left and right null space of E. Defining

U=[U+tUvu], v=[vt
then system (1) can be rewritten in the following form

E(”)afl( ) ZA(H) +ZA(12) Ti)

1=0

ZA(22) (t—m —|—ZA(21) 1(t— ),

V] and 2 = V[zT 2117

)

=0
where we have considered 79 = 0 to simplify the notation
and where
EOY =yt gyt
and
AN —yt vt A~y Ay
A _pT At AP —gTay, =0, m

The delay difference equations generate in the spectrum of
DDAESs chains of eigenvalues whose imaginary part tend
to infinity while the real part has a finite limit; moreover,
this limit may be discontinuous with respect to small
perturbations in the delay terms. Since in these paper

we also deal with uncertainties on the delay terms, it is
desirable to have continuity of the spectral abscissa w.r.t.
delay terms. This is achieved by making the following
assumption, which implies retarded dynamics.

Assumption 3. Matrices UTA;V =0fori=1,...,m

Essentially, by introducing this assumption we eliminate
the aforementioned chains of characteristic roots; as a con-
sequence, in the definition of the pseudospectral abscissa,
we can also turn to supremum function into a maximum
function. We refer the reader to Michiels (2011) for a
detailed description of these dynamics. Of course, these
assumptions are also adopted on the perturbed matrices,
in order not to switch from retarded to neutral dynamics.

3. COMPUTATION OF THE PSEUDOSPECTRAL
ABSCISSA

In this section we illustrate the iterative algorithm for
the computation of the pseudospectral abscissa of the
perturbed delay eigenvalue problem (5); the purpose of
the algorithm is to maximize the real part of the rightmost
eigenvalue over all perturbations A such that [|Ally,, <e.
The basic idea to reach the maximum is to follow the
gradient of the spectral abscissa of the perturbed DEPs in
the space of perturbations: thus we consider the gradient
flow, which is described by a set of first order ODEs, and
we discretize it by using a forward Euler method. However,
we present a theoretical result showing that there always
exists a smaller class of low-rank perturbations generating
a rightmost eigenvalue whose real part is the pseudospec-
tral abscissa. The algorithm then strongly exploits this
characterization, by restricting the research to this class
of perturbations.

The main theoretical result here presented is obtained as
a natural extension of the one presented in Borgioli et al.
(2017) to the case including uncertainties on the delay
terms. Here and in the following we define the optimal
matrix perturbations and the optimal time-delays pertur-
bations as the perturbations generating the pseudospectral
abscissa.

Theorem 4. Let Agrm be the globally rightmost point of
the real-valued structured e-pseudospectrum and assume
it is a simple eigenvalue for some e-bounded perturbation
A. Then

(i) There always exists a set of perturbations AA =
(5A0, .., 6A, m), where S A; has rank at most two and
ill <eforalli=0,...,
F

rightmost eigenvalue is equal to Arwm;
(ii) Let x,y be respectively the unitary left and right
eigenvectors of Agy such that

&= —z* (In + (Ao + BodAoCo)+

m, and for which the

+ 3 (Ai + B AC) 7ie X )y > 0 (8)
i=1
and let us define
X =[R(z) I(=)], Y = [R(y) I(y)],
and
—(Ti-‘y-(;Ti))\
T, — {m(e )

_3(6_(7"i+67'i)>‘RM
j(e*(Ti‘F(;Ti))\RM) m(e :|

*(Ti+5T1:)ARM)



for i =1,...,m, while I'y is the identity matrix with
dimension 2. Then for each i, BI XT;YTCI can be
either zero or nonzero. In the latter case, a particular
set of optimal perturbations can be expressed as
— BIXT,YTCF
5A1 = 6 T T ) O7 s, M.
“w, [BIXTYTCT]
(iii) Let z,y be defined as before, then
OR(ArMm) 1 (487
CUA = (0 (A + BdAC) ATy )
por, el it JAe v
can also be either zero or nonzero, fori=1,...,m. In
the latter caseljhe optimal time-delay perturbations

are such that o7, = £=.

Proof. The proof is an extension to structured perturba-
tions of Theorem 3.3 in Borgioli et al. (2017).

From the characterization here outlined, we can restrict
the search for optimal matrices and optimal delay pertur-
bations respectively to the manifold

Sy :={(6A0,...,6A,) € R* : rank(6A;) < 2
w; [[0A4;||p <€, 1=0,...,m} (9)
and to the the closed set

S € € € €
Sr = [**,Jr*} X o X {,7’+7]

V1 (%1 Um, Um
The algorithm defines a sequence of perturbations of the
original eigenvalue problem associated with system (1);
these are determined by the couple (AA, A7) € S:=8,x

S, and they are built such that the sequence {R(Ae) >t
of the corresponding spectral abscissae is monotonically
increasing (where g is the righmost eigenvalue of the
perturbed DEP). This is carried out as a discretization
of the gradient flow of the spectral abscissa in the space

S. Let us consider any continuous path in S which reads
0A;i(t) = —fU< HQ:iMVi(H)", teRT
ori(t) = —qz( ), teRT

where the followmg properties need to be satisfied:

(10)

(11)

U:(t)TU(t) =0 V>0
Vii)'vit) =0, Vt>0 (12)
Qi) <1 Vt>0

l() <1,  Vt>0

with U;(t) € RPi*2 Vi(t) € R%*2 Q;(t) € R**2 for
i=0,...,m. An exhaustlve Justlﬁcatlon for the adopted
decomposltlon and the corresponding properties can be
found in Borgioli et al. (2017). It is easy to prove that these
properties can be imposed via the following differential
equations

U = (In—UiUiT)Ri,

Vi = (I - Viv") 85,
0O = {Mz —(M;,Qi)Qi, i [|Qillp =1, (M;,Qi) >0
! M;, otherwise,
o 0 if|qi|:1, riq; >0
4= {ri, otherwise,
(13)
where we have introduced the arbitrary quantities R;(t) €
RPiX2 S,(t) € R%*2. M;(t) € R¥2 for i = 0,...,m

and r;(t) for i = 1,...,m, and where we have indicated
with (-,-) the Frobenius inner product of two matrices.
Now, we want to define a specific path where the spectral
abscissa A is proved to be monotonically increasing; to this
purpose, we impose the derivative of the spectral abscissa
to be nonnegative by making an appropriate choice on
the arbitrary quantities R;, S;, M;, r;. Let us consider
the easy case when Q;(t) = M; and ¢;(¢t) = r;. Setting &
positive as in Equation (8), 70 = 0, vg = +00 and omitting
parameter ¢ to simplify the notation, the derivative of the
real part of the rightmost eigenvalue with respect to ¢
satisfies

m

>

:0
+B;U; QZVTC Je MTiHoTy) 4

*(B;U;Q: VY Cs + BU;Q: ViE C;

+ ER(w* (Az + Bi(SAiCi)Aq'ie_/\(nJr&n)y) =

?

OMS

= (X, Bi(I,

I
'MS
7anY

g

@
Il
o

~UUNRQVICiYTT )+

T

<X BUMVICYTT )+

s
Il
<

+ o+
'MSKMS
o 5

<X B,UQ;S] (I, — ViV )C,YTT )+

s

I

o
‘m

R(2"(A; + Bid A, Ci)he M7y G, =
=P
<BTXF Y'CIviQl (I,

— U;UDR;)+

1 i1
Iy

@
I
<

S

(U!BIXT,YTCl'V;, M)+

s
I
o

4
KMS
o8

+

(S, (I, = ViVC,YTT X BU;Q: )+

w;

+ Z€ 7»6’1(1“

and analogous expressions hold for the other cases in (13).
Now, since (I,, — U;UL), (I, — V;V;l') are positive semi-
definite, JR(\) is guaranteed to be nonnegative by the
following choices

Ui = (I — UUT ) BEXTY T CIVQE,
V, = (In - VZ-ViT) CYTT X' B,UQ;,
b0 o {Mi — (M, Q)Qi, i Qill =1, (M, Qi) >0,

SINgE

M;, otherwise,
i = 0 if|gl=1, Bigi >0
! B;, otherwise,

(14)
with M; = UIBIXT,YTCI'V;. Given these choices for
R;, S;, M;, r;, at each point in & we are able to
follow a direction which ensures an ascent direction of
the spectral abscissa A; therefore, at each iteration in
our algorithm we discretize differential equations (14)
and perform an Euler forward step to generate a new
e-bounded perturbed eigenvalue problem with a larger
spectral abscissa. The boundedness of the pseudospectrum



guarantees the convergence of the algorithm, which stops
when the derivative 8(\) can be approximated to zero.
We refer the reader interested in details of the algorithm

implementation to Borgioli et al. (2017).

4. SMOOTHNESS PROPERTIES AND
OPTIMIZATION OF THE PSEUDOSPECTRAL
ABSCISSA

We now take into account the dependence of the nominal
matrices A; and delays 7; on the parameters p and consider
the optimization of the function

ae(p) :R™” — R

p — a: (M(Ap)),

where we have now made explicit the dependence of the
perturbed DEP (5) on the controller parameters p.
In order to perform the optimization, let us briefly sum-
marize the pseudospectral abscissa smoothness properties:
the spectral abscissa of an eigenvalue problem associated
with a system of DDAEs is continuous with respect to
matrix coefficients; moreover, under Assumption 3, we can
also assume it to be continuous with respect to the delay
terms (see Michiels and Niculescu (2007)). Therefore, fol-
lowing from the definition of maximum, the pseudospectral
abscissa is also continuous but not everywhere differen-
tiable; typically it is differentiable almost everywhere, and
points of non-smoothness are generated by the presence of
the maximum function and are characterized by switching
of the component of pseudospectrum which contains the
globally rightmost eigenvalue. For this reason, the function
is often non-differentiable in its local minima.
We perform the optimization using the HANSO algorithm
(Overton (2009)), which has been proved to efficiently con-
verge to local minima of nonsmooth, nonconvex functions:
example of its applications in this field can be found in
Michiels (2011) and Gumussoy and Michiels (2011), where
respectively the spectral abscissa and the robust H., norm
of a system of DDAEs are optimized.
Next theorem provides the explicit expression of the
derivative of a. w.r.t. to the design or controller parame-
ters p, whenever this derivative exists.

Theorem 5. Let ()\RM(p),:U(p),y(p)) be respectively the
globally rightmost point of A. and its left and right
normalized eigenvectors; for each set of parameter p €
R™ let us define AA(p) = (641(p),...,0A,(p)) and
At(p) = (57'1 ),..., 6Tm(p)) as the optimal matrix per-
turbations and optimal delay perturbations functions such
that Agm(p) is simple; then denoting

¢ = o (B3 (At Bid AiCr) (w97 (g 57 )y
i=0

we can express the derivative of the pseudospectral ab-

scissa w.r.t each parameter p; as follows

o 6045 - am()\RM) -

dp;  9p; 9p;

1 * = 04; —ArRM (i 5;;
(8 e,

+om
¢ i—0 9Pj

o (Z(Az‘ T B AC;) e Pmaitim) S;i- ) y] 7
=0 J

do,

where we omit the dependence on p to simplify the
notation and again assumed 79 = 0. Observe that the

value of the optimal perturbations 6 A;, d7; does depend
on the set of design or controller parameters p: indeed,
although the maximum size of the optimal perturbations
is prescribed, the optimal perturbations might assume
different values in the parameter space. However, due to
the optimality conditions, their derivative w.r.t. p does not
affect the derivative of the pseudospectral abscissa.

The main scope of our work is to tune parameters in
order to have a negative pseudospectral abscissa. For this
reason, convergence to a local but not global minumum
of the function does not represent an issue; even more,
from a practical point of view, any negative value for the
pseudospectral abscissa ensures a robust stability of our
system, regardless of the convergence of the algorithm to
a local minimum.

HANSO algorithm is intended for unconstrained optimiza-
tion; however, we might need to force our controller to stay
in some region of the parameter space, e.g. we constrain
the delay terms to have positive values. For this reason, we
also include some continuous penalties in our cost function.

5. NUMERICAL EXPERIMENTS

Here we report an example from literature on which we
optimize the pseudospectral abscissa using the procedure
described in Section 4 and the software for HANSO
available at Overton (2009).

Ezample 6. We consider system (3) introduced in Exam-
ple 1, where

~0.08 —0.03 0.2 —0.1
A=| 02-004-0005|, B=|-02|, C=1Is
—0.06 0.2 —0.07 0.1

and 7 = 5. This system is unstable, therefore we consider a
static feedback u(t) = Ky(t). As in Example 1, we include
uncertainties 6 A, d B on the matrix coefficients and 67 on
the time delay 7; we also include an uncertainty 6C on the
measurement of the state variable. Thus we set

0.05 1 1 1 €
=005, fununva) = | T o, T, )+ = 05
With these choices, we allow a maximal relative error of
5% on matrices A, B and C, and we set |07 < 0.5. In
Table 1 we report the values of the spectral abscissa a and
of the pseudospectral abscissa a. in five different cases:
in the first case the system is uncontrolled (K = 0); in
the second case we assume the minimizer for the spectral
abscissa K* = [0.472 0.505 0.603] (see Vanbiervliet et al.
(2008)); in the third case the optimal controller K? =
[0.944 1.171 0.543] minimizes the pseudospectral abscissa
a; in the last two cases, controllers K¢, respectively
K¢, are minimizers for the spectral abscissa, respectively
pseudospectral abscissa, of system (3) coupled with a
dynamic controller as follows

{i'c(t) = Acxc(t) + ch(t)v
U(t) = chc(t) + Dcy(t)7
where K9, K2 are the vectorizations of controller param-
eters included in A, B., C¢, D., and z.(t), u(t) € R. It
is worth remarking that a.(K?) < 0 and a.(K2) < 0:
this means that our optimization process provided an




Table 1. The table shows the spectral abscissa
« and the pseudospectral abscissa a. in the
uncontrolled system (K = 0), and in the
systems with controllers K*, K, K% and K.

[e% Qe
Uncontrolled | +1.081e-01  +1.266e-01
Ks -1.492e-01 +5.550e-02
K2 -5.663e-02  -3.909e-03
Kd -2.146e-01 +4.553e-02
KZ -7.867e-02  -1.490e-02
5
x Uncontrolled
4r +  Controlled with K®
3 Worst case scenario with K2 | 7
N
.
Sl
N
ol
b
4l
-5 L
-0.5 0.4 0.3 -0.2 0.1 0 0.1 0.2
R(N)

Fig. 1. The figure shows the rightmost eigenvalues for
K =0, for K = K and the worst-case scenario for
K =K;.

optimal controller that guarantees the robustness of sta-
bility. We also observe that a.(K?) < a-(K?®) and that
a(KZ) > a(K?): this demonstrates the considerably dif-
ferent behaviours of functions o and «. and justifies our
optimization approach for the robust stabilization: same
considerations apply for K¢ Kg. Finally, in Figure 1
we compare the rightmost eigenvalues in the uncontrolled
system, in the system controlled with K = K7 and in
the worst-case scenario for K = K7, where the real part
of the globally rightmost eigenvalue is the pseudospectral
abscissa.

6. CONCLUDING REMARKS

In this paper we presented an iterative algorithm to com-
pute the pseudospectral abscissa of a system of DDAEs
with real-valued structured uncertainties on the system
matrices and uncertainties on the delay terms; thanks to
the low-rank dynamics exploited, this algorithm also has
potential for large-scale systems. We coupled the algorithm
with optimization methods for nonsmooth functions in
order to minimize the pseudospectral abscissa and thus
robustly stabilize the original system. Applications of this
method are envisaged in the design of static or dynamic
fixed-order controllers for system of DDEs.
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