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SUMMARY:

The history of the finite element model, its mathematical foundation and its role in mechanical
engineering design are presented. The necessary basic continuummechanical notions and equations
for understanding of the method are also discussed. Element types the most commonly used in
design (rod, beam, plane, axisymmetric, thin plate, shell) are described. Starting from the principle of
total principle energy the derivation of matrix equilibrium equation related to linear elastic bodies
discretized in space and the structure of coefficient matrices for different models are shown. In case
of beam structures the structure of equation of motion and the method of eigenfrequency
calculation are also presented.

Understanding of theoretical chapters are highly facilitated by the large number of solved examples
and the detailed discussion of solution of real problems obtained from industry.
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1. HISTORY OF FINITE ELEMENT METHOD INCLUDING ITS
EVOLUTION, EXTENSION AND ROLE OF APPLICATION IN ME-
CHANICAL ENGINEERING DESIGN

1.1. Ancient application

Finite elements: complex, and mostly (in case of certain conditions) insolvable problems can
be simplified by them. The basic idea is to break up the geometry of the body into finite, sim-
ple shaped elements, thus the problem becomes solvable. By this way — instead of applying
less but more difficult steps — simple but more mathematical calculation will be carried out in
order to find the solution.

Application of discretization on geometrical problems

— Arc length and area of a circle (Fig. 1.1)
— Volume of a cylinder and sphere,
— Other complex geometries.

Figure 1.1: Approximation of the area of the a circle

In order to calculate the area of a circle plate, the geometry must be broken up to n identical
elements, as it is seen on Figure 1.1.a. The approximated value of 7, and its error function
related to the discretization is shown on Figure 1.2:

ﬁ—ncos[ ojsin(%oj
60 )sin[%O j and Error = 2n 2n -100% .

7T ~ NCOS
2n 2n T
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70 3,5

60 X ‘....‘Mlm 3

50 2,5

40 2
——

Error[% T e_rror

—I—p|

30 ‘ \\ 1,5

20 \ 1

0 T T - 0

0 10 20 30
n

Figure 1.2: Value of = and its error in the function of n discretization

Tsu Ch’ung-Chih, Chinese engineer (A.D 480) determined by the use of rectangles that the
approximated value of 7 is between 3,1415926 and 3,1415927.

1.2. History of variation of calculus, basic definitions
1.2.1. Brachistochrone problem

Bernoulli formed a problem in 1696, which initiated the evolution of variation of calculus in
order to find the solution.

The problem: Two points (A and B) are given on a plane. These points are located at dif-
ferent heights and not on the same vertical line. Let us consider co-planar, vertical curves
connecting the two points. If a particle is released from point A, without initial velocity and
the effect of friction, on which curve would it descend to point B within the shortest time. The
question is, whether such a function (among the curves) exists, which allows the particle to
complete the motion in the shortest possible time, and if it does, how is it possible to deter-
mine it?

P. X2 X
e ——>
Y2 P
Yvy

Figure 1.3: Brachistochrone problem
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1. History of element method 13

The demanded y function intersects points P, and P,, thus:

y(0) =0 and y(x,) = , (L1)

According to the Conservation of Energy:

%mvz — mgy (1.2)
The velocity:
ds
= 1.3
™ (1.3)

The infinitesimal arc length:

(ds)* = (dx)* +(dy)’ (1.4)

(1.2) simplifying with the mass and substituting (1.3) and (1.4):

(& (%))-»

Setting the equation:

dx )’ dy dx ?
s Bl Bl R ] 1.6
dtj +(dt dxj 9 (1.6)

1+(%) ](%) =2qy (1.7)

By separating the variables, the demanded T time to run the arc length:

IW

(1.8)

Let us find that function which satisfies the (1.1) and provides minimum to (1.8). The so-
lution is a cycloid:

y(t)=c, arcsinci—,/chx—x2 +C,, (1.9)

1
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14 Finite Element Method

where c,,c, constants, and can be determined from (1.1) condition.

This problem — which is practically extremizing a scalar quantity— drew the attention of
the variation of calculus and started its evolution.

1.2.2. Functionals, variations

Similar problems as the ,,Brachistochrone” often appear in natural- and social science. We
frequently face indexes, quantities which are defined by functions. The simplest example is
the solution of an indeterminate integral, which depends on the chosen function. At the same
time, an arc length, surface, volume or the potential energy of a beam bears the same mean-
ing. These quantities are called as functionals.

An arbitrary set mapped to the set of real numbers is named functional or operator.

It is a specific case of the general mathematic definition, when a set of functions is
mapped to the set of real numbers, and named as functional.

Let: f € R®* - R given function, and y € R — R possible function, which is continuous-
ly differentiable on its argument y € C,[x,,x,] and intersects P, = (x;,y;), and P, =(X,,Y,)
points which are fixed at the boundary of the domain:

Y(X1) =Y Y(Xz) =Y, (1-10)
Then let us assign all y to:
1y1= [ £ y00. ' 00)ee @1

real number. Thus we can define | as a functional.

In most cases the problem is to extremize the values of the functional. The extreme value
can be either absolute or local.

If the 1[y] functional is valid on the entire argumentum functiony €y, and I[y]> 1[y],
then 1[y] is absolute minimum.

If the 1[y] functional is only valid on a certain part of the argumentum, and I[y]> 1[y],
then 1[y] is local minimum.

The classical definition of the variation of calculus is analogue with the calculus. Lagrange
introduced the variation — denoted by ¢ — and defined the rules, similarly as it is in the calcu-
lus. Let us examine the classical definition:
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1. History of element method 15

The variation of y function isdy, and we know that dy(x,) =0 anddy(x,) =0. &y disap-

pears in the x, and x, points of the domain, while between them is arbitrary. y = y+3 pro-

vides a sum of (permitted) functions, which includes the solution as well. The variation of the

functional is defined as:
Y A

»
y

X1 X2 X

Figure 1.4 : Classical Lagrange definition of variation

8 = [& -dx. (1.12)

X

The solution of y can be obtained if the functional has a minimum. According to the vari-
ation definition

d =0. (1.13)
This is necessary condition of the extreme value.

In case of a functional-minimum based method the solution of the problem can be defined
as an exact or an approximate, which is analogue to the absolute and local minimum theory.

Exact solution, if the function — which provides minimum to the functional — is chosen
among all possible, existing function.

To find that specific function is only possible in very simple cases. In most cases the exact
solution cannot be found, since it is neither possible to solve the equations analytically, nor
examining infinite functions to see which one provides minimum. Still the problem must be
solved even if we are unable to provide the exact solution. Then an approximate solution must
be found.
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16 Finite Element Method

Approximate solution, if the function — which provides minimum to the functional — is
not chosen among all possible, existing function.

Direct methods were created to find approximate solution. The so called Euler’s broken
lines were the elements of Euler’s variation method. This method — by wielding the accesso-
ries of modern mathematics — gained attention and became the foundation of the direct me-
thods of variation of calculus.

1.2.3. Direct method

The first problem of the variation of calculus was the determination of extremizing functions
which provides extreme values to the functional.

Fundamentals of Euler’s method: let us consider the problem analogue with extrema prob-
lem of functions which depend on finite variables. Thus permitted functions have finite (n)
describing variable, and the integral which is defined as functional (1.11) will be substituted
with an approximate value. If n converges to infinite, then the approximate value converges to
the value of the integral.

Euler’s solution: the use of linear, continuous ,,Euler’s broken line’’ functions for each
part of the domain. Let us divide the [x,,,] interval to n+1 identical part, and give arbitrary

real numbersz,,...,n, . Then the length of the lines:

Xy =X

t .
n+1

The points of (x,,y, ) (x, +t,7,),(x, +2t,7, ..., (x, +nt, 7, ), (X,,y,) are connected with
broken lines, and it creates a continuous function which start and end points are fixed in
P = (X1' yl) and P, = (sz yz) .

Y A
/;PZ
P
‘K y,
i N
X1 |t Xa+it X2 >x

<«

Figure 1.5 : Euler’s broken lines
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1. History of element method 17

Then the (1.13) functional can be modified as:

n+1 _n.
I =Zf(xl+i.t,ni,%}, (1.14)

i=1
(ﬂm—l = y2 ) '

If the approximate value of |, functional equals to the extreme value of any Euler’s bro-
ken line, then in the (x,, ;). (X, +t,7,), (X, +2t,72, ),...,(x, +nt, 7, ).(X,, y,) points the deriva-
tive:

n =O, j::L.__'n. (1.15)
on;

Let us introduce the partial derivative of a function with respect to the variable denoted by
lower index:

v (f,) e+ (1) =(f,). .. (1.16)

Setting the equation of (1.15) and (1.16):

) (fy ). - f,),

(fy i t

If n—o0, t — 0 and the series of the broken lines converges to a two times differentiable
y function, then from (1.17)

=0. (1.17)

1 d ]
f,yy)——"f,.(xy,y)=0, (1.18)
dx
from (1.17), or in another form
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18 Finite Element Method

This is a differential equation which belongs to the f basic function and named as Euler-
Lagrange differential equation. The solution is y, which provides the minimum of the (1.11)
functional. Thus the (1.13) and (1.18) equations mean different definition of an extrama prob-
lem in case of a given functional. This equation can be also derived by examining the extrema
of a one-parametric sum of functions (1.6. table), however Euler’s broken lines theory is the
foundation of the direct methods that is why the classical definition was examined in details.

According to the broken lines let us consider the series of the permitted functions — de-
noted as ¢, — related to the absolute extrema value in the k™ steps equals to

Zk: a;; (1.20)

which provides a function in each step. The obtained function series must be examined (if it is
convergent) whether its extrema existence is satisfied or not. This method can be used as:

— An approximate method for problems in variation of calculus,
— If the boundary function has an extreme value and satisfies (1.18), thus the solution of
a differential equation can be transform to a variation problem.

This is called as the direct method of variation of calculus.

1.3. Ritz-method

In the Ritz-method, the direct method of variation of calculus is applied to find an approx-
imate solution. In contrary with the finite element method, here the complete domain is mod-
eled with one function.

Definition: Let ¢, series exist on a norm, anda, series on real numbers. ¢, series is
complete, if to all ¢ element there is a

aQ +.+a,0,
series, which arbitrary approximates it.

Definition: Let | be a functional, and ¢, series the argumentum of I. Let us consider, that
I minimizable on the linear combination of ¢, set, if:

— A linear norm exists, which is part of the argumentum I, and ¢, is complete on it,

— Al linear combination of #» also part of the argumentum of |
— Inall cases of n exists an I, minimal element, where

D, - {(p= Za(p} (L.21)
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1. History of element method 19

According to Ritz’s theorem, if a functional can be minimized on the linear combination
of a ¢, set, then | must have a minimal element which is continuous and in that case, y, —

which is the series of the minimal function of I — is the minimizing series of | functional.

Ritz method in elasticity

Let us choose the potential energy of a flexible body as a functional. By the use of n, fi-
nite parameter, an approximate function of a kinematically admissible displacement field is
created (definitions see at 3.1.1. and 3.3. chapters). According to the theorem of minimum

potential energy, the potential energy is minimal in case of real displacement.
The kinematically admissible displacement field is approximated by a function series:

u=ag@ +..+a,p =u(a,a,...a,). (1.22)
The derived potential energy includes the same number of n parameter:

f[=f[(a1,a2,...,an). (1.23)

The potential energy is a functional, thus its extrema is found in case of

oll=0 (1.24)
Thus:
§ﬁ:@5al+@5az+...+@§an:0. (1.25)
oa, oa, oa,

Since this integral depends on the parameters, the extrema is obtained by the derivation of
the potential energy with respect the parameters and equaling to zero:

o _y
oa,
ol _y
oa,
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20 Finite Element Method

Z—H =0, thus we obtain a linear algebraic n degree system of equation which provides the
an
parameters of ¢, series. Naturally, the function series is arbitrary chosen, the solution is only

approximated. The important element of the method, that the (1.22) displacement field must
be kinematically admissible, therefore it would satisfy the kinematic boundary conditions. In
case of complex problems, the determination of the functions are quite difficult, thus the me-
thod is limited to simple problems. The finite element method has the advantage to simplify
the geometry of the body to simple elements, thus the approximate functions can be found
easily.

1.4. Evolution of modern finite element method
1.4.1. Force method

In the early ‘40s the jet planes appeared, and the high terminal and operating velocity de-
manded more complex structures, such as the swept and delta wings. The earlier methods to
design these special wings appeared to be useless, since the unreliability of the calculation
could not be compensated by safety coefficients due to the increasing price of the applied ma-
terials, operational costs. A sudden need arose for a reliable and precise calculation method
for complex geometries.

Levy applied first the force method, which is based on the classic elasticity that the
displacements were calculated from the equilibrium of the forces. He published his first paper
about the jet planes with swept wings in 1947. In case of Delta wings problems appeared with
the force method, thus another approach had to be used for the solution.

1.4.2. Motion method

Parallel with the force method, other methods — based on the displacements — were being re-
searched in order to put it into practice. In 1956, a research group of the Boeing Company —
led by Turner — published a problem solved by a new method. The method based on the solu-
tion of a stiffness matrix derived from a kinematically admissible displacement, which in-
cludes the basics of the current modern finite element method.

In the following decades new solutions were found for 2 and 3D problems, with large dis-
placement and various kinds of geometric, material and other non-linearities.

After the recognizing the importance of the analysis of convergence and the parallelism
between the matrix equations and elasticity principles, the finite element method was put on a
new foundation in the ‘60s, which was called as: calculus of variation.

The new method — which based on the virtual displacement — became almost the ultimate
solution earth wide. The problems of applied mathematics and their solutions are still being
developed as computer science is constantly evolving.

The finite element method is widely applied on constructional, thermo- and fluid mechan-
ical problems, including linear- non-linear and FSI problems as well. Since the computers and
the programs rapidly developed they became user-friendly and highly useful tools for the en-
gineers. However, the lack of theoretical background resulted inappropriate choice of boun-
dary conditions and models, which failed to provide the solution of the real problem.
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1. History of element method 21

1.5. Finite element method in engineering practice

The spread of finite element method fundamentally changed the classical process of produc-
tion, since it was implemented into the production chain (Fig. 1.6).

Prototipus
legyartasa

Tervezés |—» megfelel

< Probadzem Gyartas

nem felel meg

Figure 1.6.: Simplified model of classical production

The production and operation of the prototype consumes considering cost during production.
These phases require materials, machining, special conditions for the operation test, experi-
mental tools and rigs. Naturally, assistance with special skills are also demanded to carry out
the production and the test of the prototype. These costs are only balanced if the production
has either great volume or the manufactured pieces are simply expensive. This cost is rele-
vantly decreased by finite element simulation (Figure 1.7.).

Végeselem
szimulacio

Tervezés |—» megfelel

A

Gyartas

nem felel meg

Prototipus
legyartasa

Y

nem felel meg megfelel

Probaizem

Figure 1.7.: Finite element aided model of production

The required number of prototypes is reduced by the finite element simulation, and in case the
problem can be easily modeled, then the prototype production might be even neglected. In
such a case, the mass production can begin and only the zero series must be tested during op-
eration.

The simulation provides help during the technological design as well and not only in the
strength check. Different software is available to model molding, forging, deep drawing
processes, thus the high cost production methods also become cheaper.

We can state that the finite element method — applied in the design — is spread to many
fields:

— Strength, thermodynamic, fluid, magnetic examination of the piece during normal
operation conditions. This helps to improve the quality of the product and reduce the
cost (i.e. reducing weight),
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22 Finite Element Method

— Real-time simulation of the product during the manufacturing process in order to
achieve an optimal cost for a proper manufacturing technique,

— Simulation of tools, which provides additional information about tool life and optimal
operation conditions.

The finite element method is not only spread in the production, but in other scientific
fields as well. Analogously with the manufacturing, the required prototypes and experiments
can be greatly reduced, thus the design is cheaper, faster and more precise.

1.6. Appendix
1.6.1. Principals of calculus of variation

u function, F = F(x,u,u") functional.
The variation of the function or its small scale perturbation: &u .
The first variation of the functional:

oF :ﬁé‘u+ﬁ5u', (1.26)
ou ou'

Total derivative:

F'=ﬁdx+ﬁdu +ﬁdu'. (2.27)
oX ou ou'

In case of F,, F, functional the following equations are valid:

5(F, +F,) = oF, +oF,, (1.28)

5(F,-F) =&, -F, +F - &F,, (1.29)

o |-Fr-hd (1.30)
F2 FZ

S(F")=nF"*.¢F. (1.31)

Itis valid tou function, that:

d du
&(a;)= 5[&) (1.32)
5 j u(x)dx = j Su(X)dx. (1.33)
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1. History of element method 23

1.6.2. Euler-Lagrange differential equation

Let f € R® - R a given function (base function), and y € R — R is an admissible function,
which is continuously derivative along its argumentumy € C,[x,, X,], intersects P, = (X;,Y,)
and P, =(x,,y,) fixed points on the boundary and valid to the following state-

ments: y(xl) =Y. y(Xz) =Y.
Let us assign to all y functions the

11 = | 6 y00, y'(0)dx (1.34)
real number.

Let us find that certain y function to which the I[y]_functional stationer. (In case of cer-
tain conditions it takes on extreme values).

Let 7 € R — R arbitrary function with fixed points of
n(x,) =n(x,)=0, (1.35)
and & € R real number. Then we can define an @ € R* — R parametric set of functions:

(X, &) = y(X) +en(Xx). (1.36)

Yy A

»
>

X1 X2 X

Figure 1.8 : Solution of a variation problem and the varied curve

by substituting (1.36) into (1.34):
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24 Finite Element Method

X2

| = j f(x, 0(x), ' (x))dx = f (%, y(X) +&7(x), y' (X) + &n' (X) )dx.. (1.37)

Xy Xy

In case of a given 7(x) function the | functional only depends on ¢. I(g) can be only
stationer (satisfying the required boundary conditions), if

dl
— =0, 1.38
i (1.38)
and
e=0. (1.39)

According to the differential rules of the parametric integrals:
— I(n—+7y—jd —In—dX+J.77 idX =0. (1.40)
2oy oy’
We apply the partial integration rule on n ~
y

el el

The first member of the right side of (1.41) is zero according to (1.35), thus substituting
into (1.40):

XJZ {%—%[gﬂdx =0. (1.42)

Sincen is necessary, the integral can only be zero, if

o _dpar_g
oy dx{ oy’

This is called as the Euler-Lagrange differential equation.
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2. FOUNDAMENTAL DEFINITIONS IN CONTINUUM
MECHANICS. DIFFERENTIAL EQUATION SYSTEM OF ELASTICITY
AND ITS BOUNDARY ELEMENTS PROBLEM.

2.1. Fundamental definitions in continuum mechanics
Model: simplified approximation of reality, which behaves similarly as the examined phenomena.
In order to solve problems in the strength of materials certain models are required as:

— geometrical,
— material-,
— mechanical (load, constraints).

Geometrical models — according to their dimensions — can be:

— 0D: particle model, all the geometrical dimensions are neglected,

— 1D: if two dimensions can be neglected compared to one. Classical beam-truss
elements and line elements used in finite element method.

— 2D: if one dimension can be neglected compared to the two others. Plates and
membranes.

— 3D: None of its dimensions can be neglected. Although this statement does not always
include the complete geometry, since some parts can be still simplified in the
mechanical point of view. Only those parts must be ignored which significantly
increase the computation but less relevantly the precise of the result.

Continuum model: A continuum model can be divided up to finite (or infinite) elements
and described by continuous (and continuously derivative) functions. The points of the
continuum body can be appointed by a position vector
r=xi+yj+zk (2.1)

in a given coordinate system.

continuum body

infinitesimal element
v B 4

Figure 2.1.: Continuum body and an infinitesimal element
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26 Finite Element Method

Infinitesimal element: an infinitesimally (arbitrarily) small element of a continuum body,
depending on the model it can be an infinitesimal mass or volume.

Rigid body: the length between two arbitrarily chosen points of a rigid body is always
constant, independently the magnitude of the load.

Elastic body: the body is capable to deform elastically. The length between its points
changes depending on the applied load.

Linear elastic material model: the relationship between the load and deformation is
linear.

Non-linear elastic material model: the relationship between the load and deformation is
non-linear.

Plastic material model: the subject remains deformed after the removal of the load and
does not regain its original form. Several plastic models exist depending on the dominancy of
linear, non-linear, elastic or plastic properties.

G A G A G A

.
.
oV

linear elastic non-linear elastic plastic

Figure 2.2.: Material models

Isotropic material: the behavior of the material does not depend on the direction; all
properties are the same independently any arbitrarily direction.

Displacement vector: the difference vector between P and P'points. The points
represent an arbitrary point of an elastic body before- and after applying a load, thus the
original — undeformed — and deformed states.

szupi+vpl+wpk (2.2)

Displacement field: displacement vector of all points of the body in the function of the
position vector (2.1).

u(r) = u(r)i+v(r)j +w(r)k (2.3)
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2. Foundamental of elasticity 27

unloaded

VA P’

]_'/, . < o

=V

Figure 2.3.: Displacement vector

Small displacement: the displacement of the points of the body is irrelevantly small
compared to the geometrical dimensions of the body.

Kinematic boundary conditions: the given (or admissible) displacements of the body.

Dynamic boundary conditions: the given (or admissible) load of the body.

Deformation: the proportional displacement of the points of the body (related to a unit
length).

— Strain: the gradient of length of ¢ vector,

— Torsion of angle: the?” angle gradient of perpendicular axes (Figure 2.4.b.), the torsion
of angle is always symmetric.

— The rigid body motion is not taken into account (Figure 2.4.a.).
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yA y A
I~ ~<
/ T~o
/ /
/ / _
P’I I ny_(pxy+(Py
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Up
P
X X
a) b)

Figure 2.4.: The rigid body motion and deformation in the x-y plane

Deformation vector: this vector describes the displacement of a given unit vector. Defining it
byi, j,k unit vectors (trieder):

.1 .1
a, =& l+— +=7,.K, 2.4
Zx X~ 27/ny 27/xz_ ( )
1 . .1
gy :Eyyx!-i_gyl_'_iyyzk’ (25)
1 .1 .
a, =§7zx!+57/zyl+gzki (26)
where,

7/xy:7yw7yz:7/zy’7/xz:7/zx'

The property of the vector coordinates:
— Specific strains: ¢,,¢,,&, properties without dimensions,
& >0, the length increases,
£ <0, the length decreases.
— Angle torsion: y,.,7,,,7,, the dimension is in radian
y >0, the angle decreases,
y <0, the angle increases.

Deformation state: the sum of the deformation vectors related to all directions in a given
point. Possible description: infinitesimal unit cube with deformation vectors, deformation
tensor, Mobhr circle.
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Figure 2.5.: Deformation state with deformation vector coordinates

Tensor: linear, homogenous vector-vector function. Description is possible with dyadic
form or a matrix defined in a given coordinate system.

Deformation tensor: It describes the deformation state of any point of an elastic body by
assigning the deformation vector of a given direction to an arbitrary direction. Description is
possible with three vectors in matrix or dyadic form in a given coordinate system.

— Indyadic form:

()

—a,ci+a, o j+a, ok. (2.7)

=X

— In matrix form:

(2.8)

Il
I
<
2
3
<
N
~<

The deformation vector coordinates of x, y, z, are in the columns.
The a, deformation vector related to an arbitrarily chosen n direction is defined as:

g:

n

I3

. (2.9)

Deformation tensor field: the deformation field of all points of the body in the function
of position vector.
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&,(r) %m (6) 1.0

e0)=| 57a(0) 2,0 S7y(0) 2.10)

27D 270 200

Stress: The intensity of the internal force system distributed on the internal face of the
body. Dimension: 1£2 =1Pa.
m
Stress vector: the stress is defined by a stress vector. The p stress vector of a dA

surface related to an arbitrarily chosen n direction is defined as:
P =——. (2.11)

— On a given surface, the normal coordinate of the stress vector is named as
normal stress, and denoted by: o .
o >0, in case of tension,
o <0, in case of compression.
— The coordinate of the stress vector which is parallel with the surface is
named as shear stress, and denoted as: 7 .
The stress vectors defined by i, j,k unit vectors on a given surface:

P, =0xi+74 j+7,K, (2.12)
p,=Tuito, j+r,kK, (2.13)
P, =T,+7,j+0,kK, (2.14)
where,

7/xy:7/yx’7yz=}/zy'7/xz=}/zx'

Stress state: the sum of the stress vectors related to all directions in a given point.
Possible description: infinitesimal unit cube with stress vectors, stress tensor, Mohr circle.

www.tankonyvtar.hu © Istvan Oldal, SZIE




2. Foundamental of elasticity 31

Gx
TZY sz —)
f——>
T X

Figure 2.6.: Stress state presented on an infinitesimal cube

Stress tensor: It describes the stress state of any point of an elastic body by assigning the
stress vector of a given direction to an arbitrary direction. Description is possible with three
vectors in matrix or dyadic form in a given coordinate system.

— Indyadic form:

g=p.oitp, eitp, ok (2.15)
— In matrix form:
GX Tyx sz
o=|7, Oy Tyl (2.16)
sz z-yz Gz

p =o-n. (2.17)

7,(r)
L) o,(r) 7,(r) (2.18)
o,(r)

The element index of the stress- and strain tensor can be used in a reversed order not only
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as it was presented earlier.

The work of a force: a force acted along adr displacement carries out an F-dr
infinitesimal work (see the geometric description of the scalar multiplication on the Figure
2.7; the force is multiplied by the force directed component of the displacement). The work
carried out along a finite displacement is the sum of the infinitesimal works.

W = [E(ndr (219)

n

dW=Fdr=Frcosa=Fdr,

Figure 2.7.: Work of a force

Internal energy: (deformation energy) the energy of the internal forces

U= %J(ngx +Gy5y +0,¢, +Txy7xy +Tyz7/yz t707 % )jV (Linear case) (2.20)
v

The internal energy can be derived from the double product of the stress and deformation
tensor:

U==[o--edv (2.21)

Hamilton operator: (Nabla operator) is a vector, which coordinates are special orders to
execute the partial differentiations of the given directions. In a Descartes coordinate system:

V:—i+—j+gk. (2.22)
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In cylindrical (polar) coordinate system:

veLle st le 1 lg. (2.23)
RF " Rop "’

2.2. Differential equation system and boundary element problem of Elasticity
2.2.1. Equilibrium equations

The equilibrium equations describe the relationship between the g(r) distributed force system
acting on a volume and the o(r) stress field tensor.

Y A

b)
Figure 2.8.: Load case of an infinitesimal body

If an arbitrarily chosen infinitesimal body inside of a body is in steady state, then the external
(Figure 2.8.a.) and internal (Figure 2.8.b.) forces are in equilibrium. By investigating the
forces along the x axis (Figure 2.9.a.), it is clearly obvious: if no external forces are acting
upon the body, then the internal forces (stresses) have equal magnitude and opposite senses on
the proper sides of the body. The change is caused by the external distributed force system
acting on the volume. Stress is an internal force distributed on a surface, thus it must be
recalculated onto the infinitesimal cube. o, appears on the dydz surface of the cube, and it

turns to be a force system acting on a volume if it is divided by dx side length. Similarly, z,,
shear stress must be divided by dz, while 7, must be divided by dy side length. Then, all
forces acting upon the infinitesimal body along the x axis are in equilibrium:

7., +AT T
0x+AGX O-X+TZX+ATZX _ﬁ+u__yx+q)(=0 (224)
dx dx dz dz dy dy
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Figure 2.9.: Load case of an infinitesimal body along the x axis

The gradient of the stresses can be described by the partial derivative of the given
oo,

or
direction: Ao, = dx, Az, :%dz, At :Wyxdy, which are substituted into (2.24)

OX 0z
we obtain:

0
do, ey 0Ty +q, =0. (2.25)
x oy

Analogously to the earlier, the other two directions:

or,, 0o, Or,
T +—+—4q, =0, (2.26)
OX oy oz
0
or,, N Ty, N oo, +q, =0. (2.27)
OX oy oz

The (2.25)-(2.27) equations are the so called equilibrium equations in Descartes
coordinate system.

In order to define generally the equilibrium equations let us consider a V volume inside of
a body similarly to Figure 2.10.
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inner volume
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] : ] .:
a) b)

Figure 2.10.: V volume inside a body with a force system acting on surface and volume

The infinitesimal force acting on a dV volume of the infinitesimal body:

dF =qdV.

The infinitesimal force acting on a dA surface, and calculated from the p stress vector:

The V internal body is in equilibrium, thus the sum of the forces acting on the surface and
the volume are zero:

F=0=[qdV+[o-ndA. (2.28)
\ A

According to the Gauss-Ostrogradsky integral-transformation theorem:

Ig-QdA:Ig-VdV :
A \

Substituting Gauss-Ostrogradsky into (2.28):

0=[adV +[o-Vav,
\% \

Setting the separated parts of the equation into one integral:
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0=[(a+c - Vhv (2.29)

Since the V volume is arbitrarily chosen, thus the (2.29) equation is only valid if the
integral is zero. This is the equilibrium equation of elasticity.

o-V+q=0. (2.30)

2.2.2. Geometric equations

The geometric (kinematic) equations define the relationship between the u(r) displacement
field and the g([) deformation tensor field. On Figure 2.8, the deformation of an infinitesimal
cube is presented in the x —y plane of a Descartes coordinate system.

y
A du,
Q’
A dVXA
dv A e LI LT T LT 3
dvy‘ / Q T du
A4 y :
A 1
dy P Yy = Py + P
90° — v, ;
i ry dv,
4 — A >
P
p’ T(ny ; de" du, ' X
dx R du

Figure 2.11.: The geometric interpretation of deformation

Let us neglect the rigid-body motion, and let us investigate the relative displacement between
point P andQ. By plotting P and P' points on each other, the gradient of PQ length is the

QQ" vector, which is denoted by du=du-i+dv-j+dw-k infinitesimal displacement

vector. It has two coordinates in a plan, namely du and dv. Both coordinated can be broken
up into two parts: du =du, +du,, dv=adv, +adv,.

du, : from the strain of dx side (in the function of x),
du, : from the strain of dy side (in the function of y),), thus

ou ou du
u_ My, y:dux+0 and a—u:aux+—y:0+—y.
OX Ox ox  dx oy oy oy dy
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dv, : from the strain of dy side (in the function of y),
dv, : from the strain of dx side (in the function of x), thus

ov 5‘VX 8Vy dVX o oV aVy dVy
—= + = +0and —=—"2+ =0+ .
oXx oX ox dx oy oy oy dy
: : : du dv,
According to Figure 2.11, the strains are: &, = —, &y =—,
dx dy
While the torsion of angle is:
t X t duy dVX duy
=, + = arctan +arctan ~ + .
Vg = Py T Py dx dy dx dy

By the use of the partial derivatives related to the displacement vector:

_au ov v

=—, =—, = = —+ .
ST 6y7xy T oX oy

This calculation can be carried out on all planes, which result the geometric equations in
a Descartes coordinate system:

gxzé—u,gy:@,e:z:@, (2.31)
OX oy 0z

N . N aw . ow au
yxy_j/yx___'__ Ve =V ’7xz_7zx_&+5'

v Ve =Yy =+t —— 2.32
ox oy 7 Yooz oy (2:32)

The geometric equations can be defined in a general form. Let us investigate the position
of two points on an elastic body before and after applying an external load on it. The distance
between the two points — in the undeformed state —isdr = dxi +dy j + dzk..

According to the definition of deformation the gradient of displacement between the two
points has to be examined and described.
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unloaded

1N
o

’ =
& My P',(I". b=

Figure 2.13.: Displacement and deformation vectors

The difference of the two points is defined by the relative displacement of P and Q points:

AU=UqG—Up =U—Up.

Thus the displacement of Q :
Uu=u, +Au. (2.33)
Let us approximate the u(x,y, z) displacement function in the close environment of P by
applying a Taylor-series on P point:
10%°u

dz+= >
o 20X

dy+ 2 (2:34)
b oz

u(£)=up+g—H dx+ 2

Xlp Oy

dx® +..=U, +du.

P
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From (2.33) and (2.34) can be derived that in the close environment of P the difference
and the derivative are approximately equal. In case of small displacement the higher
derivatives can be neglected:

Taking into accountdx =1-dr, dy = dz =k -dr equilibriums, and the group theory

J-dr,
between the scalar and dyadic product a-(b-c)=(a-b)-c, the infinitesimal gradient of the
displacement field is:

du=a—u
T OX[p

(i-dr)+

= 82

(i-dr)+—=

Klp ~ oy

P

Ul (k- dr)= [au

P
By the use of the Hamilton operator:

du=(ueov)-dr (2.35)

Where T = (uo V) the derivative tensor of the displacement field, which can be divided to
a symmetric and anti-symmetric (skew-symmetric) tensors.

l=%¢+l) S-1)-2 SUeV+Vou)s ;®°V—Vow=g+Lw

The symmetric part describes the deformation of the infinitesimal body while the anti-
symmetric describes the rotation of the infinitesimal body. Thus the deformation tensor
derived from the displacement field is described as:

g=%@oV+VoQ (2.36)

Equation (2.36) is the so-called geometric equation.

The identical scalar equations of the tensor form are described in a Descartes coordinate
system as it was mentioned earlier in (2.31) and (2.32) equations.

The other type of geometric equations is the to so-called Saint-Venant compatibility
equation:

ngxV:Q.

The compatibility is also related to the neighbor infinitesimal elements, since the material
is continuous, and the displacement of the neighbor elements have to be identical as well.
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2.2.3. Constitution equations (material equations)

The constitutional- or material equations determine the relationship between the stress and
strain state. The behavior of the material on Figure 2.2 can be described as linear, and the
Hooke law is suitable to describe to phenomena. In case of single axis stress state, the simple
Hooke law can define the relationship between the strain and the stress: o = E¢, where E
(Young-modulus, elasticity modulus) is the coefficient between the stress and strain. In case
of tension or compression, the stress has only one principle direction thus component, but
strain appears in two directions as it is seen on Figure 2.14. There is positive elongation in the
material along the axis of tension, but in the same time, it contracts perpendicularly. The
relationship between the elongation and the contraction is described by the dimensionless
Poisson-coefficient: ¢, =&, =-ve,.
YA
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Figure 2.14.: Strains, Poisson-coefficient

In case of multi-axes stress state, the relationship between the stress and strain state can be
only described with a tensor equation, the so-called general Hooke law. The law has two
isotropic form to linear, elastic materials:

gzZG(§+l Vz glgj, (2.37)
o £t 5,595

£=%(g—%q§)- (2.38)
g o1, 0=

where,

G : shear elastic modulus, which can be calculated as: E = 2G(1+v),
E : unit matrix,

&,,0,: the first scalar invariant of the tensors, (the sum of the main row?).
The scalar equations with respect to (2.37) material equations:
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()j

o, = ZG(gX +
1-2v

o, = ZG(gy + 1_V2V (gx +te, +e, )J,

o, = ZG((’;Z +

()j

1-2v

Ty =Gy 7, =Gy, 7, =Gy

2.2.4. Boundary conditions

\ B

Figure 2.15.: Boundary conditions

In case of an elasticity problem two types of boundary conditions can be defined:
Kinematic boundary conditions: the admissible u, displacements (constraints) on A,

surface. It stands for the solution that: u =u,.
Dynamic boundary conditions: the admissible p load on A, surface (the unloaded

surfaces are included as well, since they have known load which equal to zero). It stands for
the solution that: p=p,,0rc-n=p.

Other boundary conditions can be defined as well, but these two are the most common.
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2.2.5. Boundary element method

The boundary element problem of elasticity is consisted the differential equations of elasticity

and the boundary conditions:

c-V+q=0, equilibrium equations,
1 . .
£ =E(goV+Vog), geometric equations,
o= ZG(g + 5 glgj , constitutive equations,
= < p 1=
9|/x =U,, kinematic boundary conditions,
a-n, =p. dynamic boundary conditions.

With this definition, it is proved that the boundary element problem has solution
(existence criteria), and only one solution exist (unicity criteria).

www.tankonyvtar.hu
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3. ENERGY THEOREM OF ELASTICITY, CALCULUS OF VARIA-
TION, FINITE ELEMENT METHOD, DETERMINATION OF STIFF-
NESS EQUATION IN CASE OF CO-PLANAR, TENSED ELEMENT

3.1. Approximate functions

The approximate solution of an elasticity problem can be obtained by the approximation of
displacement or internal forces (stresses). By the use of the elasticity equations the displace-
ment-, deformation or stress field of a body can be determined independently from the way of
approach.

3.1.1. Kinematically admissible displacement field
A displacement field u = u(r)is kinematically admissible if:

— Satisfies the kinematic boundary conditions (Figure 2.15.), u| =u,,
A,
— Continuously differentiable (the geometric equations are satisfied).

e m—
~.
~

—

~_—— = ——
-~ —— -~
-~ ——— -~

X AN VAN

~
~
-~ i
i L
I~ i

kinematic boundary conditions : z;(O)z 0, dL(O): 0
X

Figure 3.1.: Kinematically admissible displacement field of a fixed beam

The kinematically admissible deformation field can be derived from g é: %(go V+Vo gj

The kinematically admissible stress field can be derived from the displacement field by the
use of the constitution equation (material equation, general Hooke law):

Q=

= ZG(§+ 1 V2 & Ej. Since an elasticity problem can only have one o(r) solution, while
2T, 1= =

g([) can have infinite solution thus generally it does not satisfy the equilibrium equations and
the dynamic boundary conditions.

3.1.2. Statically admissible stress field
= o(r)Stress field is statically admissible if:

Q|
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44 Finite Element Method

— Satisfies the dynamic boundary conditions (Figure 2.15.), é-g

:Eo’

Ap

— Satisfies the equilibrium equations: é -V+q=0.

The kinematically admissible deformation field can be derived from this stress field by the

use of the constitution equation: & = %(E—%Elgj. This deformation field and the de-
< 271, 0t=

rived kinematically admissible displacement field generally do not satisfy the geometric equa-
tions and the kinematic boundary conditions.

3.2. Principle of virtual energy

Virtual displacement: small, arbitrary, admissible displacement of the applied constraints,
which can be derived from the difference of a kinematically admissible displacement field and

the valid displacement field. ou = g -u.
Yy A

A= % |

»
>

Xl XZ X

Figure 3.2.: Kinematically admissible and virtual displacement fields

Principle of virtual work: if an idyllically elastic system (body) is displaced from its equili-
brium state (in case of elasticity the equilibrium is defined by the load and constrains), then
the virtual work of the external forces equal to the virtual change of internal energy:

MW, = . (3.1)
Work done by the forces on volume and surface:

a\Nkzj5g-ng+j5g-_pdA (3.2)
\% A

p

The virtual internal energy:
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5U=£J.g--5£ dV+3j5g--£ v =[g--5g dv (3.3)
2V 2V \%

In (3.3), the o--6¢ =350 --¢ formula (constitution equation) has been already used to de-
scribe the relationship between the stress and deformation state.

(3.1) is the theorem of virtual work. Substituting (3.2) and (3.3) equations:
jg--ag dV:j&g-ng+j5g-_pdA. (3.4)
\% \Y A

3.3. Principle of minimum potential energy

The potential energy of a body is the difference of the internal deformation energy and the
work done by the external forces:

Im=u-w,, (3.5)
1

- 5 J

The internal deformation energy:

Vol

Work done by the external forces:

(3.6)

19
IIN
<~_.
IC
|_C2

'—:

N | -
IIQ
||co

sz.[g-ngJrIg_pdA.
\Y

Ap

Let us determine the potential energy by using a kinematically admissible displacement
field:

*

~U-W, 3.7)

¥

Work done by the external forces (forces on volume and surface) on an elastic body in
case of a kinematically admissible displacement field:

V\7k=_|.i~gdv Igp =Iu+5u qu+Iu+5u pdA=
\% A \Y

p P

I ng+I5u qu+Iu pdA+I5u pdA=
\Y

P P
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(J.g qdv J.g pd j {I&g-ngJrJﬁg_pdAJ:WkJréWk (3.8)

Ap

The kinematically admissible deformation field:

:%(Q0V+Vogjz%[(g+§g)oV+Vo(g+§g)]:

& =

:%(goV+Vog) ;(5u V+Vodu)=g+d¢ (3.9)

Internal energy stored in an elastic body due to deformation in case of a kinematically ad-
missible displacement field by applying the constitution equationg --0g = o - ¢ .

* 1 * * 1
UZEJQ--E VZEJ(Q+§Q)--(§+5£)dV:
=1jg £d ljg gdV+1j5g--§dV+1j5g--5§dV=
2V—— 20= "% 207= = 207= 7%
:%IZ £dV+[o-de dV + jaa Sg dV =U +8U + 56U (3.10)
\ \

The potential energy derived from a kinematically admissible displacement field by the
use of (3.7), (3.8) and (3.10):

M=U-W, =U +8U + 35U —W, — W, =

=(U -W, )+ (U — W, )+ 85U =TT+ A1+ S5°IT, where (3.11)
the potential energy of the valid displacement (solution) is:

m=uU-w,.
The first variation of potential energy:

S =8U — W, , (3.12)
The second variation of potential energy:

O Tl =6 (3.13)
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The first variation of potential energy is zero according to the theorem of virtual work
MW, = :

S1=0, (3.14)

The second variation of potential energy is an energy quantity, thus it is valid to any arbi-
trary ou :

571> 0. (3.15)

Then the difference of a kinematically admissible and a valid displacement field is:

M-1m=0 (=s%). (3.16)

The (3.16) formula is the principle of minimum total potential energy: among all kine-
matically admissible displacement fields, the potential energy is minimal in case of the valid
displacement field.

3.4. Principle of Lagrange variation

The variation form of the principle of minimum total potential energy is the principle of La-
grange variation. By using the variation approach, the total potential energy is a functional
depending on the displacement field:

Mfu]=U[u]-w,[u],

Where the kinematic boundary condition in variation form is:
Sul A =0.

The condition of the extrema is: SIT=0,
A= -W, =0. (3.17)
In case of elastic bodies, this principle is equal with the principle of virtual work (3.1).

If the first variation is zero, then the functional can be stationery, minimum or maximum.

In or case the second variation can be either positive or zero value 5°I1 >0, thus it can be
stationery, or stable minimum.
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ST =0 olI=0 olT=0
S I=0 5°I1>0
non exist extrema stationer real extrema
unstable unstable equlibrium stable equilibrium

Figure 3.3.: Kinetic example of potential energy

The variations of potential energy describe the stability conditions of a kinetic problem on
Figure 3.3.

3.5. Finite element model based on displacement method

The most widely spread finite element method is based on the motion method; the commer-
cial programs mostly apply this basic method. The fundamentals of the method are the fol-
lowings: the body must be divided into elements, and then kinematically admissible dis-
placement fields must be considered on the elements by approximate functions. After that, by
applying the geometric and constitution equation alongside with the boundary conditions a
linear algebraic equation system is created. The solution of this equation system is the approx-
imate displacement field. The stress field, calculated from the displacement field, will particu-
larly satisfy the equilibrium equations. In the description, vectors (column matrixes) will be
used instead of tensors.

3.5.1. Introduction of vector fields
Vector of stress components (column matrix): the vector, including the stress tensor compo-

o] [oxy.2)]
o, |o,(xy.2)
nents is described in a spatial system as: o = o(r)=| | = o.(xy.2) , while in case of co-
Txy Txy(X, Y, Z)
Tyz TyZ(X, Y, Z)
_sz | sz (X’ y’ Z)

(o}
planar system: o =o(r)=|o,(xy)|.
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Strain vector (column matrix): vector, including the stress tensor components is described

& ] [edxy.2)]
g | |gxy.2)
in a spatial system as: gzg([)z f | gZ(X’y’Z) , While in case of co-planar system:

&(xy)
e=e(r)=|&,(xy)|.
V(%)
If the displacement method is used, then the geometric and constitution equations are also
required. These equations have to be reformulated to vector equations. Let us define the scalar

. . 1 . .
components of the geometric equation & = E(g oV +Vou) in a Descartes coordinate system:

ou ov ow
Ex =T &= & =",

ox ' oy 0z

_, M ou N oW _ow d
7XV }/YX 6X ay'}/yz 7zy 82 ayiyxz 7zx 6X 62

and substitute them into the deformation vector. Let us convert them into a product form:

a2 g g
OX OX
e, ] il o 2 o
oy oy
&y ow 0 0 O 1 Tu
_| & | 0z _ oz | _
o PO e -V I IR el e
y ox oy| |oy ox w
v o ow o 0
7XZ _+_ O A A,
oz oy oz oy
w_ dul |16 4 O
LoX o0z ] Loz OX |

Thus the deformation vector is derived as product of u displacement vector and @ (in-
cluding the differential rules) differential operator matrix. The proper elements are substituted

into the stress vector by the use of the constitution equation o = ZG[Q + 1 V2 glgj :
g TP WAL=
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o,=2G| g, + (5X+gy+gz) = 2G[1+—~ &+ 2Gv
1-2v 1-2v
Gy=ZG &+ d (gx+3y+gz) = 2Gv g, +2G| 1+ Y
1-2v 1-2v 1-2
O'ZZZG(EZ-F (5X+gy+ez)j= ZGvex 2Gv gy+2G
—-2v 1-2v 1-2v
z-xyzc;}/xy’z-yz:G}/yz'szzc-’]/xz'
Then, let us convert them into product form:
o 2G(1+ Y ng+ 2Gv g+ 2Gv g,
o, 1-2v 1-2v 1-2v
o,| |28, tog[14— g, + Gv
o 1-2v 1-2v 1-2v
g= r =| 26V &, + 2Gv £y+2G(1+ Y jgz -
Xy 1-2v —-2v 1-2v
Ty Gy
| Ty Gyy,
i G 1
26l 1+ 1% 2Gv 2Gv 0 0
1-2v 1-2v 1-2v
2Gv o1+ 1% 2Gv 0 0
1-2v 1-2v 1-2v
= 2Gv 2Gv 2614 1% 0 0
1-2v 1-2v 1-2v
0 0 0 G 0
0 0 0 0 G
i 0 0 0 0 O

2Gv

£, + g,
1-2v 7 1-2v

2Gv

&

vj y

(1+
1

+ g,
1-2v

14

0
0
0
G_

£,
)

Il
10
&

Thus the stress vector is derived as a product of the ¢ deformation vector and the C ma-
trix which includes the material constants. Introducing the vector fields, both the geometric

equation:

and the constitution equation:
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c=Ce¢. (3.19)

are obtained as single products. Substituting (3.18) into (3.19): o =Cdu, thus the displace-

ment field is the unknown function, while the stress and deformation can be directly calcu-
lated.

3.5.2. Elasticity problem and the method of solution

The finite element method is presented on an elasticity problem. The general elasticity prob-
lem is the following:

Figure 3.4.: Elasticity problem

According to Figure 3.4, the following data are given:

— The geometry of the body,

— The material constants of the body,
— loads,

— Constraints.

Demanded functions: u(r), &(r), o(r).
Steps to solution:

— Firstly, the body is divided to finite domains so-called elements. Special points, nodes
are appointed on these elements. The elements cover the total volume of the body, and
their geometric representation is a mesh. The single elements are connected to each
other by the nodes.

— The displacement field is approximated element by element, generally with polyno-
mials which are fit to the nodes. The displacement fields of the nearby elements are fit
to each other through the nodes, and they describe a continuous function on the body.

— The approximate stress- and deformation field can be derived from the displacement
field by the use of the geometric- and constitution equation. Then, by the applying the
principle of Lagrange variation, a linear, algebraic equation system can be derived
with respect to the nodes. This is the so-called ‘stiffness equation’. The algebraic sys-
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tem of equation is solvable, if a load or displacement parameter — derived from the Ki-
nematic or dynamic boundary conditions — is specified to each nodes on the surface.
Thus the unknown values are the displacements of the nodes.

— By solving the system of equation, the approximate nodal displacement field is ob-
tained, thus the approximate stress- and deformation fields can be calculated as well.

3.5.3. Finite element, approximate displacement field

The body is divided to arbitrary shaped and sized finite domains, finite elements. Naturally, it
Is taken into account that the basis functions have to fit to the element.

i J k

e: number of elements

i, J, k, ..., n: number of nodes

s /

Figure 3.5.: Discretization, finite element

The displacement field of e element is approximated by a continuously differentiable func-
tion. The type of the function is determined, and according to this function, the demanded
numbers of nodes (2 points in case of linear function, 3 points in case of quadratic function)
are appointed on the element. Then the displacement field is described by the nodal displace-
ment. The displacement of element node i on element:

The displacement vector of element e derived from the displacement of i, j,k,...,n nodes:
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ei
Vei
gei
ei
_ _ gej
e — - . ]
en
Uen
Ven
L en_|

while this vector consist 3n number of elements. The ge([) displacement vector (field) of e
element is derived from the interpolation of u, nodal displacement vector:

U,(r)=N,(r)-ue, (3.20)

where ﬁe([) is the approximate matrix (matrix of the interpolation functions). This matrix is

built up by (3x3) blocks, and each block includes the interpolation function of each node.
The displacement of the element can be derived from the nodal displacement of i with re-
spect to e element:

Where the elements of N _ (r) are the interpolation functions. Definition of the indexes:

The N, (r) function defines the displacement along x direction of element e related to any

arbitrary r location due to the displacement of z direction of node i, while the other compo-

nents of the nodal displacement vector of element e are zero.
The functions must to satisfy the following conditions:

— The functions must be continuously differentiable,
— N_(r;)=E, the function must provide unit value of displacement in node i,

el

~ N_(r;)=...=N_(r,)=0, the function must equal to zero in the other nodes.

The N, (r) matrix has n elements, all the blocks related to the nodes N, (r), N (r), ...,

N (r) has to have the same size (3x3n):

N(0)=[N, () Ny@) . N ()]

By the approximation of the element’s displacement field, the deformation field can be ob-
tained by substituting (3.20) into (3.18):

g.(r)=2au,(r)=0N,(r)-u,,
Introducing ge([) nodal-deformation matrix as a product of the differential operator and
the approximate matrix:
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ée([)zée([)'ge' (321)
The stress field of the element:

o.(r)=Ce,(r)=CB,(r)-u,. (3.22)

The potential energy of the element according to (3.6):

M, == [g,(r)-&,(r)dV - [u,(r)-gdv - [u,(r)- pda.
Ve Ve B Ay B
Rewriting the formula by forming the scalar and double scalar products into matrix prod-

ucts (the constants of the internal energy are replaced) and introducing them as vectors instead
of tensors:

— [le.e)] e ()av [l aev - [T pon

Substituting (3.20), (3.21), (3.22) and separating the constants out of the integrals:

(u,) [[B.()] CB.(r)dVu, - (u jL (N gav —(u jL (r)] pdA.

Ve

Let us introduce the stiffness matrix:

K, = [[B.(r) CB.(r)av, (3.23)

V,

e

And the nodal load vectors with respect to the volume and surface forces:

Foo= [N, qav, (3.24)

Foe= [N paa, (3.25)
A

Ee = qu +Epe'

Thus the potential energy of the element is:
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3. Fundamentals of finite element method 55

The energy theorems can only be applied on the whole body; they are not valid on indi-
vidual elements. If the body has Q number of elements, the potential energy of the body is
derived from the sum of all elements’ potential energy.

n=>n,-2uyku-UyE.

e=1

According to the principle of Lagrange variation, the first variation of the potential energy
is zero:

on=0=6[%(L_J)T§L_J—(Q)TEJ=§Q—E.

Setting the equation we derived the stiffness equation:
KU =F, (3.26)

where:

K : is the stiffness matrix of the body,
U : is the nodal displacement vector of the body,
F : is the nodal force vector of the body.
(3.26) equation is linear system of equation, which provides the solution of the elasticity
problem. (The elements in the equation are a formulated according to a simple static problem,

in case of thermal stresses, elastic constraints the stiffness matrix has more elements while in
case of dynamic problem even other parts are added as well).

3.6. Definition and solution of stiffness matrix in case of co-planar tensed truss
element
3.6.1. Stiffness matrix of 2D, tensed, truss element

General property of the tensed-compressed structures (truss elements) that the element are
only loaded axially. Let us a coordinate system fix to the axis of a truss element. On Figure
36 F,=(F,0), F,= (Fj,O)are represented as the nodal loads of element e with length L.
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Figure 3.6.: Two nodes on a co-planar element
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56 Finite Element Method

In node i the displacement is u;, :(ui,O), while in node j the displacement is u; :(uj,o).
The truss element:

U, (x, ) = (u,(x)0) (3.27)

Is approximated by a linear function:

U, (X)=ag, +a,X, (3.28)
The displacement field provides the displacement values in the nodes of the element:

u,(x=0)=u, =a, +a,0,

u(x=L)=u; =a, +a,l.

Setting the constants and substituting into (3.28):

u. —u
u,(x)=u;, + +——=x.
()=u+ 2

Then substituting this equation into (3.27) equation:

U, (X, y)=(1_TXui +%U;’Ojl

Forming into matrix product:

(% Y) = m: ;ﬂ i [? 2 g]

where Qe(x, y) is the approximation matrix of element e and u, is the nodal displacement

vector. The approximation matrix is built up from two blocks, with the interpolation functions
of node i and j:

ﬁel(x,y)|:l_x Ol'ﬁej(xvy)lf 0]-

0 0

U;
V; B

u - ﬁe (X’ y)ie 1
\Y

j

or | x

]

or |
(@)

|

_ ! Nejxx(xly)zl

Neixx (X’ y): L

I_ ‘
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3. Fundamentals of finite element method 57

These interpolation functions satisfy the required conditions (continuous, provides unit
value in its own node, disappears in other nodes) and shown on Figure 3.7.

Neixx(xiy) Nejxx(xly)

j

'X |

9 /

Figure 3.7.: Interpolation functions

In case of truss elements, the only deformation is the elongation, thus the geometric equation:

ui
1 1
N _ = - i
ge(x,y)={ﬂ=dgesx’y)=d=e(x’y)ue= C oo =B, (X y)u,.
X dx 0 0 0 0lvYi

Ee(X' y) nodal-deformation matrix has constant elements, which results constant strain in

the truss. In case of single-stress state, the simple Hooke law can be applied in order to calcu-
late the stress:

o,(x y)=Ce,(x, y)=CB, (X, y)u..

The constitution matrix:

N

The stiffness matrix of the element:

K, 00y)= JIB ey B, (x y)av = [B,(x )T CB, (x ) Ack -

0

L E o]_1 o 1 L
-0l 2 0{0 E}[ L0 Ve § 02 Ofafax
OE 0 0O 0 O O _FO F 0| o
0 0 0 0 0 o0
1 0 -10
AE|O 0 0 O
K (xy)="5 -K . 3.29
K. (xy) Ll-10 1 of = (3:29)
0 0 0

Then the stiffness equation of the element:
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Finite Element Method

K,u, =F.. (3.30)

where
u, :[ui Vv, U vj]T is the nodal displacement vector of the element,
E.= [in F: Fy ij]T is the nodal load vector of the element.
In general case, the local coordinate systems fixed to truss elements are different, thus the

stiffness equation must be transformed into global (so called absolute) coordinate system in
order to summarize the stiffness matrixes of the complete body.

Figure 3.8.: Vector in rotated coordinate system

The vector coordinates show on Figure 3.8 are calculated in a coordinate system rotated by
angle « as follows:

u'=u-cos(a)+V-sin(a), v'=u-sin(a) —Vv-cos(x) .

In matrix form:

u,:{u}:{co-s(oz) sin(a)}{u}zlw (3:31)
V' —sin(a) cos(a)||Vv| ~

where T is the transformation matrix. The matrix includes two vectors; u, and F, vectors
can be described by two blocks, where one block relates to one vector:
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3. Fundamentals of finite element method 59

cos(ar) sin(a) 0 0
T —sin(a) cos(«) 0 . 0 | (332)
= 0 0 cos(ar) sin(a)
0 0 —sin(a) cos(«)

Let us determine the stiffness matrix in a coordinate system rotated by angle « ! In order to
carry out this calculation, we have to determine the transformed (3.30) equation as well:

K.u.=F.. (3.33)
According to(3.31):

u',=Tu, = u, =T 'u’,, similar to this: F, =T"F'
Substituting this form into (3.30):

e

KT v,

Let us multiply the equation withT from the left side:

T7'u', = F',, by the use of (3.33), we obtain the following:
T (3.34)

T is asymmetric, thus T =T", then:

K. =TKT". (3.35)

Let us calculate the stiffness matrix of a co-planar truss, defined as (3.35) in a global coor-
dinate system, with respect to formula (3.29) related to the use of the stiffness matrix in local
coordinate systems:

cos(er) —sin(a) —cos(a) sin(x)

K T AE 0 0 0 0
=e= " L |-cos(e) sin(@) cos(@) -sin(a)|’
0 0 0 0
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60 Finite Element Method

cos’ () —cos(a)sin(er)  —cos®(a) cos(a)sin(cr)
K'.=TK 7 :E —cos(a)sin(a) sin’(a) cos(a)sin(x) —sin’(a) (3.36)
= === L —cos*(a) cos(a)sin(cx) cos’ () —cos(a)sin(a)
cos(a)sin(a) —sin®(a) —cos(a)sin(a) sin’(a)

In case of a structure, all stiffness matrixes of the trusses must be transformed into a global
coordinate system and there summarized. After then the stiffness equation can be applied on
the structure, which provides the solution as displacements and forces in all nodes.

3.6.2. Example

\ 4

L,

3.9. abra: Trusses

The structure on Figure 3.9 includes three trusses. The given data are:
F,, =—1200N

X

F;, =1000N
L, =12m
o =50°
A=A =A =A=100mm’
E =210GPa
Determine the forces and displacements in the nodes!
Lengths of the trusses:

L, = Litg(er) =1430,1mm

L, = L =1866,87mm
cos(x)
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3. Fundamentals of finite element method 61

The stiffness matrix of truss 1 in the local (which is identical with the absolute) according
to (3.29):

1 0 -1 0] [17500 0 -17500 0

« _AE[0 0 00O | 0 0 0 0N

=L |-10 1 0] |-17500 O 17500 O|mm
0 000 0 0 0 0

The 2x2 nodal blocks (upper index is the number of the element; lower index is the num-
ber of the two nodes. The block describes the relationship between nodes):

1 1
K — ﬁll ﬁlz
=21 =22

The stiffness matrix of truss 2 in the local coordinate system:

1 0 -1 0] [1468424 0 -1468424 O
. AE|O 0 0 0 0 0 0 0| N
=27 |-1 0 1 0| |-1468424 0 1468424 O|mm’

00 0 0 0 0 0 0

Truss 2 is perpendicular in the absolute coordinate system, thus its coordinates have to be
recalculated in the absolute coordinate system according to (3.36):

cos’(a,) —cos(a,)sin(a,) —cos®(a,) cos(a,)sin(a,)
_TkiTT - AE —cos(a,)sin(a,) sin®(a,) cos(a,)sin(a,) —sin®(a,)
= === —cos®(a,) cos(a,)sin(a,) cos’(a,) —cos(a,)sin(a,)
cos(a,)sin(a,) —sin®(a,) —cos(a,)sin(a,) sin’(a,)
where a, =—90°.
0O 0 0 O 0 0 0 0
AE|0O 1 0 -1 0 14684,24 0 -14684,24| N
=2~ lo 0 0 of |o 0 0 0 |mm

0 -1 0 1 0 -14684,24 0 14684,24

The 2x2 nodal blocks:
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62 Finite Element Method

The stiffness matrix of truss 3 in the local coordinate system:

1 0 -1 0] [1124878 0 -1124878 O
. AE|0 O 0 0 0 0 0| N
=", |-1 0 1 0| |-1124878 0 1124878 0|mm
0 0 0 0 0 0 0

Truss 3 is rotated by angle « in the absolute coordinate system, thus its coordinates have
to be recalculated in the absolute coordinate system:

cos’ () —cos(a)sin(er)  —cos?(a) cos(a)sin(cr)
K —TK:TT - AE —cos(a)sin(a) sin’ () cos(a)sin(c) —sin®(a)
= === L| -cos¥(a) cos(a)sin(a) cos?(a) —cos(a)sin(a)
cos(a)sin(a) —sin®(a)  —cos(a)sin(c) sin’(a)

where o =-50°.

4647,73 553894 —4647,73 —5538,94
5538,94 660,06 —553894 -6601,06| N
=3 |_ 4647,73 —553894 4647,73 553894 |mm
—-5538,94 -6601,06 553894  6601,06

The 2x2 nodal blocks:
3 3
K :{ﬁll £13:|
=3 K3 K3 *
=31 =33

The stiffness matrix is summarized by adding the identical describing blocks of the nearby
nodes together, thus the stiffness matrix of the structure is:

1 3 1 3
ﬁll + ﬁll ﬁlz ﬁla
1 1 2 2
ﬁ - ﬁzl ﬁzz + ﬁzz ﬁzs -
3 2 2 3
£31 ﬁaz ﬁss + ﬁsa
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3. Fundamentals of finite element method 63
(17500 + 4647,73 553894 —17500 0 —4647,73 —5538,94
5538,94 6601,06 0 0 —5538,94 —6601,06
B -17500 0 17500 0 0 0 N
a 0 0 0 14684,24 0 —14684,24 mm
—4647,73 —5538,94 0 0 4647,73 5538,94
| —5538,94 —6601,06 0 —14684,24 553894 14684,24 +6601,06 |
The stiffness equation of the structure:

KU =F

[ 22147,73 553894 —17500 0 —4647,73 —5538,94 | _ul 1T F. |
5538,94 6601,06 0 0 —5538,94 -6601,06 | v, F,

—17500 0 17500 0 0 0 u, | F,,
0 0 0 14684,24 0 —14684,24 || v, B F,,
—4647,73 —-5538,94 0 0 4647,73 5538,94 | u, Fs,
| —5538,94 -6601,06 0 —14684,24 5538,94 252853 | v, | i Fs, |
By substituting the known force and displacement boundary conditions:

[22147,73 553894 —17500 0 —4647,73 —5538,94 | _ul 17 0o 7
5538,94 6601,06 0 0 —553894 —-6601,06 | O F,
-17500 0 17500 0 0 0 0 B F,,

0 0 0 14684,24 0 —-14684,24 || 0 B F,,
—4647,73 —-5538,94 0 0 4647,73 5538,94 | u, -1200
| —5538,94 -6601,06 0 —14684,24 5538,94 252853 | v, | | 1000 |

The product is the solution of a linear system of equations with six unknown values:

u, =—-0,068571Imm
u, =-0,523986mm
v, =0,16549mm
F, =1430,IN

F,, =1200N

F,, =—-2430IN

© Istvan Oldal, SZIE

www.tankonyvtar.hu




4. ANALYSIS OF TWO-DIMENSIONAL TRUSSES USING FINITE
ELEMENT METHOD BASED PROGRAM SYSTEM

4.1. Two-dimensional bar structures

In several chapters of the mechanics, we meet structures, which consist of static bars. Their
main properties are that they are loaded only at the two ends, and then only axial forces, con-
sequently, drawn or pressed. Such structures are called trusses. In this chapter we deal with
two-dimensional trusses only. These structures are defined so that:

— Axis of the bars lie in a common plane,

— The bars are connected in an ideal plane joint,

— The bars geometric axes intersect at one point,

— The structure are linked to the ground by ideal joint constraints,

— The external forces can act in the nodes and the lines of action of the forces are in the
plane of the bars.

During the examination of the trusses we usually look for the answer to the following
questions:

— magnitude and direction of the reaction forces

— magnitude and direction of forces resulting in bars,

— the forces and stresses generated in bars

— the resulting displacements of each point of the structure and the deformation of each
bar

More structures, which generally contain bending bars (simply supported and cantilever
beams, frame structure, curved bars etc) may be tested for the stability of the structure and
dynamic behavior (the critical forces of compressed bars and natural frequencies). We deal
these problems in chapters 5-8 and the instability of compressed bars in the chapter 9-10.

In determining the reactions forces important issue is whether the beam is externally stati-
cally determined or indetermined. This is influence the used methods.

In determining the bar forces an important issue whether the beam is internally statically
determined or indetermined

The calculation of displacements and deformations are very simply for both internally and
externally determined structures. In this case we use geometric approach. For solve compli-
cated structures and statically indeterminate structures we use principles of energy (Castiglia-
no and Betti’s theorem).

As we shall see, it is irrelevant whether the structure externally or internally indetermined,
the procedure will not be affected, when we use the finite element method-based solution.

4.2. Finite elements for modeling beams

Generally there are two types of element available for modeling of beams in FEA (finite ele-
ment analysis) programs. For modeling of trusses TRUSS elements and, for the bent, sheared,
twisted bars BEAM elements may be used. In both cases, the finite-element two-dimensional
and characterized by a single line.
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4. Analysis of two-dimensional trusses 65

4.2.1. The TRUSS element properties

The TRUSS elements are grouped according to use them for two- or three-dimensional mod-
eling. We distinguish two types of element, TRUSS2D (see Figure 4.1) and TRUSS3D (see
Figure 4.2).

The TRUSS2D elements are two-nodes, uniaxial elements, with two displacement degrees
of freedom in both nodes. The element local coordinate system x-axis is defined by a vector
that starts at the first node and points towards the second node. The y-axis is parallel the glob-
al coordinate system XY plane and perpendicular to the x-axis.

Y i

Figure 4.1 TRUSS2D elements

The linear static analysis requires more constants to specify the real three-dimensional ele-
ment properties. In this case that is the cross-sectional area of the beam. This is not used only
to calculate elastic properties of elements, but also it is needed for determination the tare
weight.

We will also need the material properties of the bars. In this case, it is sufficient to deter-
mine the elastic modulus. The calculations of the own weight of structures requires to deter-
mine the material density.

We can perform buckling and heat transfer analysis using TRUSS2D elements.

The BEAMS3D is a two-node, uniaxial element too. For structural analysis, six degrees of
freedom (three translations and three rotations) are considered per node. The x and y axis of
the element coordinate system same as described above, and a third node is required to assign
the element orientation.
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66 Finite Element Method

Figure 4.2 TRUSS3D element

The necessary real constants and material properties are the same as given as for TRUSS2D
elements.
The TRUSS3D elements can also be used in stability, and thermal analysis problems

4.2.2. Beam Element’s properties

The BEAM2D element is a two-node uniaxial element, but unlike the truss elements, at both
two-nodes there are three-degrees of freedom (two displacements and a rotation), so these is
suitable for two-dimensional modeling of bent bars.

The BEAM3D element two-node uniaxial element also, but unlike the truss elements, at
both two-node are six-degrees of freedom (three displacement and three rotation). These ele-
ments suitable modeling three-dimensional bar structures. More detailed description of these
elements is in chapter 4-6.

4.3. Study solution
The finite element study procedure:

problem analysis,

create a geometry for generate a finite element mesh,

define properties of finite elements (element type, real constant, material properties),
determine boundary conditions, and loads,

solve the model,

evaluation of the results

ok wdpE

At both ends supported trusses are loaded at two nodes. The forces are 120-120 kN each.
(see Figure 4.3). The bars are steel pipes 100x10.
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4. Analysis of two-dimensional trusses 67

To be determined:

— deflection of the structure,
— stresses generated in the bars,

3Xx4=12m

¢ 120 kN

3m

120 kN

Figure 4.3 The tested trusses

The finite element programs usually contain built-in 3D geometric modeler, graphics pre- and
postprocessor. Thus, we can prepare the geometric model in its (see Figure 4.4)

Figure 4.4. Geometric modeler in the finite element program

These built-in geometric modelers do not always offer you the convenience of modern CAD
systems. Often we have to analyze existing models. In this case, the data exchange procedure
with other CAD systems can be convenient and efficient by any available standard file format
such as SAT, IGS, DXF, etc.. (see Figure 4.5).
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68 Finite Element Method

[Tl Fle Edt Geometry Meshing PropSets LoadsBC D\splay Analysis Results Windows Help
Uity >
Activate 3
Select >
Unselect: 3
Parameter »

ST Read CAD Input

FEM_Input  »|  Read IGES
Devices | wwrite IGES

Measure 4l Read DxF

Miscellaneous  » Write DXF

Read PROJE Input
Menu Type

Console

Geo Panel
Dilog Option
Plot Option

Figure 4.5. Import geometric model

Do not forget, in this case the geometric model only helps to create a finite element mesh. It
does not comply with the rules of a technical drawing, and has no relevance to the real shape
of the structure. It is true in this exercise, because the 100 mm diameter pipes appear only
lines (see Figure 4.3). Thus, we have to transform (simplify and extend) the technical docu-
mentation before the finite element analysis. This is shown in Figure 4.6, which shows the
imported geometric model. The one piece chord bars are divided at nodes, because it helps the
finite element mesh generation.

It should be remembered, that we have to choose a unit system for finite element model-
ing. If the Sl is selected, one drawing unit will be a meter during the data exchange of geome-
tric models.

[TJFie Edt Geometry Meshing PropSets LoadsBC Control Display Analysis Results Windows Help

Figure 4.6. The imported geometric model
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4. Analysis of two-dimensional trusses

69

It is also shown that the elements lie in the XY plane.
In the next step we determine the element group (see Figure 4.7).
We have clarified that we use linear behavior, TRUSS2D elements.

EFile Edit Geometry MeshingLoadsBC Control Display Analysis Results Windows Help

Material Property
Real Constant
Pick Material Lib
User Material Lib
Material Browser
AISC Sect. Table

List Element Groups
List Material Props

List Real Constants
Delete Element Groups
Delete Material Props
Delete Real Constant
Change El-Prop

MNew Property Set

Beam Section
List Beam Sections.

Element Name |

Category: LINE -

D: 2D elastic beam element

: Boundary element

3D elastic beam element

Convection link

© Elastic elbow element OP1:Unused option [
) Electrical link 3
© Thermal 3D fluid pipe 0P2Unused option |0

: General stiffness/conduction element

Gap element OP3:Unused option [0
Hydraulic link i DOP4:Unused option {0

. Znode immersed pipe/cable element ; - -
Elasti stoight piee clment OPSiMaterial Type [0 Linear Elastic -

Rigid bar element OPE:Displacement Formulation | 0: Small =

Radi li

0P8:Unused option |0

4 ink
: Axisymmetric shell element OP7:Material Creep |0:  No creep ¥
e

0K Help | Cancel |

Figure 4.7. Determination of element group

It is also necessary to determine the material properties of finite elements. It is sufficient to
specify the value of the modulus of elasticity for the truss element (see Figure 4.8). Making
sure to use the selected unit system. In this case, it is the Sl system, where the dimensions are
determined in meters, and the modulus of elasticity in Pa, (N/m2).

EF“E Edit Geometry Meshing JEEZoCEl LoadsBC Control Display Analysis Results Windows Help

Element Group
Real Constant
Pick Material Lib
User Material Lib
Material Browser
AISC Sect. Table

List Element Groups
List Material Props

List Real Constants
Delete Element Groups
Delete Material Props
Delete Real Constant
Change El-Prop

New Property Set

Beam Section
List Beam Sections

Material poperty set T

Material Property Name |

ECONX X Electic conductivity
ECONZ  ZElectic conductivity

=

Mass density

ECONY: 'Y Electric conductivity

EMIS: Emissivity
ENTHALPY:  Enthalpy

EPSL (unused)

ETAN Tangent modulus

ELL: Ultimate plastic strain measure (in tension]

Elasticity modulus in X mat. dir.

EY: Elasticity modulus in Y mat. dir.

EZ: Elasticity modulus inZ mat. dir.

FPC: (unused)

FRCANG: Friction angle

G1: Shear relaxation 1

G2 Shear relasation 2 I3 MPROP X]
G3: Shear relaxation 3 P [—
Gé: Shear relaxation 4 toperty yalue [2111

GE: Shear relaxation 5

GE: Shear elasation & v S | M|

Figure 4.8. Determination of material properties

Next task is determine the real constants of the elements. (see Figure4.9).
A complex finite element models contain various types of elements, so we have to also de-
termine the associated element group.
As previously described, the real constant is only the cross-sectional area for TRUSS2D
elements. Do not forget, we have to use the selected unit system in this case too.
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70 Finite Element Method

DF«[& Edit Geometry MeshmgLoadsBC Control Display Analysis Results Windows Help
Element Group
Material Property
Pick Material Lib
User Material Lib
Material Browser

AISC Sect. Table Associated Element group [I]
) Real Constant set |1
List Element Groups

List Material Props Help Cancel
List Real Constants
Delete Element Groups
Delete Material Props
Delete Real Constant
Change El-Prop

Mew Property Set RC1 : Cross-sectional area |2828e-6

RC2 : Perimeter HSTAR onl) O
Beam Section
List Beam Sections [T | Help | Cancel

Figure 4.9. Real constants determination

After defining the the mesh properties, may follow the finite element mesh generation. The

FEM programs offer several methods for this (see Figure 4.10).

Because the bar forces do not change along the length of the bars, it is sufficient to be

placed one element in each objects.

I Fie Edt Geometry [EEAUEN PropSets LoadsBC Control Display Analysis Results Windows Help
Mesh Options

Mesh_Density » Beginning Curve |1
[l Points Ending Curve |3
ko v | e —
Hodes » Surfaces Number of nodes per element |2 -
Elements » Volumes
Number of elements on each curve |1

Delete Elements On Paints Gpackgmiol

Delets Fedenton Curves Keypoint to define principal axis if 3 nd/el

Delete Elements On Surfaces

Delete Elements On Volumes 0K Hep | _ Cancel |

Figure 4.10. Parametric mesh generation

Because, the finite element mesh created each geometry object separately, it

IS necessary to

merge the nodes in each end of the bars (see Figure 4.11). The redundant nodes are removed

from the finite element model.

I Fie Edt Geometry [EERGEN PropSets LoadsBC Control Display Analysis Resuls Windows Help
Mesh Options

Mesh_Density »
Parametric_Mesh »

Auto_Mesh »
Define.
Elements > S—
Compress.
Modify
Push to Point

Push to Curve
Push to Surface

List

Plot

Delete
Re-associate
Show Merged Nd
Update Nd Coord

Figure 4.11. Merge of the end of bars

In the next step the boundary conditions should be given. In this case, these
placement constrains on the ends of the trusses.

are two, 0 dis-

The left side two degrees of freedom are fixed x and y directions and the other end only

the y direction is fixed (see Figure 4.12).
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[TIFle Edt Geometry Meshing PrnpSstanntrnl Display Analysis Resuls Windows Help

]  Define by Nodes
Thermal L Force » Define by Points

Fluid_Flow »  Pressure » Define by Curves
EMagnetic  »|  Master DOF »  Define by Surfaces
Load_Options  »  Coupling » Define by Contours
Function_Curve »|  Bonding » Define by Regions
» o :
Seanity Delete by Nodes Beginning Key point [1
Delete by Paints Displacement label [X: X translation >
Delete by Curves vaell
Delete by Surfaces —
Delete by Contours Ending Kep point]1
Delete by Regions Increment |1
o Addiional Displacement labels if any (L2.... L) [ uy
List oK Hep | Cancel |

Figure 4.12. Specify displacement constraints

Finally, it should be given the loads (which shown in Figure 4.3), two 120 kN concentrated
force (see Figure 4.13). The direction of forces must be given in the global coordinate system,
so the downward forces are negative sign.

l:‘FiIe Edit Geometry Meshing PropSets BEEGE:@R Control Display Analysis Results Windows Help

Structural 4  Displacement »

Thermal » Define by Nodes

Fluid_Flow »  Pressure [l  Define by Points

E-Magnetic > Master DOF »  Define by Curves
Load_Options  »|  Coupling > Define by Surfaces
Function_Curve »  Bonding | Define by Contours
Gravity > Define by Regions
Delete by Nodes
Delete by Points Beginning Key point |2
De:e“ :V soe Force label [FY: Force in'Y =
Delete by Surfaces [——
Delete by Contours e AR
Delete by Regions Ending Key point |6
Increment |4
Plot
List oK Help |  Cancel |

Figure 4.13 Defining the concentrated forces

By the finite element model is built. The calculation follows (see Figure 4.14).

I File Edt Geometry Meshing PropSets LoadsBC Control Display [ERENELN Resuts Windows Help
Restart
Renumber
Reaction
Data Check
Run Check
List Analysis Option

FFE Static Options
Asymmetric Load Options
Stress Analysis Options
PCG Option

Heat_Transfer
Fluid_Mechanics
Electro_Magnetic
Hi-Freq_EMagnetic

Output_Options ~ »
Static [ Activate Load Case
Frequency/Bucking »|  ListLoad Case
Post_Dynamic > Adaptive Method
Nonlinear > P-Order Labels
Optinize/Sensitivy. ¥| ™ o i Analysis Options
Fatigue »

»

K

»

Activate Stress Calc
Define Submodel

Run Static Analysis

Run Stress Analysis

Substructure
Crack
ASME_Code
J_Integral_Curve

Figure 4.14 Run a linear static analysis

After the successfully solving, the display and evaluation of the results follows.
The displaying stresses generated in bars (see Figure 4.15) can be done in several ways.
The stresses are interpreted on the element and in the element local coordinate system.
There is a possibility that the results display on deformed shape. The deformation is not
real of course, the program generates a specific scale factor, so that data can be evaluated.
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72 Finite Element Method

[SIFle Edt Geometry Meshing PropSets LoadsBC Control Display Analysis mwndnws Help

Combine Load Case
List Combined Load Cases Load case number h—
Average Nodal Stress c § I Z.J
Available Results omponent | SX: Normal Stress (X dir)
Read Post-Dyn Response Stress flag |ZAEEIERS 1|
Layer number [1
Setup »
Identify Resul Face flag (Shell [0 Top k|
List > Animate Coordinate system [0
Exliemes k| :Deformed sHigps, Contou Plat | Vector Plat | | Section Piot | Help | Cancel |
Beam Diagrams
Semoior.. B
Strain -
Displacement/Response/Reaction Line flag | 0: Fill bt
Thermal Beginning Element [1
Fluid Flow Ending Element |9
Electromagnetic
Increment |1
Fatigue
RN Defomed 14
Parh Graph Deformed scale factor [197.23
User Result
User Animate OK Help | _Cancel

Figure 4.15 Display stresses

The results (see Figure 4.16) must be evaluated. The negative sign indicate compressive
stress.

Notice, that the bars were straight, can be interpreted no bending moment generated in
them.

eometry Meshing PropSets LoadsBC Control Display Analysis Resuts Windows Help 8 x
=1

10E+007

Figure 4.16. Stresses on deformed shape

Our aim was to examine the deflection (see Figure 4.17).
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[T Fie Edt Geometry Meshing PropSets LoadsBC Contral Display Analys\smwnduws Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
Available Results
Read Post-Dyn Response

Setup »
Identify Result

List > Animate

Extremes » Deformed Shape

Beam Diagrams

Stress
Strain
T
Thermal - -
Fluid Flow Companent
Electromagnetic Coordinate system [0
Fatique Contour Plot] Vector Plot| Iso Plat| Section Plot| Help | Cancel|
Path Graph
User Result

User Animate

Lneflag[0:F >
Beginning Element [T
EndngElement3
Increment [T

Shape flag =

Deformed scale factor [197.23

0K Help |  Cancel |

Figure 4.17 Deformed shape

The deformations can be bi-directional displacement of nodes. The deflection is the y dis-
placement in the global coordinate system (see Figure 4.18). The negative sign of results
represent a downward displacement. The value of the scale according to SI unit system.

[CJFie Edt Geometry Meshing PropSets LoadsBC Control Display Analysis Results Windows Help a8 x

-0.00!

-0

Figure 4.18 Displacement in y direction
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74 Finite Element Method

It is possible to display the exact numerical results at nodes, forces generated in bars and dis-
placement components (Figure 4:19 to 4:20).

Because the truss elements are loaded only by tension-compression stresses, so the table
include only these stresses, interpreted in the element local coordinate system

I Fle Edt Geometry Meshing PropSets LoadsBC Control Display Analysis Windows Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
Available Results
Read Post-Dyn Respanse

Setup »
Flot >

Displacement{Response/Reaction
Extremes » E anent

Shear/Moment Value
Beam End Force
Spring Force

Gap Force

MNatural Frequency

Thermal Result

Flow Result

Flow Properties
E_Mag Result

HF Emag Result
Fatigue Usage Factor

3 STRLIST,1,2,0,1,0,1,1,9,1,0

5

Elem SIG_X SIG_Y T. TA
1 -5.658e+007 0.000e+000 0.0002+000 0.000e+000 0.000e+000 0.000=+000
2 -5.6582+007 0.000e+000 0.000e+000 0.000e+000 0.000=2+000 O.000e+000
2 -5.6582+007 0.000e+000 0.000e+000 0.000e+000 0.0002+000 0.000e+000
4 -4.2422+007 0.000e+000 0.000e+000 0.000e+000 0.0002+000 0O.000e+000
S 5.6582+007 0.000e+000 0.000e+000 0.000e+000 0.0002+000 0.000e+000
6 7.072e+007 0.000e+000 0.0002+000 0.000e+000 0.000e+000 0.000=+000
7 0.0002+000 0.000e+000 0.000e+000 0.000e+000 0.000=2+000 0.000e+000
8 -4.5542-008 0.000e+000 0.000e+000 0.000e+000 0.0002+000 0.000e+000
9 7.072e+007 0.000e+000 0.000e+000 0.000e+000 0.000=2+000 0.000e+000

Figure 4.19 Fig. Stress component list

The displacements of nodes are interpreted in the global coordinate system (see Figure 4.20).

I File Edt Geometry Meshing PropSets LoadsBC Control Display Analysis Windows Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
Available Results
Read Post-Dyn Response

Setup »
Plot >

Displacement/R
Extremes 4 Stress Component

Strain Component

Shear/Moment Value
Beam End Force
Spring Force

Gap Force

Natural Frequency

Thermal Result

Flow Result

Flow Properties
E_Mag Result

HF Emag Result
Fatigue Usage Factor

[ DISLIST;,1,1,1,10,1,0

a o5

Node UX z RX RY RZ
1 0.000e+000 0.000e+000 0.000=+000 0.000a2+000 0.000e+000 0.000=+000
2 -1.0782-00% -6.0842-003 0.000e+000 0.000e+000 0.000=+000 0O.000a+000
4 -2.1552-00% -5.8622-003 0.000e+000 0.000e+000 0.0002+000 0O.000a+000
6 -2.2332-008 0.000e+000 0.000=+000 0.000a+000 0.000e+000 0.000=+000
7 -2.0042-00% -5.4782-003 0.000e+000 0.000e+000 0.0002+000 0O.000a+000
10 -9.2612-004 -5.882e-002 0.000e+000 0.0002+000 0.000a+000 0.000=+000

4.20. Fig. The displacements of nodes
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4. Analysis of two-dimensional trusses 75

4.4, Remarks

During the solution, we have not dealt with buckling of the compressed bars. If this is a real
problem, it should have to verify with solution a finite element problem, or with any analytic
method.

During the solutions the tare weight (~81.59 kN) was neglected because this order of
magnitude smaller than the external load.

Both problems are explained in later chapters which deal with BEAM elements.

Furthermore, the structural joint was not examined. The other specialized areas of struc-
tural design deal with this problems.
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S. TWO-DIMENSIONAL BENT BARS VARIATION PROBLEM,
STIFFNESS EQUATIONS AND SOLVING THEM BY FINITE ELE-
MENT METHOD

5.1. Two-dimensional bent beam element variation study

Examine the two-dimensional, straight beam shown in figure 5.1. The loads are q(x) distri-
buted load, F concentrated force and M concentrated moment. During the solution we use the
Euler-Bernoulli’s beam theory. According to this theory the cross-section of the beam remains
normal to the beam neutral axis, so we do not account for the shear deformation. Thus, the
total potential can be written as a functional read on v(x) displacement function.

y F
# 1 q

|

M "—‘\\\"//W
X N i 7

Figure 5.1 The tested beam

The displacement function of the bent beam known as differential equation of the elastic
curve:

1 Mh (X)
Vi= 5.1
LB (5.1)
Also known as the bent beam strain energy:
2
U=ith(X)dx. (5.2)

2E 1,(x)

Solving the differential equation of the elastic curve for M(x) and substituting this in the
equation

U(v()) = E[ 1,0 () (5:3)

Define the total potential energy needed the work of external forces, which consists of
three members;
Work of the concentrated forces are perpendicular to the beam:

> Fv(x) (5.4)
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5. Two-dimensional bent bars variation problem 77

work of the concentrated bending moments:
> MyV'(x;) (5.5)

work of the distributed loads perpendicular to the beam:

Xb

j v(x)q(x)dx (5.6)
So, the total potential:
H(v)%E j 1, (x)(v"(x)) dx — j v(x)q(x)dx — > Fv(x;) = > MV'(X;). (5.7)

The S8IT =0 criterion of first variation of (5.7) potential leads to the basic equation and to
the natural boundary conditions. The approximate solution of the task is the direct minimiza-
tion of the total potential energy.

So, find the minimum of the potential IT(v), and the corresponding v(x) function. This

minimization problem is solved by using the Ritz method, when the unknown v(x) function is
looking as the following form:

v(X) = co(X)Zn:akxk (5.8)

where @(x) the shape function, which satisfies the kinematical boundary conditions, i.e. the
displacements at the supports are w(x) =0 and the angular displacements at the restrain are
@'(X) =0. With this substitution the potential TI(v) became a multivariable function for a,,
a,...an . This function has a minimum when:

o _

0. 5.9
. (5.9)

Since the Ritz-method is an approximation procedure, the solution accuracy depends on
how many members of the shape functions. For simple task enough a single tag, so the above
equation depends on the ag only, i.e., univariate.

Matrix formulation and solution of the equation system leads to the base equation of the
finite element method:

Ku=F. (5.10)

5.2. Solving the problem using finite element method

The problem shown in Figure 5.2, is a two-dimensional rod structure. The structure is over-
loaded by two concentrated force lies in plane with the cantilever beam. Compression and
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78 Finite Element Method

bending generated in the beam 1 of the structure and only bending stress generated in the
beam 2, so this problem can not be solved by using TRUSS elements presented in the chapter 3.

F F
Y beam?2 Y3
. 2m .

Figure 5.2 A two-dimensional rod structure

Both beam of the structure are 60x40x4 box section. The properties of cross-sections are steel
standards:
A =8.69 cm2
;= 44.8 cm4.

The two forces are 200 N each.

During the solution we use bent beam elements according to Euler- Bernoulli’s beam
theory.

We have seen that the finite element solution means the solution of an equations system:

Ku=F (5.11)

First we have to develop the element stiffness matrix, then assembly the stiffness matrix of
total structure.

5.2.1. The element stiffness matrix
The previous equations system written to single element:

ki K kg Ky Kis Ky 1 Ry
Ky, Vi Fly
Ka, oy _ M, (5.12)
Ky 2 F
Ks, ' Vs F2y
_k61 kee_ _q)z _Mz_
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5. Two-dimensional bent bars variation problem 79

The physical interpretation of columns of stiffness matrix is forces and moment necessary
to ensure the one unit displacement and the boundary conditions. Using this, we can easily
produce the stiffness matrix in case of using beam elements. Let one member of the u vector
one unit and all other is zero. In this case the ki, element of stiffness matrix belongs to u;=1
and according to the general procedure:

kll klZ kl3 k14 k15 le 1 FlX
K,, 0 F,
K,, lo|_|m, 613
k41 O FZX .
Ke, 0 Fy
K . . . kel lo] [M,]
Solution of the equation system:
Fix=Ku1 (5.14)
Fiy=Ko1
Mi=Ka1
Fax=Ka1
Fay=Ks1
Ma=Ke1

The physical content of this case is illustrated in Figure 5.3.

Y|

X

Y,

Figure 5.3 The physical interpretation of the first column of the stiffness matrix

Based on the figure, the individual beam stressed by pure compression, so using the Hook's
law:

F Al
k =X _Eg=E 5.15
=2 - 5.15)

The value of dl is one unit, so that after rearrangement:
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80 Finite Element Method

ki =Fy =— (5.16)

Ry, =—Fx (5.17)
Ie.
Ky =Ky (5.18)

The other members of the first column of the stiffness matrix are zero.
We may act similarly with the second column of the stiffness matrix. In this case the equa-
tion system:

kll klZ le k14 k15 le O le
K,, 1 =
Ky O_|M (5.19)
k4l O FZX .
Ks, 0 F,,
L : : . Kes] [0] [M,]
Solution of the equation system:
Fi=ka2 (5.20)
Fiy=ko2
M:=Kz2
Fox=Kaz
Fay=Ks2
M2=Ks:

The physical content of this case is illustrated in figure 5.4. This state is produced super-
position of cantilever beams. In the first case (see Figure 5.4 b) the end of the beam is loaded
by concentrated force and in the other case (see Figure 5.4 ¢) loaded by concentrated bending

moment.
y

1

Figure 5.4 The physical interpretation of the second column of the stiffness matrix
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5. Two-dimensional bent bars variation problem 81

These cases are well known in the strength of materials, so we can write it using equations
which from solution of the differential equation of the elastic curve:

FL M L2
v, =1=6,+0, =—1———1— 521
! 7 3IE 2IE (5:21)
and the angular displacements:
F,L> ML
dO=0= + = — 1y —|——1 5.22
(Z % SIE IE ( )
The solution of the multivariable equation system:
121E
Ry, = o Kz, (5.23)
61E
M, =—= K, (5.24)
L
Furthermore, ensuring the equilibrium conditions:
 F,=0=F,+F, > F, =-F, =k, (5.25)
and moments to the 2nd point:
ZM:O:M2+Ml—ﬁyL:M2+T—E—%L—>M2:T—E:KBZ (5.26)

The first and fourth members in the second column of the stiffness matrix are zero.
Elements in the third column of the stiffness matrix is determined similarly, so that the ¢ 1

in v(x) vector is one unit, and all other member O.

_kll klZ k13 k14 k15 le_ _O_ i le ]
Ky, 0| |F,
a1 Lo M : (5.27)
k41 O F2X
Ke, 0| |FRy
K - - .. Ke | [0] [M,

The solution of the equation system is:
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Fix=ka3
Fiy=Kas
Mi=Ks3
Faox=Kas
Fay=Ks3
M2=Kg3

The physical content of this case is illustrated in figure 5.5.

(5.28)

Figure 5.5 The physical interpretation of the third column of the stiffness matrix

The displacements presented in figure 5.5 is produced superposition of two displacements in

this case too, so:

L ML

V,=0=08+6, =2 —"1—
! Y72 3IE 2IE

and the angular displacements:

2
L ML

A TS

The solution of the multivariable equation system is:

_6IE _

1y ? - k23
41E
M, :T = k33

Furthermore, ensuring the equilibrium conditions:

SF,=0=F, +F, > F, =-F, =k

y
and moments to the 2" point:

41E 6IE 2IE

>M :OZM2+M1_FlyL:M2+T_?L—)M2:T:K63'

www.tankonyvtar.hu

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)
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5. Two-dimensional bent bars variation problem 83

The first and fourth members in the third column of the stiffness matrix is zero.
The members in 4"-6™ column of stiffness matrix are defined similarly. Eventually the en-
tire element stiffness matrix:

AE 0 o _AE 0 0
L, L.
121LE,  6LE, 121.E,  6LE,
0 E 2 0 E 2
6LE,  4IE, 6LE, 2IE
L2 L 0 - 2 L
Ke=| AE | | AE i | (5.35)
_ =i 0 0 i 0 0
L, L,
121E,  6LE, 121.E, 61.E,
T 0 N
0 6Ii!Ei 21.E, 0 _6Ii5 ALE,
I L L. K L |

It should be noted that in generally the element stiffness matrix are generated by:

" BdV (5.36)

K. =[B

Ve

[@)

equation, when C is the matrix of material properties and B is the matrix of deformation-

strain. This solution found in third chapter. The above presented solution would be difficult in
case of using more complex elements. It is only for understanding of the concept of stiffness
matrix.

The stiffness properties of the element were determined only in the element local coordi-
nate system. In the global coordinate system these stiffness values change depending on the
position of elements. Elements properties in the global coordinate system are produced using
the transformation matrix which was presented in chapter 3 (3.35 equation). However, in this
case the transformation matrix is of order 6x6 according to degree of freedom of beam ele-
ment.

[ cosa  sina O 0 0 O
—sina cosa O 0 0 0
0 0 1 0 0 0

T= ' , (5.37)
0 0 0 cosa siho O
0 0 0 —sina cosa O
| 0 0 0 0 0 1]

The members of transformation matrix can be easily calculated by known element nodal
coordinates:
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=X
i2 il
cosq; = (5.38)
i
- Yio — Y
sing, = 22— Jit (5.39)
i
2 ( )2
L = \/(Xiz - Xil) Wiz =Y (5.40)
; ; st ; ; .
So the stiffness matrix of 1” element in global coordinate system:
k“ cns(u): + kzz-sinm): cosiu)-.\m(u)-k:2 - cus(u)-sm(u)-k” sln(u)vkzg kl_‘vcm(u)2 + kzﬁ-sm(u)z cn.ﬂ(,()-.s‘ln{u)-k:S - cos(u)-.\imu]-kH sin(u)vk:h |
cus(u)»sin(u)»kz2 - cus(u)w‘in(ub‘k“ kzz‘cus(u)z i k“-\’in((t,)2 cos(u)-k:} cus((u‘sin(u)»kzs - cus(u)»sin(u)»kH k25~cnx(u)3 i kl"-.\’in(u)2 co.s(u)-k:(v
- \m(u)-k}2 cus(u)-k}2 k” ﬁln((:)-kﬁ cm(u,)-ky k}{;
1 )
ky eos(a)” + gy sin(o)” cos (a)-sin() kg, — cos(a)-sin(a)k, sin(a) kg Ky geos(a)” + kygsin(o)” cos(a)-sin() kg — cos (@) sin(a)k,, sin(a)ky
cuq(u)wm(u)»k;: = cn.~(u>‘.~iu(m~k” ku-cm‘(u)2 + L“win(u): co.\'(u)-k53 cos(a)-sin(o)-keg — cm(rx)wm(a)»kH k§5~c«).~((1)2 + k_H-nn(u): Cmm]'ksh
,\m(u)~km cu.~(u)~k6: k(\} .~in(u)-k(VS cu.~(<x)»k65 k(‘(,
5.2.2. The entire structure stiffness matrix

The size of the stiffness matrix of entire structure is equal to the number of degrees of free-
dom of the whole structure. So now the stiffness matrix of entire system is of order 9x9, be-
cause the system composed of two elements with 3 nodes, each with 3 degrees of freedom. In
the whole stiffness matrix the elementary stiffness of the common nodes are added together,
o)

kn ko ki ki Kis Ke 0 0 0
Ko Kao Kis Ky Kas Ky 0 0 0
Ki ki ki Ky Ks kz 0 0 0
Ko Kio Kis Koyt Ktk Kigt+kis ki ki ki
K= kél kéz kés ké4+k§l kés"'k;z kée+k§3 k34 kis kge (5.42)
Koo Koo Koo Koitkay kes+ky Keptki ki Ki K
0 0 0 Kk K Kia  Kia Kis Ki
0 0 0 Kk K. Kis Koo Kgs K
(0 0 0 kg K. Ke:  Keo Kas Ko
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5.2.3. The complete equations system and the solution
_kil kiZ kiS ki4 kis kiG O O 0 17 O ] I FRX 1
Ko Kz Ky Ky Ks ke 0 0 0[|0] |F
ki ki ki K Kis Ke 0 0 0|10} M
Ki Kip Kig Ktk Kig+kp, Ktk ki, kip ki [|u| | 0
ktln kéz kés ké4+k§1 ké5+k§2 kt136+k§3 k§4 kgs kge V2 [=| R (5.43)
Kii Koo Koy Kootk kes+kg, Keg+ks Ko, ks Kig ||| | O
0 0 0 Kk K. Kio  Kis Kis Kig|[Us| | O
0 O O kgl k§2 k§3 k§4 k§5 kéﬁ V3 FZ
[0 0 0 kg K2 ki  kea Ko Keo] [0s] [ O

During the solution the displacement 0 locations (at the supports) are skipped. So we can
delete rows and columns of the stiffness matrix in these places. In our case, this is the first
three rows and columns. Thus we get the condensed stiffness matrix and the equation system
to solve:

Kitkiy Kis+k Ktk ki ki ki ||u| |0
Koot ko KestKa, KooKy Ky Ky Kog| |V | | R
Ktk Kkl ks K, Ky K| 0| | O 5.4
Ky K2 Ki  Ki Kis Kig||Us| | O
Ky K, kis  Kes kis Keg| [Vs| |F
Ky K. Ke:  Kas Kes Ke) [0s] [0
Substituting the data, solving the equations we obtain:
‘u,| [ 0,01227 | m
Vv, —0,00709 | m
—0,01276 |rad
u=| |- (5.45)
U, 0,01227 | m
V, —0,03827 | m
@3 | |—0,01701 |rad

The reaction forces can be calculated by the known results. From the equations of entire

system, in this case, these are the first three lines:

Fix :k14'u2+k15'vz+kie'(|32 =0N

FRy=k§4-u2+k125~v2+k126~(p2 =400 N
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M, =k, U, +Ki -V, +Kie -0, =800 Nm

5.3. Remarks

The program systems based on finite element method can handle not only Euler-Bernoulli's
beams. In such a case the shear factor of the section must be determined. It should be noted,
this shear factor can only be reliably used in the case of linear static analysis.
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6. ANALYSIS OF TWO-DIMENSIONAL BENT BARS USING FI-
NITE ELEMENT METHOD BASED PROGRAM SYSTEM

6.1. Planar beam structures

As discussed in chapter 4, two-dimensional trusses are only a part of the bar structures which
we have to analyze. In most cases the bending generated in beams can not be neglected. This
situation arises when the bars of the beam structure are loaded not only by axial forces but
even by bending moments.

Such cases usually are:

— A simply and multi-supported beams, cantilever beams,

— Curved bars,

If the tare weight of the beam structure can not be neglected,
— Atwo-dimensional frame structure, etc..

This chapter deals with these beam structures. The chapters 7-8 deal with three-
dimensional, bent and twisted beams and the chapters 9-10 deal with buckling of the com-
pressed bars.

Other than as described in chapter 4, there are some more questions to be answered:

— The magnitude and direction of the forces and moments generated in supports,

— Magnitude and direction of the axial and shear forces, bending and toque moments in
each bar,

— The ox,oy and txy stresses which characterized of the planar-stressed state,

— Displacements of each point of the structure, and deformation of each beam.

These structures may be testing for the stability of the structure and dynamic behavior (the
critical forces of compressed bars and natural frequencies). We deal with these problems in
the chapters 5-10.

The previous chapter has mentioned the externally and internally determination and inde-
termination structures. We will see that it is irrelevant in this case too.

6.2. The used finite elements in modeling

The chapter 4 clarified that program system based on the finite element method use two types
of element for modeling beam structures. The TRUSS element for modeling structure loaded
axial forces only and the BEAM element for modeling loaded axial and shear forces, bending
and torque moments. In both cases, the finite elements are planar, so that is characterized by a
single straight line.

The properties of the TRUSS elements have already described in the previously chapters.

6.2.1. Properties of the BEAM element

The BEAM elements can be divided into two groups. The BEAM2D elements for models
characterized by planar-stressed state, such as generally the planar structures, with symme-
trical cross-section bars, loaded the plane of the structure only. The BEAM3D elements are
used for three-dimensional modeling. These is usually the three-dimensional constructions, or
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88 Finite Element Method

two-dimensional constructions loaded perpendicular to own plane, or two-dimensional con-
struction consisting of asymmetrical cross-section bars.

The chapters 7-8. will deal with BEAM3D elements.

The BEAM2D elements are two-node uniaxial elements, have three degree of freedom in
both nodes (two displacement and a rotational degrees of freedom). The local coordinate sys-
tem of the element is shown in figure 6.1. The coordinate system x-axis pointing from the first
to the second node, the y-axis parallel to the global coordinate system XY plane and perpen-
dicular to x-axis, the z axis is perpendicular to x and y axis and create a right-handed Carte-
sian coordinate system.

Y i
A-A
yA
Y  « b
A ™ q Z
| < f;
:

X
Figure 6.1 The BEAMD2D element

The linear static analysis are required the real constants of BEAM2D elements. In this case it
means cross-sectional area, the moment of inertia, depth of the section and shear factor. The
value of shear factor depends on the shape of the section.

We will also need the material properties of the bar. In this case, the elastic modulus and
the Poison’s ratio determination is sufficient because there are planar-stressed state in all
points of the BEAM2D elements. If the tare weight of the structure must be considered as a
load, the material density determination is needed.

The BEAM2D elements are suitable buckling and thermodynamic analysis. This requires
additional real constants and material properties.

6.2.2. The shear deformation

The shear deformation is usually neglected. It is possible simply to take this into account us-
ing finite element model for more accurate results.

The shear deformation is deduced from work of internal forces. The work of shear forces
of the two-dimensional beam:
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J' —dxdydz
Sort of the equation the shear (shape) factor is:

2
A
1721 b

The work of the shear forces in constant cross-section beam:
V2
=f,[——dx
1 GA

This is the shape factor, and this inverse using in the finite element solution as shear fac-
tor. The shear factor values of some often used cross section shown in figure 6.2.

The cross section fs The Shear factor
Rectangle
\
6/5=1,2 5/6=0,833
\
Circle

10/9=1,11 9/10=0,9

Figure 6.2 Shear factor of sections

In the technical practice we often use section where the tensioned chords and the sheared web
are separable (see Figure 6.3). In this case, the approximate value of shear factor:
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The cross section fs The Shear factor
~
Web Chords AlAwes A/ A
—

Figure 6.3 The simplified definition of shear factor

6.3. The study solution
The solution of the finite element studies we follow the following procedure:

— Analysis of the problem,

— Creation of the geometry model,

— Define the properties of finite elements (element types, real constants, material
properties),

— Define the boundary conditions and loads,

— Run the analysis,

— Evaluation of the results.

The open frame is shown in figure 6.4, loaded 10 KN on marked point. The force lies in
plane of the structure. The bars are 100x100x4 cold bended box sections.

We have to determine the reaction forces, the stress generated in the bars, the deflections,
and the bending-, torque moments and shear force diagrams.

2m

V5w

3m

>
\wo
\

7 Z

Figure 6.4 The cross section

The finite element programs usually contain built-in 3D geometric modeling, graphics pre-
and postprocessor. Thus, we can prepare the geometric model in its (see Figure 6.5)
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Figure 6.5 Geometric modeler in the finite element program

These built-in geometric modelers do not always offer you the convenience of modern CAD
systems. Often we have to analyze existing models. In this case, the data exchange procedure
can be convenient and efficient with other CAD systems by any available standard file format
such as SAT, IGS, DXF, etc.. (see figure 6.6).
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[JFle Edt Geometry Meshing PropSets LoadsBCDisplay Analysis Resuls Windows Help

Utiity »
Activate »
»
»

o
x

Select

Unselect

Parameter ¥
Read CAD Input
FEM_Input | ReadIGES
Devices > Write IGES
Miscellaneous ¥ Write DXF

Read PROJE Input
Menu Type

Console

Geo Panel
Dialog Option
Plat Option

DXF_INP : Reads a DXF file and translates into wire frame model.

Figure 6.6 Import geometric model from another geometric modeler

Do not forget, in this case the geometric model only helps to create a finite element mesh. It
does not comply with the rules of technical drawing, and has no relevance to real shape of the
structure. It is true in this exercise, because the 100 mm box sections appears only lines (see
Figure 6.7). Thus, we have to transform (simplify and extend) the technical documentation
before finite element analysis. This is shown in Figure 6.7, which shows the imported geome-
tric model.
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[IFle Edit Geometry Meshing PropSets LoadsBC Control Display Analysis Resuls Windows Help

o
e

Figure 6.7 The imported geometric model

It is also shown that the elements lie in the XY plane.
The next step is to determine element group (see Figure 6.8).
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[ Fie Ede Geometry Meshing |[RI0aed] LoadseC Control Display Analysis Resubs Windows Help a3 x
Group
aterial Property
Real Constant
Pick Materisl Lib
User Material Lb
Material Browser
AISC Sect, Table

List Element Groups
List Material Props

List Real Constants
Delete Element Groups
Delete Material Props
Delete Real Constant
Change El-Prop

New Property Set

Beam Section
List Beam Sections

EGROUP : Defines an element gioup,

Figure 6.8 Determination of element group

We have clarified that we use linear behavior, BAEM2D elements (see Figure 6.9).

Element group |1

Element Name |

2D elastic beam element
;3D elastic beam element

Boundary element

Convection link

Elastic elbow element OPUnusedopion ]
Electiical link
Thermal 3D fluid pipe OP2Unused option [0
Gap element o
General stifness/conduction element D= o= ootond0
ZHydvdaU!IC link. W— OP4:Integration Type | 0: Gauss x|
-node immersed pipe/cable element X
Elastic straight pipe element OP5:Material Type | 0: Linear Elastic ~|
Rigid bar slermerk OPEDisplacement Formulation [0: Small ~
Radiation link
Avisymmetic shell element 0OP7:Unused option [0
Spiing element )
20 truss/spar element OPBUnused option |0

TRUSS3D: 3D truss/spar element ok ] | e

Figure 6.9 Select the BEAM2D elements and determination of these properties

Next task is to determine the real constants of elements (see Figure 6.10).
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DFile Edit Geometry Mesh\ngLoadsBC Control Display Analysis Results Windows Help
Element Group
Material Property
Pick Material Lib
User Material Lib
Material Browser
AISC Sect., Table

List Element Groups
List Material Props

List Real Constants
Delete Element Groups
Delete Material Props
Delete Real Constant
Change El-Prop

Mew Property Set

Beam Section
List Beam Sections

Figure 6.10 Real constants definition

As previously described we have to define real constants of BEAM2D elements, the cross-
sectional area of the bars, the inertial moment (lI,), deep of the section, and the shear factor
(see Figure 6.11). Making sure use the selected unit system what is in this case the SI system.

RCI : Cross-sectional area [1508¢6

RC2 : Moment of inertia (I2) W

RC3 :Depth[O1

RC4 :Endreleasecode (node 1) [0
RCS :Endreleasecode fnode 2) [0
RC6 : Shearfactor in elem. y-axis 048
RC7 : Temp. diff. inelem. y-ais [0
RCE : Perimeter (HSTAR onl) [0

0K_| Help Cancel

Figure 6.11 Real constants definition

Needs to be explained in the fourth and fifth real constants (End-release code). The end-
release code for each and is specified by a six digit number with combinations of 0 and 1. The
six digit code corresponds in order to the six degrees of freedom at each end of the beam ele-
ments. For example, end release code 000001 for a BEAM2D element represent a condition
in which the moment about z axis is zero and forces in x- and y direction are to be calculated.
The degree of freedom refers to the element local coordinate system (see Figure 6.1).

The seventh and eighth real constants use only in thermal analysis, so we do not deal with
them now.

Still, the definition of material properties (see Figure 6.12).

|:|File Edit Geometry Meshing LoadsBC Control Display Analysis Results ‘Windows Help
Element Group
Real Constant
Pick Material Lib
User Material Lib
Material Browser
AISC Sect, Table

List Element Groups
List Material Props

List Real Constants
Delete Element Groups
Delete Material Props
Delete Real Constant
Change El-Prop

New Property Set

Beam Section
List Beam Sections

Figure 6.12 Definition of material properties

It is sufficient to specify the value of the modulus of elasticity and Poisson’s coefficient
for the beam elements, as shown in figure 6.13 and figure 6.14.
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Material property set |1

Material Property Name ~]|
a8

DENS: Mass density

ECONX: X Electric conductivity
ECONZ: Z Electric conductivity
ECONY: 'Y Electric conductivity

EMIS: Emissivity
ENTHALPY: Enthalpy 3
EPSU [unused)

ETAN Tangent modulus
Ultimate plastic strain measure (in tension]

Elasticity modulus in X mat. dir

EY: Elasticity modulus in Y mat, di.

EZ Elasticity modulus in Z mat. dir.

FPC: [unused)

FRCANG: Friction angle

G1: Shear relaxation 1 y

62 Shea relaxation 2 [ upROP X
= ommms

G5 Shear relaxation 5

GE: Shear elaation & v 2 ek | [l

Figure 6.13 Definition of the elastic modulus

Material property set |1
Material Property Name |EZ: Elasticity modulus in Z mat. dir. =

MOONEY_E:  Mooney-Riviin const 5
"_F: Mooney-Rivlin const 6
Magnetic permeabilty
Relative permeability (imag.)
_R:  Relative permeabilty (real)

Ogden constant 1

Ogden constant 2

Ogden constant 3

Ogden constant 4

XY Pe ratio

#Z Poisson's ratio

YZ P

(1.1) Piezoelectric matrix

(1.2) Piezoelectiic matiix

(1.3) Piezoelectric matrix

(2.1) Piezoelectric matrix

(2.2) Piezoelectric matrix

(2.3) Piezoelectric matrix

(3.1) Piezoelectric matrix
matrix

[ MpROP 3
Property value [0.3
oK Help |  Cancel |

Figure 6.14 Definition of the Poison’s coefficient

If necessary, we can define more material properties.

After defining properties of the finite element mesh, may follow the finite element mesh
generation. The FEM programs offer several methods for this, now we select the automatic
mesh (see figure 6.15).

The size of the elements is determined by required precision of the results, the available
capabilities of the computer and the available time. Now we choose 0,1 m average element
size.

Dﬁte Edit Geometry PropSets LoadsBC Control Display Analysis Results Windows Help

Mesh Options

Mesh_Density 4
Parametric_Mesh »

Nodes > Regions

Elements »| QuadMesh SfjRg
Region about Pt
Region about a Ct
Surfaces

NonUniform Surfaces
Surface about Pt

Surface about Cr Begnning Curve [T
Polyhedra EndingCuve |3
Parts Increment [T
Region Mesh Type Average element size [l
Surface Mesh Type Number of nodes per element fﬁ
Delete Region Mesh Keypoint to define principal axis if 3ndvel [
Delete Surface Mesh ,Tl Help ]

Figure 6.15 Automatic mesh generation

The finite element mesh and the numbered nodes shown in the Figure 6.16.
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Figure 6.16 The finite element mesh

It visible in the figure that created an independent node at each three endpoint of the beam
elements. Because, the finite element mesh created each geometry object separately, it is ne-
cessary to merge the nodes in each end of the bars (see Figure 6.17).

[ Fle Edt Geometry [[LESAGEN Propsets LoadsBC Control Display Analysis Resubs Windows Help
Mesh Options

Mesh_Density  »
Parametric_Mesh »

Auto_Mesh »
Define
Elements »
Identify
Compress
Modify

Push to Point
Push ta Curve
Push to Surface

List

Plot

Delete
Re-associate
Show Merged Nd
Update Nd Coord

Generation 4

Figure 6.17 Merge of the end of bars

In the next step the boundary conditions should be given. In this case, these are two size 0
displacements on the supports.

We fix two degrees of freedom of the structure, in x and y directions at the both support
(see figure 6.18).

(I Fle Edt Geometry Meshing Propsets [EETEcel Control Display Analysis Resuls Windows Help

Dispacement_»| _ Define by Hodes

Thermal > Force »|  Define by Points
Fluid_Flow > Pressure »  Define by Curves
E-Magnetic »|  Master DOF »|  Define by Surfaces
Load_Options | Coupling »  Define by Contours
Function_Curve | Bonding b Define by Regions >
& Delete by Nodes Beginning Node |1
Delete by Paints Displacement label [U: X translation v
Delete by Curves vaelo
Delete by Surfaces
Delete by Contours i il
Delete by Regions Increment |74
o Additional Displacement labels if any (L2.....L6.) [ wf
List 0K Help |  Cancal |

Figure 6.18 Displacement constraints
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Finally, it should be given the loads the 5 KN concentrated force (see Figure 6.19). The direc-
tion of forces must be given in the global coordinate system, so the downward forces are neg-
ative sign.

[T File Edt Geometry Meshing PropSets [[EERESE Control Display Analysis Resuks Windows Help

Structural ld  Displacement »
Thermal O Force  »| Define by Nodes

Fluid_Flow > Pressure > Define by Points
E-Magnetic »|  Master DOF »|  Define by Curves
Load_Options ~ » Coupling »  Define by Surfaces
Function_Curve »  Bonding > Define by Contours

— »  Define by Regions

Delete by Nodes

Delete by Points Beginning Node |96

Deletabyicirves Force label [FY: Force in'f ~
Delete by Surfaces B E—
Delete by Contours St

Delete by Regions Ending Node |36

Plot Increment |1

List 0K Help | _ Cancel |

Figure 6.19 Defining the load

The completed finite element model is presented in Figure 6.20.

Figure 6.20 The completed finite element model

Follows, the running linear static analysis (see Figure 6.21).
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[TIFle Edt Geometry Meshing PropSets LoadsBC Control Disp!ayResuIts Windows  Help
Restart

Renumber

Reaction

Data Check

Run Check

List Analysis Option

QOutput_Options »
Static » Activate Load Case
Frequency/Buckling » List Load Case
Post_Dynamic »|  Adaptive Method
Nonlinear ¥ P-Order Labels
Optimize{Sensitivity »

Static Analysis Options
Fatigue » ) ;
Heat_Transfer » FFE Static Options
R 3| SRR
Electra_Magnetic  »
Hi-Freq EMagnetic »|_ PS8 Option

Activate Stress Calc
Define Submodel

Run Static Analysis

Run Stress Analysis

Substructure
Crack
ASME_Code

I _Inkegral_Curve

>
»
»
»

Figure 6.21 Run linear static analyses

After the successful solving, follows the display and evaluation of results.
The displaying stresses generated in bars (see Figure 6.22) can be done in several ways.
The stresses are interpreted on the element and in the element coordinate system like case
of the TRUSS elements.

Load case number |1

[
=

Component [VON: von Mises Stiess

Stress flag
Layer number [1
Face flag (Shell [0 Top =l
Coordinate system |0
Vector Plot | | SectionPlat | Help | Cancel |

Figure 6.22 Display stresses

The results are shown in Figure 6.23. The deformation is not real, of course, the program ge-
nerates a specific scale factor, so that data can be evaluated.
Notice, that the bars are bent, due to bending moments.

d Oupiay sedyas Resks Wrdws Wb

Figure 6.23 Stresses on deformed shape
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It is possible to display stress components (see Figure 6.24). The negative sign of the stress

indicate compressive stress.

Load case number [T
Component
Stress flag [2: Element =l
Layer number [1
Face flag (Shel) [0: Top =]
Coordinate system [0

Contour Plot | Vector Plot |

| Section Plot | Help | Cancel |

[ File Edt Geometry Meshing PropSets LoadsBC Control Display Analysis Results Windows Help

Figure 6.24 Display stress components

We examine the deflections i.e., y direction displacements in next step, (see Figure 6.25).

[TIFie Edt Geometry Meshing PropSets LoadsBC Control Display Analysis [EEENI Windows Help

Combine Load Case

List Combined Load Cases
Average Nodal Stress
Available Results

Read Post-Dyn Response

Setup

List
Extremes

>

»
>

Identify Result
Animate
Deformed Shape
Beam Diagrams

Stress

Strain

Thermal

Fluid Flow
Electromagnetic
Fatigue

Path Graph
User Result
User Animate

Loadcase number T
(BLLUGLY: Displacement [Y i d

Coordinate system [0
Contour Plat] Vector PIolJ Iso Plat| Section PIolJ Help | Eance\‘

Figure 6.25 Display the deflection

The Figure 6.26 shows the results. The negative signs indicate downward displacements.

www.tankonyvtar.hu

© Istvan Moharos, OE



6. Analysis of two-dimensional bent bars 101

Figure 6.26 The deflections

We can display the moment and shear force diagrams in beam elements (see Figure 6.27).

[CJFie Edt Geometry Meshing PropSets LoadsBC Control Display Analysis [l Windows Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
Available Results
Read Post-Dyn Response

Setup B
Identify Result
List » Animate
Extremes »  Deformed Shape
Stress
Strain
Displacement/Response/Reaction 2
Thermal Load case [1
Fluid Flow Force label [VS: Shearing Force (S dir) ]|
Becomaonetc Begining Element [FF: Al Force
Fatigue /S: Shearing Force (§ di)
Ending Element |\/T: Shearing Force (T dir)
Path Graph Inerement | TR: Torsional Moment
User Result MS: Bending Moment [S dir
User Animate (G Bendog Momeat (Tl _

Figure 6.27 Display the bending moment diagram

The bending moment diagram shown in figure 6.28. There is not numerical value in diagram,
even so useful because it helps to determine the minimal stressed locations.
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Figure 6.28 Bending moment diagram

It is possible to display the reaction forces and moments generated in supports (see Figure

6.29).

[SIFle Edt Geometry Meshing PropSets LoadsBC Control Display Analysis m Windows  Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
avallable Results
Read Post-Dyn Response

Setup »
Plot » )
Extremes » Stress Component

Strain Companent

Shear/Moment Value
Beam End Force
Spring Force

Gap Force

Natural Frequency

Thermal Result

Flow Result

Flow Properties
E_Mag Result

HF Emag Result
Fatigue Usage Factor

DISLIST;
Load case number |1

Set number | 1: Displacement and rotation .

Beginning Node | 1: Displacement and ratation
2: Reaction forces
Ending Node [Pty
Increment T

Coordinate system [0

0K Help | Cancel |

L3 DISLIST;,1,2,1,96,1.0

Node RFX

1 -1.951e+002 -2.2322e+002 0.000=+000 2.862e+003
75 1.951e+002 ©.222e+002 0.0002+000 ©.5592+002
Sum : 0.0002+000 5.0002+002 0.000e+000 5.000=+002

Figure 6.29 Display the reactions forces

It is possible to list the force and moments components generated in elements (see Figure

6.30).
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[TJFie Edt Geometry Meshing PropSets LoadsBC Control Display Analysis-Windnws Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
available Results

[ SMLIST,1,1,93,1 m@m Read Post-Dyn Response

Setup »
Elera 5 Torgue  Mor Moment_t Plot ¥
m 5.782+002 0.00e+000 0.00e+000 0.00e+000 -3.652+001 A
9.76e+002 0.00=+000 0.00e+000 0.00=+000 -1.792-006 Displacement/Response/Reaction
> 9.782+002 0.00e+000 0.00e+000 0.00e+000 -1.92=+002 Extremes »  Stress Component
9.782+002 0.002+000 0.00e+000 0.002+000 -3.6S2+001 3
9.7682+002 0.00e+000 0.00=+000 0.00e+000 -2.89=+002 Strain Component
9.782+002 0.00e+000 0.00e+000 0.00e+000 -1.92=+002
l 9.782+002 0.00e+000 0.00e+000 0.00e+000 -3 .862+002
9.782+002 0.00e+000 0.00e+000 0.00e+000 -2.892+002 Beam End Force
s 9.782+002 0.00e+000 0.00e+000 0.00e+000 —-4.822+002
9.782+002 0.00e+000 0.00e+000 0.00e+000 -3 .862+002 Spring Force
g 9.782+002 0.00e+000 0.00e+000 0.00e+000 —-5.792+002 Gap Force
9.782+002 0.00e+000 0.00e+000 0.00e+000 -4.822+002 Natural Frequency
d 9.782+002 0.00e+000 0.00e+000 0.00e+000 —-§.752+002
9.782+002 0.00e+000 0.00e+000 0.00e+000 -5.792+002
3] 9.762+002 0.00e+000 0.00e+000 0.00e+000 —-7.72e+002 Thermal Result
9.782+002 0.00e+000 0.00e+000 0.00e+000 -§.752+002 Flow Result
3] 5.782+002 0.00e+000 0.00e+000 0.00e+000 -8.6582+002 Flow Properties
9.782+002 0.00e+000 0.00e+000 0.00e+000 -7.72e+002
o 9.768e+002 0.00e+000 0.00e+000 O0.00e+000 -9.65a+002 E_Mag Result
9.782+002 0.00e+000 0.00e+000 0.00e+000 -8.682+002 HE Emag Result
1 5.782+002 0.00e+000 0.00e+000 0.00e+000 -1.062+008
9.762+002 0.00e+000 0.002+000 0.00e+000 -3.6S2+002 Fatigue Usage Factor
bz 5.782+002 0.00e+000 0.00e+000 0.00e+000 -1.162+008
9.782+002 0.00e+000 0.00e+000 0.00e+000 -1.062+008
e 5.782+002 0.00e+000 0.00e+000 0.00e+000 -1.252+008
9.782+002 0.00e+000 0.00e+000 0.00e+000 -1.162+008
14 5.782+002 0.00e+000 0.00e+000 0.00e+000 -1.252+008
9.782+002 0.002+000 0.00e+000 0.00e+000 -1.252+008
hs 5.782+002 0.00e+000 0.00e+000 0.00e+000 -1.452+008
9.782+002 0.002+000 0.00e+000 0.00e+000 -1.252+008
s 9.782+002 0.002+000 0.00e+000 0.00e+000 -1.54=2+008
9.782+002 0.002+000 0.00e+000 0.00e+000 -1.452+008
7 9.782+002 0.002+000 0.00e+000 0.00e+000 -1.642+008
9.782+002 0.002+000 0.00e+000 0.00e+000 -1.54=2+002
he 9.782+002 0.002+000 0.00e+000 0.00e+000 -1.742+002
9.782+002 0.002+000 0.00e+000 0.00e+000 -1.642+002
ho 9.782+002 0.002+000 0.00e+000 0.00e+000 -1.82=+002
9.782+4002 0.002+000 0.00e+000 0.00e+000 -1.74=2+002
o 9.782+002 0.002+000 0.00e+000 0.00e+000 -1.92=+002
9.782+4002 0.002+000 0.00e+000 0.00e+000 -1.823=2+002
1 9.782+002 0.002+000 0.00e+000 0.00e+000 -2.02=+002
9.782+4002 0.002+000 0.00e+000 0.00e+000 -1.923=+002
2 9.782+002  0.002+000 0.00e+000 0.00e+000 —-2.122+003 ¥

Figure 6.30 List the force and moments components

The listing of the nodal forces and moments are shown in the figure 6 31.

UFiIe Edit Geometry Meshing PropSets LoadsBC Control Display AnalysisWindows Help
Combine Load Case

List Combined Load Cases
Average Nodal Stress

[2J BEAMRESLIS 1,1,93,1 (=3 Availble Resuls

Read Post-Dyn Respanse

NODE  AXIAL HEAR_: Mo MOMENT_T
P/A M=/ S M Setup 4
ELEMENT : 1 ~ Plot >
1 -3.7262+002 -9.777e+002 0.0002+000 0.0002+000 -6.5482-011
2.47624005 0.0002+000 1.4252-008 2.4762+006 Displacement/Response/Reaction
2 2.7362+003 9.7772+002 0.000e+000 0.0002+000 -9.6462+001 Extremes b Stress Component
2.4782+4006 0.000e+000 -2.0992+006 2.782e+005 4.577=+006 £
[ELEMENT : 2 - Strain Component
~2.7862+008 -9.777e+002 0.0002+000 0.000e+000 0.0002+000 9.645e+001
0.000e+000 -2.0893e+006 3.78282+005 4.577e+006 Shear/Morent Value
2 9.7772+002 0.000e+000 0.0002+000 0.000e+000 -1.9292+002 Bear End
0.0002+000 -4.183e+006 -1.721a+006 6.677e+006
lELEMENT Spring Force
2 -9.7772+002 0.000e+000 0.000=+000 0.000e+000 1.9292+002 Gap Force
0.0002+000 -4.193e+006 -1.721a+006 6.677e+006
a 9.7772+002 0.000e+000 0.0002+000 0.000e+000 -2 .634a+002 Natuef Frequency
0.0002+000 -6.296e+006 -3.621a+006 6.776e+006
ELEMENT - Thermal Result
4 -23.7362+008 -9.7772+002 0.000e2+000 0.000e+000 0.000e+000 2.6394e+002 Flow Result
2.4782+006 0.000e+000 —-6.2982+006 —2.821e+006 ©.7762+006 Flow Properties
5 2.726e+002 9.777e+002 0.000e+000 0.0002+000 0.000e+000 -8.6858a+002
2.4782+006 0.000e+000 —-8.2982+006 —-5.920e+006 1.088a+007 E_Mag Result
[PLEMENT «: i3 HF Emag Result
5 -2.726e+008 -3.777e+002 0.000e+000 0.0002+000 0.000e+000 8.6858e+002
2.4782+006 0.000e+000 —-8.3982+006 -5.920e+006 1.088=+007 Fatigue Usage Factor
6 2.736e+002 9.7772+002 0.000e+000 0.000e+000 0.000e+000 -4.822e+002
2.4782+006 0.000e+000 -1.0502+007 —-6.018e+006 1.2372+007
ELEMENT : &
6 -2.736e+002 -9.7772+002 0.000e+000 0.000e+000 0.000a+000 4.822e+002
2.478e+006 0.000e+000 -1.0502+007 —-6.019e+006 1.2972+007
7 2.7236e+002 9.777e+002 0.000e+000 0.0002+000 0.000e+000 -5.7682+002
2.4782+006 0.000e+000 -1.2602+007 -1.012e+007 1.507a+007
ELEMENT : 7
7 -2.726e+008 -9.777e+002 0.000e+000 0.0002+000 0.000e+000 S.76882+002
2.4782+006 0.000e+000 -1.2602+007 —-1.012e+007 1.5072+007
& 2.736e+002 9.777e+002 0.000e+000 0.0002+000 0.000e+000 —-6.7522+002
2.4782+006 0.000e+000 —-1.4702+007 -1.222e+007 1.7172+007
ELEMENT : ©
& -2.7362+008 -9.7772+002 0.000e+000 0.0002+000 0.000e+000 6.7522+002
0.000e+000 -1.470e+007 —-1.222e+007 1.717e+007
s 9.7772+002 0.000e+000 0.0002+000 0.000e+000 —-7.7172+002
0.0002+000 -1.680e+007 —-1.4322+007 1.927e+007
ELEMENT
-9.7772+002 0.000e+000 0.000e+000 0.000e+000 7.7172+002
0.0002+000 -1.680e+007 —-1.4222+007 1.927e+007
10 9.7772+002 0.000e+000 0.0002+000 0.000e+000 —-8.6681e+002
0.0002+000 -1.8892+007 —-1.6422+007 2.137e+007 v

Figure 6.31 The nodal forces and moments

The listing of the stress component shows figure 6.32.
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[TIFle Edt Geometry Meshing PropSets LoadsBC Control Display Analysismwindows Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
Available Results
Read Post-Dyn Respanse

Setup
Plot

Displacement/ResponseReaction

Stress Component

Extremes

Strain Companent

Shear/Moment Value
Beam End Force
Spring Force

Gap Force

Natural Frequency

Thermal Result

Flow Result

Flow Properties
E_Mag Result

HF Emag Result
Fatigue Usage Factor

Figure 6.32 The stress component list

The numerical results tables can be appear incomplete, some component is 0. As explained by
the BEAM2D elements. The shear forces perpendicular to plane of structure, bending mo-
ments in this plane and torque does not exist in this case.

6.4. Remarks

During the solutions we do not deal with buckling of the compressed bars. If this is a real
problem, one should be to verify with solution a finite element problem, or with any analytic
method.

During the solutions the tare weight was neglected.

Both problems are explained in later chapters.

Furthermore, the structural joint was not tested. The other specialized areas of structural
design deal with this problems.
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7. APPLICATION THE PRINCIPLE OF THE MINIMUM POTEN-
TIAL ENERGY IN FIELD OF THREE-DIMENSIONAL BENT BAR
ELEMENTS, RITZ METHOD AND FINITE ELEMENT METHOD

7.1. Three-dimensional bent bars variational problem

The chapter 5 deals with the analysis of two-dimensional bent bars. Nodes of these elements
have three degrees of freedom, two displacements and a rotation.

In this section we analyze three-dimensional beam elements, extension of the previous
chapters. The position of the element in the local element coordinate system and the used no-
tations are shown in Figure 7.1.

y

A
Vl
)
w ‘ / \‘
i T‘:f;‘.', _
// ,//\" \\\K‘-: N -
v D)) @ x
,7’ R
Z ®, t

Figure 7.1 Element position in the local element coordinate system

The figure also shows that degrees of freedom of nodes are extended with displacement in the
X-z plane, rotation in the x-z plane and rotation around x-axis (i.e. torsion).

In addition, as previously described, between the angle displacement (twist) of the beam
and the torque is a linear connection, so the work of the torque:

1

WZEM‘p (7.2)
M,L

p= (7.2)
1,G

thus:

1 ML
W=t (73)

p

In the previous chapter we saw that the basic formula of the finite element method is the
following linear equation:
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106 Finite Element Method

Ku=F (7.4)

which in this case, for the two nodes, 12 degree of freedom elements:

Ky Ko oo oo oo K, Yy Fui
T A Fr,
Wy Fe;
2 M,
71 My,
A My, (7.5)
U, Fuz
vV, Fr,
W, Fs,
?, M,
V2 My,
Koy o oo K [ [ My

We can describe the deformation of the element by interpolation polynomials, like that
seen in chapter 3. This way, displacement of a point:

0,00 =3 v (U, (7.6)
Uy(x) :Z\Vyk(x)uk (7.7)
UZ(X) ZZWZK(X)uk (78)

The v, v, v, interpolation functions satisfy the boundary conditions and differentia-

ble. According to the Euler-Bernoulli's beam theory, we approximate the displacement in x
direction and rotation around x axis with linear interpolation functions:

X
V=WV =1-— (79)
L
X
V=V =7 (710)
L
Wio =Wxa =Vya =Wys =Wi6 =W =Wy =Va1 =V, =0 (7.11)
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7. Application the principle of the minimum potential energy 107

The bending of the element is approximated with cubic functions:

2 3
X X
l//y2 = lr//ZS = 1—3(Ej + Z(Ej (712)
X X ? X :
Vo = V25 = (7—3&) +(Ej jL (7.13)
X 2 X ’
Wye =Wi = B(Ej - Z(Ej (7.14)
X ? X s
Vo =W = [_ (Ej "{E) JL (7.15)
V=V =¥y =V =V =W =Vu1 =Va =V =V =W =¥y =¥ =¥y =¥V =0 (716)

These functions can be obtained analytic solving the differential equation of the elastic
curve of the bent beam. The total potential energy (the difference between strain energy and
the work of external forces), is minimal in the equilibrium position of the rigid body, i.e. the
first variation is zero 8I1=058(U—L)=0. The application of this theorem is based on the ex-

amination of the strain energy changes, so the strain energy belongs to each load cases have to
be prescribed.
The axial displacements belong to elongations:

ou,
OX

12 a 12 .
&y = Z_V/xk (X)'uk :ZW xk (X)'uk (717)
T OX k=1

Thus, the potential energy for constant cross-sectional bar:

1k 1k _ (& i
U== [EAgldx== | E{Zw'xk (x)-u(x)j dx (7.18)
2x=O 2x=0 k=1

The ij-th member of element stiffness matrix in case k=1 and k=7:

0 0 1% (& ‘o
= A 2 EA(Z!//'W (X)'Uk) dx = IEAI//'xi (Qy'y; (x) dx (7.19)
Ui ol 2,5, k=1 x=0

Deformation in case torsion around x-axis:
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108 Finite Element Method

au 12 a 12
= X — —_ X)-U, = ! X)-U 7.20
Vx ox 21:8XWXK() K kZ:l:‘//xk() K ( )
Thus, the potential energy for constant cross-sectional bar:
1k 1% 12 ’
U=> jcalpyfolx:E j Glp(zw'xk (x)-u(x)j dx (7.21)
x=0 x=0 k=1

The ij™ member of element stiffness matrix in case k=4 and k=10:

0 21 (IZZ: 2 JE
== == | Gl,| 2w (¥)-u J dx= | Gl (y'y; (x) dx (7.22)
e ou; 2.2 A= k k x=0 P J

The potential energy of bent beam is the function of the rotation (the shear deformation is
neglected according to Euler-Bernoulli’s theory). In case bending in the xy plane:

o%u 12 A2 12
b=— =D W (U =D " (), (7.23)
OX i OX —

Thus, the potential energy for constant cross-sectional bar:

1 L ) 1 L 12 ; 2
U=> IEIZ¢Z dx :EXIOEIZ(;V/ " (x)-u(x)] dx (7.24)

x=0

The ij™ member of element stiffness matrix in case k=2, k=6, k=8 and k=12:

0 o0 1¢% 12 2d L |
i=———= | El " (X)-u X=| ElLy",, (X" (x)dx 7.25
'ou, ou; 2.7, Z(kzl“l// e () -U j X,L W Oy (%) (7.25)

Easy to see that, in case bending in the xz plane, Iy must be used instead of I,.
Thus, the ij"" member of element stiffness matrix in case k=3, k=5, k=9 and k=11:

o o0 1% (i i I
=——=[El v, (X)-u, j dx = | El,y",; (X)p",; (X) dx (7.26)
boouou 2 T iE 2o J

Thus the element stiffness matrix:
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7. Application the principle of the minimum potential energy 109
AE 0 0 0 —A—LE 0 0 0 0 0
o L2EL 0 0 6E2|Z 0 712E3IZ 0 0 0 6E2|Z
L L L
12EI 6EI 12El 6EI
0 — 0 - 0 0 —~ 0 -—X 0
L L L L
Gl, Gl
0 0 —_— 0 0 0 0 0 0 0
6EI 4EI 6EI 2El
0 -—7 Y 0 0 0 Y 0 Y 0
12 L2 L
0 BEI, 0 0 4El, 0 _6E2|Z 0 0 0 2El,
K — L L L
e
_AE 0 0 0 A_LE 0 0 0 0 0
o _12E 0 0 - 6EZIZ 12|_E3|Z 0 0 0o GEZIZ
12EI, 6El, 12EI, 6El,
0 E 0 0 0 0 E 0 - 0
Gl, Gl,
0 0 -— 0 0 0 0 - 0 0
6EI 2EI 6EI 4El
0 -1 ! 0 0 0 ! 0 Y 0
12 L2 L
0 6EIl, 0 2El, o _SEL 0 0 4El,
L L L2 L]

The element stiffness matrix in global coordinate system can be produced using transforma-
tion matrix as well as described in chapter 5. In this case, the transformation matrix is of order
12x12. The notations are shown in figure 7.2:

[ cacB casp sa

-sB cp 0

—sacfB —sasp coa

0 0 0

0 0 0

T 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

| 0 0 0
where:  -c—cos

-S —sin

The element stiffness matrix in global coordinate system:

*

T

-
7
-

—=e
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0
0
0
cocp
sp
—soacp
0

o O O O O

0 0

0 0

0 0
—casf  sa
cp 0
sasp  ca
0 0

0 0

0 0

0 0

0 0

0 0

O O O O o o

cocp
-sp
—sacp
0
0
0

0 0

0 0

0 0

0 0

0 0

0 0
casf  sa
cp 0
—Sasp ca
0 0

0 0

0 0

O O O O O O O O o

cocp

sp

—sacp

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
—Ccasp sa
cp 0
sasp  ca |
(7.27)
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110 Finite Element Method

Figure 7.2 The element position in global coordinate system

7.2. Solving the problem using finite element method

An outdoor information board is placed on a holder (see Figure 7.3,). The board weight is 50
kg. A 300 N force acting on the board perpendicular to its plane (e.g. wind pressure).

Yi

F=500 N

— F=300 N

o
Q//
90!

Figure 7.3 The holder

We place the finite element model in x-y plane (see figure 7.4), so we have to develop the
transformed stiffness matrix of the beam 2 only.
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7. Application the principle of the minimum potential energy 111

Yi

Figure 7.4 The placed holder in the global coordinate system

The element 2 stiffness matrix by the following notation:

k]l 0 0 0 0 0 kl7 0 0 0 0 0
0 k22 0 0 0 k26 0 kZX 0 0 0 k212
0 0 k?? 0 k;5 0 0 0 k39 0 k3” 0
0 0 0 k44 0 0 0 0 0 k4]0 0 0
0 0 k53 0 k55 0 0 0 k59 0 kSll 0
= 0 k()2 0 0 0 k66 0 k68 0 0 0 k612
2 k7l 0 0 0 0 0 k77 0 0 0 0 0
0 k82 0 0 0 k86 0 k88 0 0 0 k812
0 0 k93 0 k()5 0 0 0 kgg 0 k911 0
0 0 0 k|04 0 0 0 0 0 klOlO 0 0
0 0 kll_’; 0 k115 0 0 0 k119 0 kllll 0
e 0 k122 0 9 0 k126 0 k128 0 L 0 klllzz

the stiffness matrix of this element in global coordinate system:
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ko 343 3k 3 343 W7 3k39 37 3o 351
0 0 0 ' 0 Y 0 0
4 s 4 4 2 4 4 4 4 2
326 K6 3212 k212
0 K22 0 0 0 K28 0 0 1
2 2 2 2
3 34n 3 3 3s 3a7 3k 3K7 ka9
kil K o K k3 o K 0 X1 [3x3 0 17 39 o K311 0
4 4 4 s 2 4 4 4 a4 2
4 k6 34 366 K 3k [3x612
0 0 kat 3k o Braa e o 0 K410 o ka0 [3xe
2 4 4 4 2 4 4 4
3ks3 3 ) 59
YIRS 0 L-: 3 0 xs 0 y2E9. 0 £ 0 kst 0
2 2 2
2 VTR V9 3 66 68 3k 3x612 3k 612
o K62 o [3xa 3xee o 3k ket P x68 o [3xa0 3xen2 i 31410 k612
2 4 4 4 4 2 4 4 4 4
k5
2 N 3k Ban 3 3a9 3 3 30
k71 393 o /3 /303 o 3g9s 0 K7 3k 0 J3k Y34 0 35911 0
44 4 4 2 4 4 4 4 2
386 6 34812 2
0 w2 0 £ 0 L 0 ™ 0 i 0 Al
2 2 2 2
3471 3k93 3471 3 95 3 3499 3k77
v J 3k 0 ko 0 k9: 0 X v 99 0 K k99 0 k91l 0
) 4 PR 2 4 ) 4 3 2
3 s 3k 3.k 3 k126 3 k8128 o 31212 /3 k1010 3ki212
0 J3x1 5 kios | 3k12 0 104 [3k126 3 8128 o k010 3ki21 0 J3xo00 3k
2 4 4 4 4 2 4 4 4 4
3x113 [3x119 9
Z 0 k113 0 Kiis 0 & 0 ALY 0 K 0
2 2 2 2
ki 3x126 Jk14 26 812 31010 3ki212 3k1010 212
‘ o 2 5 [0 3ee o K104 k126 P k8128 o [3x000 Bz 0 K010 k1212
{ 2 4 4 4 2 3 4 4 4

Combine the stiffness matrix of the two elements so that in the common nodes, the stiff-
ness does add up. Thus, the system describing equations:

Ekh K kis ki kis K ki Kig Kio Kizo ki1 ki1, 0 0 0 0 0 0 [0] [Fu
Ko Ky Kz kg Kis Kig Ks7 Ksg Kz Ks10 Ka1y Ks1 0 0 0 0 0 0 0 Fry
Ky Ky, Kig ki Kis ki K37 K3g K3 Ki1o Ki1g Kiso o 0 o0 0 0 0 0 Fre
Kip Kip Kis Kig Kis Kig Kiz Kis Kio Kizo Kiss Kiz 0 0 0 0 0 0 0 Mgy
Ko K, Ko Koy Kis Keo kg7 ks ks Ks1o Ke1y Kiso 0 0 0 0 0 0 0 Mgy
Kep Kz ks Kes Kis  Kas Ke7 Ks Kso Ks10 Ke11 Kb12 o 0 0 0 0 0 0 Mg,
Kip Ky Koy Ky Kbs Khg Kip+k§ Kgrkfy Khotkiy Khiorkf, Kintkls  Khprkfs ki Kl Ko ki ki K || U2 0 (728)
Kii ki Kes Koy Kis ko Ker+K3i Kag+k3 Kotkds KeiotK3s Kiutkls Keiotkds k3, K3p K3o Ko K3u K3ip || Ve 0
Koi Koz Koy Koy Kos koo Koy+Ki Kog+ki, Keotkds Kenotkis Kbu+kls Kepotkds k3, Kip Kl Ko K Kino w2l | 0
Kior Kloo Kios Kios Kios Kios Kior+Kii Klos*tkiz Kioe+kis Kiowotkis Kioutkis Kiorztkis Kiz Kis Kis Ko Kinn Kisz||®2 0
Ky Ko Kiig Kiig kiss Kise Klip+kds Kiigrkd, Kiotkds Kinotks Kiartkds Kuotks ki ki kg ko ki kéip| |72 0
Kz Koo Kizs Kiza Kizs Kize Klor+kd:i KioetkEz Kiae+ks Kiziotkds Kiantk3s Kiziztkds Ko7 Kis ki Kéio Kiun Kaiz || M2 0
o 0 0 0o 0 0 K K, ks K, ks K ki Kig Kig ki ki ki ||Us| [-500
o 0 0 0 0 0 ki K ks K. ks ke kb ki kGo Khio Kby Kiip|fVs| | O
o 0 0 0 0 O ka1 k& K3 K3 ks k3 Ki; ks k3o Kjio Kkdii K3pp||Wa| |-300
0 0 0 0 0 0 Ky ko Kfos Kfos Kfos Koo Koy kios Kioo Kioso Kios Koz| |05 | | ©
0 0 0 0 0 0 ki1 Kiz ki1 ki1 ki1 ki1 Ky K Ko Kfso K K| | 78 0
L O 0 0 0 0 0 kf21 ki2o ki2s Kfas kf2s kf2s K27 Kizg Kizo Kizio Kia11 Kioro) [ M) 0

During the solution the displacement 0 locations (at the supports) are skip. So we can de-
lete rows and columns of the stiffness matrix in these places. In our case, this is the first six
rows and columns. Thus we get the condensed stiffness matrix and the equation system to

solve.
Substituting the data and solving the equations system obtained the displacements:
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7. Application the principle of the minimum potential energy 113

[u, | [-0.0000040933278755628325829 ]
Vv, 0.0069897483690587138863
w, 0.008647570933808134537
@, -0.0045399747402492706319
Vo - 0.0057650472892054230247
U= m | _ 0.003994141925176407935 m (7.29)
Us -0.019975826285726493216
V3 0.028770303554786313407
W, 0.020175893049255852386
3 -0.0062694889270108975393
V3 -0.008647570933808134537
|75 | | 0.0049926774064705099188 |

The reaction forces can be calculated by the known results. From the equations of entire
system, which are in this case the first six lines:

Fre = ki -u, =500.000000000000000001235 N (7.30)
Fry =Kag -V, +k3, 7, =1.5301999986150468986847¢ - 17 N (7.31)
Fr, = k3q - W, +Kk3;; - 7, = -300.00000000000000001297 N (7.32)
Mg, = k21 @, = 779.42286340599478208459 Nm (7.33)
Mg, =Ksg - W, +Kay; - 7, =1299.0381056766579701327 Nm (7.34)
Mg, = Kag - Vo + kg1, - 77, =-1350.000000000000000013 Nm (7.35)
7.3. Remarks

We did not deal with not circle or ring cross sections. The properties of these cross-sections
can be determined only by approximation methods (i.e. the Bredt’s formula for thin closed
section, Weber’s formula for thin-wall open cross-section).

Also did not deal with asymmetric sections, i.e. cold bended or rolled U sections. The
shear center and center of gravity of those sections does not coincide, so the bending com-
bines with torsion usually.

The shear deformation was neglected, because we used Euler-Bernoulli beam theory.
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8. ANALYSIS OF THREE-DIMENSIONAL BENT BARS USING FI-
NITE ELEMENT METHOD BASED PROGRAM SYSTEM

8.1. Three-dimensional beam structures

In case of two-dimensional bent bar structures discussed in chapter 6, the deflections may be
generated in plane of structure. In engineering practice, using three-dimensional models are
required many of the cases.

Such cases usually are:

— Two dimensional construction, with asymmetrical cross section beams,
— Two dimensional construction, with loads perpendicular to plane of structure,
— The general three-dimensional beam structures.

This chapter deals with these structures. The chapter 9-10. deals with buckling of the
compressed bars.

Because the buckling of the compression chords and the shear buckling of the web sheets
require different calculations, so we do not deal with this.

Questions to be answered

— The magnitude and direction of the reaction forces and moments generated in supports,

— Magnitude and direction of the axial and shear forces, bending and torque moments in
each bar,

— The o and 7 stresses which characterized of the stressed state,

— Displacements of each point of the structure, and deformation of each beam.

These structures may be testing for the stability of the structure and dynamic behavior (the
critical forces of compressed bars and natural frequencies). We deal with these problems later.

The previous chapter has mentioned the externally and internally determination and inde-
termination structures. We will see that it is irrelevant in this case too.

8.2. The used finite elements in modeling

The chapter 4 clarified that program system based on the finite element method use two types
of element for modeling beam structures. The TRUSS element for modeling structure loaded
axial forces only and BEAM element for modeling loaded axial and shear forces, bending and
torque moments. Both TRUSS and BEAM elements can be two- or three-dimensional.

In all cases, the finite elements are characterized by a single straight line.

The properties of the TRUSS and BEAM2D elements already described in the previously
chapters.

8.2.1. The properties of the BEAM3D elements

The properties of the BEAM2D elements have already written in chapter 6.

The BEAM3D characterized by three dimensional stressed state, and it is general three-
dimensional bar structures or displaced perpendicular to the own plane under the loads.

The BEAM3D elements are two or three-node, uniaxial element, have six degrees of free-
dom (three translations and three rotations) per each end node. The third node points towards
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8. Analysis of three-dimensional bent bars 115

y-axis in the element local coordinate system. It or an orientation angle (as real constant) is
required only for determine the element orientation.

The element coordinate system shown in figure 8.1. The coordinate system x-axis pointing
from the first to the second node, the y-axis perpendicular to x axis and central principal axes
of cross section, z axis perpendicular to x-y plane and create a right-handed Cartesian coordi-
nate system.

Y i
3,
y‘
2 A
y - X -
\ E’ D Z
§ | Width
|
z, _
X
Z
Vd

Figure 8.1 BEAMD3D element local coordinate system

The linear static analysis requires some real constant (marking as shown Figure 8.2):

— The cross-sectional area,

— Moment of inertia about the element Y axis,

— Moment of inertia about the element Z axis,

— Depth of the beam,

— Width of the beam,

— Relationship between the ends of the connected elements (end release code, two sets of data),

— Torsional constant J (see also 8.2.2),

— Shear factor in the element y axis (see also 8.2.2),

— Shear factor in the element z axis (see also 8.2.2),

— Orientation angle of the cross section (only if the orientation does not define by the
third node),

— Constant for maximum shear stress calculation (see also 8.2.2),

— X, Y, z distance of the section centroid relative to the nodal point in each node of the
beam (total six data),

— 'y, z distance of the shear center relative to the section centroid at each node of the
beam (total four data),

— Y, z distance of the point where stresses are to be calculated at each node of the beam
(total four data),

— Centroidal product if inertia of the element cross section
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116 Finite Element Method

Usually there can be defined tapered beam properties and more real constant for thermal
analysis also. These properties are not dealt in this chapter.

In usually, we can specify often used cross-sections in engineering practice, such as rec-
tangular, a square hole, circle, ring, I, L, T sections, by geometrical dimensions. In this case
the other sectional properties will be calculated by the program.

y i

Tz _1_Dzsc _

Dysc

Dy

Figure 8.2 BEAM3D elements properties

We also need the material properties of the elements. In this case, is sufficient to specify the
value of the modulus of elasticity, Poisson’s coefficient and density of the beam elements.

If necessary, we can define more material properties for the buckling or heat transfer analysis.

The interpretation of the bending moments and shear forces shown in Figure 8.3.

Mszl\

Msi\ Vs,
\ N,

Z /\
Mi;

Figure 8.3 Forces and moments in BEAM3D elements
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8. Analysis of three-dimensional bent bars 117

8.2.2. The special properties of BEAM3D elements

The shear deformation is usually neglected. The chapter 6.2.2 has shown that how this can be
taken into account. Also in this chapter we have properties of several common used sections.

We have dealt with the simplified definition of the shear factor (see Figure 8.4). This con-
cept will also used in this chapter.

The cross section fs The Shear factor
~
Web Chords AlAweb Awen/A
— =

Figure 8.4 The simplified definition of Shear factor

The calculations will be needed to determine a shape factor (Cy) for calculate the maximum
stress T comes from torsion.

In case of circular and thin-walled ring section, the maximum stress T generated on peri-
meter of the circle, so:

In case of non-circular cross section, the maximum stress T depends on the section shape.
In such cases we can use only approximate procedures, such as Constantin Weber approx-
imate method:

where:  ly: Weber's centroidal product of inertia,
Kw: Weber's polar section modulus,
Chor: the shape factor.

Circular cross section, of course, lw=lp, Kw=Kp and Ci=r.
An open cross-section (see figure 8.5), where h>> v, we can apply the splitting, and so:

> (vih,)

lw =m 3
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/e
a
o a
a
g .
W

Figure 8.5 Splitting of open cross-sections

The 1 is a factor to correction error of splitting.

Section -1
shape i
0,99 1,15 1,15 1

N , , , 17 1,20 1,31

Figure 8.6 The n factor of some cross-section
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8. Analysis of three-dimensional bent bars 119

8.3. The study solution

The study is a frame (see Figure 8.7), assembled by U120 standard steel. The actual live load
is 5000 N, distributed forces. The horizontal load is the 6% of the live load, what is generated
from movement on live load. The supports are from each end 100 to 100 mm.

Have to determine the reaction forces, stresses generated in beams, the deflections and
bending moment diagrams.

Figure 8.7 The tested frame

The followed procedure:

— Study analysis,

— Create a geometry model,

— Define the properties of finite elements (element type, real constant, material
properties),

— Define boundary conditions, and loads,

— Run the analysis,

— Evaluation of the results.
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The cross-sectional properties of the used rolled bars U120 and geometric dimensions
shown in Figure 8.8. These technical data are available in standards and design aids tables.

55

o
\Y
Shear Section centroid
center
= \ "/ Z

8% |

j o)
! A

16 _b/2=27,5>

] B

30,3

Figure 8.8 The used U120 section

We need some data what are not included in tables.

First we have to define the shear factor in element y and z axis. We use the simplified cal-
culation shown in Figure 8.4. Using the Zuravsky’s theorem, the shear stress in a point of the
cross section is:

where:  Fy :shear force,
Sy statical moment of an area outside a point about section x axis
Ix: Moment of inertia about the element x
s: width of the section at the point.
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8. Analysis of three-dimensional bent bars 121

Of course, the stress distribution depends on the relative position of the section and shear
force, so that it should be determined about the element z and y axis separately. The used
U120 cross section properties known and shown in the Figure 8.9.

F F
! !

e

P

Tnmx L Tnm\ ol

— -—

Figure 8.9 Shear stress distribution in the cross section

The exposed area of the shear can be determined by graphic editing, so the shear shape
factor can be calculated:

A
Sh:ﬂ:@:o,gg
A 17

A
SWZL’H’:@:QEL
A 17

In addition, we need the cross-sectional modulus of torsion, which can be determined by
Weber's method (see Figure 8.5):

I =172 =309cm*
W 3 3

3
_HZ(V' ) 07°12+42.09° .48

For the determination the largest shear stress t caused by torsion:

Cior = Viax =0,9cm

tor

After determining the necessary data we can begin the computer-aided analysis.

The geometrical model is very simple, so we can create it in the own graphics editor of fi-
nite element program. The structural model is created in the XY plane, but the loads and the
deformations will be three-dimensional. In the figure 8.10, the drew lines represent the neutral
axis of beams.
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GFile Edit RECRUEEM Meshing PropSets LoadsBC Control Display Analysis Results ‘Windows Help

Grid »
Points »
Surfaces » Sketch Linefarc
Volumes »  Draw LinefArc
Contours 4 Line with 2 Pts
Regions »  Polyline with Pts
Polyhedra > thru 4 Points
Parts ¥ Circular Arc
Coordinate_Systems »|  Conic Arc
Ellipse
Helical Arc

by 12 Parameters
Fit Curve on Pts
Fit Curve on New Pts

Circles
Splines

Manipulation
Generation
Editing

Figure 8.10. Draw line in the finite element program

The orientation of BEAM3D element can be defined by the third node. We also need a
geometric point (key point). Since the lines represent the neutral axis of beams, so the third
node must lie in XY plane too. It is sufficient to take only one point because the neutral axis
of all bars lies in a common plane. The definition a geometric point is shown in the Figure
8.11.

= Fie EditMMesh\ng PropSets LoadsBC Control Display Analysis Resuls Windows Help
Grid >

Curves > Merge

Surfaces »  Merge Tolerance -

volumes » Keypoint |6

»

Contours y|  Generation % Coordinate Value [1
N Editing »

Regions ¥ Y-Coordinate Value [1

> o

Polybedes 2 Coordinate Value [0

Parts >

Coordinate_Systems » 0K Help |  Cancel |

Figure 8.11 Place a geometric point (key point)

The completed geometric model shown in Figure 8.12.
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):|F<\e Edit Geometry Meshing PropSets LoadsBC Control Display Analysis Results Windows Help

Figure 8.12 The geometric model

In the next step we determine the element group. We have clarified that we are use linear be-
havior, BAEM3D elements (see Figure 8.13).

E]F»Ie Edit Geometry Meshing Rafsos=4M LoadsBC Control Display Analysis Results Windows Help

Element Group.

Material Property
Real Constant
Pick Material Lib
User Material Lib
Material Browser
AISC Sect. Table

List Element Groups
List Material Props

List Real Constants
Delete Element Groups
Delete Material Props
Delete Real Constant
Change El-Prop

New Property Set

Beam Section
List Beam Sections

Element group |1

Element Name |

Category: LINE A

;2D elastic beam element
;3D elastic beam element

Boundary element
Convection link
Elastic elbow element
Electrical link
Thermal 3D fluid pipe
Gap element

: General stiffness/conduction element

: Axisymmetric shell element

Hydraulic link.

2-node immersed pipe/cable element
Elastic straight pipe element

Rigid bar element

Radiation link

Spring element

;2D truss/spar element

TRUSS3D:

3D truss/spar element

Figure 8.13 Determination of element group

OP1:Beam Type =
0P2:Unused option {0
0P3:Unused option |0
OP4:Integration Type | 0: Gauss i
OP5:Material Type | 0: Linear Elastic %
OPE:Displacement Formulation | 0: Small =
0P7:Unused option {0
0P8:Unused option |0
m Help ‘

Cancel |

During the determination the real constant (see figure 8.14) we use the Sl unit system, i.e.,

the linear dimension must be defined in m, and the weight must be in kg.
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EFile Edit Geometry Meshing LaadsBC Control Display Analysis Results Windows Help

Element Group
Material Property
| Pick Material Lib
User Material Lib
Material Browser
AISC Sect. Table

List Element Groups
List Material Props

List Real Constants
Delete Element Groups.
Delete Material Props
Delete Real Constant
Change El-Prop

Mew Property Set

Beam Section
List Beam Sections

RC1 :Cioss-sectional area [17e-4

RC2 : Moment of inertia about y-axis (ly) f43.2e-8—
RC3 : Moment of inertia about -asis (12) [364e8
RC4 : Depth of beam [y-axis) [U‘IZD—

RCS :Width of beam (z-awis) [0.055

RCE : End-release code [node 1) [U—

RC7 :Endrelease code [node 2 [0

RC8 : Torsional Constant (J) ’I{D‘E)e-s—

RCY : Shearfactor in elem. y-ais [051
RC10: Shear factor in elem. z-ais [033
ok ] Heb |

Cancel |

[ RCONST 3

RC14 : Torsional constant (CTOR) D.UUQ
Help Cancel

:Zdist flomCG.toS.C atnode1[00303

RC23:Y-dist flomCG. oS C atrode2f0

RC24:Zdist fromCG.toS.C atnode2[0.0303
RC25:Y-dist flomCG. 0 SP.J005
RC26:Zdist flomC.G. W SP. J003

RC27 : Product of inettia about C.G. (iy2) [0

o1 Help |

Cancel |

Figure 8.14 The real constant definition

It's also necessary to specify the material properties (see Figure 8.15). In this case it is suffi-
cient to enter the values of the modulus of elasticity and Poisson’s coefficient. If necessary,
we can define more material properties e.g. the density to calculate tare weight of the struc-

ture.

[ Fie Edt Geometry MeshingLuadsBC Control Display Analysis Results Windows Help

Element Group
Real Constant
Pick Material Lib
User Material Lib
Material Browser
AISC Sect. Table

List Element Groups
List Material Props

List Real Constants
Delete Element Groups
Delete Material Props
Delete Real Constant
Change El-Prop

New Property Set

Beam Section
List Beam Sections

(1.2) Dielectric matrix
(1.3) Dielectric matrix

DC22: (2.2) Dielectric matrix
DC23: (2.3) Dielectric matrix
DC33: (3.3) Dielectric matrix
DENS: Mass density
ECONX: X Electric conductivity
ECONZ: Z Electric conductivity
ECONY: 'Y Electric conductivity
EMIS: Emissivity
ENTHALPY:  Enthalpy

SU: unused)
ETAN: Tangent modulus
EUL: Itimat i i

E lasticity modulus in X mat. dir

cit
EY; Elasticity modulus in Y mat. dir.
EZ: Elasticity modulus in Z mat. dir
FPC: [unused)

FRCANG: Friction angle

G1: Shear relaxation 1

Material property set |1

Property value |2.1e11
0K | Help | Cancel|

23

Material Property Name: IEY Elasticity modulus inY mat. dir

Ogden constant 2
Ogden constant 3

on'
YZ Poisson's ratio
(1.1) Piezoelectic matrix
(1.2) Piezoelectric matrix
Piezoelectric matrix
(2.1) Piezoelectiic matrix
(2.2) Piezoelectric matrix
(2.3) Piezoelectric matrix
(3.1) Piezoelectric matrix
(3.2) Piezoelectric matrix
(3.3) Piezoelectric matrix
(4.1) Piezoelectric matrix
Piezoelectric matrix
Piezoelectric matrix
(5.1) Piezoelectric matrix
(5.2) Piezoelectic matrix

=l

Property value [0.3
a 0K | Help |  Cancel |

Figure 8.15 Specify the material properties

During the finite element mesh generation, same size but different number of elements can be
created on each bar (see Figure 8.16).
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7 File Edit GeometryPerSets LoadsBC Control Display Analysis Results Windows Help
Mesh Options

Mesh_Density 4

Parametric_Mesh »

Nodes »  Regions

Elements | Quad Mesh SfiRg
Region about Pt
Region about a Ct
Surfaces
NonUniform Surfaces
Surface about Pt

Beginning Curve |1

Surface about Cr

Polyhedra Ending Curve [3

Parts Increment [1

Region Mesh Type Average element size [0.1

Surface Mesh Type Number of nodes per element | 3 ~]|

Delete Region Mesh Keypoint to define principal asis if 3 nd/el [6

Delete Surface Mesh

Hep | _ Cancel |

Figure 8.16 The finite element mesh generation

Because, the finite element mesh created each geometry object separately, the ends of the
beams are not in connection (see Figure 8.17)

5 File Edit GeometvyPrnpSets LoadsBC Control Display Analysis Results Windows Help

Figure 8.17 The finite element mesh

To create connection between bars, necessary to merge the nodes in each end of the bars. (see
Figure 8.18).
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I Fie Edt Geometry [[EERGEN PropSets LoadsBC Control Display Analysis Results Windows Help
Mesh Options

Mesh_Density ¥
Parametric_Mesh »

Auto_Mesh »
Define

El 2 >

ements Identify
Compress
Madify
Push to Point
Push to Curve 5 .
Push to Surface SHINDG Be
s EndngNode[S1

List Increment [T
P'T Tolerance [0.0001
Delete l—_]
Re-associate All?Among flag | 0: All
Show Merged hd Echoflag[t.On |
Update Nd Coord LowHighflag [0: Low  ~|
Generation » o] Hep |  Cancel |

8.18. Fig. Merge nodes on the end of the bar

The completed finite element mesh shown in Figure 8.19.

I File Edt Geometry Meshing PropSets LoadsBC Control Display Analysis Results Windows Help

Figure 8.19 The final finite element mesh

The displacement constraints are placed on the finite element mesh. The constraints assumed
rigid but the bar can deformed freely between the two supports. An example of place dis-
placement constrains shown in Figure 8.20.
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I Fle Edt Geometry Meshing PrnpSetsCantroI Display Analysis Resuls Windows Help

Define by Nodes

Structural »| Displacement »

Thermal »  Force »  Define by Points
Fluid_Flow > Pressure > Define by Curves
E-Magnetic > Master DOF »|  Define by Surfaces
Load_Options  »|  Coupling > Define by Contours
Function_Curve »  Bonding »  Define by Regions
Gravey " Detete by Nodes Beginning Node |20

Delete by Points
Delete by Curves
Delete by Surfaces

Displacement label | AL: All 6 DOF o
Value |0

Delete by Contours Ending Node |2

Delete by Regions Increment {18

Plot Additional Displacement labels if any (L2.....LE,)

List o] Hep | _ Cancel |

Figure 8.20 Specify the displacement constraints

Next step, define the distributed load on the horizontal bar which shown in the Figure 8.7. In
our case, the specified force effect in all nodes of the element. The definition loads shown in

Figure 8.21.

GFile Edit Geometry Meshing PropSets WEEGE:WM Control Display Analysis Results Windows Help

Structural »

Displacement >

Thermal » Define by Nodes
Fluid_Flow > Pressure »  Define by Points
E-Magnetic »|  Master DOF »
Load_Options  »|  Coupling »|  Define by Surfaces
Function_Curve »  Bonding »|  Define by Contours
Gravity | Define by Regions BeginingCuve[2 = ==
Delete by Nodes Force label |FY: Forcein' A Qm—_@
Delete by Points Vale[2387 T IR P E—
Delete by Curves S Force label [FZ: Force inZ =
Delete by Surfaces
Delete by Contours Increment |1 Valkie]14.28
Delete by Regions 0K Help ] Cancel I Ending Curve |2
Increment |1
Plot
List oK | Hep | _ Cancel |

Figure 8.21 Definition the distributed loads

It is advisable to check what forces have been created. We can use listing commands for this

(see Figure 8.22).
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ontrol Display Analysis Results Windows Help

DFiIe Edit Geometry Meshing PropSets IIEEEC

Thermal
Fluid_Flow
E-Magnetic
Load_Options

Function_Curve

[ FLIST,1,59.1

Load ca=

F
TiraCx

Displacement » |

» i Fi 3 Define by Nodes

» | Pressure »  Define by Points

»|  Master DOF »  Define by Curves

y Coupling »  Define by Surfaces

» 1 Bonding »| Define by Contours

Gravity »  Define by Regions

Delete by Nodes
Delete by Points
Delete by Curves
Delete by Surfaces
Delete by Contours

e 1
Fz
TiraCx

Delete by Regions

Plot

M
TiraCx

21 o - —-2.26102+002 -1.

24 o - -2.26102+002 -1.
2s o - -2.26102+002 -1.
26 o - -2.2610a+002 -1.
27 o - -2.2610a+002 -1.
28 o - -2.2610a+002 -1.
29 o - -2.2610a+002 -1.
20 o - -2.2610a+002 -1.
21 o - -2.2610a+002 -1.
22 o - —Z.JBI;=-DDZ -1
28 o - -2.2610a+002 -1.
s o . & .2e10e4002 1.
s o . e .ze10e4002 1.
s o . & .2e10e4002 1.
a7 o = & .se13e4002 1.
e o . 2 .ze10e4002 1.
s o . e .se10es002 1.
w0 o . 2381004002 3.
41 o - -24613:*002 -1
%

42 o - -2.26102+002 -1.
1

az o - -2.26102+002 -1.
1

4260e+001
4260e+001
4260e+001
4260e+001
4260e+001
4260e+001
4260e+001
4260e+001
4260e+001
1
42602+001
4260e+001
1
4260e+001
1
426024001
1
426024001
1
426024001
1
426024001
1
426024001
1
4260e+001
1
4260e+001
%
4260e+001
1

4260e+001
1

Figure 8.22 List forces

The completed finite element model is presented in figure 8.23.
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] File Edit Geometry Meshing PropSets LoadsBC Control Display Analysis Results Windows Help

Figure 8.23 The comleted finite element model

The running linear static analysis follows (see Figure 8.24).

[SIFie Edt Geometry Meshing PropSets LoadsBC Contral Display REsults Windows Help
Restart
Renumber
Reaction
Data Check
Run Check
List Analysis Option

Output_Options ~~ »

Activate Load Case
Frequency(Bucking »  List Load Case
Post_Dynamic » Adaptive Method
Nonlinear » P-Order Labels
Optimize/Sensitivity »

Static Analysis Options
Fatigue »
Heat Transfer N FFE Static Options
e ks ) Asymmetric Load Options
Electro_Magnetic  » Zgzsg:t:‘:r:ys's Optlons
Hi-Freq_EMagnetic  »

Activate Stress Calc
Define Submodel

Run Static Analysis

Run Stress Analysis

Substructure
Crack
ASME_Code
J_Integral_Curve

3
3
3
3

Figure 8.24. Run linear static analysis

The generated stress results can be displayed on deformed shape (see Figure 8.25).
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[SIFile Edt Geometry Meshing PropSets LoadsBC Control Display Analysis medows Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
Available Results
Read Post-Dyn Response

Setup »
Identify Result

List »| Animate

Extremes »  Deformed Shape
Beam Diagrams

Stress.

Strain
Displacement/Response/Reaction
Thermal

Fluid Flow

Electromagnetic

Fatique

Path Graph
User Result

User Animate

Load case number [1

=

Component [VON: von Mises Stiess

Stress flag [EEAY z Line flag [0: Fi =

Layer number [1 3
Sk Beginning Element [T
ace flag | EHEI Top L] Endnglemer\t[ﬁE—
Coordinate system [0 Increment [T
Contout Plot ] Vector Plot | -0 71 | Section Plot | Help | Cancel | Shape flag [EEETEE] -

Deformed scale factor [8. 95196
0K Help |  Cancel

Figure 8.25 Display stress results

The results are shown in Figure 8.26.

Figure 8.26 The equivalent stresses

We can use listing commands to display numerical results (see Figure 8.27).
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s 7
[l Fle Edt Geometry Meshing PropSets LoadsBC Control Display Analys\swwndnws Help. I BEAMRESLIS 1,1,55,1 EI@
Combine Load Case — 1
List Combined Load Cases NODE 3 por TORQUE MOMENT._ MOMENT_T

=nIN SMAX

Average Nodal Stress

[ELEMENT : 24 ]
Available Results 36 0.000a+000 -1.6672+002 -9.982a+001 5.0502+001 3.993a+001 -6.6672+002
Read Post-Dyn Response 0.000+000 -2.7722+005 -1.0992+006 -1.3762+006 1.376e+006

27 0.0002+000 1.8672+002 9.9822+001 -5.0502+001 -2.9952+001 5.0002+002
Setup R 0.0002+000 -2.0802+005 —-6.2422+005 -1.0322+006 1.032e+006

ELEMENT :

Plot > 37  0.0002+000 -1.4292+0023 —-6.5562+001 4.2292+001 2.9952+001 -5.0002+002
L [ Displacement/Response/Reaction 0.000=+000 -2.0802+005 -5.2422+005 -1.0322+006 1.022e+008

26 0.0002+000 1.4292+002 6.556e+001 -4.2292+001 -2.139+001 2.S5722+002
Extremes ¥| Stress Component 0.0002+000 -1.4852+005 —-5.6872+005 -7.3732+00S 7.373a+00S

Strain Component [ELEMENT : 25
28 0.0002+000 -1.1912+0023 —-7.130a+001 2.8072+001 2.139a+001 —2.S5722+002

Shear{Moment Yalue 0.0002+000 -1.4852+005 —-5.687a+005 -7.3732+005 7.373a+00S
29 0.000e+000 1.1912+002 7.1230e+001 -2.8072+001 -1.426a+001 2.3612+002

Beam End 0.000e+000 -9.90%e+004 -23.925e+005 -4.915e+005 4.91Se+00S

Spring Force. [ELEMENT : 27

Gap Force 25 0.0002+000 -9.5242+002 -5.7042+001 2.6862+001 1.4262+001 -2.261a+002
0.000e+000 -9.803e+004 -3.9252+005 -4.915e+005 4.5152+00S

Natural Frequency a0 o, a. EN —2. -e.
0.000e+000 -5.942e+004 -2.355e+005 -2.9492+4005 2.9492+00S

Thermal Result [FLEMENT : 2o

Hom Raslt 40 0.0002+000 -7.1422+002 -4.278a+001 2.1542+001 ©.5552+000 -1.4282+002
0.000e+000 ~5.942e+004 -2.355e+005 -2.949e+005 2.9492+005

Flow Properties 41 0.000a+000 7.142a+002 4.278e+001 -2.164e+001 —4.2782+000 7.1432+001

E_Mag Result 0.000e+000 -2.971e+004 -1.177e+005 -1.4752+005 1.4752+00S

= [ELEMENT : o9

HF Emag Result 41 0.0002+000 -4.7622+002 -2.8522+001 1.4422+001 4.2782+000 —7.1422+001

Fatique Usage Factor ©0.0002+000 —-2.3712+004 -1.1772+005 -1.4752+00S 1.4752+00S
42 0.0002+000 4.762e+002 2.5522+001 -1.44232+001 -1.426e+000 2.3812+001

0.0002+000 —-9.2022+008 -2.9252+004 —4.9152+004 4.9152+004

a0

0.000e+000 -2.2612+002 -1.4262+001 7.2142+000 1.425e+000 —2.2812+001
0.0002+000 -9.90232+0023 —-3.9252+004 -4.9152+004 4.915e+004

42 0.000=+000 2.2612+002 1.426e+001 —7.2142+000 -2.547e-011 —-2.001=-011

0.0002+000 -1.7682-007 2.2962-008 -2.0882-007 2.0982-007

41

5.6262+002 1.9952+002 5.309e+001 -1.7362+000 -5.700e+001 -2.2082+002
-2.4272+006 6.042e+005 —2.6392+005 —2.4592+006 —4.2952+006

46 -5.626a+008 -1.9952+002 -5.309a+001 1.7362+000 6.1992+001 2.3962+002
-2.4272+005 . Lot =2 -4.331e+008
42

5.6262+002 1.9952+002 5.309e+001 -1.7362+000 -5.199+001 -2.3962+002
-2.4272+006 5.6942+4005 —3.9452+005 —2.4622+4006 —4.2912+006
47 -5.626a+00% -1.9952+002 —-5.309a+001 1.736e+000 7.699a+001 2.564e+002
-2.4272+006 S. -a. -2 -a.
ELEMENT : 42
a7

5.6262+002 1.99524002 5.309e+001 -1.7362+000 -7.699e+001 -2.5642+002
-2.4272+006 5.2452+005 —-4.2592+005 —2.4652+006 —4.2882+006
48 -5.6262+00% -1.9952+002 —-5.3092+001 1.7362+000 7.196a+001 2.7722+002
-2.4272+006 4.9992+005 —4.5692+005 —2.4702+006 —4.2642+006
ELEMENT : 44
48  5.626a+008 1.995e+002 5.309a+001 -1.7362+000 —-7.196a+001 -2.772e+002
-2.4272+006 4.9992+005 —4.5692+005 —2.4702+006 —4.2642+006
49 -5.6262+003 -1.9952+002 -5.3092+001 1.7362+000  6.596e+001 2.9502+002 ¥

Figure 8.27 Display stress components

Examine the bending moment generated in the structure (see Figure 8.28).

[TIFle Edt Geometry Meshing PropSets LoadsBC Control Display Analysis m Windows  Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
available Results
Read Post-Dyn Responise

Setup

»
|4 Identify Result
Animate
Deformed Shape

Stress

Strain
Displacement{Response/Reaction
Thermal

Fluid Flow

Electromagnetic

Fatigue

List
Extremes

Path Graph
User Result
User Animate

Figure 8.28 Display the moment diagrams for beams

Since the bars are curved in two directions, so we examine bending moments caused by ver-
tical and horizontal loads separately (see Figure 8:29).
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(] File Edt Geometry Meshing PropSets LoadsBC Control Display Analysis Results Windows Help

drpent (MY) Lc=

Figure 8.29 Ms and Mt bending moment diagrams

Examine the deflections, i.e. the displacements in Y direction (see Figure 8.30)

[ Fie Edt Geometry Meshing PropSets LoadsBC Control Display Analysis Wlnduws Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
Available Results
Read Post-Dyn Response

Setup »
T (o Resit
List 4 Animate
Extremes » Deformed Shape
Beam Diagrams

Stress

Strain

Thermal

Fluid Flow
Electromagnetic
Fatigue

Load case number [1

[EULLENR LY Displacement [Y di 2

Path Graph
User Result
User Animate Contour Plot] Vector Plot| Iso Plat| Section Plot| Help | Cancel|

Coordinate system [0

Figure 8.30 Display the deflections

The results shown in Figure 8.31.
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m|

Figure 8.31 The deflections

Display the numerical displacements result also possible (see Figure 8:32).
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D File Edit Geometry Meshing PropSets LoadsBC Control Display Analysis - wWindows Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
Available Results
Read Post-Dyn Response

Setup
Plot

i ~ R R4

Extremes

Stress Component
Strain Component

Shear{Moment Value
Beam End Force
Spring Force

Gap Force Load case number |1

Natural Frequency EEQTLER - Displacement and rotation
Thermal Result Beginning Node |1

Flow Result Ending Node |53

R T - s e f—
Cosustaaasedo [ ]O]x]) e o
Coordinate system |0

Node v
0.000=+000 0.000=+000 0.000=+000 0.000=+000 0.000=+000 0.000=+000 5302 Factor oK Help l Cancel I
0.0002+000 0.0002+000 0.000e+000 0.000e+000 0.0002+000 0.000=+000

-4.8552-005 -5.5722-007 -1.3292-007 —-1.4382a-006 1.29232-008 1.167=-004
-1.0722-004 -1.1142-006 -2.830e-007 —-4.651a-007 2.5862-003 2.032e-004
-1.7312-004 -1.6722-006 -2.272e-007 2.9192-006 32.8782-008 2.5952-004
-2.4312-004 -2.2292-006 2.936e-007 6.7152-006 S.1712-008 2.857=-004
-2.1422-004 -2.7862-006 1.515e-006 1.6922-005 6.4642-008 2.817=-004
-2.8342-004 -2.2422-006 2.5772-006 2.7542-005 7.7572-003 2.474e-004
-4.4762-004 -2.9002-006 7.022e-006 4.0572-00S 9.0492-003 1.8231e-004
-5.0292-004 -4.4562-006 1.1792-005 S5.8012-00S 1.0342-002 8.8482-00S
-5.4922-004 -5.0152-006 1.822e-005 7.23672-005 1.1632-002 -3.6282-00S
-4.9852-004 -4.4562-006 2.334e-005 2.2602-005 1.0342-002 -1.3452-004
-4.3922-004 -2.9002-006 2.474e-005 —-3.9522-007 9.0492-008 -2.071e-004
-2.7402-004 -2.2422-006 2.3252-005 —-2.5132-005 7.7572-003 -2.5422-004
-2.0542-004 -2.7862-006 1.971e-005 -4.160a-005 6.4642-0028 -2.757=-004
-2.2582-004 -2.2292-006 1.493e-005 -4.9612-005 §.1712-0038 -2.717=-004
-1.6792-004 -1.6722-006 9.742e-006 -4.9752-005 2.8782-0028 -2.421e-004
-1.0422-004 -1.1142-006 4.974e-006 —-4.1432-005 2.5862-003 -1.8632-004
-4.7492-005 -5.5722-007 1.451e-006 —-2.4652-005 1.29232-0028 -1.062e-004
0.0002+000 0.0002+000 0.000e+000 0.000e+000 0.0002+000 0.000=+000
-2.7392-004 -2.6622-007 -2.250a-006 —-2.5352-005 9.4122-008 -9.572e-00S
0.0002+000 0.0002+000 0.000e+000 0.000e+000 0.0002+000 0.000=+000
-2.7272-004 -4.9562-005 -9.636e-004 -1.1922-003 9.7962-008 -1.5852-004
-2.7152-004 -9.5542-005 -1.961e-002 —-2.0702-002 1.0142-002 -2.125e-004
-2.7022-004 -1.3752-004 —-2.992e-002 —-2.6592-003 1.0452-002 -2.610e-004
-2.5912-004 -1.7512-004 -4.0522-002 —-2.9582-003 1.0732-002 -2.070e-004
-2.6792-004 -2.0822-004 -5.136e-002 —-2.9692-003 1.0982-002 -3.537=-004
-2.6672-004 -2.23702-004 -5.2472-002 —-2.6902-003 1.1192-002 -4.041e-004
-2.6552-004 -2.6212-004 -7.3772-002 —-2.1232-003 1.1382-002 -4.614e-004
-2.54232-004 -2.6432-004 -5.523e-002 -1.2662-002 1.1542-002 -5.287=-004
-2.6312-004 -23.0472-004 -9.6852-002 -1.2082-004 1.1672-002 -5.091e-004
-2.5192-004 -2.2492-004 -1.086e-002 1.23142-003 1.1792-002 -7.057=-004
-2.6192-004 -4.9452-004 -1.204e-002 —-1.5762-002 1.1862-002 -8.615=-004
-2.6192-004 -5.6912-004 -1.323e-002 —-4.1782-002 1.1932-002 -9.876e-004
-2.6192-004 -8.4592-004 -1.443e-002 —-5.4902-003 1.1982-002 -1.087=-002
-2.6192-004 -1.0222-002 -1.563e-002 —-6.5142-003 1.2022-002 -1.164e-00%
-2.6192-004 -1.1962-002 -1.683e-002 —-1.0252-002 1.2042-002 -1.220e-002
-2.6192-004 -1.23662-002 -1.804e-002 —-1.1692-002 1.2062-002 -1.2592-00%
-2.6192-004 -1.5292-002 -1.9242-002 1.2082-002 -1.2842-002
-2.6192-004 -1.6862-002 -2.0452-002 -1.2982-002
-2 .5192-004 & —2.1652-002 -1.304=-002

-5.46862-004 -7.860a-006 -7.482e-004 1.628e-004 1.1622-002 -6.4672-005
-5.4592-004 -1.266e-005 -1.507e-008 2.6871e-004 1.1612-002 -3.5292-005
-5.4112-004 -1.9622-005 -2.258e-008 2.662e-004 1.1602-002 -1.264e-004
~-5.2412-004 -2.8642-005 -2.001e-008 4.656e-004 1.1592-002 -1.62682-004
-5.2462-004 -4.0492-005 -2.789e-008 5.794e-004 1.1592-002 -2.014e-004
-5.1262-004 -5.4722-005 -4.470e-008 6.594e-004 1.1602-002 -2.414e-004
-4.9772-004 -7.1722-005 -5.196e-008 7.558e-004 1.160=2-002 -2.827=-004
-4.8002-004 -9.1602-005 -5.916e-008 ©6.285e-004 1.1612-002 -2.264e-004
-4.5922-004 -1.1452-004 -6.682e-008 9.176e-004 1.162=2-002 -2.752e-004
-4.2522-004 -1.4072-004 -7.844e-008 9.929e-004 1.1642-002 -4.2462-004 ¥

Figure 8:32 List of displacements components

8.4. Remarks

During the solutions are not dealt with buckling of the compressed bars. If this is a real prob-
lem, we should have to verify with solution a finite element problem, or with any analytic
calculation.

During the solutions the tare weight was neglected.

Both problems are explained in later chapters.

Furthermore, the structural joint was not tested. The other specialized areas of structural
design deal with this problems.
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Q. DYNAMICS OF BEAM STRUCTURES, MASS MATRIX, NATU-
RAL FREQUENCY ANALYSIS

9.1 Extending of the finite element method

Such as the historical survey also showed, the finite element method "invention” does not
associate to a date. It should not speak about invention, rather to talk about progress or devel-
opment. This development is begun in 1940-50s, and still continues today. After the first suc-
cessful solution in field of theory of elasticity, raised the possibility that, other physical prob-
lems can be solved using the finite element method. Thus, today we can get finite element
solutions in fields of heat transfer, electromagnetic radiation, fluid flow, fatigue and oscillat-
ing systems analysis. The mathematical solutions are used in these areas slightly differ from
those described at theory of elasticity.

The development of the finite element solution of the structure-dynamics analysis began in
the1960s, when the element mass matrix has been determined.

9.2. Finite element formulation of the elastic bodies' natural oscillation

The previous chapters dealt with elastic bodies in balance. We used the full potential is pre-
scribed as a function of the displacement u:

[Tw=

N

[o:adV-[u-qdv—[u-pdA 9.1)

The potential represents the equality of the elastic strain energy and the work of external
forces i.e. the static equilibrium.
D 'Alambert, rearranging the Newton 2" law and wrote the following form:

F-m-a=0

so the "ma" is no longer momentum, it is the force of inertia. According to the d'Alambert’s
principle, the external forces and the force of inertia act on the body are balanced. This is
called the kinetic equilibrium.

Following the principle, we complement the above potential with the work of force of inertia
and so we get the potential, which describes the system of kinetic equilibrium state:

H(v)=%Ic=s:ng—Igng—J.gBdAJrJ.ggpdV (9.2)

where:
-ii-the time of the second derivative of the displacement vector (i.e. acceleration)
- p -Density of the material.
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136 Finite Element Method

During the finite element solution we follow the method which is presented in a previous
chapter with the addition that, the three coordinates of the function describing the motion of
the body, are supplemented by the fourth coordinate which is the time:

u=u(x,y,zt) (9.3)
We interpolate this function by the previously presented shape functions:

u(x,y,z,t) = N(x,y,z)u,(t) (9.4)
Thus, the acceleration:

U(x,y,z,t) = N(x,y,2) G, (1) (9.5)
With this supplementing the potential, work of the inertial forces on an element:

[u-lipdV = [u-tipdV =u; ([N" NpdV)ii, = u; M, i, (9.6)
Ve

V, V,

e e

The M _is the consistent mass matrix of the element which contains the inertial properties.
The full potential can be written in a matrix form:

[T-5U'KU-UTE+U'MU ©.7)

The equation which is satisfactory of the I'T = minimum condition
MU +KU = K(t) (9.8)
a linear differential equation system.

The right side of the equation contains constant and time variable forces (i.e. pre-loading
and exciting forces). The engineering practice there is very much study when external forces
do not act. Think of the most common engineering practice oscillation problem, determining
of the critical angular velocity of rotating shafts. The critical angular velocity approximately

equal to the smallest angular natural frequency of the shat. Thus, the equation system of an
undamped vibration system without external forces becomes simpler:

MU-+KU=0 9.9)
The body does harmonic oscillation, so the solution of differentialequations:
U=Asin(at +¢) (9.10)

where:
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9. Dynamics of beam structures, mass matrix, natural frequency analysis 137

- A the amplitude vector of the nodes,
- o the natural frequency,
- ¢ phase angle.
substitute U, and the time of the second derivative of the U in the basic equation:

(-a*M+K)A=0 (9.11)

we obtain a homogeneous algebraic equations system. Search the eigenvalues of A and the
associated natural frequency o.

The above equations have solution different the trivial solution, if the determinant of the
coefficient matrix is zero, i.e.:

det(-o*M+K) =0 (9.12)

Since the M and K matrices in the equation system according to degrees of freedom of fi-

nite element model, the matrices are of order nxn, so the equations have n roots for o®. The
degrees of freedom of finite element models used in practice can be few hundred to several
million. It need not determine so many eigenvalue and natural frequency, the first few value
have relevance in the practice.

9.3. Natural frequency calculation of two-dimensional bar structures using finite
element method

See a shaft bearings at the two ends, with a fast pulley at an intermediate point shown in Fig-
ure 9.1. Determined the shaft critical angular speed.

@ @ ®

m N
7 beam 1 beam 2 N

Figure 9.1 The shaft

The diameter of the shaft is 30 mm, made of solid steel. The pulley weighs 1 kg. The shaft
length 400 mm, L1 =250 mm and L2 =150 mm.
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138 Finite Element Method

We have to determine the M mass matrix and the K stiffness matrix for solution the
(—a’M+K)A =0 equation.

9.3.1. Determination of the element mass matrix

As we have seen, for determination of the element mass matrix, the N (X, y, z) interpolation

functions are used.

First, place the element in an "s" coordinate system, which is independent of the length
and coincides with the element axis. The element location in the global coordinate system is
shown in figure 9.2 a, and the element location in the local "s" coordinate system shown in

figure 9.2 b.

v,

(Xpyy)

Figure 9.2 The element local coordinate system

The element mass matrix can be determined based on the following:

1
M, = jNquALdg (9.13)
-1
The axial displacements are interpolated:
N, =(1-&)/2, 9.14)
N, =(1+&)/2 '

with shape functions linearly,
the displacements perpendicular to beam are interpolated:
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9. Dynamics of beam structures, mass matrix, natural frequency analysis 139

N, = (2-3£+¢&%)/4,
N3=ﬂ—§—§2+§3%n
N, = (2436~ £%)/4,

Ng=—(L+5-¢" &%)

(9.15)

with shape functions cubical.
For the linear members:

N, = N, 9.16
lin — N4 ( )

If the cross-section of the beam element and density is constant, then the associated mass
matrix is:

1¢ T 112 1
M =pAL=|N,, N, d&é=pAL= 9.17
—elin p 2:[._Im_lm i p 6|:1 2:| ( )

For the cubical members:

N

th‘)b = (9-18)

(53]

ZZwZZ

o

and the associated mass matrix:

156 22 54 -13L

1% . 1 |22L 4 13L -31°
M = pAL = [ NyoyNldé = pAL-—— 9.19
ekon ~ P 2[—“’"—“’“a PP 420 51 13L 156 2oL (5.19)

—13L -3L%2 -22L 412

This matrix is expanded, with the matrix associated linear members thus we get the total
element mass matrix:
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140 Finite Element Method

140 0 0 70 0 0
0 156 22L 0 54 -13L
110 22L 42 o0 13L -31
M. =pAL——— (9.20)
= 42070 0 0 140 0 0
0 54 13L 0 156 -22L

0 -13L -3 0 -22L 4L1°

9.3.2. Element stiffness matrix

The stiffness matrix of beam element is also derived from the above interpolation functions.
The axial relative elongation of the element:

_du, _du, de

g = - (9.21)
ds d¢& ds

The axial displacements of the element mark by J = 3—2 ,the strain-displacement vector:

CNST 2[-05] [-yL
=2 s e o)

and the element stiffness matrix is:
1 1 _
K =j§EgTAds=j§E§TAJd§_ { } (9.23)
L 1

Similarly, the displacements and angular displacements perpendicular to element axis are
approximated cubic interpolation:

N,' 15¢&
1 | N," 4 |—-05+15&
Ek(’)b =77 -
JEINS | 2| 155
Ng" -0,5-15¢&

(9.24)

and the stiffness matrix:

12 6L -12 6L

! 6L 412 -6L 217
j§|ZEgTds=j§|ZEgTJd§= IZE (9.25)
) A ®|-12 -6L 12 -6L

6L 21> -6L 42

www.tankonyvtar.hu © Istvan Moharos, OE




9. Dynamics of beam structures, mass matrix, natural frequency analysis

141

The element stiffness matrix can be obtained by the combination of the two stiffness ma-

trix:

®

9.3.3.

0 0 —% 0 0
121LE  6LE 121.LE  6LE
E L2 T L2
A= 41E 6LE 2LE
2 - 0 T2
L L L L
0 0 % 0 0
121LE  6LE 121LE  6LE
IEEE IEEE
6lLE  2LE 6lLE 41E
2 0 T2
L L L L

The system total mass and stiffness matrix

The mass point shown in Figure 9.1 has not mass matrix, we take into account the mass in the
mass matrix of the entire system as an inertia on a node.
The mass matrix of the entire system shown in Figure 9.1:

1401,
0
0
70
M=PAl o
=mo|
0
0
0

0
156L,
2213
0
54L
-131%
0
0
0

0 70L, 0 0
2212 0 54L, -13L1%
a8 0 1312 -3

0  140(L,+L,) 0 0
135 0 156(L, +L,) 22(L%-L3%)
-3 0 2(L5-1%)  4L+L%)

0 70L, 0 0

0 0 54L, 1315

0 0 -13L5 -3

and stiffness matrix of the entire system:

© Istvan Moharos, OE

0 0 0
0 0 0
0 0 0
0 54L, -13L%
0 1315 -3
0 0 0
140L, O 0
0 156L, -221°
0 -2212 4L
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0
121,E

H
61,E
LZ
0

121.E
— L3
61,E
LZ

0

0

0 _AE
Ll
61,E
E 0
_ALE 0
Ll
o AE_AE
Ll LZ
61,E
— L2 0
21.E 0
L.
0 _AE
LZ
0 0
0 0

0 0 0 0
_12LI32E elezE 0 0
_6I22E 21E 0 0

L2 L,

0 0 _AE

LZ
121LE 121LE 6LE 6LE 121.E
R 2 L T
6lLE 6LE 4LE 4lLE 61,E
2 2 - 0 T2
2 L L, L, L2
0 0 AE 0

L2

121.E 61,E 121.E
E e BNE
61,E 21E 61.E

2 0 T2

L2 L, L,

61.E
LZ
21E

If the axis of the element is not parallel to the global coordinate system X axis, then the
stiffness and mass matrices of the element must be transformed first, using the transformation
matrix described in previous chapters.

The equations can now be simplified so that the displacements and angular displacements
0 locations (at the bearings) are skipped. So we can delete rows and columns of the equation
system in these places. In our case, this is the 1-3. and 7-9. rows and columns. Thus, the ma-
trices in the system of equations:

I<

I=

140
420

AE

Ll

0

0

AE

L,

—pA(L,+L,)+m

156

—pA(L, +L,)+m

420

420"

0

AL, -LY)

0

121,E 12I,E

6I,E 6I,E

E E
6I,E 6I,E

T
41,E 4,E

A

The problem to be solved:

det(-a®M” +K) =0

www.tankonyvtar.hu

Ll L2

0
22
EPA(LZz -L3)

4
4_20pA(Li + Lsz)

|
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equations, which from we get the:

4,1074-10°
a® =191253-10°
1,5681-107

solution. Real roots of « :

20266,82

a =1 30208,13
3959,96

9.4. Remarks

In practice, we can use the simplified mass matrix:

100000
010000
y _PAL[O 0.0 000
= 2]/000100
000010
00000 O

which expresses that the mass of the element are divided into two equal parts, and place this
to the two ends of the element. This corresponds to the analytical calculation when we reduce
the mass of the bar to its endpoint. In the case of finite element solutions, sufficiently accurate
results can be obtained using this procedure if the bar is divided sufficiently many finite ele-

ments.
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10. DYNAMIC ANALYSIS OF THREE-DIMENSIONAL BARS, DE-
TERMINATION OF NATURAL FREQUENCY USING PROGRAM
SYSTEM BASED ON FINITE ELEMENT METHOD

10.1. Introduction

The engineering works are all oscillating systems. Buildings, structures, vehicles, machine
parts, vibrations carry out each. These are neglected usually, due to their high frequency and
small amplitude. These do not disturb the functionality of the machine.

However, there are many cases in which these vibrations can not or should not be ignored.
Everyone knows disaster of the Tacoma Bridge. The oscillation of the bridge was forced by
the wind. But in our daily lives we can find examples of the importance of oscillating sys-
tems. The wheels of our cars are balanced. The unbalanced wheels cause uncomfortable driv-
ing, and malfunction in bearings, shafts and tires. But the state of shock absorbers, are regu-
larly checked not only because of the convenience, but also because it is related to safety. In
field of manufacturing process there are several examples to the vibration of machines and
machinery parts can not be ignored.

But there are some engineering applications, where the vibrations should not be damped or
avoided, but on the contrary, should strengthen them. Consider, for example vibration feeders
and screens machines are used in the field of materials handling, or vibration compaction ma-
chines are used in the field of building industry.

10.2. Properties of the used finite elements

The properties of BEAM3D elements used for three-dimensional modeling are described in
chapters 8.

However, we will use a new element. The finite element modeling programs use a 0-
dimensional MASS element (mass, or inertia). This element has only one node, in this node of
the element accumulates the total mass and moment of inertia. The MASS element has mass
(inertia) in X, Y and Z direction, and the moment of inertia is interpreted around the three-
axis. This interpretation allows me that in the case of 2D problems ignore some effects.

10.3. The study description

In the mechanical engineering practice, the most common tasks are the examination the bend-
ing and torsional vibration of the rotating shaft. In this study we analyze a rotating shaft with
two flanges shown in Figure 10.1.
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‘ S
- o~ 0250
S
“ 2
1
I 1
\
8 i N 040
Y o
(=}
g A
=
! n

9125
Figure 10.1 Tested shaft

This problem has been also discussed in the subjects of mechanical engineering studies, in
machine design, shafts and couplings, in mechanics dynamics.

These subjects showed that the bending and torsional vibrations are generated in shafts. It
also clarified that these vibrations can be dangerous, if the rotation angular velocity of the
shaft equal to the first angular natural frequency of the system.

The angular natural frequencies of bending vibrations in the structure shown in Figure
10.1 are calculated by Dunkerley's simplified formula:

1
P = My7, + My, (10.1)

where: a - the angular frequency (10.1)
n - deflection of the shaft caused by a unit radial force.
According to the known formulas:

1 8 at 8 at
—em, = m, =L 10.2
o? "18IE  “18IE (10-2)

Thus, the angular natural frequency of the shaft is:
a=276.76 1/s, which is equal to n=2642.86 rpm.

The torsional vibrations from the characteristic equations of multi-degree-of-freedom sys-
tem are:
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146 Finite Element Method

oy = (©.+0, (10.3)
®1®200

where: - ® the moment of inertia of the disks around Y axis
- Co the torsional spring constant,:

¢, =L (10.4)

where: -lppolar moment of inertia
-G - modulus of rigidity
On this basis, the torsional natural frequency is:

ap =1503.87 1/s i.e. n=14360.9 rpm.

10.4. The finite element solution of the task

Structure shown in Figure 10.1 is a very simple geometric model, shaft can be characterized
by a single line. We draw it as three separated line to help generating of the finite element
mesh. So we can place the MASS elements on the end of the sections, on geometrical (key-)
points. The drawn sections shown in Figure 10.2.

7 File Edit mMeshxng PropSets LoadsBC Control Display Analysis Results Windows Help

Grid 3
Points »
Surfaces Sketch LinefArc

»
> Draw Linefarc
Contours » Line wi ith 2 Pts.
> Polyline with Pts
¥ thru 4 Points
Parts 4 Circular Arc
Coordinate_Systems »|  Conic Arc
Ellipse
Helical Arc
by 12 Paramet ters
Fit Curve on Pts
Fit Curve on New Pts

»
>
Manipulation »
»
>

Figure 10.2. Creating a geometric model

After the creation of the geometric model, follows the describing the properties of finite ele-
ment mesh. First we select the needed element type (element group) (see Figure 10.3), which
Is in our case the BEAM3D element.

www.tankonyvtar.hu © Istvan Moharos, OE




10. Dynamic analysis of three-dimensional bars

147

[TIFile Edt Geometry Meshing LuadsBC Control Display Analysis Results Windows Help

Element Group
Material Property
Real Constant
Pick Material Lib
User Material Lib
Material Browser
AISC Sect. Table

List Element Groups
List Material Props

List Real Canstants
Delete Element Groups
Delete Material Props
Delete Real Constant:
Change El-Prop

New Property Set

Beam Section
List Beam Sections

Element group |1
- |

Element Name:

weeeeeneeeeeeeeeeeeees Category: POINT weeeeeeeeeee
BUOY: 1-node spherical buoyant

GAP: Gap element
MASS: General mass element
SPRING:  Spring element

eeees CateGOryY: LINE -veveseeresnees:

BEAM2D: 2D elastic beam element

3D: 3D elastic beam element
Boundary element

CLINK: Convection link

Elastic elbow element

ELINK: Electrical link

Thermal 3D fluid pipe

Gap element

GENSTIF:  General stiffness/conduction element

HLINK: Hydraulic link.

2-node immersed pipe/cable element

PIPE: Elastic straight pipe element o

0OP1:Beam Type -
0P2:Unused option |0
0P3:Unused option |0
OP4Integiation Type [0 Gawss |
OP5:Material Type m

OPE:Displacement Formulation | 0: Small Z

0OP7:Unused option |0
0P8:Unused option |0
[T | Help |

Cancel |

Figure 10.3 Select the element type

In the next step we define the required material properties, the elastic modulus and the mod-
ulus of rigidity (see Figure 10.4).

I File Edt Geometry MeshingloadsBC Control Display Analysis Results Windows Help

Element Group

[ operty

Real Constant
Pick Material Lib
User Material Lib
Material Browser
AISC Sect. Table

List Element Groups
List Material Props

List Real Constants
Delete Element Groups.
Delete Material Props
Delete Real Constant
Change El-Prop

New Property Set

Beam Section
List Beam Sections

Figure 10.4 Define the material properties

Emissivity
" Enthalpy

H (unused)

ETAN: Tangent modulus

ELL: Ultimate plastic strain measure (in tension)
EX: Elasticity modulus in X mat. dir.
Elasticity modulus inY mat. dir. o
Elasticity modulus in Z mat. dir.

(unused)

Friction angle

Shear relaxation 1

Shear relaxation 2

Shear relaxation 3

Shear relaxation 4

Shear relaxation 5

Shear relaxation 6

Shear relaxation 7

Shear relaxation 8

Ratio of specific heat

XY Shear modulus ™

Material property set |1

Elasticity modulus in'Y mat. dir. j

Material Property Name [EY:

Ultimate plastic strain measure (in tension) A
Elasticity modulus in X mat. dir. ‘a
Elasticity modulus in Y mat. dir.

Elasticity modulus in Z mat. dir.

(unused)

Friction angle

Shear relaxation 1

Shear relaxation 2

Shear relaxation 3

Shear relaxation 4

Shear relaxation 5

Shear relaxation 6

Shear relaxation 7

Shear relaxation 8

Ratio of specific heat

Y Shear modulus

X2 Shear modulus

YZ Shear modulus

Convection film coeff

Bulk relaxation 1

Property value |2.1e11
0K | Help l Cancel I

Property value [0.8077e11
0K | Help l Cancel I

Finally, the real constants are defined. The Figure 10.5 shows an example of simplified pro-
cedures for definition the real constant by geometrical dimensions. The "2" sign indicate that

the cross-section is circular.
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I Fle Edt Geometry MeshxngLuadsBC Control Display Analysis Results Windows Help
Element Group
Material Property
Real Constant
Pick Material Lib

User Material Lib [Z] BMSECDEF X
Material Browser

AISC Sect, Table BS1 : Radius (R) [0.04
. BS2 : End-release code [node 1) ,D—
List Element Groups y
List Material Props B53 : Endrelease code [node 2) [0
List Real Constants BS4 : Shear factor in elem. y-avis [0

Delete Element Groups
Delete Material Props
Delete Real Constant:
Change El-Prop

New Property Set

BSS5 : Shear factor in elem. z-axis lﬂi
BSE : Temp. diff. in elem. y-axis [0
BS7 : Temp. diff. in elem. z-axis ,07
BSS : Orientation angle Theta [0
BS9 : Torsional constant (CTOR) ,17
lT‘ Help | Cancel |

[ BMSECDEF &)
Section number | 1:  Rectangular Section ¥

o 0: UserDefined Section
1: Rectangular Section

2:_Circular Section

3 Pipe Section
4: Box Section
5 |-Gection

List Beam Sections

Figure 10.5 Definition the real constant

If we have defined all properties of the finite elements, then we can create the finite element
mesh (see Figure 10.6.). We create 10-10 element in each section. The section of BEAM3D
elements is a circle, thus definition of the third node is not required.

[ File  Edit GeometryProDSets LoadsBC Control Display Analysis Results Windows Help
Mesh Options

Mesh_Density ~ »
Parametric_Mesh » LTS

Nodes X rrr— Beginning Curve [1
Elements > Volumes Ending Curve |3
Delete Elements On Points Increment [1
Delete Elements On Curves Number of nodes per element | 2 b
Delete Elements On Surfaces Number of elements on each curve [10]
Delete Elements On Yolumes e [ —

Keypoint to define principal axis if 3 nd/el
0K I Help | Cancel |

Figure 10.6 Create the finite element mesh

We have to define the properties of the two disks. To this end, we define a new element group
already described above, the MASS (inertial) element (see Figure 10.7).

Element Name

T e m——
BUOY:  1-node spherical buoyant
GAP: Gap element

ASS: _ General mass element
SPRING:  Spiing element

Category: LINE

BEAM2D: 2D elastic beam element
BEAM3D: 3D elastic beam element
BOUND:  Boundary element
CLINK:  Convection link
ELBOW:  Elastic elbow element
ELINK:  Electicallink
FLUIDT:  Thermal 3D flid pipe

3 Gap element
GENSTIF:  General stifness/conduction element
HLINK:  Hydraulic link
IMPIPE:  2-node immersed pipe/cable element
PIPE: Elastic shiaight pipe element v

Figure 10.7 Define the MASS element
To this element type does not belong to any material property, such as sufficient for definition

the real constant. These constant of the first disc shown in Figure10.8. The moments of inertia
of the disk around X and Z axis can be ignored, so their values shall be 0.
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149

DFiIe Edit Geometry MeshingLoadsBC Control Display Analysis Results Windows Help
Element Group
Material Property
Pick Material Lib
User Material Lib
Material Browser
AISC Sect. Table

List Element Groups
List Material Props

List Real Constants
Delete Element Groups
Delete Material Props

RC4 :

Delete Real Constant %
RCO )
Change E-Prop bosh: 3 RCS :
New Property Set Associated Element group |2 RCE :

Real Constant set |2

Help ]

Beam Section

List Beamn Sections Continue. | Cancel ]

RC1 :Mass inwdiecton [13744
RC2 : Mass in y-direction ,19144—
RC3 : Massin 2direction [19.144
Rotary inertia about x-axis lﬂi
Rotary inettia about y-asis [0.149
Hotafeedinmoubesed) |

RC7 : Themmal capacity lﬂi

0K ] Help | Eancel]

Figure 10.8 Real constant of first disk

The MASS element is placed on a single node in the finite eleme
MASS element shown in Figure 10.9.
[T Fie Edt Geometry [[IEEMGRY PropSets LoadsC Control Display Analysis Resubs Windows Help

Mesh Options

3

Mesh_Density

nt mesh. The creation of the

Parametric_Mesh »
Auto_Mesh > Curves
Nodes ¥ Surfaces
Elements > volumes - n
Beginning Key point |2
Delete Elements On Points Ending Key point ﬁ—
Delete Elements On Curves e
Delete Elements On Surfaces
Delete Elements On Yolumes oK Help | Cancel |

Figure 10.9 Create a disc as finite elemen

We have to define the real constant of the second disc (see Fig

GF“E Edit Geometry MeshlngLoadsBC Control Display Analysis Results Windows Help
Element Group
Material Property
Pick Material Lib
User Material Lib
Material Browser
AISC Sect. Table

List Element Groups
List Material Props

List Real Constants
Delete Element Groups

t

ure 10.10).

RC1 : Mass in x-direction |3.57
RC2 : Mass in y-direction [3.57
RC3 : Mass in z-direction {9.57

Dekete Mecanal Props RC4 : Rotar inetia about w-ass [0

Delete Real Constant o )

Change El-Prop RCS : Rotary inertia about y-axis |0.0374

New Property Set Associated Element group [E RCE : Rotary inertia about z-asis [0

Baa Saction Real Constant set |3 RC7 : Thermal capacity [0

List Beam Sections Help | Cancel | oK | Help | Cancel |

Figure 10.10 Real constant of second disk

The creation of the second disc is similar to the previous one, just on another point of the

geometric model.

The finite element mesh has five independent parts (the three shaft section and the two
mass). We have to merge the common nodes to join these independent parts (see Figure

10.11).
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I Fie Edt Geometry [[EEMGEY PropSets LoadsBC Control Display Analysis Results Windows Help

Mesh Options

Mesh_Density

>

Parametric_Mesh »

Auto_Mesh

»

Elements »

Define

Identify
Compress
Modify

Push to Point.
Push to Curve
Push to Surface
Merge

List

Plot

Delete
Re-associate
Show Merged Nd
Update Nd Coord

Generation ]

Beginning Node !1—
EndngNode[35
Increment ’1—
Tolerance |0.0001
All7Among flag | 0: All X
Echoflag[1:0n ]
Low/High flag | 0: Low bt
oK Hep | Cancel |

Figure 10.11 Merge the common nodes

In the next step we determine the boundary conditions, shown in Figure 10.1 as bearings. This
is similar to the previous examples, it can be defined fixing the three displacement degree of
freedom at both ends of the shaft (see Figure 10.12.).

EFiIe Edit Geometry Meshing PropSets WEEGE:WM Control Display Analysis Results Windows Help

Structural QIS Define by Nodes
»

Thermal »|  Force Define by Paints

Fluid_Flow > Pressure »|  Define by Curves

E-Magnetic »  Master DOF » Define by Surfaces

Load_Options  »|  Coupling »|  Define by Contours

Function_Curve »  Bonding » Define by Regions
Gravity »

Delete by Nodes
Delete by Points
Delete by Curves
Delete by Surfaces
Delete by Contours
Delete by Regions

Plot

List

Beginning Key point |1
Displacement label [AU: All vanslations ]
Value [0
Ending Key point |4
Increment [3
Addtional Displacement labels if any (L2...L6) [
0K | Help | Cancel ]

Figure 10.12 Define displacement constrains

Thus the created finite element model shown in Figure 13.10.
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Figure 10.13 The complete finite element model with the node numbering

Before the solving it is possible to set number of the calculated natural frequency (see Figure
14.10). It is appropriate to set calculate more harmonious, because we expect two-way bend-
ing and torsional vibrations. In this study we will calculate the first 10 natural frequencies.

[SIFile Edt Geometry Meshing PropSets LoadsBC Contral Display Results Windows  Help UAA FRfQUIEN(EY @

Restart
Number of frequencies [ili

Renumber

Reaction Method |S: Subspace iteration i
Data Check Masimum number of iterations [100
Run Check Sturm sequence flag | 0: No ¥
List Analysis Option - -
Eigenvalue shift flag | 0: No eigenvalue shift ud

Output_Options ~ » Eigenvalue shitvale [0
Static »

Inplane effect flag | 0: No ha
Frequency/Bucking »|  Frequency Options E g
Post_Dynanic » Buckling Options Tolerance [1e-005
Nonlinear »|  FFE Frequency Option Soft spring flag | 0: No v
Optimmize{Sensitivity ¥
F;\;ﬂ;él ensitivity ? " ods Check opton Soft spring value [1e-006

Harmonic number |0
HeatTransher ,  ListMode Check Option
Fluid_Mechanics ~ »  Run Frequency Fonts =0
Electro_Magnetic  »  Run Buckling Mass flag | 0: Lumped mass i
Hi-Freq_EMagnetic Modal acceleration flag | 0: No

Mass patticipation factor [0: No

Save stiffness matix flag [0: No

Frequency for nonlinear analysis flag [0: No
Form stiff mati flag [0: Form

NIRRT

<

Spinsofteningflag [0:N0 7
Rigid connections | 0: Hinge ¥

Sobveroption[0:Sparse |
Change to 2nd order | 0: Off >

0K Help |  Cancel |

Figure 10.14 The natural frequency analysis settings

After the setting follows the solution (see Figure 10.15)
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[TIFle Edt Geometry Meshing PropSets LoadsBC Control DisplayResults Windows  Help

Restart

Renumber
Reaction

Data Check

Run Check

List Analysis Option

Output_Options
Static

Frequency/Bucking
Post_Dynamic
Nonlinear
Optimize/Sensitivity
Fatigue
Heat_Transfer
Fluid_Mechanics
Electra_Magnetic
Hi-Freq_EMagnetic

>

>

3 Frequency Options

» Buckling Options

»|  FFE Frequency Option
>

>

Mode Check Option

)| ListMode Check Option

,
»| Run Buckling
»

Figure 10.15 Run frequency analysis

After a successful run the results can be displayed. The calculated first eight natural angular
frequencies are shown in Figure 10.16.

G File Edit Geometry Meshing PropSets LoadsBC Control Display Analysis Windows Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
Available Results
Read Post-Dyn Response

Setup »
Plot »
Displacement/Response/Reaction
Extremes » Stress Component
Strain Component:

ShearfMoment Yalue
Beam End Force
Spring Force

Gap Force

Natural Frequency

Thermal Result

Flow Result

Flow Properties
E_Mag Result

HF Emag Result
Fatigue Usage Factor

| FREQLIS

Freguency#

2.84151e+002
2.841512+002
1.16762e+0023
1.16762e+0023
1.50218e+003
7.622672+008
1.47471e+004

4.52240e+001
4.522402+001
1.65882e+002
1.65822e+002
2.292262+002
1.21494e+002
2.247082+008

2.21121e-002
5.281192-008
5.281192-008
4.179942-008
©5.220882-004
4.260622-004

TAameeNp

Figure 10.16 The calculated natural angular frequencies

In the list, the first natural angular frequency is 10® 1/s , which is negligibly small in the en-
gineering practice. This is consistent with the learned in mechanics. The first natural frequen-
cy of the multi-degree-of-freedom systems is zero. We observe that the 2-3. and 4-5. natural
frequencies are the same. Later we will see that these two oscillation generated in X and Z
directions. The 6. natural frequency has not pair. This is the torsional oscillation of the shaft
between the two disks.

The finite element programs can display graphically the mode shapes as the deformed
shape of the shaft (see Figure 17.10).
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1:{ File Edit Geometry Meshing PropSets LoadsBC Control Display Analysis m Windows Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
Available Results
Read Post-Dyn Response

Setup »
Identify Result
List > Animate

Extremes [l  Deformed Shape

Beam Diagrams

Stress
Strain
Displacement/Response/Reaction
Thermal

Fluid Flow

Electromagnetic

Fatigue

Path Graph
User Result

User Animate

Figure 10.17 Display the mode shapes

The finite-element programs offer a scale factor to display the deformed shape. We override
this scale factor and use 0,5 to do comparable mode shapes (see Figure 10.18)

Figure 10.18 The 2 4. and 6 mode shapes

In the figure, we observe that only one node belongs to the first mode shape. Also observed
that in case 6 mode shape there is not visible deformation because the twisting around the Y
axis is not visible in this representation

The displacements belong to 2. and 3. mode shapes are shown in Figure 10.19.
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[T Fle Edt Geometry Meshing PropSets LoadsBC Control Display Analysis Windows  Help
Combine Load Case
List Combined Load Cases
Average Nodal Stress
avallable Results
Read Post-Dyn Response

Setup
Plot

Extremes

Stress Component
Strain Component

Shear/Moment Yalue
Beam End Force
Spring Force

Gap Force Made shape number [

Natural Frequency Set number [1: Mode shape. Z
Thermal Result Beguming Nods |1

Flow Result Ending Node [33

Flow Properties e
E_Hag Resukt Coordinate system [0

HF Emag Result

Fatigue Usage Factor 0K | Help Cancel

[ DISLIST,2,1,1,33,1,0.

Hode shape
Node UX 2
1 0.000e+000 0.000=+000 0.0002+000 7.085e-001 2.482e-024 2.0822-014
2 -5.2542-016 7.821e-020 2.1292-002 7.053e-001 1.6542-024 2.072e-014
3 -1.2452-015 1.564e-029 4.236e-002 6.955e-001 1.654e-024 2.044e-014
4 -1.8532-015 2.2462-029 6.308e-002 6.7922-001 ©.2722-025 1.996e-014
5 -2.4442-015 2.1292-029 ©6.219e-002 6.5652-001 1.6542-024 1.923e-014
s
&
L)
s

R
000=+000 0.000e+000 2.0672-014 2.44232-020 -7.0852-001

2.4422-020 -7.0522-001
977e-034 1.2362-015 2.0292-014 2.4432-020 -6.355e-001
4662-024 1.840e-01S 1.9822-014 2.4422-020 -6.792e-001
955e-034 2.4272-01S 1.9152-014 2.4432-020 -6.5652-001
4432-024 2.9912-015 1.8302-014 2.442e-020 -6.272=2-001
5222-034 2.527e-0D1S 1.7262-014 2.4422-020 -5.5142-001
0422-032 4.0292-01S 1.6022-014 2.44232-020 -5.492e-001
1812-032 4.4902-015 1.460a-014 2.4432-020 -5.004e-001
2402-D22 4.9062-015 1.2992-014 2.442e-020 -4.451e-001
4892-032 5.271e-01S 1.1182-014 2.4432-020 -3.833e-001
$422-022 5.5792-01S 9.2612-015 2.4422-020 -2.1742-001
5982-022 5.8272-01S 7.2872-015 2.4422-020 -2.4972-001

-2.0122-015 2.511e-029 1.0252-001 &
-2.5522-015 4.6922-029 1.208e-001 &
-4.0572-015 5.4752-029 1.281e-001 5.45922-001 2.23092-024 1.514e-014
-4.5222-015 6.257e-029 1.539e-001 §
10 -4.9412-015 7.02892-029 1.6822-001 4.451=-001 2.2082-024 1.308e-014
11 -5.2082-015 7.821e-029 1.8072-001 2.82232-001 2.23082-024 1.126e-014
13 -5.618e-015 6.753e-023 1.9122-001 2.1742-001 2.462e-024 S5.326a-01S
14 -5.8682-015 5.6842-029 1.9572-001 2.4872-001 2.2082-024 7.328e-01S

7072-032 6.1442-01S 2.1862-015 2.4422-020 -1.0922-001
2.4422-020 -2.6212-002
£162-032 6.208e-01S -1.1182-015 2.4432-020 2.831e-002
8712-022 6.141e-01S -2.2462-015 2.4422-020 1.1472-001
9252-022 5.0072-01S -5.6262-015 2.4422-020 1.5282-001
980e-032 5.6042-01S5 -7.9562-015 2.4432-020 2.727e-001
0242-032 5.530e-01S -1.0242-014 2.4422-020 2.5422-001
8212-022 5.1822-01S -1.2622-014 2.4422-020 4.2262-001
6272-032 4.771e-01S -1.4672-014 2.4432-020 5.027e-001
4242-022 4.201e-01S -1.6472-014 2.4422-020 S.6462-001
220e-033 3.780a-01S -1.8042-014 2.44232-020 6.1622-001
017e-032 3.2162-01S5 -1.9362-014 2.4432-020 6.635e-001
1372-024 2.6162-015 -2.044e-014 2.4422-020 7.0062-001
1022-024 1.9882-01S5 -2.1292-014 2.4422-020 7.295e-001
068e-034 1.3372-015 -2.1892-014 2.4482-020 7.501e-001
0242-024 6.722e-0D16 -2.2252-014 2.4422-020 7.6252-001
000e+000 0.000a+000 —-2.2372-014 2.44232-020 7.6662-001

16 -6.2512-015 1.411e-029 2.1272-001 -23.8212-002 4.136e-024 -1.126a-01S
1S -6.185e-015 3.4242-030 2.1052-001 -1.147e-001 4.136e-024 -3.370a-01S
20 -6.0502-015 -7.2602-020 2. —1. 2% -5.6652-015
21 -5.6452-015 -1.7942-028 1.9692-001 -2.727e-001 4.1362-024 -8.0122-015
22 -5.5692-015 -2.8622-028 1.5952-001 —-3.542=-001 4.9622-024 -1.041=-014
24 -5.2202-015 -2.5772-028 1.7762-001 -4.326e-001 4.9522-024 -1.2712-014
25 -4.8042-015 -2.290e-029 1.635e-001 -5.0272-001 6.6172-024 -1.4772-014
26 -4.3212-015 -2.0042-025 1.4742-001 —-5.6462-001 6.6172-024 -1.6592-014
27 -2.6072-015 -1.7182-028 1.2962-001 —-5.1822-001 6.6172-024 -1.8162-014
26 -2.2292-015 -1.4312-029 1.102e-001 —-5.6352-001 6.6172-024 -1.950e-014
29 -2.6252-015 -1.1452-028 ©5.9672-002 -7.006e-001 ©.2722-024 -2.0592-014
20 -2.0022-015 -8.5682-020 6.8122-002 -7.2952-001 ©.2722-024 -2.1442-014
21 -1.2472-015 -5.7262-020 4.583e-002 -7.501e-001 9.0992-024 -2.204e-014
32 -6.7692-016 -2.8622-020 2.2042-002 —-7.6252-001 ©.2722-024 -2.2402-014
22 0.0002+4000 0.0002+000 0.000e+000 —-7.6662-001 9.9262-024 -2.25232-014
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Figure 10.19 Values of 2 and 3 mode shape

The table contains very small magnitude displacements. These are not real values, only gener-
ated during the solve as calculation errors.
The mode shape 6th is shown in Figure 10.20.

[ DISLIST,6,1,1,33,1,0

Hode =hape
UX u
0.000e+000 0.000e+000 0.0002+000 1.24le-014 4.624=+000 -1.1852-020
2.559e-022 -7.080e-030 4.0402-016 1.224e-014 4.624=2+000 -1.1792-020
7.085e-022 -1.4162-029 7.974e-016 1.270e-014 4.624e2+000 -1.1632-020
1.055e-021 -2.1242-029 1.169e-015 1.1682e-014 4.624e+000 -1.126e-020
1.291e-021 -2.8322-029 1.510e-015 1.0572-014 4.624e+000 -1.098e-020
1.7142-021 -2.5402-029 1.807e-015 ©.9782-015 4.624e+000 -1.049e-020

2.021e-021 -4.248e-029 2.0522-015 7.0272-015 4.622e+000 —-3.889e-021
2.208e-021 -4.956e-029 2.232e-015 4.721e-015 4.622e+000 -9.182e-021
2.572e-021 -5.664e-029 2.336e-015 2.061le-015 4.622e+000 —8.366e-021
2.811e-021 -6.2722-029 2.23592-015 -9.544e-016 4.622e+000 -7.442e-021
2.021e-021 -7.080e-029 2.264e-015 -4.224e-015 4.621e+000 —6.410e-021
2.197e-021 -6.112e-029 2.098e-015 -7.540e-015 4.044=+000 -5.308e-021
2.829e-021 -5.145e-029 1.826e-015 -1.009e-014 2.466e+000 —4.1772-021
2.4482-021 -4.1782-029 1.4662-015 -1.1992-014 2.8668e+000 —-2.0172-021
2.521e-021 -2.211e-029 1.100e-015 -1.222e-014 2.210e+000 -1.827e-021
2.557e-021 -2.244e-029 6.8712-016 -1.279e-014 1.7232e+000 -6.0862-022
2.557e-021 -1.277e-029 2.669e2-016 -1.269e-014 1.154e+000 6.39%e-022
2.519e-021 -2.0962-030 -1.4072-016 -1.294e-014 5.7642-001 1.916e-021
2.442e-021 6.575e-030 -5.1572-016 -1.152e-014 -1.507=-00% 3.22%e-021
2.826e-021 1.625e-029 -5.263e-016 -9.446e-015 -5.7942-001 4.558e-021
2.169e-021 2.592e-029 -1.089e-015 -6.706e-015 -1.157=+000 5.92%e-021
2.970e-021 2.23238e-029 -1.242e-015 -2.789e-015 -1.157=+000 7.28%e-021
2.724e-021 2.078e-029 -1.212e-015 -1.179e-015 -1.15682+000 ©.405e-021
2.4652-021 1.6142-029 -1.2102-015 1.124e-015 -1.15682+000 9.440e-021

2.166e-021 1.555e-029 -1.242e-015 2.121e-015 -1.1582+000 1.084e-020
1.84%22-021 1.2962-029 -1.120e-015 4.6102-015 -1.156e+000 1.110e-020
1.4992-021 1.0872-029 -9.514e-016 6.1922-015 -1.156e+000 1.172e-020
1.1292-021 7.775e-080 -7.458e-016 7.2662-015 -1.156e+000 1.220e-020
7.662e-022 5.184e-020 -5.1252-016 ©6.084e-015 -1.15682+000 1.254e-020
2.852e-022 2.592e-020 -2.6092-016 6.495e-015 -1.15682+000 1.275e-020
0.000e+000 0.0002+000 0.0002+000 6.648e-015 -1.1562+000 1.2822-020

DOOONRINNRINNR RN E R R
ORROLOJAMANEFODD IO EORODDJa0sENH

Figure 10.20. The 6. mode shape

The table contains only rotation results around the Y axis. It is also shown that the torsional
oscillation can only be between the two disks.

10.5. Remarks

In engineering practice the torsional vibration analysis usually are used only a long, flexible
shafts, flexible couplings.

The bending oscillation of rotating shaft with circle or pipe cross section may also be ex-
amined using BEAM2D elements.
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11. INTRODUCTION TO PLANE PROBLEMS SUBJECT. APPLICA-
TION OF PLANE STRESS, PLANE STRAIN AND REVOLUTION
SYMMETRIC (AXISYMMETRIC) MODELS

11.1. Basic types of plane problems

In the case of plane problems we have two-dimensional or two-variable problems; the basic
equations of elasticity can be significantly simplified compared to spatial problems. There are
two major categories of plane problems [1]:

— plane stress — a thin structure with constant thickness under in-plane loading,
(Fig.11.1a),

— plane strain — a long structure with constant cross section under constant loads along
the length (Fig.11.1b).

We note that the generalized plane stress state belongs also to the two-variable problems,
if we relate the mechanical quantities to their average values.

Fig.11.1. Demonstration of plane stress (a) and plane strain (b) states.

For plane problems the displacement vector field is the function of x and y only:

u=u(xy)= Rg Byﬂ (11.1)

Consequently, even the strain and stress fields depend upon x and y:
e=e(xy), a=a(xy). (11.2)

In the followings we develop the relationship among the former mechanical quantities.

11.2. Equilibrium equation, displacement and deformation

The equilibrium equation represents the internal equilibrium of a differential plane element.
Based on Fig.11.2 it is possible to express the equilibrium of the forces in directions x and y
as [1,2]:

© Andras Szekrényes, BME www.tankonyvtar.hu




156 Finite Element Method

(o, +do,)dy —ody +(z,, +dz,)dx—dz,)dx+q,dxdy =0, (11.3)
(o, +do,)dx—o,dx+ (7, +dz, )dy—dz, )dy+q,dxdy =0,

where o is the normal, 7 is the shear stress, gy and gy are the components of density vector of
volume forces. The simplification of Eq.(11.3) leads to the following equations:

or or oo
§EL+_Ji+qX=O'_J!+__l+qy=0. (11.4)
x oy ox oy

Ay
<O 9x Bt | o

Txy dx Txy +d Txy

A

Xy

Fig.11.2. Equilibrium of a differential plane element.

The equilibrium equation can be formulated also in vector form [1,2]:

IS

V+q=0, (11.5)

where g = g(x,y) is the density vector of volume forces, V is the Hamiltonian differential op-
erator (vector operator) in two dimensions:

o. O .
V=—i+—j. 11.6
ox "~ 6yJ (11.6)

In order to establish the relationship between the strain and displacement fields we inves-
tigate the displacement and deformation of some points of the differential plane element de-
picted in Fig.11.3. The normal and shear strains in direction x of distance AB, and in direction
y of distance AD of the element are:

. _ANB-AB_AB-dx _AD-AD _AD-dy

T
oy =T =0+ 11.7
X AB dx Y AD dy T =5 p (1L.7)
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By the help of the figure we can write the following:
ou ov
A'B')? =[dx(1+&,)])* = (dx +—dx)* + (—dx)?, 11.8
()[(gX)](ax)(ax) (11.8)
from which we obtain:

2 2
1+25X+gf=1+26—u+(a—uj +(@j : (11.9)
ox \OX OX

The expression above is applicable to calculate the normal strain in direction x in the case
of the so-called large displacement. After all, within the scope of elasticity, in most of the
cases we obtain reasonably accurate results by the linearization of the expression above. The
normal strain in direction y is derived similarly. Neglecting the higher order terms we obtain
the linearized formulae:

&, :é_u, &, = @ (11.10)
OX oy

Utilizing Fig.11. 3 we calculate the angle denoted by &:

_ (ov/ox)dx (11.11)
dx + (u /ox)dx '
A au
Y Wdy
» - C,
r Dr
_@_\_/_ f ) B T
N
T |p C I wll=T T
VA 1 [B 2 dix
dy 3 fe 4
v au
¥ A B v L. dx ; ‘@(dx
el X Y
/D u_ !

><“

Fig.11.3. Displacement and deformation of a differential plane element.
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Assuming that there are only small angles, we can write:

«9:@,/1:8—”. (11.12)
OX oy
Based on Eq.(11.7) we obtain:

ou ov
=—+

7o =% o (11.13)

We obtain the so-called strain-displacement equation by summarizing Egs.(11.10) and
(11.13) in tensorial form. The strain-displacement equation is valid also for spatial problems

gz%(goV+Vog), (11.14)
where the circle means dyadic product.

11.3. Constitutive equations

The material behavior, in other words the stress-strain relationship of a homogeneous, linear
elastic, isotropic body is given by Hooke’s law [3]:

Ity

oY G E| c=20 -2 s E| (11.15)
2G|= 1+v =] = =T1-2v =

where v is Poisson’s ratio, E is the modulus of elasticity, G = E/(2(1+v)) is the shear mod-
ulus, E is the identity tensor, oy and & are the first scalar invariants, respectively.

11.3.1. Plane stress state
The stress components under plane stress state are:

o,=0,(%Y), o,=0,(Xy), 7, =7,(Xy)and r, =7, =0, =0, (11.16)

yz z

i.e. the normal stress perpendicular to the x-y plane and the shear stresses acting on the plane
with outward normal in direction z are zero. The stress and strain tensors have the following
forms:

o, T, 0 &, 1/2-y,, O
o=|7, o, 0}, &e=12-y, o, 0. (11.17)
0O 0 O 0 0 £

z
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From the first of Eq.(11.15) we obtain:

1+v 1% 1
o o o= o). (19
1+v 21+v)
gy=?[ y——(ax+0y)}——(ay—vax), - Xy
The normal strain in direction z is:
1+v 1% 1% 1%
g, = ?[—m(ax +o-y)} = —E(O'X +o,)= —E(gX +e,). (11.19)

We note, that although &; is not included in the equations, it can always be calculated by
using the strains in the other two directions. Using the former equations we can express even
the stresses:

E E E
o, = e tve))l, o, =——le, +ve )|, 7 = o - 11.20
"1 v2[ +va)l o, 1—v2[ +vadl 2L+v) Y (11.20)

An alternative formulation of the stress-strain relationship is that we collect the compo-
nents in vectors:

§T :[gx’gy’ny], QT :[o'x,o'y,rxy]. (11.21)
As a result, the relationship is established through a matrix:
g=Ces. (11.22)

where C is the constitutive matrix. On the base of Egs.(11.20)-(11.22) under plane stress
state matrix C becomes:

£ 1 v 0
str
- (11.
C v 1 0 11.23)
= 1-v? 0 0 1-v
2

The inverse and the determinant of the matrix is:
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1 1 —v 0 £
€)' =g|-v 1 0 |deCt = (11.24)
- 0 0 20+v) (-=v){d+v)

The latter form of the stress-strain relationship is applied in finite element calculations.

11.3.2. Plane strain state

Under plane strain state the condition is: & = 0, i.e. the normal strain perpendicular to the x-y
plane is zero. In this case the stress and strain tensors are:

o, 7y O £, /2.y, O
c=|r, o, 0|, e={1/2-y, &, 0]. (11.25)
0 0 o 0 0 0

According to Hooke’s law we obtain:

1% E 1%
=l e + E. + & , =— &, + E,t € , 11.26
Tx 1+v{ X 1—21/( g y)} 7y 1+v{ g 1—21/( y)} ( )
T __E o,=v(o,+0,)
i 2(1+v)7/xy’ ’ X o

Developing the stress-strain relationship from o = Ce& we get:

e 1-v v 0
C'"=—— | v 1-v 0 |, (11.27)
= @+vd-2v) 0 o 1%
2
and:
1 —1L 0
-V
2 3
cmr=1V1 Y o | dec= = (11.28)
= E 1-v 5 = 20-2v)(1+v)
0 0o —
L 1-v]
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11.4. Basic equations of plane elasticity

The number of unknowns in case of plane problems is always eight: ox, oy, 7y, &, & Jky, U
and v. Under plane stress &, under plane strain o; component can always be calculated by the
help of the components in directions x and y.

11.4.1. Compatibility equation

The combination of Egs.(11.10) and (11.13) leads to the so-called compatibility equation
[1,2]:

2 o’e, 0°
06, 08 T (11.29)
oy OX OXoy
The equation above is equally true for plane stress and plane strain states. It is possible to

formulate the compatibility equation in terms of stresses. Let us express Eq.(11.29) in terms
of stresses for plane stress state by utilizing Eq.(11.19):

(11.30)

E

- TG axoy

1(d%, 00, o, %o, | 10°7,
-V + 1% =—
oy® oy>  ox° OX?

We express the mixed derivative of the shear stress from Eq.(11.4):

52 oq, oo
Oty __1{0a, 9 Jdo, 00| (11.31)
OXoy 2| ox oy  ox® oy?

The combination of the two former equations results in:

0
Vi (o, +0,) = (v Dy Do) (11.32)
ox oy
where:
2 2
vea O L O (11.33)
ox° oy
In a similar way we can develop the following equation for plane strain state:
0
V(o +0,) =t | D, By ) (11.34)
1-v{ ox oy

It can be seen, that if there is no volume force, then the compatibility equation has the
same form under plane stress as that under plane strain. In that case, when the force field is
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conservative, then a potential function, U exists, of which gradient gives the components of
the density vector of volume force, i.e.:

q, =—and q, :E' (11.35)

11.4.2. Airy’s stress function

The equilibrium and the compatibility equations can be reduced to one equation by introduc-
ing the Airy’s stress function. Let y = y(X,y) be the Airy’s stress function, which is defined in
the following way [1,2]:

o’y - o’y B o’y

=— . 11.36
Txy axay ( )

Taking them back into the equilibrium equations given by Eq.(11.4), it is seen that the eg-
uations are identically satisfied. The stress function can be derived for every stress field,
which satisfies the equilibrium equations and the body force field is conservative. In terms of
the stresses the compatibility equation given by Eq.(11.34) becomes:

V“;( =(1-v)V°U, (11.37)
where:

o' o' o
VA :VZ(VZ)Z—A‘FZ?-F—L‘ (1138)

OX oxoy® oy
is called the biharmonic operator. Eq.(11.37) is the governing field equation for plane stress
problems in which the body forces are conservative. If a function y = y(x,y) is found such that
it satisfies Eqg.(11.37) and the proper prescribed boundary conditions, then it represents the
solution of the problem. The corresponding stresses and strains may be determined from
Egs.(11.36) and (11.19), respectively. If the body forces are constant, or if U is a harmonic
function, then the governing equation is:

Viy=0, (11.39)
which is a partial differential equation called biharmonic equation.

11.4.3. Navier’s equation

Now let us formulate the governing equations in terms of displacement field for plane stress
state! The combination of Egs.(11.10), (11.13) and (11.19) provides the followings [1,2]:

Mt o), Yol vey, ML, (11.40)
ox E oy E oy x G
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After a simple rearrangement we obtain:

E |ou ov E |ov ou E ou ov
o, = Sl —tv—| o,= S|l =tV | Ty = — Tt (11.41)
1-v°| oX oy 1-v©|oy OX 20+v)| oy oXx

Substitution of the above stresses into the equilibrium equation given by Eq.(11.4) gives
the Navier’s equation:

GVZ2u +

E Jfou ov
oX oy

2(1_1/)& +—J+qX =0, (11.42)

GV o[ N +q,=0.
20—-v)oy\ ox oy y

We can develop Navier’s equation for plane strain state in a similar way, the result is:

E OfU M), g =0, (11.43)

GVZ2u + | =
20+v)(L—2v) ox\ ox oy

E ofou ov

+ — +—
2(L+v)(1-2v) dy\ ox oy

GV +q, =0.

Under plane stress state the first scalar invariant of the stress tensor is:

o, =o,+0,=Vy. (11.44)

11.4.4. Boundary value problems

It can be shown that for plates under symmetrically distributed external forces with respect to
the plane z = 0, the exact solution satisfying all of the equilibrium and compatibility equations
is [2]:

1 v
Z:Zo_zm(vzlo)zz’ (11.45)
where:
Xo = Xo (X, y), (11.46)

which satisfies

Viy, =0. (11.47)
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The second term in Eq.(11.45), however, depends on z and may be neglected for thin
plates, in which case we have:

Viy=Viy, =0. (11.48)

That is, for thin plates, solutions by Eq.(11.48) very closely approximate the stress distri-
butions by Eq.(11.45).

Let us summarize what kind of requirements should be met of plane stress state! The ac-
tual elastic body must be a thin plate, the two z surfaces of the plate must be free from load,
the external forces can have only x and y components, the external forces should be distri-
buted symmetrically with respect to the x and y axes.

The governing equation system of plane problems is a system of partial differential equa-
tions (equilibrium equation, strain-displacement equation and material law) with correspond-
ing boundary conditions. The dynamic boundary condition is the relationship between the
stress tensor and the vector of external load at certain points of the lateral boundary curve:

19

n=p, (11.49)

where p is traction vector of the corresponding boundary surface, n is the outward normal of
the boundary surface or the outward normal of a certain part of it, which is parallel to the x-y
plane. The kinematic boundary condition represents the imposed displacement of a point (or
certain points):

Q(Xm YO) =Uy, (11-50)

where Uy, is the imposed displacements vector, xo and Yy, are the coordinates of the actual point.
The system of governing partial differential equations together with relevant dynamic and
kinematic boundary conditions built a boundary value problem.

We note that closed form solutions of the governing partial differential equations of plane
problems with prescribed boundary conditions which occur in elasticity problems are very
difficult to obtain directly, and they are frequently impossible to achieve. Because of this fact
the inverse and semi-inverse methods may be attempted in the solution of certain problems
[1]. In the inverse method we select a specific solution which satisfies the governing equa-
tions, and then search for the boundary conditions which can be satisfied by this solution, i.e.,
we have the solution first and then ask what problem it can solve. In the semi-inverse method,
we assume a partial solution to a given problem. A partial solution consists of an assumed
form for each dependent variable in terms of known and unknown functions. The assumed
partial solution is then substituted into the original set of governing equations. As a result,
these equations will be reduced to a set of simplified differential equations, which govern the
remaining unknown functions. This simplified set of equations, together with proper boun-
dary conditions, is then solved by direct methods.
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11.5. Examples for plane stress
11.5.1. Determination of the traction on the boundaries of a square shape plate

For the square shape plate shown in Fig.11.4 we know the Airy’s stress function in the x-y
coordinate system [3]:

Po(l 2. 1 4)
X, y)=—-| =X —— . 11.51
2(%,Y) " (2 y' -5y (11.51)
where po is the intensity of the distributed line load. The body force is negligible; we assume
that the plate is in plane stress state.

A

Y1 a

y

X
Fig.11.4. Square shape plate under plane stress.

What kind of system of forces loads the boundary curves of the plate?

First, we produce the stress field:

0° 52
x = ayf=p—§(xz—2y2 y Oy = asz(=%y27 (11.52)
2
T, =T __8;(__p02xy’azzo

The traction vectors can be calculated by the help of the definition of dynamic boundary
condition and the localization of it into the boundary curves. Therefore, we need the outward
normal of each boundary curve:

outward
boundary constant
. normal
curve coordinate

(n)

1 x=0 -1

2 X =a i

3 y =0 -j

4 y=a i
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Furthermore, we need Egs.(11.49) and (11.52). We obtain the traction vectors by applying the
former equations:

p
o,(0,y) 7,0,y) 0-1] [-o,(0,y) a—§2y2
p, =-oi=|7,0yy) o,0y) 0] 0|= 0 = 0 : (11.53)
0 0 0| O 0 0
Po 2 ooy ]
— (@ -2y%)
o,(@y) t,@y) 01| [o@y] |2
p,=ci=|7,(@y) o,@y) 0|0=|r,(ay)|= —%Zy
0 0 00 0 0
o, (%0) 7, (x0) of o —7,,(x,0) 0
P, :_gj: 7,(X0) o,(x0) 0-1|=|-0,(x0)|=0
0 0 0] 0 0 0
- Po
o,(xa) r,(x,a) 0]0 7, (X,2) —?ZX
p,=cgi=|ry(xa) o,(xa) 0(1i=lo,(xa)l=] P,
0 0 0]0 0 0

The system of forces acting on the boundary curves can be obtained by plotting the com-
ponents of the vectors above along the corresponding boundary curve. Fig.11.5 demonstrates
the function plots, where Fig.11.5a depicts the loads in the normal direction (perpendicularly
to the boundary curve), Fig.11.5b represents the tangential (with respect to the boundary
curve) stress distributions.

a. b.
yis ; yJu
T T @ 2,

2p,(a) -Pe ‘_l
y

® A |, @
2
® ‘, ®

Pg X Pa X

Fig.11.5. Normal (a) and tangential (b) loads on the boundary curves of a square plate under plane
stress state.
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11.5.2. Analysis of a tangentially loaded plate

For the plate shown in Fig.11.6 with dimensions of 2h-L the body force is negligible, we can

assume plane stress state. The form of the Airy’s stress function for the load shown in Fig.
11.6is [3]:

_l_

2 3 L 2 L 3
Z(x,y):%(xy—xﬁ —ng :]’ + h{ J (11.54)

>

P

e S e —

NN <,

Fig.11.6. Thin plate loaded by tangentially distributed force under plane stress state.

Is the given y(x,y) function an exact solution of the problem above?

A function, x(x,y) is the exact solution of the problem if it satisfies the governing partial
differential equation of plane problems and the dynamic boundary conditions. Based on the
given x(x,y) function it is seen that Eq.(11.39) is satisfied in this case, since the governing
equation is a fourth order partial differential equation, while the functions contains to a maxi-
mum the third power of y. Let us investigate the dynamic boundary conditions! Similarly to
the former example we calculate the stress field first:

2 _ _ 2
ax=gy;2(:%pt[LhX+3(l;]2 X)yj,O' :5_)(:01 (11.55)

2y 1 2y 3y’
TW:TW:_%:_ZF"[PT_F 2 =0.

Based on the stresses, the loads on the boundary curves are:

2
x=Li 0, =0,r =—1p{1—2—€’—%) (11.56)
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Finally, independently of Eq.(11.56) we formulate the dynamic boundary conditions by
the help of Fig. 11.6. In accordance with the dynamic boundary condition definition the stress
components acting on the actual boundary curve should be equal to the corresponding (normal
or tangential) components of the traction vector. That means:

x=L: o, =0,7, =0, (11.57)

y=-h:o,=0,7,, =0.

Comparing the boundary conditions to the boundary loads it is seen, that one condition is
not satisfied, namely the shear stress, 7, on the boundary at x = L is not zero, i.e. one of the
conditions is violated. Nevertheless, there are two points, where in accordance with the for-
mula:

1 2y 3y? 2y 3y?
_Zpt(l_F_Fj:Ojl_r_h_zzoj%/z+2yh_h2:0’ (1158)

with solutions of y; = 1/3-h and y, = —h, i.e. at two points the dynamic boundary condition is
satisfied. As a final word, the given y(x,y) function is not the exact solution of the problem in
Fig.11.6, because one of the dynamic boundary conditions is violated. After all, it is accepta-
ble, since together with Eq.(11.39) the given function satisfies eight from the total ten condi-
tions. It should be highlighted, that the boundary at x = 0 is a fixed boundary, which involves
kinematic boundary condition, that is why we did not investigated this boundary curve in the
example.

11.6. The governing equation of plane problems using polar coordinates

The solutions of many elasticity problems are conveniently formulated in terms of cylindrical
coordinates. On the base of Fig.11.7 we have the functional relations [1]:

X=rcos4,y=rsing, (11.59)

9=arctany | r? =x>+y>.
X
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tangential
i direction
Yl X |
iy I radlal
direction
r
b 4
S
A 4 -
X

Fig.11.7. Parameters of a polar coordinate system.

The derivatives of the polar coordinates with respect to x and y using the last of Eq.(11.59)
are:

gzzzcos‘_g’gzlzsing, (1160)
oX r oy r

08 y sing 09 X cosd

x  rl r oy r? ro

Again, the derivatives with respect to x and y can be formulated based on the chain rule:

O _oro 0906 _ g0 _sindo (11.61)
OX OXor ox o094 or r 084
0o or o 08 0 . 0 cos9$ 0
—_—=— 4 ——— =s5ing—+——
oy oyor oy o9 or r o9

To derive the governing equations in terms of polar coordinates we incorporate the stress
transformation expressions [1]. The normal and shear stresses are transformed to a coordinate
system given by rotation about axis z by an angle 4

o,=n"on, r,,=m' on, (11.62)
where:

n' =[cos9 sing 0], m" =[-sing cos$ 0], (11.63)
which leads to:

o, =0, C0s° 3+0,8in° 3+1,,5iN 29, (11.64)
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- 2 2 -
o, =0,8IN"9+0,008" $—7,,SIN23,
7, = (0, —0,)sindcos 3+17,,(cos” 9—sin* 9,

The strain components (&, &, j%y) can be transformed similarly. Taking Eq.(11.64) back
into the equilibrium equations given by Eq.(11.4), moreover by assuming that there are also
body forces, we have [1,2]:

oo, 1l1lo0r, o, -0y
+= + +
o r 08 r

q, =0, (11.65)

100, +82'n9 Jr22'h9
r og or r

+0, =0,

where the former is the equation in the radial, the latter is the equation in the tangential direc-
tion. By a similar technique, the strain-displacement equations may be transformed into:

ou, u,  1au, _18u,+8u_é,_u_L9 (11.66)

& =——, §g=—+

or r res’ T vee  ar v

where u; and ug are the radial and tangential displacements. Eliminating the displacement
components we obtain the compatibility equation:

2 2 2
86;9 +iza gzr +gagl9 _lagr zlayr‘9+i28yr‘9_ (1167)
or r- o9 ror ror rord r° 094

In the case of Hooke’s law there is no need to perform the transformation, due to the fact
that the polar coordinate system is an orthogonal system. Therefore, e.g. in Eq.(11.20) refer-
ring to plane stress state, we have to substitute x by r, and y by $:

1 2(L+v)
&, :E(O'r —Vv0o,), & :E(O'L9 —V0O,), Vg = = Trgs (11.68)
E E

= g, tVvey)|, 04 = EgtVE )| Ty =g
O, 1—V2[ r .9)] Oy 1—V2[ 9 )] Trg 2(1+V)7/9

The formulation incorporating plane strain state based on Eq.(11.26) leads to:

1-v? 1% 1-v? 1% 2(1+v)

= (o, —E%)’ &g ZT(% _Eo-r)! Vio =T g Fron (11.69)

O'—i8+ Y (e, +&,) 0—i5+ 4 (6, +&4) |, T __E
S RV R T VS Al R A RVE (R G T 1 S A R 2(1+v)7r3'
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The first scalar invariant of the strain tensor (plane dilatation) under plane strain state is:

_}a(rur)+lau3
r or rog’

& =& +&, (11.70)

r

Substituting the stress and strain components into the equilibrium equation given by
Eq.(11.65) (plane strain) and incorporating the first scalar invariant we obtain the Navier’s
equation in terms of polar coordinates [1,2]:

oe, 2G dw

2+2G) 8 2290 4 o, 11.71
(1+20) 2t -2 (1L71)
(1+26) 1% 2699 g —0,
r o4 or
where
o= A) 2 (11.72)
2r{  or 09

is the rotation about axis z, A is the Lamé-constant:

VE

P . (11.73)
L+v)(1-2v)

The governing equation of plane problems in terms of polar coordinates can be formulated
by using the Hamilton operator. Based on Eqgs.(11.48) and (11.61) we get:

2 2 2 2
V4)(=V2V2;(=(a 10 1 0 j(a 10 1 0 Jz=0- (11.74)

4= SR e
or? ror r2o9* \or®? ror r?o9?

The stresses may be obtained by using the differential quotients given by Eq.(11.61) and
the transformation expressions given by Eq.(11.64):

_ar

1oy 1 0%y o’y 0 (l 8)(}
LS S A L/ A 11.75
T Yo o927 T 2 e rog ( )

The last three formulae are equally valid under plane stress and plane strain states. The
equilibrium equations, strain-displacement relationship can also be formulated by using infi-
nitesimal elements in polar coordinate system [1].
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11.7. Axisymmetric plane problems
The use of polar coordinates is particularly convenient in the solution of revolution symmetric
or in other words axisymmetric problems. In this case displacement field, stresses are inde-

pendent of the angle coordinate (), consequently the derivates with respect to 9 vanish eve-
rywhere. In accordance with Eq.(11.74) the governing equation of plane problems becomes:

d* 2d®* 1d* 1d
e B VR 11.76
(dr4 rdr® r2dr® r? dr}( ( )

By introducing a new independent variable, &, this equation can be reduced to a differen-
tial equation with constant coefficients:

r=e°. (11.77)

As a result, Eq.(11.76) becomes:

d* d’ d?
[dé“ e +4d§2}(=0' o

for which the general solution is:

v =A&% +Be* +CE+D. (11.79)
Taking back e° we have:

7=Ar’Inr+Br’ +Clinr+D, (11.80)

where A, B, C and D are constants. The stresses based on Eq.(11.75) are:

2
o 10x _ _0x

=2 F0,="F o, =0, (11.81)

Taking the solution function back we see that:
C C
o, =2AInr+—+A+2B, 0,=2AInr-—+3A+2B, 7., =0. (11.82)
r r

11.7.1. Solid circular cylinder and thick-walled tube

Let us see some examples for the application of the equations and formulae above [1]! For a
solid circular cylinder the stresses at r = 0 can not be infinitely high, therefore:

A=C=0. (11.83)
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The stresses in a solid circular cylinder are:

o, =0,=2B,7,,=0. (11.84)

r

This is the solution of a circular cylinder loaded by external pressure with magnitude of
2B on the outer surface. In the case of a hollow circular cylinder or a thick-walled tube
(Fig.11.8a) it is not sufficient to investigate only the dynamic boundary conditions, we need
to impose also kinematic boundary conditions.

Fig.11.8. Hollow circular cylinder with imposed displacement at the inner boundary (a), thick-walled
rotating disk (b).

The strain components by using Eq.(11.66) become:

du, u,
gr:F,E‘QZT,}/rSZO. (1185)

Using the stress-strain relationship given by Eq.(11.68) we obtain the equations below:

%?deq_Kpdﬁ%=Km%_KﬁJ, (11.86)
where;
1 1%
K== K, =" 11.87
ET O 1y ( )

K, = K, =v, (11.88)

for plane strain. Next, we express the strain components:
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du, C C
o K, (2AInr +r—2+ A+2B—-K,(2AInr —r—2+3A+ 2B)), (11.89)

U _ i (2AInT S 13A+ 2B K, (2AINT + = 1 A+ 2B)).
r r r

Integrating the former equation we get:

u, =K, (2Ar Inr—Ar+ZBr—9— K, (2ArInr + Ar + 2Br +9)+ H), (11.90)
r r

where H is an integration constant. Dividing the formulae above by r and equating it to the
second of Eq.(11.89) gives the following:

4Ar —H =0. (11.91)

Since the equation must be satisfied for all values of r in the region, we must consider the
trivial solution:

A=H =0. (11.92)

The remaining constants, B and C, are to be determined from the boundary conditions im-
posed on the inner and outer boundary surfaces. Therefore, the general solution is:

u, (r) = K, (2Br1— K,) —%(1+ K,)). (11.93)

The problem of hollow circular cylinder can also be solved by Navier’s equation. If the
displacement field is independent of coordinate ., then @ = 0, i.e. from Egs.(11.70)-(11.71)
we obtain:

1du

dzur r ur
dr? r dr —r—Z:O, (11.94)

for which the general solution is:
CZ
u (r)=cr+—=. (11.95)
r

It is seen that it is mathematically identical to (11.93). For a circular cylinder with fixed
outer surface and with internal pressure the kinematic boundary conditions are:

u,(r,)=u,, u,(r,)=0. (11.96)
Based on the solution function the constants are:
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2
rb _rbrk
c = U C,= U 11.97
1zt 2T 7t (11.97)
and the solution is:
2
r.u r
u (n=——"50r-= (11.98)
rb _rk

The strain components are to be determined by Eq.(11.85), the stresses by Eq.(11.68).

11.7.2. Rotating disks

If the thickness of the circular cylinder is small, then it is said to be a disk (Fig.11.8b). If the
disk rotates, then there is a body force in the reference coordinate system. The equilibrium
equation in the radial direction (see Eq.(11.65)) becomes [2]:

— O
dr r

¢ +q,=0and g, = pre?, (11.99)

where @ is the angular velocity of the disk, p is the density of the disk material. Rearranging
the equation we obtain:

%(ra,) —o, 4 prie? =0, (11.100)

This equation can be satisfied by introducing the stress function, F, in accordance with the
following:

ro,=F, o, = Z—t+pr2a)2. (11.101)

The strain components have already been derived for a hollow circular cylinder, eliminat-
ing u, from Eq.(11.85) we obtain:

£y — &, + r% =0. (11.102)

Assuming plane stress state and utilizing Eq.(11.68) we have:

&, I—é (o, —voy) =é($—v(i—t+pr2a)2)j, (11.103)
1(dF 2 2
J— = | — r — J—
&, (o, —vo,) E(dr+ vrj
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Taking it back into Eqg.(11.101) yields the following:

2
2 d |2:+rd—F—F+(3+V)pr3a)2=0, (11.104)
dr dr

r

i.e. we have a second order differential equation for the stress function, which involves the
following solution:

Foar+BI -3V o0, (11.105)
r
The stress components based on Eq.(11.101) are:
o.()=A+BLE _ 3’;V o, oy(r)= A-B 2 - 1+83V oria?, (11.106)
r r

where A and B are integration constants, which can be determined by the boundary condi-
tions. To calculate the displacement field we incorporate Eq.(11.85), from which we have:

_ 4,2
dd“f _ a4 EV) +B (1E+ V) _ 3(18EV ) pr?e?, (11.107)
r r
and the integration of it yields:
_ 4,2
u(r)=al EV) r—B (1;) - (18EV ) e’ (11.108)

The basic equations of the rotating disk are then:

o.(f) = A+BE +Cr?, (11.109)
r
1 2

Gg(r) = A_B_2+C2r )
r

ur(r):ar—b%+cr3,

where:

C, = —3;‘/ ,oa)2 ,C, = _1+83V pa)z, (11.110)
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2
a=al=V p_gltv) o A=V) e (11.111)
E E 8E

Let us solve an example using the equations above! The elastic disk shown in Fig.11.9 is
fixed to the shaft with an overlap of &[3]. T
%

rigid sTaﬂ 3

I | rh
o, 2

Fig.11.9. Rotating disk on a rigid shaft.

Given:
rb=0,02m, r,=0,2m, h=0,04 m, 8 =0,02-10° m, p = 7800 kg/m°, E = 200 GPa,v=0,3.
a. How large can be the maximum angular velocity if we want the disk not to get loose?
b. Calculate the contact pressure between the shaft and disk, when the structure does not
rotate!

For point a. first we formulate the boundary conditions. A kinematic boundary condition

IS, that he radial displacement on the inner surface of the disk must be equal to the value of
overlap:

ur(rb):5:>arb—bi+cr§=§. (11.112)
r

b

The outer surface of the disk is free to load, therefore in accordance with the dynamic
boundary condition, the radial stress perpendicular to the outer surface is zero:

o (r)=0= A+BL —+C,r2 =0. (11.113)

k

If the disk gets loose, then a free surface is created, that is why the radial stress should be
equal to zero, i.e.:

o, (r)=0=A+B—= L ~+C,r2 =0. (11.114)

b

The system of equations contains three unknowns: A, B and o, since a and b are not inde-
pendent of A and B. We now subtract Eq.(11.113) from Eq.(11.114) and we obtain:
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B{%_%J_'—Cl(rkz -1,)=0=B=Cr'r’. (11.115)
e T

The back substitution into Eq.(11.114) gives:
A=-C,(r?+r?), (11.116)
consequently:

a= _(1_EV) C,(rp+rl), b=

(1;) C,r2r2. (11.117)

Taking the constants back into the kinematic boundary condition equation yields:

2
_—(1 EV) Cl(rbz + rk?_)rb - (1_:;/) Clrbzrkz ri - (18; ) szrs: J. (11.118)
b

Incorporating the constant C;, and rearranging the resulting equation the maximum angu-
lar velocity becomes:

w=8805rad/s=aw_,. (11.119)
In terms of the angular velocity the constants can be determined:

A=1,008-10° Pa, B=-39915N, C, =-2,495-10° N/m*, (11.120)

C,=-1436-10° N/m*, a=353-10", b=259-10" m?, ¢ =-3,439-10°1/m?.

For point b. we find out that if the disk does not rotate then » = 0 and this way: C; = C; =
¢ = 0. Under these circumstances the radial displacement on the inner surface must be equal to
the value of overlap:

ur(rb)=5:>arb—bl+cr§:5. (11.121)
r

b

The outer surface of the disk is still free to load, i.e.:

o,(r)=0= A+ |3iz+clrk2 =0. (11.122)
rk

The solution is:
A=1,530-10° Pa,B =—-61208,9 N, (11.123)
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a=5,356-10"°,b=3,978-10" m?.

The distribution of the radial and tangential stresses under two different conditions are
demonstrated in Fig.11.10.

=, o [MPa] a. 5, o [MPa] b
]
268 200 MPa 1568 1545 MPa
| e8]
15287 ] D
] e
1 5 ]
1E8 0_..'.... P ——— >
i Jo OOTJ 0,15 02 r(m]
57
- G’r : (3
Sen 44,33 MP3 .
i 1€8]
obrbr i e o N A -151.5 MPa
i 005 04 015 02 r[m]

Fig.11.10. Distribution of the radial and tangential stresses in the disk structure when the structure
rotates (a) and when there is no rotation (b).
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12. MODELING OF PLANE STRESS STATE USING FEM SOFT-
WARE SYSTEMS. MODELING, ANALYSIS OF PROBLEM EVALUA-
TION

12.1. Finite element solution of plane problems

In the application of the finite element method we divide the plane domain of the whole struc-
ture into discrete elements as it is illustrated in Fig.12.1 [1].

2D structure finite element mash
Ly 1L SIS

Fig.12.1. The basic concept of the finite element method in the case of plane elements.

In the FE method we apply the minimum principle of the total potential energy to develop the
finite element equilibrium equations. For a single plane element the total potential energy is

[2]:

—U-W = [ eV - [u" pdA- [u'adV - 30" (x, y)E,, (12,0
V, A

vV i=1
where o is the vector of stress components, ¢ is the vector strain components, respectively:

&' =le. 2,74 (122)
QT :[Gx’ay’rxy]’

moreover u = u-i + v-j is the displacement vector field, p is the density vector of surface
forces, g is the density vector of volume (or body) forces, F; is the vector of concentrated
forces acting on the plane element with coordinates of point of action, x; and y;, Ape is that part
of the boundary curves, which is loaded by surfaces forces, V. is the volume of the element,
respectively. We provide the displacement vector field by interpolation:

u(x, y) = N(x, y)u,, (12.3)
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where N is the matrix of interpolation functions, its dimension depends on the degrees of

freedom of the plane element, ue is vector of nodal displacements. Referring to the basic equa-
tions of elasticity, the relationship between the strain and displacement fields in matrix form
is:

=du, (12.4)

where ¢ is the matrix of differential operators, it can be obtained by Egs.(11.10) and (11.13):

9
OX
0
o=0 — (12.5)
= 8y
o 9
| Oy  OX |
The combination of the latter relations gives:
g=0u=0Nu, =Bu,, (12.6)
where B is the strain-displacement matrix. The stress field can be obtained by:
c=Ce¢, c=CBu,, (12.7)

whereC is the constitutive matrix — its calculation has already been made in section 11 for
plane stress and plane strain states. The strain energy for a single finite element is:

1 1 1
U, =2 [ adv =2 [[u;BTCTBuvaxdy =—ul K, u,, (12.8)
where 59 is the element stiffness matrix,

K,=[B'CTBdv=[[B"C"Budxdy, (12.9)
Ve

its dimension depends on the degrees of freedom of the element. For plane elements the diffe-
rential volume is written in the form of: dV =vdA=vdxdy, where v is the thickness of element.

The work of external forces acting on the element by the help of Eq.(12.3) becomes:

W, = [u” pdA+ [u"gdV +> u" (x,y,)F, =u; [N pdA+u; [N"qdV +uF.., (12.10)
A, v, i=1 A v,
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where E . is the vector of concentrated forces acting in the nodes of element. Thus, the total
potential energy can be written as:

I, = 5915 u,—u.Fe, (12.11)

where:

—€ = J‘ET _dA+ J.QT dv +EEC - Feb +Eep + Feca (1212)
A V,

is the vector forces acting on the element. We can formulate the equilibrium equation in the
element level by means of the minimum principle of the total potential energy:

. =0. (12.13)

The assembly of element stiffness matrices, vector of nodal displacements and forces
leads to the structural equilibrium equation:

KU -F =0, (12.14)

where K is structural stiffness matrix, U is the structural vector of nodal displacements, F is

the structural vector of nodal forces, respectively. That is, the finite element equilibrium equa-
tion is a system of algebraic equations for which the solutions are the values of nodal dis-
placements. In terms of the nodal displacements we can calculate the nodal forces and
stresses.

For the solution of plane problems there exist many types of plane elements. In the sequel
we review the simplest element types.

12.2. Linear three node triangle element

The linear triangle element (Turner triangle) [1,3], which is often called the triangle mem-
brane element or constant strain triangle (CST) element is depicted in Fig.12.2. At each node
there are two degrees of freedom. Consequently the degrees of freedom are equal to six for
the whole element. The arrow in the center point of the element refers to the orientation of the
element, i.e. for each element we have a direction, which means how the nodes are followed
by each other.

12.2.1. Interpolation of the displacement field
We collect the nodal x, y coordinates and displacement components in vectors:

)_(Z:[Xl Yi X Y, X ys]’ (12-15)
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A
y
Y3
Y,
vy
i3 iU,
X, X, X,

Fig.12.2. Linear triangle element. Nodal coordinates and displacements.

The triangle area can be expressed as a determinant:

X Y
2A, = X, Yol = (Y5 = X5Y,) + (XgYy — X Ys) + (XY, =X, ),) =+, + . (12.16)
X3 Y,

The u and v components of the displacement field are formulated as the linear function of
xandy:

u(x,y)=a, +a,x+a,y, (12.17)
v(X,y) =b, +bx+Db,y,
where ag, a1, az, by, by and b, are unknown constants. The vector of strain components is:

T
g =ls.5,.7 (12.18)
where using Egs.(11.10) and (11.13) we have:

ou ov ou ov
x:&=a1! 8y25:b2!7xy25+&:a2+b1' (1219)

&
The nodal displacements must be obtained if we take back the nodal coordinates into the
u(x,y) and v(x,y) functions given by Eq.(12.17), i.e.:

U, =a, +a,% +a,y,, v, =b, +bx, +b,y,, (12.20)
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U, =a, +a, X, +a,y,, Vv, :bo +b1X2 +b2Y2’

Us =8, +a,X; +a,Y5, V3 =b, +b,X; +b,y,.
The solution of the system of equations above results in:

_ au; +a,U, + a3Us a = By + Bou, + BiU, _ YUy + U, + 75U
0 2Ae y A ZAE y Ay 2Ae )
b, = 0N, +a,V, + a5V, b, = BV + BV, + BV, b, = ViVt oV, 75V, ’ (12.21)
2A, 2A, 2A,
where:
=X Y3 = XY By =Yy — VYau V1= Xg — Xy, (12.22)

Ay =X3Y1 =X Yar Bo =Y3— Y1, Vo =% —Xs,
A3 =X Y, =X Y1y B =Y1— Yo, Va3 =X, — X

Substituting the solution above back into the components of displacement field
(Eq.(12.17)) we obtain:

u(x,y) = i[(al + BX+ YUy + (0, + BoX+ 7, YU, + (e + BoX + y3Y)Us ], (12.23)

V(X y) = i[(al + BX+ 7 YV + (a + By X+ 7, YV, + (e + BaX + 75 Y)IVs].

Considering the fact that for the triangle element we have three interpolation functions
(see. Eq.(12.3)), we can write that:

3
U(X, y) = Nyu; + Ny, +Naug = DN (X, )y, (12.24)

i=1

3
V(X Y) = NV, + Nov, + Navy = D N (X, Y)Y,

i=1

In accordance with Eqg.(12.21) the interpolation functions can be derived in the following
form:

a; + BiX+yy

N; (x,y) = 2A

i=1,2,3. (12.25)
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Based on the relation of u(X, y)=£(x, y)u, the matrix of interpolation functions be-

comes:

N, 0 N, 0 N, 0
N=| * ? ° : (12.26)
0 N, 0 N, 0 N,

The parameter lines of the interpolation function are shown in Fig.12.3, which implies the
following properties:

— atthe nodes(N,,N,,N,): (1,0,0), (0,1,0), (0,0,3),

— at the midpoints of the triangle sides (N,, N,,N,) :(1/21/2,0),(1/2,01/2), (01/21/2),
— at the centroid (N, N,,N,):(1/31/31/3),

— i.e., itisseen that at every point: N, + N, + N, =1,

— finally:

IN‘N"deA—¢2AE (12.27)
i (i+j+k+2)1 ° '

Fig.12.3. Parameter lines of the interpolation functions of linear triangle element.

12.2.2. Calculation of the stiffness matrix
According to Eq.(12.9) the definition of the element stiffness matrix is:

K, =[] B"C"Bvdxy, (12.28)

where the previously mentioned strain-displacement matrix using Egs.(12.5) and (12.26) be-
comes:

© Andras Szekrényes, BME www.tankonyvtar.hu




186 Finite Element Method
2
8X N, 0 N, 0 N, 0
B=oN=|0 2| 2 3 -
= == &0 N, 0O N, 0 N,
9 9
Ly ] ) (12.29)
5(;\‘ -0 52‘ -0 6<|3\| -0 0 0 0
X X X
N, N, N, % Pa Pa
oy oy o | 2A 1 ’ °
oN, N, ON, oN, oN, oN, nobBor: Bors b
Loy ox oy ox oy @ OX |

This formulation implies that the elements of matrix B are independent of the x and y va-
riables, they depend only on the nodal coordinates. Therefore, the stiffness matrix can be writ-

ten as:

T

K, =8B

o
(o)

VA, =B’

1o

TE\/e’

(12.30)

where A is the element area, Ve = AV is the element volume, respectively. As a consequence,
the stiffness matrix of the linear triangle element can be computed in a relatively simple way

and in closed form.

12.2.3. Definition of the

loads

Body force or volume force. Let the vector of body forces be equal to:

Ox

%14,

from which we have:

Nl
0

N
Fo=[[NTavdxdy = | 02
" N

3

0

Z o £ o Z o

3

NG
N.q,
N0,
N,d,
N,q,

_Nqu_

(12.31)

vdA. (12.32)

Utilizing the special properties of the interpolation functions given by Eq.(12.27), e.g. if i
=1,j=0andk =0, we have:
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INldA=%Ae. (12.33)

A

Consequently we have:
r 1
Eeb—gAeV[qx a9, 9, d G g (12.34)

As an explanation, the body force acting on the element (e.g. the whole weight and the re-
sulting resultant force) is divided into three equal parts and put into the nodes. The body force
can be originated from gravitation or acceleration (inertia force).

Distributed force along element edges. For the calculation of force vectors as a result of
line loads along element edges we should take the 1-2 edge of the element shown in Fig.12.4
into consideration. We define a dimensionless parameter, £ along the element edge. The arc
length along the element edge is then:

s=1,¢ and ds =1,,d&. (12.35)

X
Fig.12.4. Linear triangle element with line load in direction x along element edge 1-2.

The linearly distributed load in direction x can be described by the following function:

px (é:) = pxl (1_ é:) + png' (1236)
Similarly, the displacement function in direction x along element edge 1-2 can be written

as:

u(@)=u,(1-5)+u,g. (12.37)

The work of the distributed load is generally the integration of the load function multiplied
by displacement function between the corresponding nodes:
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1

W, =u; Fo, = [u; pvds= p,(&u(&)l,vdé =

I, 0

= [udp,-8)? + p,, - &), vdé + j U (P @—E)E+ P, &7l vdé = (12.38)

— ov._’._\

3 {U (px1+ px2)+u ( px1+ pxz)}

That is, the force vector from a linearly distributed line load becomes:

FT |12V

1
1 ep 3 |:px1 +- pr 0 E pxl + px2 00 0i| . (1239)

If the line load is constant along the element edge, then px1 = px2 = px Which implies:
Fo,=22[p, 0 p, 0 0 O] (12.40)

The form of the vector of forces in the finite element equation is similar in the case of a li-
nearly distributed load in direction y.

Concentrated forces. Concentrated forces can act only at nodes. The force vector can be
simply formulated based on the nodes:

EIC:I:Fxl Fyl F. F Fa Fys]- (12.41)

y2
The total force vector is the sum of the vectors detailed in the previous points, i.e.:

Ee = Eeb +Eep +Eec . (1242)

We demonstrate the solution of the finite element equation and the construction of the
stiffness matrix and force vector through an example.

12.3. Example for the linear triangle element — plane stress state

The model shown in Fig.12.5a is loaded by distributed forces. Calculate the nodal displace-
ments and forces in that case when we built-up the plate using two linear triangle elements!
Calculate the strain and stress components [4]!
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a. b.
yﬂ py yﬂ
Vb ] 4 3 3
<0
. c RO @ @
Px ¥ <P
DAY
<D @ @
<O
2060 X 1 2 X 1 2 2
74 4
< a >

Fig.12.5. Plane model loaded by distributed forces (a), finite element model made by two linear trian-
gle elements (b).

Given:
px= 0,12 MPa, E = 150 GPa, a = 20 mm, ¢ = 10 mm, py= 0,06 MPa, v= 0,25, b =30 mm, v =
5 mm

In the course of the computation we calculate the distances in [mm] and the force in [N].
Following Fig.12.5b, we see that the model is constructed by two triangle elements. The nodal
coordinates are:

node x[mm] | y[mm]
1 0 0
2 20 0
3 20 30
4 10 30
The so-called element-node table is:
element nodes
1 1 2 4
2 2 3

The finite element equilibrium equation to be solved is:

KU=F

where:

T
U :[ul Vi Uy vV Ug V3o Uy V4]’
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is the structural vector of nodal displacements. Because of the boundary conditions (vi = v, =
Uz = uz = 0) we have:

U'=fu 0000 v, u v, (12.45)

In order to calculate the stiffness matrix we need the constitutive matrix for plane stress
state (see section 11.23):

_|tvoo | i 04 0
C-C"=—5|v 1 0 |-]04 16 0 |10°MPa. (12.46)
Vo o 1_TV 0 0 06

The coefficients of the interpolation functions for the first element are:
Bi=Y,-Y,=-30mm,y, =X, —X, =—10 mm, (12.47)
Lo=Y,—Y,=30mm,y, =x, —X, =-10 mm,

Ba=Y,—Y,=0mm,y; =X, =X =20mm,
and for the second element, respectively:
Bi=Y,—Y,=0mm, y, =X, —X; =-10 mm, (12.48)
B =Y,—Y,=30mm, y, =X, —X, =10 mm,
Be=Y,— Y, =—30mm, y, =X, —X, =0 mm.
The triangle areas are:

Aﬂ:%zo-soz:soo mm?, A, =%10.30=15o mm?. (12.49)

Matrix E for the first element is:

B 0 B, 0 B O 1 0 1 0 00
B = 0 5. 0 y, 0 pletlo -1 o -1 2L, (12.50)
=t 2A, 20 3 3 3|mm
o Bove By P 1 1 2
- -1 -2 1 £ 0
L 3 3 3
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191

For the second element it is:

B 0 B 0 B 0
0 n 0

n Bor. B

B =
=27 2A,

Vs Bs

0 y |

10

Based on Eq.(12.30) the element stiffness matrices are:

[ 6,25 1,25
125 35/12
. s -575 0,25
£1:§12 Elvel:
¢ -0,25 -57/36
-05 -15
| -1 -4/3
[ 05 0
0 4/3
K,=BIC'BV,=| >
=2 =2= = -15 -4/3
0 1
|15 0

-575
0,25
6,25

-125
-0,5

1

-0,5
-1
12,5
2,5
-12
-15

0 10 -1 0
1y ol L
3 3 mm
Lo 11 0 2
3 3 ] (12.51)
-025 -05 -1 ]
-57/36 -15 -4/3
-125 -05 1 -105i’ (12.52)
35/12 15 -4/3 mm
15 1 0
—4/3 0 8/3 |
-15 0 15 |
-4/3 1 0
25 -12 -15
.1o5£,
35/6 -1 -—-45 mm
-1 12 0
-45 0 45 |

where Ve, = Aer-v = 300-5 = 1500 mm?® and Vez = Agp-v = 150-5 = 750 mm® are the element
volumes. For the construction of the structural stiffness matrix we complete the element ma-
trices with empty rows and columns corresponding to the missing degrees of freedom. On the
base of Fig.12.5 and the element-node table, it is seen, that the first element includes only
nodes 1, 2 and 4. Consequently those rows and columns, which belong to node 3, should be

filled up with zeros:

M1
kell
1

keZl
1

ke31
1
ke4l

! 0
0
1

ke51

1
_ke61

Kz
Kezo
Keao
Keao
0
0
Kess

1
keGZ

Keis
Kezs
Keas
Keas
0
0
Kess

1
ke63

ki14
k:24
k§34
k:44
0
0
k;54

1
ke64

I~
O O O O O O O o
O O O O O o o o

© Andras Szekrényes, BME

Keis
Kezs
Keas
Keas
0
0
Kess

1
ke65

Ko
Keze
Keas
Keae
0
0
Kess

1
ke66_

(12.53)
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192 Finite Element Method

In contrast, for the second element the rows and columns corresponding with the first node
must be completed by the placement of zeros:

0 0 O 0 0 0 0 0 |
0 0 O 0 0 0 0 0
2 2 2 2 2 2
O O kell kelz kel3 kel4 I(e15 ke16
2 2 2 2 2 2
K = 00 keZl keZZ k923 k924 ke25 k926 (12 54)
—2 2 2 2 2 2 2 .
2 O O ke3l ke32 ke33 ke34 ke35 ke36
2 2 2 2 2 2
O O ke41 ke42 ke43 ke44 ke45 ke46
2 2 2 2 2 2
O O I(e51 k952 ke53 ke54 I((955 ke56
2 2 2 2 2 2
_O 0 keGl ke62 ke63 ke64 ke65 ke66_
The structural stiffness matrix is calculated as the sum of the two former matrices:
_kill k:lZ kil3 k:14 O 0 kt:eLlS kellﬁ
I(elzl k;LZZ I(éL23 I(;L24 0 O I(8125 k(:eLZéS
k:Sl k:32 k:33 + kezll kl:el34 + I((-.‘212 k9213 k6214 kl:elSS + I(e215 k(:el36 + kezle
K=K +K = ke141 ke142 ke143 + ke221 kel44 + ke222 ke223 ke224 kel45 + kezzs kel46 + ke-226 ’ (12'55)
= =t =? 0 O ke231 ke232 kez33 kez34 ke235 ke236
0 0 I(e241 ke242 kez43 ke244 keZAS ke246
k;Sl k:52 k:53 + I(5251 I(::el54 + ke252 k9253 k€254 I(;LSS + k6255 kiSG + I((5256
_ki-Bl k:62 kiGS + kezﬁl kel64 + keZGZ k9263 ke‘264 k§65 + ke265 k§66 + ke266_
The force vector related to the distributed load is calculated by Eq.(12.39):
T |,V
Fo="0-lp. 00 0 p 0] (12.56)

E1p2:|374v[0 00 py 0 py]’

where 1, =+/10% +30% =+/1000 m and I3, = 10 mm are the element edge lengths between

the nodes indicated in the subscript. By completing the element vectors with zeros at the posi-
tions of the proper degrees of freedom, we get the structural force vectors:

Fr="Yp 00000 p 0]=[3y10 0 0 0 0 0 3V10 O|N, (12.57)

_|1—7

E.T2='374V[o 0000 Dp 0 pl=fo 0000 -150 -15]N.

We consider the reaction forces as concentrated forces at the constrained nodes:
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EI = [Fxl Fyl

FXZ l:y2 Fx3 Fy3 Fx4 I:y4 ] ' (1258)

Taking it into account, that at node 4 there is no external force and that the surfaces are
frictionless, i.e.: Fyq = Fy3 = 0, we have:

EI = [O F Fx2 F

" » Fo, 0 0 0] (12.59)
The structural force vector is:
E:Ep1+Ep2+Ec' (1260)

The finite element equilibrium equation is KU = F , i.e. we have:

(625 125 575 -025 0 0 -05 -17 [u] [3/10]

125 35/12 025 -57/36 O 0 -125 —4/3 0 F,.

-575 025 625 -125 -05 -15 -05 25 0 F,

025 ~57/36 125 425 -1 -4/3 25 -4/3| 0| | F, | (12.61)
0 0 -05 -1 125 25 -12 -15 0 F

0 0 -15 -4/3 25 35/6 -1 —45 v;| |-15

-05 -15 -05 25 -12 -1 13 0 u,| [3J10

| -1 -4/3 25 -4/3 -15 -45 0 43/6] |v,| [-15]

The nodal displacements can be determined from the system of equations constructed by
the 1%, 6™, 7" and 8" component equations of the matrix equation:

6,25u, —0,5u, —V, =310, (12.62)
35/6v, —u, —4,5v, =-15,

—-0,5u; —v; +13u, = 3J10,

—u, —4,5v, +43/6v, =-15.

The equations above, in fact were obtained by the condensation of Eq.(12.61). When we
perform the matrix condensation only those component equations remain, which contain un-

knowns with respect to the displacements only. On the right hand side, in the force vector
there are no unknowns. The solutions are:

u, =1,557-10~° mm,v, =-0,22997-10° mm, (12.63)

u, =0,771983-10° mm,v, =-0,13633-10"° mm.
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194 Finite Element Method

Taking the nodal displacements back into the 2", 3" 4™ and 5" rows of the matrix equa-
tion, we can determine the nodal forces:

1,25u, —1,25u, —4/3v, = F,y, (12.64)
—5,75u, —=15v, -0,5u, +2,5v, = F,,,
—0,25u, —4/3v, +25u, —4/3v, = F,,
2,9v; —12u, -15v, = F ,

The solutions are:
F,=0971095N,F,, =-9,339434 N, (12.65)
F,, =20289 N, F,; =-963423 N.

Using Eq.(12.19) we calculate now the strain components:

e =Moa, e =ob, 5 =M Y g b, (12.66)
OX oy oy OX
For the first element we obtain:

a — By + Bou, + f3u, _ —30u, —_7.7892.1077 (12.67)
' 2A, 2-300 ,

b — By + BV, + BV, -0,

' 2R,
oty s 100 200, 5009 g0
2, 2-300
_ 1Nt rVa Ve L 20V g gaya5.q09)

? 2A, 2300

The vector of strain components fro the first element is:

e, | [-77892
&, =| &, |=|—-454435|-10"° (12.68)
ya | | —23121
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For the second element we can write:

a, - P, + U + ol _ 30U, ~7.7198.107, (12.69)
2A,, 2-150
b, = BVa + BV + BiVy _ 30V, —30v, _ -9,36416-10°%,
2A,, 2-150
a, - 71Uy +7,Us + 73U, -0,
2A,
b, = V2t PVatyaVe A0, g eees g
2A, 2-150
from which we have:
£ —77198
£,=| &, |=| —76657 |-107°. (12.70)
Y2 —93,6416

Since the plate is under plane stress state we can write based on Eq.(11.19) that:
£, = —ﬁ(% t+&,)=274787-107, (12.71)

14

[ (Gt 6,2) = 28288 10°°,

‘922 =

The normal and shear strains are, accordingly constants within the individual elements, we
referred to this fact in the introduction of the triangle element. Incorporating the constitutive
matrix we can determine the stress components too based on Eq.(12.46):

c=C"¢. (12.72)

This equation gives the stresses of the elements, which is in general referred to as ,,ele-
ment stress” in the commercial finite element packages. For the first element we have:

o, =(6s, +04s,)-10° =-0,12644 MPa, (12.73)

o, = (0,4s,, +16,,)-10° = -0,038428 MPa,
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196 Finite Element Method

7, =0,6y,,-10° =-013873-10"° MPa.
Similarly, for the second element the stresses are:

o,, = (L6¢,, +04¢,,)-10° = -0,12658 MPa, (12.74)
o,, =(04s,, +16¢,,)-10° = -0,043145 MPa,
7,52 =0,67,,, -10° = —-0,56185-10" MPa.

Considering the stresses it is possible to produce nodal stress solution. By computing the
average stresses in the mutual nodes we obtain the so-called ,,nodal stress” or ,,average stress”
solution:

Node 1: o, =-0,12644 MPa,

o, =-0,038428 MPa,

r,, =—013873-10"° MPa, (12.75)

Node 2: o, = %(aX1 +0,,)=-012651 MPa,
1
o, = 5 (O'yl + O'yz) =-0,0407865 MPa,

1 _
Ty =5 (Tpy1 + Tyy2) =—0,28786-10 > MPa.

Xy
Node 3: o, =-0,12658 MPa,

o, =—0,043145 MPa,

z,, =—0,56185-10° MPa.

Node 4: o, = %(le +0,,)=-012651 MPa,

1
o, = 5 (O'yl + O'yz) =-0,0407865 MPa,

y
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Ty = % (£0 +7,y) = —0,28786-10% MPa.

The problem presented in section 12.3 was verified by the finite element code ANSY'S 12,
resulting in the same results. The solution with the above applied low mesh resolution is natu-
rally very inaccurate.

12.4. Quadratic six node triangle element

The more advanced version of the linear triangle element is the six node quadratic triangle
element, in which there are additional nodes in the midpoints of the element sides [2,5]. Be-
cause of the additional nodes we need displacement functions including six unknowns, which
are:

u(x,y) =a, +a,x+a,y +axy +a,x> +a.y>, (12.76)

V(X,y) =h, +bx+b,y +bxy +b,x* +b,y*.

The calculation of the stiffness matrix and force vector can be performed in the same fa-
shion as it was done in the linear triangle element. Within the individual elements the strain
and stress components vary linearly. As a consequence, using identical mesh resolution, the
quadratic triangle element provides a better approximation of the problem than the linear one.

12.5. Isoparametric four node quadrilateral

The isoparametric quadrilateral (see Fig.12.6a) is one of the most important finite element
type for plane problems [2,4,5]. An element is called isoparametric if we formulate the local
geometry and displacement field by the same set of functions.

12.5.1. Interpolation of the geometry

For the sake of simplicity we map the quadrilateral element to a regular square into the &n
natural coordinate system, as it is shown in Fig 12.6b. We give the functions of the x and y
coordinates of element edges in the following form:

X(&,m) =N (&, )% + N, (E,m)%, + Ny (&,7)%; + N, (&,m7)X, = NT (& mx, (12.77)

y(&.m) =N (&)Y, +N,(E,m)Y, + Ny (E,m)Ys + Ny (&.m)Y, :NT (f’ﬂ))_/v

where:

X' = X X Xy = V. V. V.l (12.78)
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b.
AN
)] 1 3
¥ ;
-1 L/ 1¢
1 -1 2
X X% % X x

Fig.12.6. Isoparametric quadrilateral in the global (a) and natural (b) coordinate systems.

Due to the fact that we have four nodes, the interpolation function may contain to a maximum
four unknowns:

X(&.m) =ag +aé +ayn+a.dn =P’ A, (12.79)

where A is the vector of coefficients, P is the vector of basis polynomials, respectively:

Al=la, a a alP =L & n &) (12.80)
The function given by Eq.(12.79) must satisfy the following conditions:

X(-1L-1)=a,—-a,—a,+a; =X, (12.81)

xlL-1)=a,+a —a,—a, =X,,

XL =a,+a +a,+a, =X,,

X(-1)=a,—a +a,—-a,=X,.

In matrix form it is:

MA=x, (12.82)
where

1 -1 -1 1

1 1 -1 -1
M = . (12.83)
= /1 1 1 1

1 -1 1 -1
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Then the coefficients can be determined by using Eq.(12.82):

A=M"xand: x(&7)=P"A=P"M "x. (12.84)
The solutions for the coefficients are:

a, :%(x1 + X, + Xy +X,), & = %(—x1 + X, + X3 —X%,), (12.85)

1 1
aZ:Z(—xl—x2+x3+x4), aszz(xl—x2+x3—x4).

Taking them back into Eq.(12.79) we get:

1 1
X(&,7n7) :Z(Xl + X, + X, +x4)+z(—x1+x2 + X3 — X, )+

1 1
+Z(_X1_X2 +X3+X4)77+Z(X1_X2+X3_X4)§77 = (12.86)
1 1 1 1
JUm e+ W g =n =Gm)X, + o (L4 S+ 87)Xg + 5 (L= & = cin)Xe.
The interpolation polynomials on the base of Eq.(12.86) are:
1 1
Nl(é,n)=z(1—§)(1—77), N2(§,77)=Z(1+§)(1—77), (12.87)

N3(§,U)=%(1+<§)(1+77), N4(§,77)=%(1—§)(1+77)-

Performing the same computation for coordinate y we obtain the same interpolation func-

tions. The three dimensional plot of the N;(&,#) interpolation functions represents line surfac-
es, of which value in the location of the i node is equal to unity, while in the location of the
other nodes it is equal to zero, as it is demonstrated in Fig.12.7.
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200 Finite Element Method

Fig.12.7. Interpolation functions of the isoparametric quadrilateral element.

The summary of the geometry is given by the formulae below:

x(&,m)
=N(,7)R,, 12.88
{Y(é,n)} SR (12.88)

where:
BZ :[Xl Yio X Yo X3 Y3 X Y4]’ (12.89)

is the vector of nodal coordinates, and:

N, 0O N, 0 N, 0 N, O
N(&,m) = :

O N O N, 0 N, 0 N,

The compact form of the interpolation functions is:
1
N;(&.7) =Z(1+§§i)(1+m7i), (12.90)

where & and 7; are the corner node coordinates according to Fig.12.6b.
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12.5.2. Interpolation of the displacement field
The displacement vector field of the isoparametric quadrilateral element can be written as:

e || =N, (1291
where:
u(&,m) = Ny (&)U, + N, (E,m)uy + Ny (&,m)u; + N, (E,m)u,, (12.92)

V(&) = Ny (&, + N, (&, m)V, + Ny (&,m)vs + N, (S, 1)V,

moreover, the matrix of interpolation functions and the vector of nodal displacements are:

N, 0 N 0 N 0O N 0
1 2 3 4 }’ (12.93)

N (&, =
N{e.) {0 N, 0O N, 0O N, 0 N,

The displacement field must result in the nodal displacements if we substitute the coordi-
nates of the proper nodes back, i.e. it must satisfy the following conditions:

u(-1-19)=u,,u@@-1) =u,,uxl) =u,, u-11) =u, (12.94)

Mathematically this is the same set of conditions for the displacements as that formulated
in the case of the geometrical parameters. Consequently the computation leads to the same
interpolation functions as those given by Eq.(12.87). The quadrilateral element is called isopa-
rametric element because of the fact, that the same interpolation functions are applied for the
displacement field and local geometry.

12.5.3. Calculation of strain components, Jacobi matrix and Jacobi determinant
The vector of strain components using Eq.(12.2) is the following:

=| Vv, |=du=0Nu,=Bu,, (12.95)
Vxy U’y + V'X

where u, is the partial derivative of u with respect to x, v,y is the partial derivative of v with
respect to y. Moreover:
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2 9
OX _
B-oN=| 0 0N 0 N, 0O N, O N, O _
= == oy 0 N O N, 0O N; O N,
R
OX
_ Loy - _ (12.96)
N N, N N,
OX OX OX OX
=l 0 N, 0 N, 0 ONy 0 ON,
oy oy oy oy
ON, ON, ON, ON, ON; ON; ON, ON,
oy ox oy ox oy ox oy @ OX |

Apparently, matrix B contains the first derivatives of the interpolation functions with re-

spect to x and y. it can be elaborated based on Eq.(12.87) that the N; interpolation functions
are known in terms of £and 7. We refer to the chain rule of differentiation:

0 _00 00m 0 _00 0J0on (12.97)

oXx GEOx omox'dy oEdy omoy

0 o, 0y o _ax 0%

o 0xoE oyog on oxén oyon

Utilizing EQ.(12.77) the local geometry and the first derivative of the functions with re-
spect to £and 7 are:

< OX 0N, OX <~ 0ON.
XEm) =2 Ni &)X, =2 =% 2= 2= X (12.98)
Zl: ¢ Z;‘ o§ ~ oOn T oy
4 4 4
oy oN, oy oN,
yEm =2 NV, =2 — Vi —=2,— VY-
le o¢ le 0 on le n
Writing it in matrix form we have:
ol |x ypo| |a
05 |_| 05 0S| ox |_ 4 ox
o7 ax oy|o|7da (12.99)

on| lon onloyl Loy

where J is the so-called Jacobi matrix:
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x oy
o 0§ Jiu i
J= = : 12.100
-5 5| N
on on

The Jacobi determinant is:

1=3,3,,-3,3, XN _¥x (12.101)

The derivatives with respect to x and y are provided by the help of the inverse Jacobi ma-
trix:

Yy
J -J
l—l:l on o5 |_1| Y2 2| (12.102)
o J _% % J _le ‘]11
on o0&
furthermore:
0 9
4| o
% =g 85 , (12.103)
oy on

From which we obtain the followings:

o 1 0 0
8_:_(J22__J12 —) (12.104)

Jo g on

O 1y 0,y 2,
ay J 216& llan'

With the aid of the former matrix B becomes:

‘]22N1,5 _‘]12N1,77 0 ‘]zzNz‘g _J12N2,7] 0
B=— 0 =JuNy +IuN,, 0 N, =JN,,
- ‘]21N1,§ + J11N1,;7 J22N1,: - J12N1,7] J21N2,§ - JllNZ,q JzzNz,g - JlZNZ,r] (12105)
‘]zst,; _leNs,n 0 J22N4,5 _leNm 0
0 - ‘121N3,§ + J11N3,7] 0 - ‘J21N4,§ + J11N4,r7

T ‘]21N3,§ + ‘]11N3,n ‘]22N3‘5 - ‘]12N3,r] - ‘]21N4,§ + ‘]11N ‘]22N4‘§ - J12N4,7]

4n
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We need the derivatives of the interpolations functions and the elements of the Jacobi ma-
trix, which are:

6N1__£ B 8N2:l B 6N3:1 8N4:_1
e 4(1 ), oc 4(1 m, o 4(1+77), o 4(1+,7), (12.106)
aNl__l B asz_l 8N3:£ 8N4:1 B
on 4(1 &), on 4(1+§), on 4(1+§), on 4(1 &),
respectively, and:
X N L _ _
1= g = Lg% = g T X o+ e~ (L)X, (12.107)
Oy NN L _ _
Y= 5r = X N =y Ay o m)y, + Ay~ @ m)ya:
19)4 2, ON, _1_ B B B
JZl—%_gﬁxi—i{ A= E)X, — (@A+ E)Xy + L+ E)Xs + (L —E)X, },
b= 2y By -9y @ Oy + W+ Y, + M-V,
n I on 4

Based on the former equations we can formulate the Jacobi matrix either in the following
form:

X YN
QZ[JM le}:{ng Nag Nog Mgl Xo Yo (12.108)
= [Ja I Nl,rz N2,77 N3,n N4J7 X3 Ys

Xy Ya
12.5.4. The importance of the Jacobi determinant, example

Calculate the elements of the Jacobi matrix for the quadrilateral shown in Fig.12.8! The nodal
coordinates are:

x=0,y,=0,x,=a,y,=0, x;=a, y;=a, x4=§a, y4:%a. (12.109)
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ydk

A
h 4

Fig.12.8. Isoparametric quadrilateral element with excessive distortion.

The elements of the Jacobi matrix based on Eq.(12.107) are:

1 2 1 1
J, = Z{— @-m70+@-na+@+n)a-(1+ n)ga} = éa—gan, (12.110)

N :%{—(1—77)0+(1—77)0+(1+77)a—(1+77);a}:1a+ an,

6
1 2 1 1
—Z{—(1—§>0—<1+«:)a+(1+§)a+(1—«:)5 }‘E -Lac,
1 1 1
J22:Z{—(l—cf)O—(l+§)0+(l+§)a+(1—§)3a} §a+ a§
from which the Jacobi determinant is:
J=173,,3,,-3,,, =éa2(1+§—77). (12.111)

The Jacobi determinant is 0, ife.g. £=-1and =0, or £=0and » = -1. This case is said
to be excessive distortion, it means that we have degenerate element. If J = 0, then the inverse
Jacobi matrix does not exist at the point under consideration. Moreover, the parameter lines
intersect each other outside the domain of the quadrilateral. That is why the sum of the inner

angles of quadrilateral must be less than 180°, in other words the quadrilateral can not be con-
cave.

12.5.5. Calculation of the stress field
The vector of stress components can be obtained from Eq.(12.7):
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o=C&=CBu,, (12.112)
where C = C*"for plane stress and C = C*"for plane strain (see section 11.)
12.5.6. Calculation of the stiffness matrix
The stiffness matrix for plane problems is calculated by Eq.(12.9):
K, =[] B"C"Bvdxdy. (12.113)

In the case of the isoparametric quadrilateral the elements of matrix B contains the deriva-

tives of the interpolation functions. Consequently, for the stiffness matrix calculation the
transformation of surface integrals must be performed. The vectors and parameters, which are
required for the analysis, are shown in Fig.12.9. The ranges of parameters c; and c; are:

-1<c, <1, -1<¢, <1.

(12.114)
y A
4 n
," 3
“% dr {
R /dr, :
& 2
X

Fig.12.9. Transformation of surface integral in the isoparametric quadrilateral.

The differential vectors written by lowercase letters, can be formulated by utilizing Eq.
(12.100):

OX OX OX
dr, = by a;l =15 =] (12.115)
dy n=konst —df—l——d]] —dg le
898 877 n=konst 85

and similarly:
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dx P {J
dr, = == Zl}dn . (12.116)
- |:dy:| &=konst X J 22

The definition of the elementary area is:

i bk
dA = |d[1 X d[2| =abs(J,,d& J,,d& 0) =(J;,d,, —J;,,,)dsdn = dxdy, (12.117)
Jadn Jydn 0

this yields:
dA = dxdy = Jd&dn and: j dxdy = j j Jd&dn . (12.118)
-1-1
The stiffness matrix becomes:
11
K, =[B"C"Bvdxdy= | [B"C' Bvid&dr, (12.119)
A -1-1

I.e., the stiffness matrix can be computed by the help of an area integral. For the calculation
we can apply analytical or numerical method. The commercial finite element packages, in
general, implement the Gaussian quadrature to perform the integration. This method will be
presented in section 12.6.

12.5.7. Calculation of the force vector

Distributed load along the element edge. The force vector resulting from the distributed load
along element edge 1-2 shown in Fig.12.10 can be defined as:

F., =V j N'p_ds, (12.120)
where:

1 1
S= Ellzé: and ds = EIIZdé’ (12121)

where Iy, is the element edge length between nodes 1 and 2.
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ey

Xy

Fig.12.10. Distributed load along the element edge of an isoparametric quadrilateral element.

Moreover, we know that along edge 1-2 n = -1 and -1 < £< 1 (see. Fig.12.6). We can write
after all, that:

N, 0] PN, ]
0 N, p,N,
N, O PN,
L0 N, [ 1 p,N
0 N, P, N,
N, O PN,
| 0 N, | | PyN, |

For further calculation we must evaluate the interpolation functions along the parameter
line, for which n=-1:

n=-1
=1

N =70-a0-n)  =2a-9), (12.123)

N, =5 @+OA-n)  =20+8).

n=-1

Ny, = @+ @) =0,

N, =@+ =0,

n=-1

This yields:
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1

[p.Ny _ d¢ =% p, [-&)dé =% p{f—%} :% p{l—%—(—l—%)} =p,, (12.124)

1

[l t6 2 facows =10 6] Lo fiedcad]os,

By taking the results back into the force vector we obtain:

ET =%v|12[px p, b, P, 0 0 0 0] (12.125)

—ep

The resultant of the uniformly distributed load is divided into two parts and (similarly to
the beam and linear triangle elements) put into the nodes of element edge. The calculation can
be made also in the case of linearly distributed load; naturally it results in a different force
vector.

Body force. The force vector calculated from the body force is:

11
Fo =v[[N"qdd&dn, (12.126)

-1-1

for which we need again the evaluation of surface integral. Similarly to the stiffness matrix,
the Gaussian quadrature will be applied to evaluate the integral.

Concentrated loads. For plane problems there are concentrated forces acting in the nodes
and there are no moments. The x and y components of the concentrated forces are collected in
a vector:

F, F

y2

Fe F

y3

FL=[F, F F Fl- (12.127)

yl
The total vector of forces is the sum of vectors presented in the last three points:

Fe=Fy+Fy+F,. (12.128)

12.6. Numerical integration, the Gauss rule

For the calculation of the element stiffness matrix and the body force vector of isoparametric
quadrilaterals there are numerical integration schemes implemented in the finite element
packages. Commonly, the Gauss rule is applied because it uses minimal number of sample
points and it is relatively accurate [1,2,6].
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12.6.1. One dimensional Gauss rule

The main aim is the approximate but relatively accurate calculation of the area under the
curve shown by Fig.12.11 using the one dimensional rule.

‘LF(g)/
-1 k/ §| | 1
s | p=1
. ® =2
@ @ ® p=3
@ @ @ *+— p=4

Fig.12.11. Sample points of the one dimensional Gauss rule.

The approximate area under the curve is calculated by:

1 P

[F(&de=> wF(E). (12.129)
1 i=1

The sample (or integration) point coordinates, & and the integration weights, w; are listed
in table 12.1. The one dimensional rule provides the exact solution for a polynomial up to the
order of 2p-1.

p & Wi
1 0 2
) ~1/4/3 1
1/4/3 !
—J3/5 5/9
3 0 8/9
J3/5 5/9
—\/(3—246/5)/7 1/2-(/5/6)/6
4 —J3+2675)/7 1/2+(/5/6)/6
&H=-5 W3 = W;
Sa=-8 Wa =W

Table 12.1. Parameters of the one dimensional Gauss rule.

Let us solve an example for the application of the Gauss rule! Calculate the exact value of the
integral:
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| = [Zdx (12.130)

P C—

1
X
as well as its approximate value using one, two and three integration points!
Exact solution:
=[Inx}} =In3-In1=1,098612. (12.131)

Gauss rule, p = 1. Let £=x-2. If x = 3, then £= 1, on the other hand if x = 1, then £ = -
consequently:

21 t 1 _ !
=kdx=jlmdg,and.F(§)_m. (12.132)

The approximate value of the integral is:

|l;w1|:(0):2%:1. (12.133)

That means an error of 9,9% compared to the exact solution.
Gauss rule, p = 2. In this case:

I, =zw,F(- \/_)+wF(\/_) 1 11 +1 i =1,090909. (12.134)
\/§+2 \/§+2

The value of the integral differs with 0,7 % from the exact solution.
Gauss rule, p = 3.

I, =w,F(- \/7)+w F(0)+w, F(f)— ! 81,3 =1,0980387 - (12.135)

T

The error of approximation is only 0,052%.
12.6.2. Two dimensional Gauss rule

The two dimensional Gauss rule makes it possible to evaluate the approximate value of sur-
face integrals. The integral is approximated by the expression below:

[] £ y)dxdy = j j fEmadadn =Y Y ww, £ (&) ), (12.136)

141 j=1 i=1
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where w; and w; are the integration weights, & and 7; are the integration point coordinates,
moreover, the ranges are -1 < & <1, -1 < 7; < 1, respectively. Depending on the number of
integration points we can define different Gaussian quadratures, as it is demonstrated in

Fig.12.12.
11 2Xx2
AT AN
497”%”?3
1 : @©
— T [ = | L >
&_. ! I ®© g
o——fF—
1 ‘,a,,,<a4 2
3X3 4x4
M AN
4 7 3 4101 3 .3
| R x ' 16 5 |
L et e
SR oty 1+
i E B q i | L ol | &
i - GEEEER
_____ & > ! ;
1 5 2 T8 %
< b > b > ¢ b Sl b S

Fig.12.12. Integration points of the 1x1, 2x2, 3x3 and 4x4 Gaussian quadratures.

For the 1x1 quadrature there is only a single integration point, for the 2x2 we have 4, etc. The
parameters of the 1x1, 2x2 and 3x3 Gaussian quadratures are summarized in Table 12.2.

1x1 2x2 3x3
a=1//3 b=+/3/5 Wi Wi
4=0 A=-a 7= -a L=b 7 =-b 5/9 5/9
m=0 H=a 1 =-a 5=Db m=-b 5/9 5/9
Wy =2 &=a 3 =4a §3=b 773=b 5/9 5/9
4 — -a ns=a §4:'b 774:b 5/9 5/9
5=0 7= b 819 5/9
w;=1 w, =1 (fezb 776:0 5/9 8/9
wz3=1 wy=1 §7=0 777=b 8/9 5/9
5= b 75 =0 5/9 819
59 =0 My = 0 8/9 8/9

Table 12.2. Parameters of the Gaussian quadratures.

Example for the application of Gaussian quadrature. Calculate the approximate value of the
integral:
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| = j xydA (12.137)
A

using the 2x2 Gauss quadrature for the domain of parallelogram depicted in Fig.12.13! Com-
pare the result to that of the exact integration [4]!

Y‘L
\ 7]
Y, 3 (4) 1 3
Yo i
P2 Y <

— »
Y, 4o -1 -/ Ak
¥ 1

, @ - 2

X 2 XX
Fig.12.13. Example for the application of Gaussian quadrature.

The nodal coordinates are:
X1 = 1, Xo = 3, X3 = 4, Xq = 2, V1= l, Yo = 2, Y3 = 4, Y4 = 3. (12138)

Based on the approximate expression of the 2x2 Gaussian quadrature we can write:

| =jxydA;iZZ:wiwjf(gi,nj)p((;,nj)\. (12.139)

A i=1 j=1

The calculation requires the elements of the Jacobi matrix. We need the nodal coordinates
and also the derivatives of the interpolation functions (see Eq.(12.110)):

Ji = %{— @-m1+@-7)3+A+n)d—1+n)2}=1, (12.140)
1 1

N ZZ{‘ (L-m)1+ (1—77)2+(1+77)4—(1+77)3}=§,

Iy =y Q010+ 88+ @+ 9+ 1= 92} =2,

T = - 1@ )2+ 4 )4+ - 631

The Jacobi matrix is:
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J :|:‘]11 ‘]12:|:
- ‘]21 ‘]22

and the Jacobi determinant is:

1 1
2], (12.141)
1
]
2
J :1-1—1-1:§:const. (12.142)
22 4

The x and y parameters utilizing the interpolated form given by Eq.(12.77) are:

X(&:m) = ZNX (1 S)d-ml+(@1+)A-n)3+

(12.143)
+(1+§)(1+77)4+(1—5)(1+77)2},
y(&n) = ZN y, = (1 EYA-mLl+ @+ E)A-n)2+
+(1+§)(1+77)4+(1—5)(1+77)3}-
The function, f(&,7) is:
() =wy =56+ 26 +7)-(5+ £+ 2m)). (12144)

We can calculate the approximate value of the integral based on the figure and table
above:

| =[f(-a,—a)+ f(-a,a)+ f(a,—a) + f(a, a)]% =19,75. (12.145)

The exact value of the integral is:

._\'—.H
he—ar

[ 1€ magin=x - ”%{(5+ 25 47)-(5+ & + 277)}%15(177 _ 7749 _19,75. (12.146)

It is shown apparently, that the Gaussian quadrature provides the exact value in this case.
Most of the commercial finite element packages implements 2x2 quadrature.

12.7. Example for the isoparametric quadrilateral

Solve the example presented in section 12.3 using one isoparametric quadrilateral element!
The data are the same as those given in the linear triangle element. Apply a single finite ele-
ment by following Fig.12.14 [4]. Determine the nodal displacements and the reactions!
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A

y

><V

Fig.12.14. Example for the application of the isoparametric quadrilateral element.

The finite element equilibrium equation to be solved is:
KU =F. (12.147)

Since we have only a single element, in this case Eq.(12.147) corresponds to the equili-
brium equation in the element level:

ﬁege =F,, (12.148)
where:
U'=[u v, u, v, u, v, u, v,] (12.149)

is the vector of nodal displacements. Due to the boundary conditions (v; = v, = U, = U3 = 0) we
have:

U'=fu, 0000 v, u vl (12.150)

Similarly to the linear triangle element, we have a system of equations including four un-
knowns. The element stiffness matrix is calculated by the Gaussian quadrature, i.e. we can
write, that:

K, = [ [B7CT Bvadadn =vY > ww B (&,1,)C" B 7,3 )| (12.151)

e i=1 j=1

The elements of the Jacobi matrix are equally required:
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ax 8N 1
n=— X =~ {= @=n)% + @L=m)X, + @+ 7)%, — L+ 77)%, } =
05 Foc 4 (12.152)

= @0 @20+ @rm20-@roj=2 -2y,

J12=% Z%Ng T my @y, + @y, - @)y -

i=1

= l{— L-7)0+ (L—7)0+ (L+7)30 - (1+7)30} =0,

4
RN <LLATIVR ¥ I Y T SR S R I v
on ‘= On 4

= %{— (1-&)0—(1+&)20+ (1+£)20 + (1—5)10}22_25,

Ty = aﬁ i L&)y, ~ A+ Oy, + L+ )y, + - &)y, )=

i=1

-k (1—5)0—(1+§)0+(1+§)30+(1—§)30}=

Constructing the Jacobi matrix we have:

15 577
J J 5 5
i = |:J11 J12:| = é 52 , (12153)
21 22 ___77 15
2 2

and the Jacobi determinant is:

32225, (12.154)

2 2

It can be seen, that if —1<7 <1, then J > 0 for each case, consequently the element is not
degenerate, which is obviously seen based on Fig.12.5. The inverse Jacobi matrix is:

2

-0
g Ll Ja “du| | 5(-3+7) (12.155)
= -Ju i - 1-¢ i |
15(n-3) 15

As a next step, we calculate matrix B (see Eq.(12.96)), where referring to Eq.(12.105) we
have:
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oN, 1 1-n
—1==0J,N,.,-J. N J)=—"1 12.156
aX J( 22" V1.¢ 12 l,r]) 10(3_77) ( )
oN, 1 1- §
El=3(_J21N1,§+J11N1,77) 30(3 77)
oN 1 1-n ON 1 2+&-n
o~ 3Ol Tl =gy gy =3 Hlalee #0ua) =250y
OoN 1 1+n ON 1 1+25-n
8X3 =3(J22N3’§ _J12N3'"):10(3—77)’ 8y3 23(_321N3,§ +J11N3,q):‘30(3_n) ’
N, 1 1+n  ON, 1-&
8X4:3(‘JzzN4,§_J12N4,n)_ 10(3 77) oy J( 321N4§ J11N4J7) 15(3 77)'
Matrix B becomes:
__ 1-n 0 _1-7
10(3—17) 10(3-7)
- _1-¢ 0 _2+&-7m
= 30(3-7n) 30(3-7)
~1-¢ _1-7 _2+4¢6-n 1-p
| 30@-7») 10B-7) 30(B-7) 10(3-7n) (12.157)
1+n 147 |
103-7) 103-7)
1+2& -7 0 1-¢
30(3-7) 15(3-1)
1+2& -7 1+n 1-¢& 149
30B8-7) 10@-7) 15@-7)  10(3-7) |

We calculate the element [1,1] of the stiffness matrix by the Gaussian quadrature. For that,
let us calculate the following:

ETCTB :1600(1—77)2 200(1— &)?
— = = ,1

L . (12.158)
3-n) 3(3-¢)

and:

ﬁeLFVﬁETQELJd@W

, (12.159)

¢t/ 1600(1—17)? 200(1—5)2 225 75
=VJ1[{ -t T aao }[ 2 ocin- lejlf(én)J(én)dﬁdn,
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where v = 5 mm is the thickness of the plate. We carry out the calculation in three ways, by
using the 2x2, 3x3 Gaussian quadratures and the exact integration, respectively.
I. 2x2 Gaussian quadrature:

ge]lvl;v.{f (-a,-a)|J(—a,—a)| + f (a,—a)d (a—a)|+ f(a,a)J(a,a)| f (-a,a)d (-a,a)} =

N (12.160)
=(2.1734+2.0927 +0.2304 + 0.3496) - 10° = 4,8462 - 10° powes
I1. 3x3 Gaussian quadrature:
[K, L= v-{f (-b,~b)|3 (=b,~b)| + f (b,~b)|J (b,~b)| + f (b,b)|J (b,b)|f (~b,b)[3 (—b,b)\}gg +
+v-{f (0,—b)‘\](0,—b)‘+ f (b,0)|J (b,0)| + f(O,b)\J(O,b)\f(—b,O)J(—b,O) }gng (12.161)
88 25 | ¢
+v- f(0,0)[J(0,0) 99" (2.6072 + 2.5046+0.07134+0.2454)a -10° +
40 | & 64 , s N
+(2.5360+1.0021+0.1247 +1.1312) —-10° +1.0417 — -10° = 4,8660-10° —.
81 81 mm
[11. Exact integration:
s N
K, ].=48666-10° —. (12.162)
’ mm
Calculating all of the components of the element stiffness matrix we obtain:
[4,8666 0,76713 —4,3666 0,23287 -2,7668 —0,9657 2,2668 —0,03426]
23545 07329 -10211 -09657 -11244 -05343 -0,20891
53666 17329 2,2668 —053426 -32668 15343 (12.163)
| : : 36878 -003426 -020891 15343 -24578 | . N
= : : : 69663 05685 —6,4663 0,43147 mm’

35845 093147 —2,2512
7,4663 19315
49178 |

The vector of forces can be constructed in a similar way to that shown in the triangle ele-
ment:

ETplz'%"[px 00000 p, 0]=[3JE 0000 0 310 o]N, (12.164)

ELZ=I37“V[0 0000 Dp 0 pl=fo 0000 -150 —15]N.

We consider the reactions as concentrated forces in the kinematically constrained nodes:
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Fi=[F. F Fo Fio Fu Ful (12.165)

—C

F, F

yl y2

Considering the fact that the surfaces are frictionless and that at node 4 there is no external
force, we have Fyx; = Fyz = Fyxa = Fya = 0, which leads to:

Fr=lo F, F, F, F, 0 0 0] (12.166)

yl y2
The structural force vector becomes:
E:Ep1+Ep2+Ec' (12167)

The construction of the finite element equilibrium equation results in:

(48666 076713 - 43666 023287 -27668 09657 22668 -003426] [u,] [310]
23545 07329 10211 -09657 11244 —05343 —020891| (0| | F,
53666 -17329 22668 -053426 -32668 15343 o| | F, (12.168)
36878 003426 -020891 15343 24578 | [ 0| | F,
69663 05685 64663 043147 0o|7| F,
35845 093147 -22512 | |vy| |-15
74663 19315 u,| [3v10
29178 | |v,| |-15]

In the stiffness matrix we eliminate those rows and columns, for which the corresponding
displacement component is a prescribed (here constrained) value. This way we obtain the so-
called condensed stiffness matrix, which is used to expand the system of equations, of which
solutions are the nodal displacements:

48666 —0,9657 2,2668 —0,03426 u, 3,10
35845 0,93147 -2,2512 Y —
108 3 =] T (12.169)
7,4663 —1,9315 u, 3,10
49178 v, | | =15
The solutions are:
u, =15078-10° mm, V, = —0,29199-10° mm, (12.170)

u, = 0,822016-10° mm, Vv, = —-0,10532-10"°> mm.
Then, the reactions are calculated by the 2", 3" 4™ and 5™ component equations of Eq.
(12.168). The solutions are:

F,.=10678 N, F,, =-9,27494 N, (12.171)

F,, =193216 N, F,, =-9,6987 N ,
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The strain and stress components of the element can be expressed in parametric form (as
the function of &and 7) from Egs.(12.95) and (12.105). Taking the coordinates of the corres-
ponding node back, the strain and stress components can be calculated. The example above
was verified by the finite element code ANSYS 12.

12.8. Quadratic isoparametric quadrilateral

The advanced version of the linear quadrilateral is the quadratic quadrilateral, in which the
curves of the element sides as well as the displacements are approximated by a second order
function of the £ and 7 coordinates [2,7]. On each element edge we provide a midside node,
as it is shown in Fig.12.15, implying 8 nodes and 8 unknown coefficients in the approximate
function of e.g. the x coordinate:

X(&,m) =a, +a,&,+a,n+a;én + a4%82 + a5772 + 365277 +a,én 2. (12.172)

Using the nodal conditions we can derive the interpolation functions of the quadratic ele-
ment in a similar way to that shown in the four node quadrilateral. The interpolation functions
become:

Nl(m)=—%(1—5)(1—n)(1+5+n), Nz(f,n>=§(1—52)(1—n), (12.173)
Ng(é,n)=—%(1+§)(1—77)(1—§+77), N4(§,77)=%(1+§)(1—772),
Ny(&) = =3 (A W+ MA-7-8) ) No(m) =5 A= ED)a+1),

Ny (&) == 5 A= D@+ AL+ E-n), Ny(m) =5 @-OA-7").

y A
paramel!er lines

¥s

Y7

Ya
Y4

X X$ X

R
X

Fig.12.15. Quadratic isoparametric quadrilateral.

The interpolation functions can be formulated also in compact from:
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N, = 5 (0 &)+ )+, -0, 1=1,3,5,7, (12.174)

N; =%§i2(1+§§i)(1—772)+%77i2(1+7777i)(1—§2), 1=2,4,6,8.

where & and 7; are the coordinates of the nodes. Fig.12.16 shows the function plot of the in-
terpolation functions Ns and Ng.

Fig.12.16. Interpolation functions of the quadratic isoparametric quadrilateral.

The value of N; corresponding to the i node is equal to unity, in the other nodes it is zero.
The calculation of the stiffness matrix and the vector of forces can be made in the same way
as that shown in the quadrilateral with straight edges. The Jacobi determinant and the Gaus-
sian quadrature is equally required.
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13. MODELING OF AXISYMMETRIC STATE BY FEM SOFTWARE
SYSTEMS. MODELING, ANALYSIS OF PROBLEM EVALUATION

13.1. Finite element solution of axisymmetric problems

For axisymmetric problems both the geometry and the load are independent of the angle
coordinate, 9. An example is shown in Fig.13.1.

a. AZ p-intemal 47 b 4y €
pressure
™
X P—m p
| i | -
| ! | —»
| — /
i —»
% —> /
i —»
! —»
| mm———— |
/4f’1_“\$\ — 5
K;>;ﬁEE§;<L‘ ' X
¥ X

Fig.13.1. Thick-walled tube under internal pressure (a), axisymmetric model of the tube (b), and the
simplified finite element problem (c).

Plane problems are defined in plane as the meridian section of an actual body; mathematically
they can be solved as two-variable problems. The element types of axisymmetric problems
are actually ring shape elements. That is why there is no concentrated force in such problems,
except for the case when the force coincides with the axis of symmetry. A line load with con-
stant intensity on the outer surface of the model defined by a radius of r, looks as a concen-
trated force. For axisymmetric problems the displacement field has the following form [1]:

u=u(r,z)e, +w(r,z)e,. (13.1)

The strain-displacement equation is:
1
g=§@°V+Vom, (13.2)

where V is the Hamilton operator in cylindrical coordinate system (CCS). It can be derived
by the help of Eq.(11.61). Based on Fig.11.7 the radial and tangential unit basis vectors be-
come [1]:

e, =cosdi+singj, e =—sinJi+cosIj. (13.3)
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Operator nabla in the x-y-z coordinate system is:

k. (13.4)

Utilizing Eq.(11.61) and substituting it into Eq.(13.4) leads to:

0 10 0

V:EgﬁF%gﬁagz. (13.5)
The strain components in CCS can be written as [2,3] (see Eq.(11.66)):

gr:%,q:%,gzzg—a\:’,ynzg—j+;—aﬁl. (13.6)
In vector form:

g = [gr & & ] (13.7)
The vector of strain components is written in the following form:

£=du, (13.8)

where, based on Eq.(13.6) the matrix of differential operators is completed with an additional
element compared to the plane stress or plane strain states:

2 0
or
oo
o=| T (13.9)
=1 K
0z
A
Loz or
The vector of stress components is:
o =lo, o o, 7,] (13.10)
Independently of the coordinate system we have Hooke’s law in the form below:
1%
o=2G|e+ g E] (13.11)
= = 1-2v =
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o, 0 7, &, 0 1/2.y,
c=|0 o 0|¢= 0 & 0 : (13.12)
7, 0 o, /2.y, O g,
from which we have
o, = i[gr + Y (&, + & +5Z)} = #[Er A-v)+ev+e,v], (13.13)
1+v 1-2v @+v)@-2v)
o, :i[gﬁ i (gr+5t+gz)}=#[8rv+gt(1—v)+gzv],
1+v 1-2v @L+v)L-2v)
o, =i{82 +— (6, +¢& +¢ )} #[grv+gtv+gz a-v).
1+v 1-2v Q+v)Q1-2v)
. __E
rz 1+V 7[’2
Accordingly, the constitutive matrix based ong =Ce is [2,3]:
1-v v 0 |
E v 1-v v 0
C=——"—"-— 13.14
= @+v)a-2v)| v v 1-v 1_02V (13.14)
0 0 0 5

The calculation of the element stiffness matrix is possible through the following definition

[4]:

IIO

T BdV (13.15)

VIE

where the dimension of matrix B depends on the degrees of freedom of the element. The vec-

tor of forces can be determined in the same way as it was shown for plane problems.

The domain of axisymmetric bodies can be meshed by ring shape elements. Elements can
be defined in the meridian section, i.e. in plane. In the finite element softwares the same ele-
ment types are available as those for plane problems; however the axisymmetric behavior
should be set. In the course of the finite element analysis the same interpolation functions are
applied as those presented for plane stress and plane strain states. In most of the finite element
codes the plane model should be prepared in the x-y plane, where y is the axis of revolution
(see Fig.13.1c). In the sequel we review the application of the linear triangle and the isopara-
metric quadrilateral elements.
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226 Finite Element Method

13.2. Axisymmetric linear triangle element

The steps of the finite element discretization using linear triangle element have already been
presented in section 12.2. Some modification is required considering the axisymmetric appli-
cation of the triangle element. In the displacement field we change the x and y parameters to r
and z, respectively [1]:

u(r,z)

u(r.2) = {W(I’ 2)

} N(r,2)u,, (13.16)
where the displacement components can be provided by changing the coordinate x to r and
coordinate y to z in Eq.(12.24), respectively:

u(r,z) = N,(r,z)u, + N, (r,z)u, + N,(r, Z)u,, (13.17)
w(r,z) = N,(r,2)w, + N, (r, 2)w, + N, (r, Z)w;,

moreover, the matrix of interpolation functions and the vector of nodal displacements be-
come:

N, 0 N, 0 N, O

(13.18)
O N O N, 0 N,

N(r,z) :{

QT:[ul W, U, W, U Ws]-

e

The calculation of the strain components is made in a similar fashion to that presented in
plane problems:

£=0u=0Nu, =Bu,, (13.19)

where the strain-displacement matrix using Eqs.(13.9) and (13.18) is:
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2 g
or
1 )
BoaN<| T N, 0 N, 0 N, 0}:
=~ o 90 N 0O N, 0 N
0z
2 0
Loz or. ] (13.20)
% 0 oN, 0 ON, 0
or or or
N N g N
_|r r r ’
o Moo N N
0z 0z 0z
ON, ON, ON, ON, ON, ON,
| 0z or 0z or 0z or |

where in the second row the term Ni/r appears. Considering the axisymmetric nature of the
problem we can write that:

K,=27[B"C"BrdA=27 [B"C" Brdrdz. (13.21)
A

The vector of forces consists of three different terms even in axisymmetric problems. For
a distributed load the formula is:

Fo = ZﬂjuT prds, (13.22)

where p is the vector of pressures in the radial and axial directions:

D= { pf} | (13.23)
= |p,

In the case of body force the force vector becomes:

E, =27 j j N'grdrdz, (13.24)
where;
q= B} (13.25)

is the density vector of volume forces. Finally, the vector of concentrated forces is:
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E:c:[Fn F, F F, F F3z]' (13.26)

r z

The total force vector is the sum the following three vectors:
Ee = Eep + Eeb + Eec . (1327)

The problem solution involves the composition of the element and structural stiffness ma-
trices. We calculate first the nodal displacements from the structural equation, then the reac-
tions and strain and stress components, respectively. Let us see an example for the application
of the element.

13.3. Example for the application of axisymmetric triangle element

Fig.13.2 shows a hollow disk with triangular cross section under internal pressure. The angu-
lar velocity of the disk is @ = 5 rad/s. Consider also the own weight of the disk! Calculate the
nodal displacements and reactions!

&

4
<3 2 lg
pl
h
2 4 _,1 2
74
@d .
@D ]

Fig.13.2. Finite element model of a hollow disk with triangular cross section.

Given:
pr=20 KPa, E=200 GPa,d=6m,D=8m,g=981lm/s?>, v=03,h=1m

Solve the problem using a single axisymmetric triangular element [1]! The distances are
given in [m], the force is given in [N]. The nodal coordinates are:

node r[m] z [m]
1 3 0
2 4 0
3 3 1

Since we have only a single element, the element equilibrium equation is the same as the
structural equation:
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KU =F., (13.28)
where:
T
Up=[u, wou, ow,oup w (13.29)
Because of the boundary conditions only four unknowns remain, i.e.:
ul =fu, 0 u, 0 u, wl. (13.30)
The constitutive matrix based on Eq.(13.14) is:
1-v v 1% 0 |
E v 1-v v 0
C =V =
=" Qrv)L-2v) volv O
0 0 0 Y
L 2 ] (13.31)
269,2 11538 11538 O
115,38 269,2 11538 O o
= -10° Pa
115,38 11538 2692 O
0 0 0 76,9
The coefficients of the interpolation functions using Eq.(12.22) and Fig.13.2 are:
=02, — N2, =4m", a,=rz —6z,=-3m*, a, =1,2, - 1,2, =0, (13.32)
B=2,-zz=-1m, p,=2,-7z,=1m, B, =2,-2, =0,
n=L-L=-1Im,y,=r-r,=0, y;=r,-=1m.
The area of the triangle is:
1 1 1 5,
A==(q+a+a)==(4-3+0)==m". (13.33)
2 2 2
The interpolation functions can be calculated as:
Ni(r,z) =w’ (1334)
2A,
which yields:
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230 Finite Element Method

N,(r,z)=4-r—z, N,(r,z)=-3+r, Ny(r,z)=z. (13.35)

Matrixﬁ becomes:

N[N O N 0N, 07 f4-r-z 0 -3er 0z 0] (13.36)
= 0 N, 0O N, 0 N, 0 4-r-z 0 -3+r 0 z

Accordingly, the strain-displacement matrix B is:

r r r _
N, N, Ny 4—r1—z 0 —31+r 0 (z) 0
- 0 —= 0 —= 0 0 0= ol (13.37)
B=6N=| T r r = r r r
- 0 % 0 6Niz 0 % 0 -1 0 0 0 1
0z 0z 0z
-1 -1 0 110
ON, N, 0N, N, N, oN,
L 0z or oz or oz or |
The stiffness matrix is given by:
(343 189 -2,79 -081 -090 -109]
189 364 -133 -—-081 -093 -282
e -280 -133 310 0 014 133 13.38
K, =2ﬁj ngngrdrdz= 202N ( )
= ces = = -081 -081L 0 081 081 0 m
-090 -093 014 081 085 012
|-1,09 -282 133 0 012 282 |

where all of the elements were calculated by exact integration (using the code Maple). The
upper range of the first integration is the equation of the hypotenuse of the triangle: z = 4-r.
The vector of forces is constructed as the sum of three vectors. The first one is related to dis-
tributed load along element edge 1-3, based on Eq.(13.21) it is:

p. | _[20
Eep ZZﬁJQT_prds, p:{p2:|=|:0:|KPa. (13.39)

Obviously, the radius is r = 3 m constant along element edge 1-3, furthermore the coordi-
nate of integration is z, leading to:
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6.

20000 0
{ }dz =
0

1 1
Fo=27-3[N' pdz =273 10°N. (13.40)
0 0

O N O O O

The force vectors related to the revolution and own weight requires vector g, which is cal-
culated using g and w:

2
q= {q} _ [/’”" } _ (13.41)
N g, e
After this, we calculate Fe, using Eq.(13.23):
[4—-r-12 0 |
0 4-r—-z
4-r 4 4-r 4 —34+r 0 B 2
F, =2r I J‘QT rdrdz =27 I I pre }rdrdz, (13.42)
0 3 B 0 3 0 —3+r L — A9
z 0
L 0 -
.e., we have:
F.=[689 -0829 7,995 -0893 689 -0829]r-10° N. (13.43)

Finally, the unknown reactions are collected in vector F.. Considering the boundary con-
ditions we obtain:

Fl.=[o F, 0 F, 0 0] (13.44)
Thus, the finite element equilibrium equation becomes:
(343 189 -279 -081 -090 -1,09] "y, | 7,497 -10°
1,89 364 -133 -081 -093 -282 0| |-08297-10° +F,
-280 -133 310 0 014 133 02| Y |- 7,9957 -10° (13.45)
-081 -081 0 081 081 0 0 -0,893-10° + F,,
-090 -093 014 081 08 012 U, 7,497 -10°
|-109 -282 133 0 012 282 | W, -0,8297 -10°
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232 Finite Element Method

The solution can be obtained by the 1%, 3" 5" and 6™ component equations. The other
possibility is the application of the matrix equation using the condensed stiffness matrix,
which has already been presented in section 12. The solutions are:

u,=3,701-10° m, U, =3,400-10° m, u, =3,675-10° m,w, =—0,3424-10° m. (13.46)

The reactions utilizing the 2" and 4™ component equations of the finite element equili-
brium equation are:

F,=7272-10° N, F,, = 74144 N. (13.47)

The example was verified by the finite element code ANSYS 12. We note that similarly to
the examples of section 12 we considered the reactions in the vector of external forces.
The term Ni/r appearing in the second row of matrix B can cause trouble in the course of

integration if one of the element edges lies on the axis of revolution (where r = 0). To avoid
this problem a local coordinate system is introduced for each element, or the integration is
made by approaching r to zero by constructing a hole with very small diameter [1].

13.4. Axisymmetric isoparametric quadrilateral element

The isoparametric quadrilateral element for plane problems has been presented in section 12.
The element is applicable to solve axisymmetric problems too. The functions of the local r
and z coordinates of element edges are [4]:

r(&,m) =N, (Emn + N, (Emr, + Ny (Emr, + N, (& mr, =N (En)r, (13.48)

2(£,m) =Ny (Emz, + N, (Em)z, + Ny(E,m)z, + N, (Em)z, =N (E,m)z,

where in Eq.(12.77) coordinate x was changed to r, coordinate y was changed to z. Conse-
quently the same interpolation functions can be used:

N, (£,7) =%(1—§)(1—77), N, (£.7) =%(1+§)(1—n), (13.49)

Ng(f,n)=%(l+§)(1+f7), N4(§,77)=%(1—§)(1+77)-

The displacement is formulated in the usual way:

”(5’”)} = N 7)., (13.50)

9(5’77) = |:W(§ 77) - =

where:
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u(&,m) = Ny (&)U, + N, (&)U, + Ny (&,m7)us + N, (&)U, (13.51)

wW(&, 1) = N (&, mw, + N, (&, 7)w, + N, (S m)ws + N, (&, m)w,,

with that the matrix of interpolation functions and the vector of nodal displacements are, re-
spectively:

N, O N 0 N 0 N 0

N@Em)=| ’ ’ ‘ : (13.52)
O N, O N, 0 N, O N,

ul =fu, wou, w, u;owou, w,. (13.53)

The well-known strain-displacement matrix is used to calculate the strain components as:
&=0u=0Nu, =Bu,, (13.54)

where;

oo
[
1
1=
[
R o =1+~

0z
9
i or | (13.55)
[ON, o MNo o Ny o N, ]
or or or or
Neog N g Noo g Ny g
_|r r r r _
0 ON, 0 oN, 0 % 0 ON,
oz 0z 0z 0z
ON, ON;, ON, ON, ON, ON, oON, ON,
| 0z or 0z or 0z or 0z or |

As it is shown, we need the derivatives of the interpolation functions with respect to r and
z. Due to the fact that the functions N; are known in terms of the natural coordinates & and 7,
we need again the Jacobi matrix and its determinant, referring to Eq.(12.104) we have [4]:

o 1 0 0
=~ 5 -

= J., ), 13.56
or J o& 12677) ( )

o 1 0 0
— =7 +du),
oz ) o0& on
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where:

I 2—;— %r — @ @ @ @, (1357)
Lo =3 T = o Qe Qe -G,

1 =§—;=Z%r - a-an-aran s @ron - a-an

J22 =§—f7= %z =§{— =82, -1+ &)z, + 1+ &)z, + L=z, .

Matrix B can be produced in a similar way as it was shown by Eq.(12.105), except for the

fact that we must consider the term Ni/r appearing in the second row of the matrix. The calcu-
lation of the new terms is possible incorporating Egs.(13.48)-(13.49). Coordinate r in terms of
¢and n parameters is given by Eq.(13.48). The formula of the stiffness matrix is:

11
=27 [B"C"Bridadn. (13.58)
-1-1
To provide the vector of forces we need three vectors, the first one is:
1 1
EepzzﬂmT_prJdg,Eep=2anErJdn, (13.59)
-1 _1

depending on the fact that which one of the element edges is loaded by the line load,
moreover the second and third vectors are:

11
Fo=27[[N"qridédn, (13.60)
-1-1
El—c = [Frl le I:r2 FZZ Fr3 Fz3 l:r4 I:24]' (1361)

Finally the total force vector is:

Fo=F,+Fy+F.. (13.62)

In the sequel we present an example for the application of the element.
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13.5. Example for the application of axisymmetric isoparametric quadrilateral
element

Solve the problem of the rotating disk of which analytical solution has been presented in sec-
tion 11.6.2 using two isoparametric quadrilateral elements! The finite element model of the
disk is shown in Fig.13.3.
a. The angular velocity of the disk is @ = 880,5 rad/s, verifiy if the disk gets loose!
b. Calculate the stresses in that case when there is no revolution, i.e.: @ = 0, but there is
an overlap of §=0,02-10° m!

Given:
r,=0,02m, rk=0,2m, h=0,04m, p=7800 kg/m*® E=200GPa, v=0,3.
llz
o©
& i -
j ® @ h
1 3l 8, ¢ »
r
o
(rHy2 "
rl

Fig.13.3. A simple finite element model of a rotating disk.

We give the distances in [m] and the force in [N]. The nodal coordinates are:

node rim] | z[m] node rim] | z[m]
1 0,02 0 4 0,11 0,04
2 0,02 0,04 5 0,2 0
3 0,11 0 6 0,2 0,04

The element-node table becomes:

element node
1 1|13]|41|2
2 3|/5|6]|4

In the knowledge of the boundary conditions the structural vector of nodal displacements is:
U'=fu, 0 u, w, u;, w, u, W, U W, Ug W] (13.63)

The constitutive matrix using Eq.(13.14) is:
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269,2 11538 11538 O

11538 269,2 11538 O

- 11538 11538 2692 O
0 0 0 76,9

(@)

-10° Pa. (13.64)

The elements of the Jacobi matrix must be produced for both elements based on
Eq.(13.57):

39 = T @+ Qo + @, - @i} = 0045, (13.65)
0 = @z + Aoz, + @z, - @z =0,
I = QO @O + QO+ A= 1) =0.

I = Q- 82 - 0+ 97, + W+ 97, + (- )2} =002.
and:

3P = 3@ + L)t + @), — (L)} = 0045, (13.66)
I =3 Wz + Qo2 + Lz, - @ )z} =0,
I =3 A- 5~ A+ O + L+ O + 0=} =0,

I = U807~ @ )2, + 1+ D7, +U-9)7,} =002

The elements of the Jacobi matrix, and so the determinant is constant and identical for
both elements:

JO =33 =3=0,0009. (13.67)

Continuing the calculation we compute the derivatives of interpolation functions with re-
spect to r and z in accordance with Eq.(13.56). Due to the identical Jacobi determinants of the
elements, the derivatives of the interpolation functions will be identical too. Therefore, we can
omit the superscripts of the elements of Jacobi matrix:

www.tankonyvtar.hu © Andras Szekrényes, BME




13. Modeling of axisymmetric state by FEM software systems 237

@ (2)
% - % - %(J22 ‘2—';'1 - le%) — 5555565 +5,555557, (13.68)
n
(6] (2)
Ny =N ™ _ Ly, Moy Noy_ 5 5ne55_ 555555y,
o o 1P oy
@ (2)
MN™ N _L1g, My, Msy 556685 +5,55555
o o 1°%aE oy
@ (2)
N7 _ ML, M5 MNey_ 5655555555565,
o o 1% oy
@ (2)
% :% :%(_Jﬂ%u JM%) — _125+125¢&, (13.69)
n
(6] (2)
N7 N, Ly Ny g MNoy_ 155 105,
a2 a1 MaE Moy
@ (2)
N, N, Ly, Mg Moy g95,125¢,
a2 a3 e oy

(€} (2)
N, = _ N _ Ly MNo g Nay_ 155 105¢,
a2 a3 %ee Ty

Coordinate r should be given for both elements separately based on Eq.(13.48):

r® =N, +N,r, + N,r, + N,r, = (13.70)
=0,005(1-77)(L— &) +0,0275(L—7)(1+ &) + 0,0275(1+ ) (L + &) + 0,005(1 + 77) (1 — &),

r® =N,r, + N,r, + Nor, + N,r, =
=0,0275(1—77)(1—- &) +0,005(1—77)(1+ &) + 0,005(1+ 7)(L+ &) +0,0275(1 + ) (L - &),

where we considered also the element orientation (the local numbering of the nodes of ele-
ment). As a next step, we provide the strain-displacement matrix for each element using
EQ.(13.55). The elements of matrices are the functions of £ and 7, which are extremely com-
plicated, therefore we do not give them here. The element stiffness matrices can be calculated
using the B matrices:
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11
K, =27[[BYCTBYr®3dedny =
-1-1

(4062 423 134 302 -1700 -1510 -280 785 |
5857 —-483 3658 —2417 -4356 -7,85 -5159
6583 -3504 -1466 1571 -17,00 2417 (13.71)

_ 11567 -1571 -108,69 1510 —4356 1N
65,84 35,04 1,34 483 m’

11567 -3,02 36,58

40,62 —4,23

i 58,57 |

11
K,,=27[ [B®"CTBPr®Jdadn =

=€

-1-1
(82,40 31,42 -853 8,46 —-46,41 -42,29 -30,85 2,42
179,20 -10,27 87,23 -5135 -10387 -2,42 -162,56
116,71 -62,23 -38,16 2115 -46,40 5135

|- . . 23630 -2115 -21965 4229 -10388| N
. . . . 11671 6223 -853 10,23 m
23630 -846 87,23
82,40 3142
179,20 |

As the node numbering does not correspond to the element orientations we need to rear-
range the element stiffness matrices in accordance with the numerals of degrees of freedom.
Let the vector of nodal displacements be equal to:

un =, wou, w, ou wy U, w,], (13.72)

.
Qezz[us W; u, W, U; W; Ug We]-

Corresponding to the former, the original element stiffness matrices are rearranged as:
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k:ll kilZ k:l? k:lB kilS k:14 kilS kellf;
k(:eLZl kiZZ k(327 k(:eLZB ki23 ke:3L24 k;ZS k:ZG
kelYl k:72 ki77 k9178 k:73 kG:JL74 k;75 k:76
— k:81 k;LBZ k:87 k:88 k383 k:84 k;LBS kiSG (13 73)
—el kl kl kl kl kl kl kl kl )
e31 e32 e37 e38 e33 e34 e35 e36
k(:el4l ki42 k(:el47 ki48 kel43 k(:9L44 k§45 k:46
kiSl k(:elSZ I(;57 kiSB k:SS k9154 k(:9L55 kti.LSG
kiGl k:ﬁz kim k(§68 kges kim k:GS k:GG_
Based on the nodes of the second element the rearrangement is made as:
kezll ke212 k13217 keZlB ke213 keZlA k6215 kezl6
k6221 ke222 k6227 k6228 kezZS k6224 keZZS kezZG
ke271 k8272 k63277 ke278 k€273 ke274 k8275 kez76
— kezBl k6282 k8287 kezBS kez83 k8284 kez85 keZS6 (13 74)
— kt3231 kez32 kezS7 kezSB ke233 kezS4 kez35 kez36 l
kez41 ke242 kez47 k6248 k63243 kez44 kez45 kez46
keZSl k6252 k63257 kezSB k8253 k€‘254 k6255 keZSﬁ
_ke261 k9262 ke-267 ke:268 ke*263 ke264 k9265 keZGG_

Now, we can construct the structural stiffness matrix. The mutual nodes are the third and
fourth ones. Accordingly, the combination of the two matrices results in:

i

ell

kl

e21

kl

e71
1
ke81
1
ke31
1
ke41
1
ke51
1
ke61

0

I=
I

0
0
0

kl

el2

kl

e22

kl

e72
1
keBZ
1
keSZ
1
ke42
1
keSZ
1
ke62

0

0
0
0

kl

el?

kl

e27

kl

e77
1
k987
1
keS?
1
k647
1
k957
1
keG?

0

0
0
0

1
kels
1
keZS
1
ke78
kl

e88

1
kel3
1
ke23
1
I(e73
kl

e83

ke138 k8133 + kezll
kel48 kel43 + ke221
k8158 k9153 + k827l
k9168 k9163 + keZSI

0

0
0
0

2
ke31

2
ke4l

2
k951
kZ

e61

kl
kl
kl
k1

k5134 + ke212
k(§44 + kezZZ
k;54 + k8272
kiGA + keZBZ

2
ke32

k2
k2
k2

eld

e24

e74

e84

e42

e52

€62

1
kelS
1
k925
1
ke75
kl

e85

k§35 + k63217
kel45 + k6227
kiSS + |(53277
k:BS + k6287

2
ke37

2
ke47

2
k957
k2

e67

kl

el6

kl

e26

kl

e76
1
keSS
1 2
keSG + kel&
1 2
ke46 + keZS
1 2
ke56 + ke78
1 2
keBG + ke88
2
ke38
2
ke48
2
keSS
kZ

©68

(13.75)

We note that the finite element codes provide the structural stiffness matrix using the ele-
ment-node table. The numerical values can be obtained using Eq.(13.71). The force vector
consists of the vectors of body and concentrated forces. The density vector of the body force

IS:
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a, ,ol’a)2 Lo | pr @ p? @) ,ol’(z)a)2
= = y and = y = f 1376
g { 0 } [ 0 } a { 0 d 0 ( )

from which we have:

11
j j N"q¥r®Jd&n=[01 0 234 0 234 0 101 0] -10° N, (13.77)
-1-1

11
ED =27[[N"q®r®Jdady =[686 0 1004 0 1004 0 686 O] -10° N
-1-1

Similarly to the stiffness matrices, the rearrangement is required also in the force vectors
according to the local node numbering:

FO] [101] [F@7] [686]
FES; 0 FeE)ZZ) 0
Fo | |10l F2| | 686
F® 0 F@ 0
E&) = e?s = -10° N and Egt) = e?f) = .10° N. (13.78)
FO | 234 F@ | |10,04
Fa | | o Fa| | o
Fie| | 234 F2 | |10,04
|Foe) L O] Fee] L 0 |

The structural force vector is calculated as the sum the two former vectors:
Fi+ Fl+ R+ RO
PR RS +FY 4R

=[,01 0 1,01 0 920 0 920 0 1004 0 10,04 0]-10°N

E =[S RO R RY FORS R RR- (13.79)
The vector containing the reaction is:

F.

=0 R, 00 00O00O0O0O0O0 O] (13.80)

The structural force vector is:

E=F,+F,. (13.81)
Finally, the structural equation is:
KU =F. (13.82)
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The system of equations consists of twelve equations. From the 1% and 3™-12™ equations
we determine the nodal displacements. The solutions are:

u, =u, =0,0168-10° m,w, =0,w, =-0,0149-10° m (13.83)
u, =u, =0,0368-10° m,w, =-0,00365-10° m,w, =-0,0113-10° m,
U = U, =0,0440-10° m,w, =-0,0051-10° m,w, =-0,0098-10° m,

It is seen that if the disk rotates with maximal angular velocity, then in accordance with
the finite element model we do not reach the overlap value of 0,02-:10"° m calculated from the
analytical model, i.e. the disk will not get loose. This disagreement can be explained by the
coarse mesh of the finite element model, which consists of only two elements. The deformed
shape of the structure compared to the original state is shown in Fig.13.4. Based on the dis-
placement solutions we construct the nodal displacement vectors of the elements:

!elz[ul 0 u; w; u, w, U, Wz]’ (13.84)

.
Qezz[us W; Ug Wy Ug Wz U, W4]-

In the former two vectors we followed the original order of the local node numbering, be-
cause matrix B was constructed in accordance with this fact. The vectors of strain components

for both elements are calculated using matrix B :

£¥ 22(1)991’ @ =By, . (13.85)

The vector of stress components are:

o =Ce®, g? =Cce®, (13.86)
A
z
W,
W w, 6
2 4:-\ A 6:3 Y
s F T ———————— Tt
| |
| | |
[ W3|' [ :
1(: .:-3<:. e — éc:__ at >
A
T r
u u
U, e 3, < =L < W

Fig.13.4. Deformed shape of the finite element model of rotating disk.
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The results are summarized in Tables 13.1 and 13.2. In the tables we listed the nodal solu-
tions. Element solutions are possible to calculate only at mutual nodes 3 and 4 by averaging
the nodal solution. According to Table 13.2 it is seen that the dynamic boundary conditions
are violated, concretely speaking the radial stress at nodes 1, 2, 5 and 6 is not zero. The reason
for that is the low resolution of the mesh and the linear interpolation. On the contrary, the tan-
gential stress agrees quite well at the inner and outer boundaries with the results presented in
Fig.11.10a. The example was verified by the code ANSYS 12.

element node & [-107] & [-107 & [-107] %, [-107]
1 0,222 0,840 -0,373 -0,041
1 2 0,222 0,840 -0,373 0,041
3 0,222 0,335 -0,191 -0,041
4 0,222 0,335 -0,191 0,041
3 0,080 0,335 -0,191 -0,016
) 4 0,080 0,335 -0,191 0,016
5 0,080 0,220 -0,118 -0,016
6 0,080 0,220 -0,118 0,016

Table 13.1. Strain components in the rotating disk in the case of @ = 880,5 rad/s.

element node o [MPa] o [MPa] o, [MPa] %, [MPa]
1 113,7 208,7 22,1 -3,1
1 2 113,7 208,7 22,1 31
3 76,4 93,7 12,9 -3,1
4 76,4 93,7 12,9 31
3 38,1 77,3 -3,5 -1,25
) 4 38,1 77,3 -3,53 1,25
5 334 54,9 2,97 -1,25
6 33,4 54,9 2,97 1,25

Table 13.2. Stresses in the rotating disk in the case of w = 880,5 rad/s.

In that case, when there is no rotation the structural vector of nodal displacements becomes:

U'=[6 06 w, up w, u, w, U; W, U, W] (13.87)
The stiffness matrix remains the same, the vector of forces is:

Fi=[F, F, F, 0 0 0 0 0 0 0 0 O] (13.88)
The solutions are:

U, =u,=002-10%m,w, =0,w, =—0,0049-10° m, (13.89)

u, =Uu, =0,0055-10 m,w, =0,0056-10° m,w, =—0,0020-10"° m,
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U, = U, =0,0038-10"° m,w, =-0,0022-10° m,w, =-0,0027 -10° m.

Table 13.3 contains the stresses in the disk when there is no rotation. Compared to the re-
sults of the analytical solution the differences are quite large, which can be explained again by
the low resolution finite element mesh and the linear interpolation.

element ode o [MPa] o [MPa] o, [MPa] %, [MPa]

1 58,1 236,6 63,9 -2,5

1 2 58,1 236,6 63,9 2,5
3 -34,8 -2,3 -6,7 -2,5
4 -34,8 -2,3 6,7 2,5
3 3,2 13,9 9,6 0,6

2 4 3,2 13,9 9,6 -0,6
5 -4.5 1,4 -3,6 0,6
6 -4,5 14 -3,6 -0,6
Table 13.3. Stresses in the disk in the case of @ = 0.
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14. MODELING OF THIN-WALLED SHELLS AND PLATES. IN-
TRODUCTION TO THE THEORY OF SHELL FINITE ELEMENT
MODELS

14.1. Plate and shell theories

Plane structures are called plates if the thickness of structure is significantly less than the oth-
er dimensions, moreover if the structure is loaded perpendicularly to its plane. The plate can
be bounded along its sides by an optional geometrical object; the kinematic boundary condi-
tions can be various (point-supported, rigidly or elastically supported along the sides, simply
supported, etc.) [1]. The plate can be considered as the extension of a beam in two dimen-
sions, because both implies the dominance of the bending load and most commonly the load
Is introduced transversely. Nevertheless, there are significant differences too, since e.g. the
flexure of the beam can be either straight or curved, on the other hand the midplane of a plate
is always flat. If the midplane of the plate is curved then it is no longer plate but a shell [2]. In
the sequel we overview the most important details of the theory of plates and shells.

14.2. The basic equations of Kirchhoff plate theory

The Kirchhoff plate theory is often called the theory of thin plates. We note that if the plate is
relatively thick then the transverse shear deformation can be considered too. The relevant
plate solution is provided by the Mindlin plate theory [1].

14.2.1. Displacement field

Based on Fig.14.1 we investigate the displacement of a point of the midplane of an elastic flat
plate [2,3]. The displacement field can be captured by three components: the transverse dis-
placement along z and the rotations about x and y, i.e.:

pz
u=|-oz|, (14.1)
w

where o = a(X,y) is the rotation about axis x, = f£(x,y) is the rotation about axis y and w =
w(x,y) is the transverse displacement.

w(x,y)| midplane of the plate

Fig.14.1.Displacement of a point in the midplane of a flat plate.
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14.2.2. Strain components

Assuming small strains we can calculate the strain components by using the strain-
displacement equation defined in section 11 by Eq.(11.14) [1,4]:

£, =%=ﬂyxz, £y =%=—a’yz, g, =0, (14.2)
_8_u+@_(ﬂ -a,)z —a—u+a—w—,8+w —@+8—W——a+w
Tw Ty Tox TV T AR e T Ty T =5 Ty v

where — for the sake of simplicity - the derivatives with respect to x and y are indicated in the
subscript. In the sequel we assume that the cross section planes remain flat and the outward
normal of each cross section is perpendicular to the cross section plane after the deformation.
This assumption is called Kirchhoff-Love hypothesis [1]. From the latter it follows that in the
planes perpendicular to the midplane of the plate the shear strains are equal to zero:

Ye=Vp=0=>pB=-w,and a=w,. (14.3)
Utilizing the former we obtain from Eq.(14.1) that:

_\N,XZ
u=|-w,-z|. (14.4)

The strain components become:

Ex="Wy, 2,8 =-W, 2,7y, =—2W, -Z. (14.5)

y Xy

Consequently in the midplane points & = 0. According to the Kirchhoff plate theory under
the assumption of small strains the components of the displacement and strain field can be
defined by w(x,y) .

14.2.3. Stress field, forces and moments in the midplane
Assuming plane stress state we express the stress components by Eqgs.(11.18) and (14.5):

o, zliz[gx +V8y)]=—E1(WXX +tv-w )-z=A-z, (14.6)
-V
E

% =1—V2 [gy +V€x)]=_EL(W,yy +v-w,)-z=B-z,
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. __E
Y20 +v)

Vo =—EQ-v)W, -z=C-z,

where E; = E/(1-V%), A, B and C are constants. Similarly to the theory of beams subjected to
bending the stress distributions are given by linear functions along the thickness direction, as

it is shown by Fig.14.2.
E

midplane 'of the plate

et )

Fig.14.2. Distribution of the stresses along the thickness direction of a differential plate element.

The stress couples in the midplane of the plate are calculated by integrating the stresses over
the thickness [3]:

t/2 t/2
M, = Iaxzdz= J.Azzdz=—IlE1(W’xx+v-way), (14.7)

-t/2 -t/2

t/2 t/2
M, = _[ayzdz= J.Bzzdz=—I1El(va+v~wlxx),

/2 —t/2
t/2 t/2
2
M, =- Irxyzdz =— _[CZ dz=1LE Q-v)w,,
/2 —t/2
t/2 t/2

M, = Iryxzdz: Iszdz:—IlEl(l—v)W,Xy,

yX
-t/2 -t/2

where M is the bending moment along axis x, My is the bending moment along axis y, Myy
and My, are the twisting moments. Moreover:

= (14.8)
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which is — similarly to beams — the second order moment of inertia of the cross section. The
stress couples in the midplane of the plate are demonstrated in Fig.14.3a. The relationships
between stresses and stress couples (bending and twisting moments) based on Egs.(14.6) and
(14.7) are:

M
o,=—*2,0,=—17,1,, =—1. (14.9)

For the equilibrium of a differential plate element transverse shear forces are required.
Transverse shear forces are shown by Fig.14.3b and they can be calculated using the follow-
ing formulae [1,3]:

t/2 t/2

Q= [r.0z,Q = [r,dz. (14.10)

-t/2 —t/2

d.

\\\ ///
X S =
5
\’S“‘\ -
ey ///
My e M

Fig.14.3. Stress couples in the midplane of a thin differential plate element (a) and its equilibrium in
the case of transverse shear forces and distributed load (b).

14.2.4. The equilibrium and governing equation of thin plates

The homogeneous equilibrium equation with respect to the stress field has already been intro-
duced in section 11. [4]:

o-V=0, (14.11)

of which first component equation is:

0
do, " Ty +asz -0. (14.12)
OX oy 0z

Integrating the equation with respect to z yields:

J.i Azdz+_|.£Czdz+rXZ -70 =0, (14.13)
ox oy
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and:
9 1Az2 +2 1Cz2 =70 —7,, (14.14)
ox\ 2 oy\2
finally:
9 1GXZ +2 1Txyz =70 —7,. (14.15)
ox\ 2 oy\ 2

Next, we integrate Eq.(14.15) within the ranges of —t/2 and t/2:
a t/2 8 t/2 t/2
—( | oxzdzJ+—( | rxyzdzj=2 [@) -7, (@), (14.16)
OX -t/2 6y —t/2 -t/2

where 7 is an integration constant. A possible solution for 7, which satisfies even the dy-
namic boundary conditions is [3]:

2
r, =70 (1— ﬂ} . (14.17)

In fact Eq.(14.17) gives the difference between the area under a rectangle and a parabola,
which is 1/3 of the total area. Accordingly, if it is multiplied by two, then mathematically we
obtain the area under the parabola, that is, from Eq.(14.16) we have:

t/2 t/2

2 [(e) ~7, ()2 = [r,202=Q,, (14.18)

-t/2 —-t/2

which is not else than the shear force along axis x given by Eq.(14.10). Taking Eqgs.(14.6),
(14.9) and (14.18) back into the equilibrium equation we obtain:

oM
oM, My _Q -0, (14.19)
OX oy

The second component equation and the corresponding equilibrium equation in terms of
the stress couples and transverse shear force are:

Xy + y + yz :0' (1420)

oM oM
YX+ Y_Qy:()’
OX oy
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and:

M, =-M,. (14.21)

Xy yX

From the third component equation of Eq.(14.11) we obtain the following:

or
asz + yz + aGZ — 0 (1422)
OX oy 0z

We integrate Eq.(14.22) within the ranges of —t/2 and t/2 with respect to z:

t/2 t/2 82’ t/2
I %dz+ _[ Y dz + I do, dz=0, (14.23)
—-t/2 8X —t/2 —t/2 az

and:
a t/2 a t/2 t/2
— [rdz+— [r,dz+ [do, =0, (14.24)
aX—t/Z 8y—t/2 -t/2

Based on Eq.(14.10) the first two terms are the shear forces Qy and Qy, the third one is — in
accordance with the dynamic boundary condition — the intensity of the distributed load, p,
perpendicularly to the midplane, i.e.:

an + aQy

-0, 14.25
ax ay+|o ( )

Summarizing the equilibrium equations we have:

Mx,x _Mxy,y _Qx :Ol (1426)

My’y+Myx’X—Q =0,

y
QX’X +vay +p=0.

To derive the plate equation we rearrange the first two equations:

(14.27)

Taking them back into the third of Eq.(14.26) we obtain the following:
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Miw—2My,, +M,  +p=0. (14.28)
By the help of Eq.(14.7) we have:
—LE W +V W + W VW + 20— v)W ) =—P, (14.29)

which, after a simple rearrangement have the form of [5]:

o'w _ o'w o'w p

+2 + = , (14.30)
ox* ox’y? oyt LE
or:
V2V2W(X, y) = . (14.31)
IlEl

Consequently the governing equation is a fourth order partial differential equation with the
proper kinematic and dynamic boundary conditions. That means that the problem of plates
subjected to bending is a boundary value problem.

14.3. Finite element equations of thin plates
For the finite element solution of the problem of thin plates subjected to bending we collect

the strain and stress field components into vectors and we assume plane stress state [1,6]:
"=
§ = gx"c"y’yxy]’ (1432)
"=
O =|0,,0,Ty ]
Based on Eq.(14.5) the strain components can be written as:
& =-1IkK, (14.33)

where x is the vector of curvatures:

KX W,XX
K=Kk, |=| W, | (14.34)
Ky 2w
Incorporating the material law we formulate the vector of stress components as:
c=C"¢. (14.35)
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The strain components can be obtained by a two-variable function w(x,y), the finite ele-
ment interpolation of the w(x,y) function depends on the element type and the chosen degrees
of freedom, but it can always be formulated in the form below:

w(x,y)=A"2, (14.36)

where A is the vector of unknown coefficients, A is the vector of basis polynomials. The vec-
tor of nodal displacements is:

u,=MA, (14.37)
which, for example in the case of a triangle element with three nodes becomes:
QZ = [Wl a oW, a B, W o ﬁs] (14.38)

In Eq.(14.37) matrix M can be calculated based on the approximate w(x,y) function and

Eq.(14.1). The o; and £ parameters are the rotations about the axes x and y in the correspond-
ing nodes, where i =1, 2, 3. From Eq.(14.37) we have:

A=M"u,. (14.39)

Generally speaking, the vector of strain components can be determined using the strain-
displacement matrix:

£ =Bu,, (14.40)

where Eq.(14.40) can be reformulated utilizing Egs.(14.5), (14.37) and (14.39) as follows:

e=RA=RMu,, (14.41)

where matrix R establishes the relationship between the vector of strain components and

the vector of unknown coefficients, its dimension is element dependent. Consequently we
have:

B=RM™. (14.42)

Following the definition by Eq.(12.9) we formulate the element stiffness matrix as:

K, =[B'C" Bdv. (14.43)

V,

e
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The dimension of the element stiffness matrix depends on the number of nodes and the
number of nodal degrees of freedom. Similarly to the plane membrane element, the vector of
forces is composed as the sum of several terms. The most common is the distributed (surface)
load and concentrated force. By formulating the work of external forces we derive the force
vector related to the distributed load:

(14.44)

ep?

W, = [p-w(x,y)dA=u; F
A

pe

where p is the intensity of the distributed load perpendicularly to the midplane of the plate,
w(x,y) is the approximate function of the deflection surface according to Eq.(14.36). The vec-
tor Fep can be determined based on the vector of nodal displacements. In the case of concen-
trated loads, considering e.g. a triangular shape plate element with three nodes, at each node
there can be a force perpendicularly to the plate surface and even concentrated moments act-
ing about the x and y axes, respectively:

El—c = [le M x1 M yl FZZ M x2 M y2 Fzs M X3 M y3 ] . (1445)
Thus, the vector of forces becomes:
Fe=Fq+E.. (14.46)

Eventually, the finite element equilibrium equation for a single element and for the whole
structure is:

K.u.=F.,KU=F. (14.47)

—e—¢€ —e 1 ==

Similarly to the plane membrane elements there is large number of plate bending ele-
ments. These elements will be reviewed in section 15.

14.4., Basic equations of the technical theory of thin shells

In that case when the midplane of a thin-walled structure is not flat but curved, then we talk
about shells. The analytical investigation of shells requires considerably complicated mathe-
matical computations. Therefore in the sequel only the most important equations will be pre-
sented.

14.4.1. Geometrical equations

Due to the fact that the midsurface of shells is curved, we need to introduce curvilinear coor-
dinate systems, as it is shown by Fig.14.4.
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point in the midsurface i
Y j of shell

Fig.14.4. Coordinate lines and unit basis vectors of the midsurface of a shell.

The two-parameter representation of the midsurface of shells can be formulated in the form of
a vector equation [1,4]:

R=R(q;,9,), (14.48)
where:
X =X(a,,9,), Y =Y(q,,0,), Z=2(q;,9,), (14.49)

are the global coordinates, R is the position vector of a point in the, g; and g, are the general
or curvilinear coordinates of the surface (see Fig.14.4). If the parameters take on the values q;
= constant and g, = constant, we obtain the q; and g, coordinate lines. The tangent unit vec-
tors e; and the arc lengths dS; of the coordinate lines are:

€ :i@:iﬂiv dS; = H;da;, (14.50)
Hi aQi Hi

where:

Hi = ‘B’i‘l I = 11 21 (1451)

are the so-called Lamé parameters [1] or metric coefficients [4]. In the followings we assume
that the local coordinate axes are mutually perpendicular at each point, and the curvilinear
system is orthogonal, i.e. e;-e, = 0. The outward unit normal vector of the midsurface be-
comes:

n=e, xe,. (14.52)

The triad of unit orthogonal vectors [e1, €2, n] determines an orthogonal curvilinear coor-
dinate system at an actual point P. The curvature and the torsion of coordinate lines are given
by the Frenet formulae [1,7]:
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2 2
i:_n.a§:_n.iza52_%D.B“’i:1’2, (1453)
RI aS| Hi aql Hi ’
1 o’R 1

=—N-: —=-N-
R, 8505, — H,H,

B,lZ’

where R; and R; are the radii of curvature. If R, = 0, then the g; and g lines are the lines of
principal curvatures on the midsurface, moreover the directions of the unit basis vectors e;
and e, are the principal directions. The curvature of the midsurface is a tensor quantity. If the
directions of vectors e;” and €’ are not the principal directions, then the angle, which deter-
mines the principal directions can be obtained by:

t92a = ﬂ (14.54)
1/R, +1/R,
The values of the principal curvatures are [1,7]:
2 a2 H

i:cos'a+3|n‘a+sml2a, (14.55)
Rl R1 RZ RlZ

1 sina cos’a sin2a 1
— =t ————, —=0.

RZ Rl RZ R12 R12

In the followings we investigate the special case, when the directions of unit basis vectors
coincide with the principal directions. The derivatives of the unit basis vectors of the coordi-
nate system on the midsurface are [1,4]:

H H;,

o =g _Hip g e n =i i=j,i,j=12 (14.56)
il ____j___l Sij :___j1 2 :_—j’ y L) — 4 & .
H, R H; R,

Point P” is located on a surface parallel to the midsurface and the distance of point P~ from
point P is given by coordinate z measured along the normal vector n. Based on Fig.14.4 the
position vector of point P is:

R =R+zn. (14.57)
The unit vectors are independent of coordinate z, viz.:
=g (14.58)

The derivative of the position vector of point P* can be written as:
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R: = B,i +in; = Hi (1+Ri)§i . (14'59)

Consider the followings:

H = Hi(1+Ri) and dS; =dsi(1+Ri), i=12. (14.60)

which are the Lamé parameters and arc lengths with respect to point P*.

14.4.2. Stress resultants and couples, equilibrium equations

Fig.14.5 shows the stresses on the boundary planes of a differential shell element, while
Fig.14.6 presents the stress resultants and couples (internal forces and moments) on the mid-
surface of the differential shell element with dimensions of dS;xdS,.

Fig.14.5. Stress components on the boundary planes of a differential shell element.

T n midsurface of shell Tn
Z

Fig.14.6. Internal forces and moments in the midsurface of a differential shell element.

We must consider the relationship between the arc lengths dS; and dS;~ given by Eq.(14.60)
when we establish the relationship between the stresses acting on the differential shell element
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with thickness t and the internal forces, moments on the midsurface of the shell element. The
stress resultants and stress couples acting on the curve with outward normal e; are:

t/2 t/2 t/2

VA VA YA
Ny, = J 611(1+R—2)d2, Ny, = J T12(1+R—2)d2 # Ny, Q=- I 2'13(1+R—)d2,

—t/2 —t/2 —t/2 2

t/2 t/2
My = | allz(1+Ri)dz, M= | rlzz(1+Ri)dz¢M21, (14.61)
2 2

-t/2 —t/2

where Nj; is the in-plane normal force, N1, and N; are the in-plane shear forces, Q; is the
transverse shear force, My; is the bending moment, M, and My; are the twisting moments,
respectively. It must be taken into consideration that although the reciprocity law of shear
stresses implies 71, = 71, In the equations above N1, # N2; and Mj, # My, which can be ex-
plained by the fact that the radii of curvatures are in general not equal to each other, i.e.: Ry #
R2. The development of equilibrium equations establishing the equilibrium between external
loads and internal forces and moments in the shell structure is also very complicated. There-
fore we present only the resulting equations. The equilibrium equations in the case of stress
resultants are [1,7]:

Q
(H2N11),1 + (H1N21),2 + N12H1,2 - N22H2,1 - Hle(El"' pl) =0, (14-62)

1

(Hlez),l + (Hlsz),z + Ny H, =Ny Hy, = Hle(% +p,)=0,

2

Nll M_ —
(Hle),1+(H1Q2),2+H1H2(E+ R ps) O’

2

where p; and p, are the tangentially distributed loads along directions 1 and 2, ps is the distri-
buted load perpendicularly to the shell midsurface. The equilibrium equations in the case of
stress couples and moment of stress resultants are:

(H2M12),1 + (Hlez),z + M21H2,1 - M11H1,2 - HleQz =0 ) (14-63)
(H2M11),1 + (H1M21),2 + M12H1,2 - M22H2,1 + H1H2Q1 =0,

MlZ M21

Rl R2

+N;,,—N,, =0, (14.64)

where in the subscript the comma and the number refer to the differentiation with respect to
the corresponding coordinate.
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14.4.3. Displacement field, strain components

Based on Fig.14.7 the vector of displacements and rotations in a point P on the shell midsur-
face can be written as:

u=ue, +Ve, +wn, é = pie, — fre, + f5n. (14.65)

,Iﬂ

pomt on the midsurface
of shell

Py
%/u// %2

Fig.14.7. Displacement of a point on the midsurface of a thin shell.

In accordance with the kinematic hypothesis of the shell theory the components of vector u in
a point P out of the midsurface are [1,7]:

U =u+pBz, VvV =v+B,2, W =w, (14.66)

I.e. the line of material points, which is perpendicular to the shell midsurface remains perpen-
dicular during the deformation. The equations describing the in-plane strains and changes in
curvature are [1,7]:

H
£, = iul ey Ly, (14.67)
Hl ’ HlHZ Rl

1 H
K11 H Ba Hi—lz B
1
H,,
ﬁzz H, H —=_ B,
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SCATARUATAINFRAF
12 — 3
H,\ H, 2 H, {H,; 1 R, R

where & and & are the in-plane strains in the directions of g; and g, coordinate lines, i, is the
shear strain related to the change of angle between unit vectors e; and e, during the deforma-
tion, x11 and x», are the changes in curvatures in the directions of q; and g, parameters, xi is
the twisting curvature. The shear strains related to the unit normal and unit vectors e;, e; are
[1,7]:

u 1 \Y; 1
Y13 :_E+H_1W'1 + B Vs :_R_2+H_2W'2 + ;- (14.68)

We assume that during the deformation of shell an actual line of material points remain
perpendicular to the curved shape of shell midsurface, accordingly the shear strains given by
(14.68) are equal to zero. The kinematic hypothesis of shell theory together with the one men-
tioned before is called the Kirchhoff-Love hypothesis. Under theses assumptions we have:

u 1 v 1
=———W,, =———W,. 14.69
By R H, M P R H, " (14.69)

In other words the additional transverse shear deformation is neglected (similarly to Kir-
chhoff’s theory of thin plates). The rotation about axis z can be formulated by the following
expression [1,7]:

1
2H . H,

183 = [(HZV),l - (Hlu),z] . (14.70)

Nevertheless, in most of the cases the rotation about z is negligible; therefore it is not con-
sidered in the equations.

14.4.4, Approximations within the technical theory of thin shells

The shell is considered to be thin if the thickness is relatively small compared to the smaller
radius of curvature, viz. [1]:

L, (14.71)

2

Consequently, the Lamé parameters and the arc lengths on the midsurface and out of the
midsurface are approximately equal, which leads to:

H =H, and: dS; =dS,,i=1,2. (14.72)

Accordingly, Eq.(14.61) can be simplified significantly:
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t/2 t/2 t/2

Nyy= [oudz, Ny = [rd2=N,, Q =- [r,0z, (14.73)
—t/2 —t/2 ~t/2
t/2 t/2

M, = jallzdz, M, = Irlzzdz:MZl.

-t/2 -t/2

It is seen that in this case the transverse shear forces and torsional moments are equal to
each other, which violates the equilibrium equations given by Eq. (14.64). This approximation
Is permitted within the technical theory of thin shells.

14.5. Major steps in the finite element modeling of shells

In the course of the finite element discretization of shells — similarly to the plane and plate
problems — we proceed the interpolation of the geometry and the displacement field [1,7]. The
vector of displacement and rotation components in a point located on the shell midsurface is:

u=[u v owl, (14.74)

ET:[ﬂl b, ﬂ3]

The components of these vectors are not independent of each other. From Eq.(14.67) we
calculate the in-plane strains and the changes in curvature:

§T = [811 Eyp 2;/12], (14.75)
ET = [K'll K,y 21(12].

We collect the in-plane forces and moments into a vector:
N" =[N, N,, N,J, (14.76)
M' =M, M,, M,].

Transverse shear forces Q;, Q are not considered in the calculation of the deformation.
Finally the vectors of the surface loads and concentrated forces and moments are:

p' =[p, P Pl (14.77)
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where p contains the distributed loads in the directions of coordinate lines g; and g, and also
the distributed load perpendicularly to the shell midsurface, oy and pw contain the concen-
trated forces and moments acting in the nodes. Using the vectors given by Eqgs.(14.75)-(14.77)
the total potential energy is formulated as:

I, = %j(gTNwT M)H,H,da,da, - [u" pH,H,dg,da, - [’ p, + A" p,,)dS - (14.78)
A A S

We assume that the material of the thin shell is linear elastic, homogeneous and isotropic.
Then, the vector of in-plane forces and vector of moments can be calculated as follows:

N=tC"e¢, M =t—Cs”_ (14.79)
where the constitutive matrix assuming plane stress state is
e 1 v 0
str — 5 v 1 0 ) (1480)
= 1l-v 1-v
0 0 —
2
Accordingly, Eq.(14.78) becomes:
:_j(t Cs"g+EE C*'x)H,H,dqg,dg, +
(14.81)

_IH _leszchdqz _I(QTBN +ET£M )ds,
A S

Utilizing the definition of the element stiffness matrix and the vector of nodal forces we
can derive the expression below:

M, =>u;K u,-u.F,, (14.82)

from which the finite element equilibrium equation for a single element (the first of
EQ.(14.47)) can be derived. As a next step we summarize the potential energy of each ele-
ment:

M=31,=2U'KU-U'F, (14.83)

and finally applying the minimum principle of the total potential energy we obtain the struc-
tural equilibrium equation:
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KU=F. (14.84)

For the finite element modeling of shells there is very large number of element types. Not
only the flat shell elements, which give more accurate result under high mesh resolution, but
also the curved (e.g. cylindrical shell element) and doubly-curved shell element types are
available, which approximate better both the geometry and the displacement field using the
same element number. The different plate and shell elements are discussed in sections 15-17.
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15. MODELING OF IN-PLANE THIN-WALLED SHELLS UNDER IN-
PLANE AND TRANSVERSE LOAD BY FINITE ELELEMT METHOD
BASED SOFTWARE SYSTEMS

15.1. Plate elements subjected to bending

Flat plate elements are suitable to determine the internal forces, stress resultants and stress
couples in plate shape structures. The plate element is the extension of beam elements so that
bending, shear and torsion take place in two orthogonal planes involving some interactions.
Similarly to the plane membrane elements, the triangle and quadrilateral shape elements are
available for the modeling of shells. The application of general triangle shape elements is rea-
sonable when the shape of the structure is irregular, triangular or similar to the triangle. In this
section we overview primarily the plate elements subjected to transverse load. In that case
when the plate is loaded in-plane and also transversely we can solve the problem by combin-
ing the plane membrane and plate bending elements. We have already seen by Eq.(14.3) that
due to neglecting the transverse shear forces the rotations in an actual point of the plate are:

p=-w,and a=w,. (15.1)
The curvatures related to the bending deformation are:

WXX

K=— W, |,and e=-7 K. (15.2)

2W’Xy

For thin plates we assume plane stress state, i.e.:
&' =[€X,€y,yxy]. (15.3)

In the course of the introduction of Kirchhoff plate theory we have observed that the def-
lection surface is given by a two-variable w(x,y) function, with that both the curvatures and
strain components can be calculated. For plate bending problems this w(x,y) function must be
produced by interpolation polynomials, and then we can provide the element stiffness matrix
and force vector. In the followings we give the details of few element types for plate bending.

15.2. Triangular plate bending element or Tocher triangle element

In the course of the finite element discretization of plate shape structures we approximate the
transverse deflection by a third order polynomial in terms of the x and y coordinates [1,2]:

W(X, YY) =a, +aX+a,y+ax* +a,xy+ay’ +a x> +a, (xX°y+xy?)+a,y°. (15.4)
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This approximation was one of the first triangular finite elements, which was published by
Tocher [1]. The element is shown in Fig.15.1. The deflection surface in vector form is:

w(x,y)=A"4, (15.5)
where A is the vector unknown coefficients, A is the vector of basis polynomials, respectively:

T

(15.6)

A :[ao a & a4 a A A & as]’

Py +x2) y?].

3

A= ox oy % xy oy ox

Fig.15.1. The nine degrees of freedom Tocher triangular plate element.

The unknown coefficients can be calculated based on the nodal conditions. Namely, the dis-
placement function must give back the actual nodal displacement if we substitute the nodal
coordinates of the same node. Therefore, in Eg.(15.4) the number of terms is always equal to
the number of degrees of freedom. For the Tocher triangle element the eighth term contains
the sum of x% and xy> Actually, in vector A there is nine unknown coefficients. Following
Fig.15.1 the vector of nodal degrees of freedom for a single element is:

QZ:[Wl a B W, a, B, W, a ﬁa]’ (15.7)

where w; is the transverse displacement perpendicularly to the midplane, «; and f are the ro-
tations about axes x and y, respectively. Accordingly, the Tocher plate element has nine de-
grees of freedom. The nodal conditions for the calculation of the coefficients are [1,2]:

ow ow
W(X1’y1)=W 1E(Xliyl)zal’_&()(l’yl):ﬂl' (15-8)
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W(inyz)zwza%lv(xzayz):azy_%lv(xbyz):ﬁz’

ow ow
W(X;, Ys3) —Wslg(xsiys) —053,—&(X3,y3) = fs.

We need the derivatives of the w(x,y) function with respect to x and y to calculate both the
coefficients and the strain components, i.e we can write using Eq. (15.4):

Z—\)’(V=a1+2a3x+a4y+3a6x2+a7(2xy+ y%), (15.9)
ow 2 2
E:az+a4x+2a5y+a7(x +2xy) +3a,y°,
2
2\21:2a3+6a6x+2a7y,
X
2
gy\;V:Za5+2a7x+6a8y,
o*w
aXay=a4+2a7(x+y).

The substitution of the derivatives above into Eq.(15.7) leads to the following system of
equation reduced to matrix form [1]:

u.=MA, (15.10)
where:
Loxo Y X x|
0 1 0 x, 2y, O (X2 +2xy,) 3y;
0 -1 0 -2x, -y, 0 =3x> —-(2xy,+y>) O
1ox, ¥, X %Y, Yi X (G, +%Y;) Y,
M=l0 0 1 O X, 2y, 0  (x3+2x,y,) 3y:|. (15.11)
0 -1 0 -2x, -y, 0 =3x2 —(2xYy,+y?) O
1 X Y3 X3 XYs Y3 X (X3YatX¥:) Vs
00 1 o0 X, 2y, O (X5 +2x,Y,)  3y:
0 -1 0 -2x; -y, 0 =3x; —(2XY,+Yys) O |
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The coefficients of the interpolation function are the solutions of the system of equation
given by Eq.(15.10):

“u,. (15.12)

=e

A=

I=

The expressions of the coefficients are extremely complicated; hence they are not detailed
here. The vector of strain components based on Egs.(14.5) and (15.5) are:

gX W,XX
e=|¢g, |=-71 w, |=RA, (15.13)
Yy 2- W,y
where matrixg is:
0 00 2 0 0 6x 2y 0
R=-z:/0 0 0 0 0 2 O 2X 6y |. (15.14)
0 00020 0 4x+y) O

Taking back Eq.(15.12) into Eq.(15.13) the strain-displacement matrix can be derived:

e=RA=RM "u, =Bu,. (15.15)
For thin plates we assume plane stress state, consequently we can write:
c=C"¢, c=C"Bu,, (15.16)

where matrix(=:Str refers to plane stress state. According to Eq.(14.43) the definition of the
element stiffness matrix is:

K, =[B'C* Bdv. (15.17)

Ve

Incorporating Eq.(15.15) we obtain:

ﬁe _ (M_l)T j{tj‘ZBTgStrT de}dA(M—l) (1518)
A

-t/2

The middle term in the expression above is [1]:
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& —
—
3 S

™o

,

o

«Q

?

[}=s]

o
%

>

I

00 0 0 0 0 0 0
000 0 0 0 0 0 0
000 O 0 0 0 0 0 (15.19)
0 00 4 0 4y 12x 4 +y) 12wy
‘I'E 000 0 2(1-v) 0 0 401-v)(x+Y) 0
- 1=1 -
A 0 00O 4y 0 4 12vx 4(x+wy) 12y
0 0O 12x 0 12wx 36x2 12x(vx +y) 36wy
_ 2
0 0 0 40x+y) A0-v)(x+y) A(x+w) 12x(rsy) C2TBIOHEYH o iw)
-8(1L-v)xy}
0 0 0 12wy 0 12y 361xy 12y(x+wy) 36y°

where 1; = t%/12 and E; = E/(1-14). To calculate the stiffness matrix the inverse of matrix M is
required. Since it is very complicated, it is not detailed here. In Eq.(15.19) it is possible to

simplify the components by the surface integral transformations given below [1]:
1

J.dA = IJ.dXdy = Ae = E[(Xz Ys — Xsyz) + (X3y1 - X1y3) + (lez —X; yl)] | (15-20)

A

deA=dexdy :i(xl + X, +X3),

A 3

[ yda = [ ey == (v + 2+ v2),

A

Ixsz: ”xzdxdy = %(Xf XS+ X5+ XX, + XX + XX,

A

[y?dAa=[]ydxay :%(yf FYSEYE VLYo +YaYa YY),

A

IXydA = _[IXdedy = %(yl(le +Xp +Xg) + Yo (X +2X, +X3) + Y3 (X + X, +2X;)),
A

J'xzydA = Iszydxdy = %(y1(3x12 + X5+ X2+ 2% (X, + Xg) + X, %) +
A

Yo (X 43X X5+ 2% (% + %) + X, %) + Vo (X, +XG 43X + 2% (X +X,) + X X,)),
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[xy?dA= [ [ xydxdy =%(x1(3yf Y34V H2Y1(Y2 + Vo) + YaYe) +
A

+ X, (Y7 +3Y5 + Y5 +2Y, (Vi + Ya) + Vi) + Xg (V1 + Y5 +3Y5 +2Y,(Y, + Vo) + V1Y),

jxsdAz ”x3dxdy =%(x13 FX5 X X XE + XXy + Xy X+ XXy + X X+ XX + X X Xs),
A

[y*dA= [ [xdxdy =%(yf FYS VS YLYE VYo YaYE S Ya YiYE VD Ve VaYaYe) W
A

here Ae is the triangle area, x; and y;, i = 1, 2, 3 are the nodal coordinates, respectively. In most
of the cases the force vector is composed by two terms. The force vector related to the distri-
buted force can be derived by expressing the work of external force:

W, = [ pw(x,y)dA=u;F,,. (15.21)
A

pe

The calculation of Fe, is difficult, we need the inverse of matrix M and the simplification

of surface integrals, respectively. The concentrated forces and moments are collected in a vec-
tor in accordance with the nodal degrees of freedom:

Fs My Myg], (15.22)

y2 z

FT:[le Mxl M

—€C

yl FZZ Mx2 M
where F; is the concentrated force perpendicularly to the midplane of plate, My and My; are
the concentrated moments acting in the x and y directions. In the sequel we present a detailed
example.

15.3. Example for the application of the Tocher triangle plate element
Determine the displacement and the reactions of the built-in plate depicted in Fig.15.2 [1]!
z4 Y

Fig.15.2. Triangle shape built-in plate loaded by concentrated force.
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Given:
E=200GPa, v=0,3,t=5mm, F=1kN, a=200 mm, b =75 mm.

The nodal coordinates are:

node X y
1 0 -b/2
2 a 0
3 0 b/2

In the sequel the distances are calculated in [mm], the force is given in [N]. Because of the
kinematic constraints (built-in nodes) the vector of nodal displacements becomes:

ul=0o0oo0ow a B 00 0] (15.23)

For the calculation of stiffness matrix we need the constitutive matrix, which is:

1 v 0 21978 6593 0
cC=C"= EZ v 1 0 |=|6593 21978 0 |GPa. (15.24)
I e 1-v

00 == 0 0 7692

Utilizing the nodal coordinates we calculate matrix M based on Eq.(15.11):

1 0 -75 0 0 5625 0 0 — 421875 ]
0 O 1 0 0 -150 0 0 16875
0 -1 O 0 75 0 0 —5625 0
1 200 0 40000 O 0 8000000 0 0 (15.25)
M=/0 0 1 0 200 O 0 40000 0
0 -1 0 -400 O 0 -120000 0 0
1 0 75 0 0 5625 0 0 421875
0 O 1 0 0 150 0 0 16875
o -1 0 0 -7 0 0 —-5625 0

The determinant of matrix M is —4,86-10", i.e. the matrix is not singular, its inverse ex-
ists. The stiffness matrix is obtained by calculating matrixR (see Eq.(15.14)) and computing
the surface integrals:

K,=M™) {TEQ"T gdz}dAu‘l) -

A -t/2
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(6291 305599 -153836 -805 16472,0 —7887,6 5487 413017 71740 |
37315232 2367410 -70559 -392240,8 -3045051 -235039 715499,7 -1343422,4
2433109,2 107315 -—7728511 765510,5  4652,2 —-966573,2 -1052328,6
257,6 4829,2 17170,3 -1771 9470,5 23609,2 (1526)
= . . . . 17169491 697545 —-213011 1508270,3 1668927,7 |—,
17170329 -9282,7 339382,2 951522,4
72571  -50772,2 —-307833
46817788 25212928
4822646,8 |

In Eq.(15.26) only the independent components are indicated, the reason for that is the
stiffness matrix is always symmetric. The force vector based on the concentrated loads is:

Elc:[le Mxl Myl -F 00 Fz?, st Mys]- (1527)

The condensed stiffness matrix and the resulting matrix equation for the calculation of
nodal displacements is the following:

257,6 4869,2 17170,3 | w, —1000
4829,2 17169491 697545 ||a, |=| O |. (15.28)
17170,3 697545 17170330 | 5, 0

The nodal solutions are:
w, =-131764 mm, e, =0,03176 rad, 3, =0,130477 rad . (15.29)

It is seen that although the problem is symmetric with respect to axis x for both the geome-
try and load, the deformation of the triangle element is not symmetric. Taking the nodal dis-
placements back to original equation we can determine the reactions:

F,=5545N, M, =40784,5 Nmm, M, = —66068,6 Nmm. (15.30)

Using Eq.(15.15) the vectors of strain and stress components are:

&, 5824-10z +4,764-10 " zx—1,5879-10°zy
c=|s, |=RMMu, = ~15879-10"°2x , (15.31)
7y 79399107 2(4x + 4y)
o, 128,02 +2,0-10'°2x - 0,349zy
o=|o,|= gsrré‘ =| 38,4z -0,3176zx—0,1047zy
Ty —0,061072(4x + 4y)

The strain and stress components can be obtained at any point of the triangle element by
taking back the coordinates in [mm]. The example above was verified by a finite element
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code developed in Matlab [3] and we obtained the same results. In general the accuracy of the
Tocher plate element is not satisfactory and even the convergence of the results is bad. To
reduce the deficiencies of the Tocher triangle the so-called reduced triangle element was de-
veloped, where area coordinates are introduced [4]. Apart from the Tocher triangular plate
element there are several more element types, e.g.: Adini or Cowper triangle element, Adini-
Clough-Melosh, Bogner-Fox-Scmit rectangle element, etc [1]. In the sequel we present some
rectangle shape plate elements.

15.4. Incompatible rectangular shape plate element

Fig.15.3 presents one of the first rectangle shape elements in a global, local and natural coor-
dinate system.

lY b-
3 3
b
1 2 ,
X
il Ll
tmn G
4 a1
1
1 2l V
3 1 g

Fig.15.3. Incompatible rectangle shape plate element in a global (a), local (b) and natural (c) coordi-
nate system.

The dimensionless local & and 7 coordinates are:
=X =Y and: de=Lax, dy=tdy. (15.32)
a b a b
The following differential quotients are also required:

1
g ~ -2 15.33
- . (15.33)
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According to Fig.15.3b we consider three degrees of freedom in the local coordinate sys-
tem at each node, which are the displacement w perpendicularly to the midplane of plate and
the rotations about the x and y axes, respectively. The vector of nodal displacements for a sin-
gle element is:

QZZ[Wl o BoW, o a B W o BW, ﬁ4], (15.34)

i.e. totally the element has 12 degrees of freedom, where the rotations can be determined by
means of Eq.(15.1) and the Kirchhoff-Love hypothesis. The displacement in direction z and
the rotations are not independent of each other and there can only be to a maximum of 12 un-
known parameters in the interpolation function. Along the element edges the expression of w
should be a third order function, and accordingly the derivative in the normal direction should
vary linearly [2]. A complete third order function contains 10 terms, but in accordance with
the number of nodal parameters we need two additional terms in the interpolated function. We
can choose from the three possibilities below:

En and &n®,or: En%and %%, or: 2% and £%°. (15.35)

Any of the above possibilities is chosen, we obtain a cubic change in the derivatives in the
normal direction instead of the expected linear one [1,2]. Therefore this element is not com-
patible, in other words it is incompatible. Choosing the first alternative we have:

W(E,m) =a,+aé+an+ac’ +a,én+an’ +as +

, , 5 , , (15.36)
+a,8 N +aén +agn + &+ a8
The nodal conditions for the determination of the unknown coefficients are:
1 ow 1ow
w(0,0)=w,, ——(0,0) =,, ———(0,0) = 3., 15.37
(0,0) b877( )=, aag( ) =5 ( )
1 ow 1ow
wlo)=w,, —— 10 =a,, ———(10)= 3,
(L,0) b877( )=a, aag( ) =P,
1ow 1ow
wl)=w,, —AD) =a,, ———(11) = 3.,
L1 ba77() a; aag() Bs

1ow 1ow
W(O,l) =W,, B%(O,l) =0,, —g%(o,l) —ﬂ4.

Taking back the coefficients into the function given by Eq.(15.36), moreover by utilizing
the fact that the displacement function can be formulated as the product of interpolation func-
tions and nodal parameters it is possible to obtain:
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W(&,17) = N\W, + Noay + N3 + NW, + Ngar, + Ng 3, + (15.38)
+ Ny, + Nga + N By + Nyow, + Npyar, + Ny 3,

from which we obtain the mathematical form of the interpolation functions:
1
N, =2(77—1)(§—1)(§(1+§+77)—§2—772), (15.39)

N, =-bn(n-1)*(-1),

N, =a&(n-1)(& -1)°,

N, = 2(77—1)5(52 +n* —gf—%ﬂ)
N; =bén(n-1)°,

N, =a&’(n-1)(&-1),

N, =27g{ - =" -5+ S 4m) |
Ny =b&n*(7-1),

N =—a§277(§—1),

Ny = 277(5_1)(52 +772 _%f_gﬂja
Ny, = _b772(77_1)(§_1) )

Ny, =-adn (& _1)2 '

and:

w(&,m) =N"u,, (15.40)

NTZ[Nl Nz N3 N4 Ns Ne N7 Ns Ng NlO N11 le]' (15-41)
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is the vector of interpolation polynomials. As a next step we express the vector of strain com-
ponents using Eq.(14.5):

gX W,XX
e=l¢g, |=-2| W, |=-Zk, (15.42)
7xy 2 'W,xy
where
N
k=] N, |u=xu,. (15.43)
2-N'

where N, Nyy and N,y are vectors containing the second order derivatives of the interpola-
tion functions by Eq.(15.40) with respect to the corresponding subscript. Hence, the vector of
strain components and the vector of stress components become:

(15.44)

The vector of bending and twisting moments can be given in vector form; they are calcu-
lated based on Eqs.(14.7) and (15.43):

M, N, +vN',
M=|M, |=-LE|NT, +vN", lu,. (15.45)
Mxy (1_V)N,xy

Taking the previously calculated vectors back into the total potential energy we obtain:

o' edv — [u" pdA:%g”zngg”T xdVu, — [ pw(&,n)dA. (15.46)
VE

pe Ape

We transform the volume integral over the element by integration with respect to the pa-
rameters X, y and z. Moreover, we assume that in the second term the intensity of the distri-
buted load is constant. Consequently we can write:

l\)ll—\

11 11
Wl [[ & b C* sz u, ~u! [ [ p-abNaydz = Tl K u, ~ulE,. (15.47)
0012 I 0% 27 ==

where the element stiffness matrix is:
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IIK

K —llts " xd nd 15.48
=e—££1— Kdndg, (15.48)

and the force vector from the uniformly distributed load is:

- | p-abNdndz -
00

=pib[1
4

that is, similarly to the beam element subjected to bending the distributed load is represented
by concentrated forces and moments at the nodes referring to the discretization procedure. It
is also necessary to consider that there can be concentrated loads in the nodes, viz.:

(15.49)
b _a b
6 6

EZC = [le Mxl I\/Iyl FzZ sz I\/Iyz FzS MX3 I\/Iy3 I:24 Mx4 I\/Iy4]' (1550)
and:
Fe=Fo+Fq. (15.51)

The application of the minimum principle yields the element equilibrium equation:

Ku, =F

—e—€& —¢

(15.52)

which can be used only if the structure consists of a single element. For multi-element struc-
tures we obtain the structural equation by summing the potential energies of the elements:

KU =F. (15.53)

Let us solve an example for the incompatible rectangle shape element!

15.5. Example for the application of the incompatible rectangle shape element
Calculate the nodal displacements and the reactions of the built-in plate shown in Fig.15.4!
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Fig.15.4. Example for the application of incompatible plate element.

Given:

E=200GPa, v=0,3,t=1mm, F=5N, a=600 mm, b =400 mm.

In the sequel the distances are substituted in [m], the force is given in [N]. The nodal

coordinates are:

node X y
1 0 0
2 a 0
3 a b
4 0 b

Considering the kinematic constraints in the construction of the vector of nodal displacement

we obtain:
HZ:[O 00w, a B, W, a3 B 00 0]-
The force vector considering the external force and the reactions is:

FL=[F, M, M

—€C

, -F 00000 F, My M,]

y

For plane stress state the constitutive matrix is:

S |tvoo 200 60 O
T=———lyv 1 0 |=[60 200 O |GPa.
= 1l-v 1-v

00 —| |0 0 70

Next we calculate matrix x which is required for the stiffness matrix:

© Andras Szekrényes, BME

(15.54)

(15.55)

(15.56)
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R L I R ]
0 S5E-2E-D) -2 E-Do-Y
S -HEE-2) 0 53¢ ~1)(E-1)
Do-n@-)  De@r-n S -g-n+)
0 5£(37 - 2) G-~
| Fe-neEe-y 0 5(3¢ ~2)
Sl Deey Doy s er-cneh)
0 5537 -1) ~S(En-2)
- (e 0 ~5¢(3:-2)
Tn@e-y  D@n-nE-n S v -g-n+)
0 5@ -DE-) - nEn-2) (1557)
-2n(E-2) 0 ~5EE-D(E-D)

The dimension of the stiffness matrix is 12x12; therefore it is not detailed here. Instead of
the stiffness matrix we give the resulting finite element equilibrium equation system from
Eq.(15.52):

1127w, +50,28,-42 87 B,-196 45w, +58,610,-12,698, = F,, (15.58)
50,28w, +14,59¢, - 58,61w, +8,85c, =M, ,

42,87wW, + 6,243, +12,69W, + 4,874, =M, ,

926,23, +137,22a, + 55,373, - 741,05W, +128,89¢, + 0,193, =5,

137,22w, + 35,41, + 5,008, -128,89w, +16,15¢, =0,

55,37W, +5,00c, +19,483, + 0,19, + 2,748, =0,

- 741,05w, —128,89¢, + 0,194, +926,23w, —137,22c, + 55,373, =0,

128,89w, +16,15a, -137,22w, + 35,41, - 5,043, =0,
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0,19w, + 2,743, +55,37w, — 5,00, +19,483, =0,

-196,45w, — 58,61, -12,693, +11,27W, —50,28cz, - 42,873, = F,,,
58,61w, + 8,850, - 50,28W, +14,59¢, =M, ,

12,69, + 4,873, + 42,87W, + 6,243, =M .

Calculating the nodal displacements from the 4™ 5% 6" 7" 8™ and 9" equations of
Eq.(15.56) we have:

w, =-0,0655m,a, =0,039rad, S, =0159rad, (15.59)
w, =-0,0448 m, o, =0,0645rad, 3, = 0,122 rad .

From the 1%, 2" 3 and 10", 11", 12" equations of Eq.(15.56) we can determine the reac-
tions:

F, =542 N,M,, =0,47 Nm,M,, =179 Nm, (15.60)
F,,=—042N,M,, =030 Nm,M,, =-121Nm.

The bending and twisting moments can be obtained from Eq.(15.45), the stresses can be
determined from Eq.(15.44) by taking back the nodal coordinates. Example 15.5 was verified
by the finite element code ANSYS 12 and we obtained the same results.

15.6. Compatible rectangular shape plate element

In that case when we want to develop a compatible plate element the interpolation function
given by Eq.(15.36) has to be modified in accordance with the followings [2]:

w(&,n) =4, +a1§+a277+a3§2 +a,on "'3-5772 +a6§3 +a7§277+3-8§772 + (15.61)
+agn’ Fa s n+a,dn’ +a,s iyt +a, syt +a,stn’ vadn’.

However, this formulation implies 16 unknown nodal parameters. That is, at each node we
must consider the mixed derivative wy. The vector of nodal displacement becomes:

.
Qe:[wl o Bw

1 W & B W

w2 Wi O P W

\Xy3

W, a, B, W (15.62)

The conditions for the determination of the unknown parameters are:

2
LIV 00)=w,,,
ab ocon *

w I gy ey LW 0y
W(O,O)—Wl,ban(O,O) a,, aag(o’o) A, (15.63)

© Andras Szekrényes, BME www.tankonyvtar.hu




278 Finite Element Method

1 ow 10w 1 o°w
wl0)=w,,——(@10)=«a,,-——(@10)=4,, — 10)=w_,,
L0 =,y = (L0) =~ 22 (0) = 5, 52y B0 = e

1ow 1w 1 o*w
wll)=w,—@Q) =a,,——— 11 = 5,, — 1)=w_.,
LD 3 b@?]( )=y a@f( ) =P ab@faﬂ( ) xy3

10w 16w 1 o*w
wio)=w,——(0)=«a,,———(0,)) =23,. — 0)=w,,.
(02) 4b8n( ) =a, aa(;( ) =B, abagan( ) =W,y

The deflection surface is approximated by using 16 interpolation functions:

wW(&,7) =Nw, + Nyag + N, + N,W,; + Ngw, + Near, + N, B, + NgW,y» (15.64)

+ NgW, + Nygar; + Ny, 55 + N12W,xy3 +NpaW, + Ny, + Ny 8, + N16W,xy4-

The interpolation functions can be written by the help of the Hermitian polynomials,
which are presented in the beam finite elements (see Fig.15.5) [2]:

f, (1) =22 =32 +1, f,(1) =21 + 32, (15.65)
f.(Q)=2-22+1, f,(A)=2-2,
with that the 16 interpolation functions become:
Ny = £.(5)- f.(m), Ng = £,(8)- f,(m), (15.66)
N, =b-1,(5)- f,(7) Ny =b- f,(5)- f,(n),
N; =-a- f;(5)- f,(m) , Ny, =-a- f,(£)- f,(m),
N,=a-b-f,(£)- f;() N, =a-b-f,(5)- f,(m),
Ng = f,(£)- f.(7) Ny; = £.()- f,(m),
Ng=b-1,(&)- f,(7) Ny, =b- f,(5)- f, (),
N, =-a-f,(£) f.(7), Ny =-a- £;(5)- f,(m),

Ng=a-b-f,(&)- (), Ny =a-b-1,(5)- f,(n).
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A fi 0
1
] f,(0) (L)
0]
0,6
0,45
o,zé f5(h)
Y >
Jo 0, 0,4 0,6 0,8 1 A
g fa0)

Fig.15.5. Function plot of the Hermitian interpolation polynomials.

By using the interpolation polynomials the stiffness matrix can be built-up by the same
methodology as that presented in the incompatible plate element. The only difference is that
we obtain a matrix with dimension of 16x16. Assuming a constant distributed force, the rele-
vant term in the force vector is:

(15.67)

|
=
|
oo

6 6 36

oo

T
Db e a]
6

i.e., similarly to the plane beam element subjected to bending the distributed load is
represented by concentrated forces and moments in the nodes. As usual, we have to consider
the case of concentrated loads, the relevant vector term is:

E:c = [le Mxl I\/Iyl Ileyl
....... Fe My M, M

F

z2

M, M, M.
e oz (15.68)

I:24 Mx4 M y4 Mxy4]

X2

xy3

Example 15.5 was solved by using the compatible plate element too. In this case the nodal
displacements are:

w, =-0,0658 m, a, =0,062rad, 8, =0165rad, w, , =0,2414 % : (15.69)
rad
w, =-0,0450m, o, =0,043rad, £, =0128rad, w, , =-0,0415—.
‘ m
The reactions are given below:
F,=5512N, M, =0,676 Nm, M, =-184 Nm, M, , =0,138 Nm?. (15.70)
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F,,=-0512N, M,, =-0,471Nm, M, =-1155 Nm, M, , = 0115 Nm?.

It is seen, that the difference between the results of the two solutions is not significant.

15.7. Plates under in-plane and transverse load

If the plate is loaded by in-plane and transverse forces simultaneously, then we have to pro-
duce an element by having both in-plane and bending load-carrying capability, i.e. it means
the superposition of plane membrane and plate bending elements. This problem can be solved
based on sections 12 and 15 in a relatively simple way. First we collect the corresponding
nodal displacements into a vector. Second, we create the stiffness matrix of the combined
element by placing the stiffness matrix components corresponding to the membrane and bend-
ing deformation into the right positions. The vector of forces is obtained by a similar combi-
nation of the element vectors. This technique is suitable to model in-plane plate structures too.
However, if we connect the elements by containing an angle differing from 180° among the
surfaces, then it is possible to approximate curved surfaces. In other words the combined
membrane-plate element is suitable to model spatial shells and shell structures too. Since in
the modeling of plane and spatial shells similar steps are required, these issues will be detailed
in section 16.
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16. MODELING OF SPATIAL THIN-WALLED SHELLS BY FINITE
ELEMENT METHOD-BASED SOFTWARE SYSTEMS

16.1. Simple flat shell elements

The stiffness matrix of flat shell elements are easily calculated using the stiffness matrices of
the membrane and plate bending elements. Accordingly, it is possible to derive the different
version of flat shell finite elements by combining the available triangle and rectangle shape
elements [1,2]. The approximation of a curved surface by flat shell elements is shown by
Fig.16.1. This kind of approximation is another source of error apart from the displacement
field interpolation. By increasing the number of elements we can decrease the geometrical
inaccuracies. The application of flat shell elements is justified, when the advantage of the
higher order elements — namely the larger element size — can not be exploited. In the sequel
we demonstrate the combination of the linear (membrane) triangle and the Tocher plate
(bending) elements.

Fig.16.1. Triangular shape flat shell element in the global and local coordinate systems.

16.2. Superposition of the linear triangle and Tocher bending plate elements

The element mentioned above is not conform because of the discontinuity of displacements at
the element boundaries [1,2]. However, due to its simplicity we use this combination to dem-
onstrate the application of flat shell elements. The linear triangular membrane element (see
Fig.12.2) has two degrees of freedom at each node, the stiffness matrix in the local element
coordinate system is:
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o Ky Ky
2%x2 2x2 2%x2
Rm — k2ﬂ11 k22 szg ' (161)
o6 2%x2 2x2 2%x2
K} Ka Ka
| (2x2 2%x2 2% 2

where the submatrices (Eum) correspond to the stiffness matrix components associated with
nodes i and j. The tilde over the matrix indicates the local coordinate system; the superscript

(m) refers to the membrane action. The finite element equation is:
~m ~m ~m
K iy =F,, (16.2)
6x6 6x1 6x1
where the vector of nodal displacements and concentrated forces of the membrane element
are:
TN VA A A AN A | (16.3)

~m T
Eﬁelc = [Fxl I:yl Fx2 I:yl Fx3 FyS]’
where u is the displacement in the local x, v is the displacement in the local y direction. In the

displacement vector we refer to the local parameters by using the tilde. In the force vector we
identify the local parameters by lowercase x, y and z in the subscript of components. A dis-
tinction like that was not necessary until now, which can be explained by the fact that in all of
the previous examples the local and global coordinate systems coincided.

At each node of the Tocher triangular plate element (see Fig.15.1) there are three degrees

of freedom; therefore the stiffness matrix has nine rows and nine columns:

|

|

IraErasral
3x3 3x3 3x3
Kb = K, K K ’ (16.4)
o 3x3 3x3 3x3
ke | )k | ] ks
i 3x3 3x3 3x3 ]

www.tankonyvtar.hu

where the superscript b indicates bending action. In the local coordinate system the displace-
ment and concentrated force vectors of the Tocher triangular plate element are:
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T [~ ~ ~ - - = < =
%g :[Wl a BoW, a, B, W, a ﬂs]’ (16.5)

~n T
EEC
9Ix1

-[F, M, M, F, M, M, F, M, M,]

yl y2

The degrees of freedom of the combined element are shown by Fig.16.2. The membrane
and bending stiffness matrices have to be combined in accordance with the following observa-
tions [2]:

a. for small displacement s the membrane and bending stiffnesses are uncoupled
(independent),

b. the in-plane rotationy in the local x-y plane is not necessary for a single element,
however, w and its conjugate moment M, have to be considered in the analysis by
including the appropriate number of zeros to obtain the element stiffness matrix
for the purpose of assembling several elements or assembling the flat shell element
with different type of elements.

Fig.16.2. Combination of the linear membrane triangle element and the Tocher triangular plate
bending element.

The nodal displacement vector of the combined element in the local coordinate system is:

~mbT _ [~ S o~ o~ ~ o~ = =~
U, =u, vy W a B v U V, Wy
184 (16.6)

The vector of concentrated forces becomes:

~m+b T

—€C

5 (16.7)
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Accordingly, the stiffness matrix is shown below [1,2]:

kP oo olo|[ki] |ooolo|[k?] |00 0o
2% 2 0 00(0 2% 2 0 00(0 2% 2 0 0O0(0
00 k1|0 (00 ke) [0 |00 o) |0
00 {“}o 00 {“}o 00 {“}o
00 000/0 |00 000/0 |00 0000
k'] 1o oolo |[[k2] [ooolo | k2] |00 o]0
2% 2 0 00(0 2% 2 0 0O0|O0 2% 2 0 0O0(O0
~ m+b
K, = 00 ) |0 |00 k)0 |00 K> 0
1848 00 {“}o 00 {”}o 00 {”}o
00 000/0 |00 000/0 |00 0000
ki1 oo olo |[ki] [oooflo | k2] |00 o]0
2% 2 0 00(0 2% 2 0 00(0 2% 2 0 0O0(0
00 k) [0 {00 )0 |00 e |0
00 {“}0 00 {ﬂ}o 00 {“}0
| 00 000/0 |00 000|000 000f0 |

(16.8)

The stiffness matrix above is valid in the local coordinate system. We highlight again, that the
tilde over the matrices and vectors refers to the local system. In the analysis of three-
dimensional structures in which different finite elements have different orientations, it is ne-
cessary to transform the local stiffness matrices to a common set of global coordinates. In the
quantities of global coordinate system there is no tilde indicated. The transformation of the
element stiffness matrix is given by the expression below:

K™=A"K " 4, (16.9)

Wherei is the transformation matrix with dimension of 18 x 18:
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L0000 0]
0L 00O O
0 0L 0O O
=000 Lo of (1640
0000L O
00000L
and:
0 0O
0={0 0 0. (16.11)
0O 00

Matrix L contains the unit basis vectors of the local coordinate system, ei, e, and es, (see
Fig.16.1) in the form of column vectors formulated in the global coordinate system:

L=ley &y &y | (16.12)

Eventually matrix L contains the direction cosines of the angles between the local and

global axes. The definition of the direction cosines for an optional A vector based on Fig.16.3
is [4]:

A

| =cosa = L , (16.13)
VAL A+ A
Ay
m=cos f = - - =
JACHA A
AZ
n=Ccosy =

1/Af+A§+Af
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Fig.16.3. Direction cosines of vector A.

Since the basis vectors ej, e, and ez are unit vectors it is not easy to see, that their components
are eventually the direction cosines. To construct the structural stiffness matrix the local quan-
tities have to be transformed into the global system. The vector of nodal displacement and
vector of forces in the global system are:

um+b :iT g;mb’ (1614)

For shell structures the most common load type is the constant pressure perpendicularly to
the shell surface, i.e. in direction of the local z axis. It is a reasonable assumption, that there is
membrane stress state, under these assumptions the force vector is: [2]:

E2’p+b=pi[001ooo001000001000], (16.15)
3

where A is the triangular area. If the pressure on the shell surface is not constant, but its
change over the element area is insignificant, then we can still use the vector above, but we
use the pressure averaged by the nodal loads instead of p:

1
ng(pﬁ P, + P3). (16.16)

Finally we summarize the finite element equations. In the local x, y, z system the quantities
indicated by the tilde are used, i.e.:

m+b —mip ~m-+b

K'™gm =g, . (16.17)

—e —€

Transforming Eq.(16.17) into the global X,Y,Z system by using the transformation matrix,
we have:
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Km+bum+b — I:m+b’ (1618)

—e =€ —e

where the quantities in the global coordinate system are calculated based on Egs.(16.9) and
(16.14). For the whole structure the finite element equation is:

£m+bu m+b _ Em+b ’ (1619)

of which solutions are the components of vector U™?®, which are the nodal displacements in
the global coordinate system. From that we can calculate the global element displacement
vectors, u"*®, and then we can transform them into the local system by the following expres-
sion:

Jm+b :iT’luerb. (1620)

=e —e

The transformation matrix is orthogonal, therefore we can write that: ;1’1 :/=1T and

irliT =E, viz.:

gm+b zig?+b. (1621)

e

Using the local displacements in the nodes we can calculate the membrane and bending
stresses.

A significant advantage of the flat shell elements is a novel software can be easily con-
structed by combining the softwares of the existing membrane and plate elements, which can
be used for engineering calculations [2,3]. This computation requires only the knowledge of
matrix L . The accuracy of the results depends on the element size. Higher mesh resolution is

necessary, where the curvature of the surface is larger, or the change in stresses is expected to
be more significant. The expected error of the calculation is higher in the vicinity of the sides,
notches and the connection of different surfaces. Let us solve an example to understand the
application of the method!

16.3. Example for the combination of the linear triangle and Tocher triangle elements

Solve the shell problem given in Fig.16.4! Calculate the nodal displacements, reactions in the
local coordinate system, and transform the results into the global coordinate system!

© Andras Szekrényes, BME www.tankonyvtar.hu




288 Finite Element Method

Fig.16.4. Flat triangular shell element in the local and global coordinate systems (a), application
example for the flat shell element (b).

Given:
a=08m,b=05m,t=3mm, E=200GPa, v=0,3, Fx=6000 kN, F, = 8000 kN,
p = 1200 N/m?

The distances are substituted in [m], the force is interpreted in [N]. The nodal coordinates
in the local coordinate system are:

node X y Z
1 0 -b/2 0
2 a 0 0
3 0 b/2 0

We give the nodal coordinates also in the global coordinate system. We note that the global
coordinates depend on how the element is built-in the actual structure.

node X [m] Y [m] Z [m]
1 0,6795 0,57 0,2
2 0,4 1,225 0,5
3 0,5004 0,6 0,4

The vectors of nodal displacements and concentrated forces in the local coordinate system
are:

—mib T -~ =~ o~ -~ = - ~ ~ = -
Heb =[0 00 B vi U vV 0 ap B, w, 0 V; 0 a3 By ‘//3]’ (16.22)

181

~mib T
" =[F, F, F, 0 00 F 00000F, F, Ff, 0 0 0]

—€C
181

y
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The terms in. the force vector related to the distributed load can be calculated based on the
integral transformation formulae presented in section 15. We can construct the force vector of
the Tocher triangle from distributed load by formulating the work of the distributed load:

W, = [pw(x,y)dA=T; F,,. (16.23)

Ape

Based on Eq.(16.23) and the integral transformation expressions given by Eq.(15.20) we
have:

7/40ba-1/80b%> | [ 0,0669 |
1/120ab? —1/ 40ba’ —0,0063
1/30ab® —1/480b* 0,0064
3/20ba 0,060
Fo=p 1/30ba? = p| 0,0107 |. (16.24)
o ~1/120b° ~0,0010
7/40ba +1/80b* 0,0731
—1/120ab* —1/40ba* —0,0097
| —1/30ab*-1/480b° | | —0,0069 |

We note that in the Tocher triangle the distributed load is divided into three parts and put
into the nodes; however the division is made in unequal degree, as it is seen in the vector of
forces. On the other hand, by summing the forces in direction z and the moments about x and
y we obtain:

(28 0 Y Y ~pab, (16.25)
~b ~b ~b pa pazb

[Eep]z+[EepL+[EepL:_% BRI

~b ~b ~b pb® pab?

[Eep]er[EepLJr[EepL:_m ~ 0 !

which are the resultant forces in direction z and the resultant moments about axes x and y. The
force vector of the 18 degrees of freedom flat shell element in the local coordinate system is:
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290 Finite Element Method

Fa 0 Fa
F, 0 F,
F, 0.0069 F,, —80,25
0 —0.0063 7,6
0 0.0064 — 17,6875
0 0 0
F, 0 6000000
0 0 0
E;\HbT _ E?:bT"‘E::bT _ F,, b 0.0600 _ F,,—-72,0
181 184 18 0 0.0107 -12.8
0 —0.0010 1,25
0 0 0
Fa 0 Fa
F 0 8000000
F,; 0.0731 F,;—87,75
0 —0.0097 11,6
0 —0.0069 8,3125 (16.26)
o] | 0 | [ 0 ]

The stiffness matrix of the linear (membrane) triangle element based on the calculations of
section 15 is:

(2,48 144 -126 -115 -122 -0,29]
6,64 -173 -036 029 -6,28
e | . 252 0 -126 173 o0 N | (16.27)
= . . . 072 115 -0,36 m
2,48 144
| 6,64 |

where due to symmetry of the matrix only the independent components are indicated. The
stiffness matrix of the Tocher triangular element in the local coordinate system is:
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16. Modeling of spatial thin-walled shells 291
(1290 2,28 -091 -099 088 -38 -1190 305 051 |
0% 010 -033 -009 -005 -195 019 -0,32
059 053 -017 016 038 -0,26 -032
290 015 077 -190 040 101 (16.28)
K b = 0,29 -0,0007 -103 028 029 |-10°
e 031 -038 005 015
1380 -345 -152
115 053
L 097 |
The combination of the membrane and bending stiffness matrices based on Eq.(16.8) lead
s to:
~ m+b
—e -
18x18
248 144 o o o -126 1] o o o -122 -0 o o o
144 6,64 o 0 0 -173 -0 O 0 0 029 -6 0o 0 0
108 108 108
129 228 —09 -099 088 -388 -119 305 0]
0o o0 2,28 096 010 8 g ~033 -009 -0,05 8 8 195 019 -0
8 8 -091 010 059 0o 0 052 -017 016 0o 0 038 -026 -0
10° -10° -10°
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1,26 1] o o0 o 252 0 o o0 o -126 1] o o0 o
-115 -0, o o0 o0 0 072 o o0 o0 115 -0 o o0 0
108 -10° -10°
-099 -033 0, 290 015 0,7 -1,90 040 101
8 8 088 -009 -0 8 g 015 029 —0,0d 8 8 ~103 0,28 0,29
0o o0 -388 -0,05 0] 0o 0 0,77 -0,0007 03 0o 0 -0,38 005 015
10° 10° 10°
00 0 0 0 0 0 0 0 0 0 0 0 0 o
-122 0,] 0 o 0 -1,26 1] o o0 o 248 -1, o o0 o
-0,29 -6 0 0 0 173 -0 o o0 o ~144 6, o o0 o
108 108 108
0 o -119 -195 03 o o 100 -103 038 0 o 138 -345 -1,
— — g
o 0 305 019 -0 o o 040 028 005 PR 345 115 05
0 0 051 -0,32 -0 0 0 101 029 015 0 0 -152 053 09
3
10° 10 10°
0 0 0 0 0 0 0 0 0 0 0 0 0 0 o0
(16.29)

The next step is the construction of the finite element equation using Eq.(16.17). The nod-
al displacements are calculated from the 4™, 5™ 7™ 8" 10" 11" 14™ 16™ and 17" equations
of the system of equations. The solutions are:

© Andras Szekrényes, BME
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292 Finite Element Method

&, =0,00406 rad , 3, = —0,02278 rad , (16.30)
i, =0,0187 m, ¥, = 0,00368 m, &, =—0,0948 rad , 3, = 0,00319 rad ,
¥, =0,00737 m, &, =0,01833rad , 3, = 0,01994 rad..

In the knowledge of the displacements we can determine the reactions utilizing the 1, 2",
3 9™ 13" and 15" equations:

F,. =—3000000 N, F, =—8000000 N, F,;, =91,88 N, (16.31)

F,=7434N, F,=-3000000N,F,,=7378N.

We note that the results by Eq.(16.31) are the components of the vector of concentrated
forces, which is the first term in Eq.(16.26). Moreover the 6", 12" and 18" component equa-
tions were not utilized here, which is explained by the fact that these equations are associated
to the local rotations about axis z, and their values are zero in the local system. The total force
vector by using Eq.(16.31) and Eq.(16.26) becomes:

3000000 |
8000000
11.629
7,6
—7,6876
0
6000000
0
[E':‘I-#b T 2,344
T184 -12,8
1,25
0
—3000000
8000000
-13,973
11,6
8,3125
0

(16.32)

In the sequel, we transform the results into the global X,Y,Z coordinate system. The global
position vectors of the nodes based on the global coordinates are:
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16. Modeling of spatial thin-walled shells 293

0,6795 0,57 0,2
R,=| 04 |m,R,=[1225m,R,=]05]|m. (16.33)
0,5004 0,6 0,4

The position vector of the origin of local coordinate system can be given in the global sys-
tem as:

0,43975
R, = %(R1 +R,)=| 045 |m. (16.34)
0,4502

We determine the unit basis vectors based on the position vectors in the global system us-
ing Fig.16.4:

5 r 0,162825
e, ==2—=%=| 096875 |. (16.35)
|Bz - Bo|
018725

Similarly, the unit vectors e, and e; are

R [ ~0,959
e,=——0= 02 | (16.36)
IR — Ry
| —0,2008
R [—0,23197
e, = —>——0%—|_-014688 |.
IRs — Ry
| 0,96159

Based on the unit basis vectors and Eq.(16.12) matrix L becomes:

0,162825 -0,959 -0,23197
L=[e, e, e]=|096875 0,2  -0,14688 | . (16.37)
0,18725 -0,2008 0,96159

With that it is possible to construct matrix 4 with dimension of 18x18. Using Eqs.(16.10),
(16.22) and (16.30) the nodal displacements in the global coordinate system are:

u =0,v,=0,w, =0, (16.38)
o, =—0,02141rad , S5, =—0,00845 rad , y, = 0,002405 rad,
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294 Finite Element Method

u, =0,00662 m, v, =—0,017215m, w, =—0,004883 m
o, =—-0,012352 rad , B, = 0,091582 rad , y, = 0,02153 rad ,
u, =0,0071365 m v, = 0,0014733 m , w, =—0,001082 m
a, =0,0223rad , B, =—0,013587 rad , y, = —0,0071797 rad .

It is seen that although in the local coordinate system the rotations about z are zero, in the
global system as a result of the transformation even rotations about Z exist. The nodal forces
are the followings:

F,, =—8238600 N, F,, =1277000 N, F,, =1871000 N, (16.39)
M., =—6,21Nm, M,, =-8,8259 Nm, M,, =—0,6338 Nm,

F., =976920 N, F,, =—5754000 N, F,, =—1391800 N,

M,, =—-0,8732 Nm,M,, =12,525 Nm, M, = 2,7856 Nm,

F., = 7261500 N, F,, = 4477000 N, F,, =—479100 N,

M, =9,9414 Nm, M, , =—9,4615 Nm,M,, = -3,9118 Nm.

Accordingly, in the global system there are bending moments about axis Z, which are in
fact the projections of the moments about local x and y axes with respect to Z. The solution
method is applicable also for rectangle shape elements.
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17. MODELING OF CURVED AND DOUBLY-CURVED SHELLS BY
FINITE ELEMENT METHOD BASED SOFTWARE SYSTEMS

17.1. Curved shell elements

Curved shell elements are suitable to model the midsurface geometry more accurately. In the
case of certain surfaces — for example the cylindrical shell — it means the exact description of
the original surface. For more complicated cases — similarly to the displacement field - the
curvatures of the surface are approximated by interpolation functions. In this respect such
elements belong to the parametric element types [1].

17.2. Thin-walled cylindrical shell element

The thin cylindrical shell element is presented in Fig.17.1. In accordance with the basic equa-
tions of the technical theory of thin shells the geometrical properties of the cylindrical shell
are the followings [1,2]:

g, =x,H, =1,R, =0, (17.1)

d,=¢,H,=R,R, =R.

Fig.17.1. Parameters of the thin cylindrical shell element.

Apart from the displacement components u, v and w we can derive the angle of rotations by
applying the basic equations of the technical theory of thin shells based on Egs.(14.69) and
(14.70):

W, =-W,, (17.2)
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296 Finite Element Method

1
=—(Rv,—-u ).
ﬁ?: 2R( X ,(p)

Next, we calculate the strain components using the parameters of the cylindrical shell sur-
face (see Eq.(14.67)):

1 Hl,2
E=&=—U,+ V+—W=uU,, (17.3)
Hl ' HlHZ 1
H
£, =& iv2+ 2y —w==(u,+Ww),
’ H2 ’ HlHZ R2 ?
2y, 27X¢J_ii +il :1u¢+vx,
H,\H,), H{H,), R
1 HlZ
K.=K + : = ,
11 X Hl ﬁl,l HlHZﬂZ XX
1
Kz = 1822 H, H ﬂ _E( (p_W,W)’

_op = Hi[ A B[t L L
2K‘12 - 2KX(p - H2 (HZJZ Hl (H]_Jl (RZ leﬂs ( Z\N,xga +V,x +ﬁ3) .

The rigid body-like motion of the element involves six degrees of freedom, which are giv-
en by the displacement vector field given below [1]:

U, =a, +a,R(cosp —cosd) —a,Rsing, (17.4)
Vv, =—a,XSingp+a,xcos ¢+ a,R(cos pcos & —1) —a. sinp+a, cos g,
W, = a,XCoS @ + a,Xsing + a,Rsinpcos ¢ + a,cosp +a;Sing .

In matrix form:

U =® «a (17.5)
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17. Modeling of curved and doubly-curved shells 297

Hg = [uo Vo Wo]’ (17.6)
1 R(cosp—cosd) —Rsing 0 0 0

o =0 —Xsing Xcose R(cospcosd—-1) —sing cose |,
0 XCOS ¢ Xsin @ Rsingcos ¢ cosep Sing

where @ is the matrix of interpolation functions, which capture the rigid body-like motions,

ap IS the vector of unknown coefficients. The displacement field of rigid body-like motion
and that of the deformation together give the total displacement field, which is:

u

U=Uy+Uy =|V|, (17-7)
W

where:

!gl = [u01 Vo1 W01]’ (17-8)

uOl :a7x+ag¢+ aQX(D,
Vor = o + 31X,

2 2 3 2 2 3
Wop = 8,X° + 33X+ 8,0 +a;5X" + X @+3a,,XQ" +a,,0° +

3 2 2 3 3 2 2 3 3 3

+a19X Q-+ a20X @ +3.21X(D +3.22X Q@ +a23X Q@ +a24X Q.

In matrix form we have:

D a,, (17.9)

X o x0 00 000 0 0 00 O 0 0 0 0
®=[00 0 pxp 00 00 0 0 00 0 0 0 0 0] (17.10)
00 0 0 0 X% xp ¢ X X0 xp* & o Xo* xo° ¥o? ¥¢* 9

au is the vector of unknown coefficients:
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Ql:[a7 QG Q9 p Ay Ay Az 4y Qe (17.11)
Qg ; Qg g Ay Ay Ay Ay a24]-

In the expression above there are 24 unknown coefficients. To determine all of them 24
displacement parameters are required, let us choose the followings:

~T ~ ~ ~ - ~ ~ - ~
He:lul Vi W By ﬂ(pl Wi Uy Vo W, B ﬂ(pz Wpaeee

. L et T2 T2 T 2 gz (17.12)
------- Us V3 W ﬁxS IB¢3 Wips Uz V4 W, Pra ﬁ¢4 W,xw4l

I.e. at each node there are displacements in the direction of the basis vectors, there are rota-
tions about e; and ey, the sixth degrees of freedom is chosen to be the mixed derivative w .
The degrees of freedom for the cylindrical shell element based on Eqs.(17.2) and (17.7) are:

U=Ugy+Uy,V=Vy+ Vo, W=W, +Wy,, (17.13)

P =—W, =—8,C08p—a,Sinp—2a,X—a,;p— 38,5X” — 28, X0~ 8,,00" +
—3a,X P~ 28,0Xp" —,,0° —38,,X° 9" —28,.X9” ~38,, X" ¢’

1 1
ﬂ(p = E(V - W,(p) = E(_a4R +ay @+ X —aX—23,0— a16X2 —23,, X _3a18§02 +
- 319X3 - 2a20X2(0 - 3a21X¢2 - 2322)(3(0 - 3a23X2(P2 - 3a24X3¢)2),

W,, =—8,SiNg+a,C0S @+ a,, +2a,.X + 28, + 3a,X° +

+4a, X + 3a21g02 + 6a22X2go + 6a?_3xg02 + 9a24x2¢)2.

The conditions for the determination of the parameters a;, i = 1...24 are:
u(L/2,-0)=0,,u(L/2,0)=0,, (17.14)
u(-L/2,0)=u,,u(-L/2,-0)=1,,
v(L/2,-6) =V,,v(L/2,6)=T,,
v(-L/2,0)=V,,v(-L/2,-0)=V,,
wW(L/2,-6) =W, ,W(L/2,6) =W,,

w(-L/2,0) =W,,w(-L/2,-0) =W,,

B.(LI2-0)= By, B.(LI2,6) =B,
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B(-LI2,0)=pB., B(-LI2-0)=5,,
B,(LI2-0)= B, B,(LI2.6)=p,,,

B,(-L12,0)=p,;, B,(-LI2-0)=4,,,

W, (L/2-0)=W,,,,w,, (L/2,6) =&

Xl Xp2 !

W, (-L/2,6) = W W,, (-L/2,-0) = VT’,x<,;4'

X311

The vector of nodal displacements is formulated similarly to the plate element presented in
section 15, viz. [3]:

0, =MA, (17.15)

where vector A contains the elements of «, and ¢, in order, i.e.:

Al=[a, a, a, a, a, a, a, a, a a, a, a,... (17.16)
""""" a13 a14 a15 a16 a17 a18 alg aZO a21 a22 a23 a24]'

The coefficients of the interpolation polynomials are determined by the inversion of M :
A=M"Q,. (17.17)

Due to their large length, the coefficients are not detailed here. Assuming that the angle
rotation, [ is approximately zero the strain components are formulated as follows:

e, =u g(p:%(um+w),27/w:%u +V

X — Yx? » X

(17.18)

1 1
Ky =Wy, K, :E(V"" -W,,),2kK,, ZE(_ZW‘X“’ +V,).

The strain components can be classified into two parts: strains, shear strains and the curva-
tures, respectively. We can write that:

gX KX
§O = gy :BoA!E: Ky :516’ (1719)
2;/xy 2KXy
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where matricesR andR are calculated based on the derivatives of the displacement func-
tions:

0 0 0 0 0 0 1 0 ¢ 00 0
—sing+ —CoS@+ ) i
R,=|0 X X . singpcoséd cose % 0 % % 00 %
3. 1 1 «
0 ——sin —Cos 0 0 0 0 — 2 o 0
I NP Y m om0 ¢
0 02 03 (2) 02 03 (3) 20 , O3 30 , 20 , 30 .
Xp 9t X Xo xp° 9" Xo X¢' Xp X¢' X¢ X¢
0 0 O 0 0 0 0 0 0 0 0 0
0 0 0 0 000OO O 0 2 O 0 6x 2¢
o SiNe eS¢ o v 000 0 2 o0 L o o % (17.21)
2R 2R 2R R

0 0 6X¢p 2¢° 0 6x¢° 2¢° 6x¢°

_2x _6p o 2¢  6xg 22X 6Xp  6Xg
R? R? R? R? R? R? R* |
29 0 _ﬁ _4xe _% 3 6x°p 3 6x _ X’
R R R R R R R

For the calculation of the stiffness matrix and the force vector related to the distributed
load we formulate the total potential energy of a single element. We note that the expression
below contains only the strain energy and the work of the distributed load:

u’ pdA. (17.22)

The constitutive law of the linear elastic material is:

c=Ce, (17.23)

where, similarly to the plates we assume plane stress state, i.e. g:g". Using Eqgs.(17.17)
and (17.19) we obtain:

|™
o

I
7o
1>

o

1~
-R,M T, -

oo

0., (17.24)

0

oo
70

Oﬂ_l’go =C¢s,=CB

oge’
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furthermore:
k=R A=RM"u =BT, (17.25)
B, =RM" 0, =-2Cxk=-2CB U,

u=1A=AM"0,, (17.26)
where
A=[D, 21] (17.27)

EQ.(17.24) is related to the stress resultants, while Eq.(17.25) is related to the stress
couples. The total potential energy becomes:

.I'K —Uu , .
26" CT iV — 1] j M™ A" pdA (17.28)
A

which is written as:

1 L/2 6 1 L/2 9t3
__~T . TAT . . ~ _~T L TAT i i ~
HE—ZQE{LJ/Z_[} B,C B,R-d¢ dx}ge+2ge{j leélg BR-dg dx}geJr
L/2 6 T
~a, j J‘ﬁ’l A" p-R-dg-dx.

-L/2-6

(17.29)

It is important to note that in Eq.(17.29) the term related to the concentrated loads is ex-
cluded, consequently the vector of concentrated loads should be produced additionally. This is
an easy task based on the nodal degrees of freedom:

o (17.30)

and the completed total potential energy becomes:

M, = K0, -0 (E, +Fo). (17.31)

In Eq.(17.31)£e is the element stiffness matrix in the local coordinate system
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L/2 @ 3

> T T t T T

K= | I[t'éog B, B¢ EllR-d(/)-dX- (17.32)
-L/2-6

The force vector from the distributed load is:

L/2 @
Fo= | [M™27p-R-dp-dx. (17.33)

-L/2-6
Finally the well-known finite element equilibrium equation in the local system is:

i, =F,, (17.34)

which is applicable only for a single element. The global equation of developed by a proper
transformation. The structural equation is required when there are several elements connected
to each other, which is mathematically the same as Eq. (14.86). The advantage of the thin
cylindrical shell element is that the cylindrical surface is captured exactly; as a consequence it
provides accurate result even if the number of elements is relatively low.

17.3. Axisymmetric shell problems — conical shell element

The midsurface of axisymmetric shells is produced by the rotation of the meridian curve
about a straight axis [1]. An example is shown by Fig.17.2.

N, |x.
-

Fig.17.2. Axisymmetric shell.

The meridian curves and the circular curves perpendicularly to the meridian curves are
principal curvature lines of the surface. If the load of the structure is axisymmetric, then in
this kind of problem the displacement field is the function of arc length along the meridian

curve only.
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17. Modeling of curved and doubly-curved shells 303

The meridian curve can be modeled by straight lines, and so we approximate the original
shell structure by conical shell elements. Referring to the basic equations of the technical
theory of thin shells, the parameters of the conical shell element shown in Fig.17.3 are:

g, =S,H,=1,R, =, (17.35)

r
= 'H =r7R = L
g, =¢,H, 2= 050

where s is the arc length, ¢ is the angle coordinate, r is the radius for a point P, @ is the
half angle of inclination. To calculate the strain components we need to determine the r(s)
relationship, based on Fig.17.3 we have:

r(s)=ssin@+r, and % =siné. (17.36)

Fig.17.3. Axisymmetric conical shell element and its nodal parameters.

Using Egs.(14.67), (14.69) and (14.70) of the technical theory of thin shells we can calculate
the strain components as:

ﬁl :ﬂs :_W,saﬂz :01ﬁ3 =0, (73
1 ]
==, 22, = Husin s wenso). 7, -0

sind
Ky =K, =——r W, ik, =0.

The displacement in the tangential direction at point P is v = 0 due to the axisymmetry.
The admissible rigid body-like motion of the element is a displacement given by d in direc-
tion Z, for which the displacement components are u = -d-cosd and w = d-siné (see Fig.17.3).
We consider three degrees of freedom at each node, these are: u (displacement along the me-
ridian direction), w (displacement perpendicularly to the meridian curve) and £ (angle of ro-
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tation about the axis perpendicularly to the meridian curve in accordance with Fig.17.3),
therefore the element has six degrees of freedom. The displacement in the meridian direction
is interpolated by a linear function of the arc length. On the other hand we apply third order
interpolation with respect to the displacement in the normal direction:

u 1 s 00 0 O
= , 5 la=%a, (17.38)
w 0 01 s s° s =

where « is the vector of unknown coefficients:

a' =[a, a, a, a, a; a. (17.39)
The vector of nodal displacements is:

0= W B, G, W, A, (17.40)
The conditions required for the determination of the coefficients are:

u(s,) =a, +a,s, =, (17.41)

W(s,) =a, +a,S, +aS +a,S. =W,,

B.(s,) =a, +2a.s, +3a,5% = B,

u(s,)=a, +a,s, =U,,

W(s,) =a, +a,S, +aS; +a,85 =W,,

B.(s,) =a, +2a.5, +3a,5 = 3,,.

The solutions for the coefficients are moderately complicated, therefore they are not in-
cluded here. The displacement functions can be formulated also in the way presented below:

u(s) = N,u; + N, u,, (17.42)
W(S) = NSWl + N4 ~sl + NSWZ + Ne ~52’
where N;, i = 1...6 are the interpolation functions:

275 N, =278 (17.43)
52_31 52_31

N, =
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N _(5_52)2(351_52_25) _(5_52)2(51_5)
? (52 _31)3 e (32 _51)2 ’
N. = (5_51)2(332_51_23) __(3_31)2(52_5)
’ (52 - 31)3 L (Sz _51)2 ,
and:
u N, 0 O N, 0 O |. ~
u=|Y|= d,=N{,. (17.44)
T o|lw 0 N; N, 0O N NI —
The strain components in matrix form are:
gS
&= { } =Bu,, (17.45)
e =
(4
where the strain-displacement matrix is:
% 0 0 aaNz 0 0
_ S S
B= N;sind N,cosd N,cosd N,sind N;cosd Ngcosd | (17.46)
r r r r r r
We collect also the curvatures in matrix form:
K -
5:{ }:ﬂge, (17.47)
P =
4
where:
o _ON; _ON, 4 0N _O°N,
H - o5 o5 05 05 (17.48)
= o _singdoN;  sind ON, 0 _sind Ny sind N,
r os ros r os r os
Based on the constitutive law the vector of stress components is:
o, =Ce=CBu,, (17.49)

o, =-2Cx=-2CHU,.
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The vectors of strain components and curvatures contain only two elements, therefore the
constitutive matrix reduces to:

1
C- 1_EV2 [V ﬂ (17.50)

Taking the former back into the total potential energy (similarly to the cylindrical shell
element) we can calculate the element stiffness matrix in the local coordinate system:

i C"H)-27(ssin@+r,)ds- (17.51)

H7<z
HO

E

|
“Hic H)-zmdszj(t-BTcTB
=== ===

-Jeg
S

In the above expression it was considered that s; =0 and s, = | and so r = s-siné. The exact
computation of the stiffness matrix is quite complicated, and consequently the finite element
codes implement numerical methods, e.g. the Gauss rule presented in section 12 is suitable to
calculate the matrix components. The force vector is composed by two terms. The vector of
concentrated forces can be constructed based on the nodal degrees of freedom:

~T

F

FPe = [Fsl l:nl Ml Fsz l:n2 MZ]’ (1752)
where F refers to the concentrated force, M is a concentrated moment about the same direc-
tion tan that of f. The force vector from the distributed load is calculated based on the work
of the load:

| |
W, :j(psu+ P W)2zrds =0, J'ﬁ { ]Zﬂrds:glﬁep, (17.53)
0 0 n
accordingly:
|
F. :IQTBS]Zn(SSin9+ r,)ds. (17.54)
0 n

Considering that I-sin@ = r,-r; and assuming that both ps and p, are constants, we obtain:
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1
3 P2 +1,)

1
E p, (71, +3r,)
(17.55)

1
0 p,°(3r, +2r,)

Eep = 1
3 pe (1, +2r,)
1
0 p,Ad@3r, +7r,)
—% p,°%(2r, +3r,)
In the local coordinate system the nodal displacement and reactions are calculated form
the usual:
KU, =F, (17.56)
equation, where:
F.=F.+F,. (17.57)

For a finite element structure we need the structural equation given by Eq.(14.86). Since
the elements are connected under a given angle, the local displacement coordinates should be
transformed into the global cylindrical coordinate system with longitudinal axis given by Z.

The transformation can be performed based on Fig.17.3:

u cosd -—sin@ Of U
w[=|sing cos® O W |=L"T. (17.58)
Bl Lo 0 1]p
Based on the former the transformation of the stiffness matrix becomes:
K, =2'K2, (17.59)
where:
L" 0
12%0 ﬁ}, (17.60)

is an orthogonal transformation matrix. The transformed force vector is:
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1=

E.. (17.61)

—8e =
For a single element the finite element equation in the global system is:

K.u.=F., (17.62)
Moreover, for the whole structure we have:

KU =F. (17.63)
In the finite element literature there are more element types, e.g. curved axisymmetric

shell element [4,5,6], which operates similarly to the conical shell element.

17.4. Thick-walled shell elements

For the solution of three-dimensional problems we can apply the spatial (SOLID type) ele-
ments. Fig.17.4 shows a 20 node isoparametric element. Isoparametric representation means
that the geometry and the displacement field is described by the same set of interpolation
functions [1,4,5]:

X 20 i u 20 Ui
y :ZNi(f,Ulg) Yi |s| V :ZNi(é:’ﬂ’é/) Vi |- (17.64)
z| 7 z | lw| ™ w

Fig.17.4. Quadratic two and three dimensional elements.

The thick-walled shell elements are constructed in accordance with isoparametric formulation,
in this respect we point out that the sides perpendicularly to the shell midsurface are straight,
i.e. the interpolation in the thickness direction is linear. The element is determined by the 8
nodes of the ¢'= 0 midsurface. As it can be seen in Fig.17.4 the direction of the unit basis vec-
tors changes from point to point, therefore the nodal number is indicated by subscript ,,i”.
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The coordinates of the points on the midsurface of the thick-walled shell element are given
by:

X

y ZN(é‘n) y +ZN(§77)§. n, (17.65)

z Z:

where n; are the column vector of normal vectors at the midsurface nodes, t; is the thickness in
the actual node, N; are the interpolation functions, respectively. The interpolation functions
are the same as those of the quadratic isoparametric plane membrane element (see section 12).
The compact form of the interpolation function is:

N, =5 @ &)@+ )& +nm, ~D),1=1,3,5,7. (17.66)

=%éf(wfi)a—ﬁ+%nf(1+nm)(1—§2), i=2,4,6,8,

where & and 7; are the local nodal coordinates. On the midsurface the &£ and 7 coordinate
lines are orthogonal, therefore the basis vectors are calculated as:

R xR, B,

The nodal displacement parameters are the u;, vi, w; displacements and the A and /% angle
of rotations. In the case of eight nodes it means that the element has 40 degrees of freedom.
Vector n; can be formulated by using the rotations and the basis vectors ejj, €»i:

0 :Bzgli _Eﬁzi , (17.68)

which is the term capturing the transverse shear deformation, it causes an increment in u and
v. According to the isoparametric representation the displacement field becomes:

u Gl o,
v ZN &V, ZN & m= t(ﬂmen Bi€s)- (17.69)
w w|

To calculate the stiffness matrix we have to establish the strain-displacement relationship.
The derivatives of the displacement parameters with respect to the local coordinates are:
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ou 1 1
— ' 1 —=t —t.ce)
gé 8 5 [ i CZ| i |C ll] GI
u -~
a :Z Ny 1, ~t e _ 17.70
877 = 877 [ 2 §2| 2 |é/ 1|] g ( )
a NIO - tel Stell |
¢ | 2 2 |

For the other two components we obtain similar equations. The further computations re-
quire the Jacobi matrix and determinant [1,4,5]:

01 o o o
og ox ox o¢
9 =g3 vand:| 2 =J7 21 (17.71)
on| ~|oy o| = |on
o1 |8 9 9
| 04 | | 07 | L 07 | | O¢ |

The elements of the Jacobi matrix can be obtained using Eq.(17.65). Also, the derivatives
of the displacement components can be determined in the global coordinate system. For ex-
ample, the derivatives of the component u in matrix form are:

[ou ] au |
ol [3 3G aghes
Wy g g |4 (17.72)
A R CENTE) I
o | o |

where Jij('1> are the elements of the inverse Jacobi matrix. Based on Eq.(17.70) we obtain the
following:

8
SO T T - ;tez.{m( DT T AN, }ﬂl.
= ¢ (17.73)
+ ;tell{é’(‘]( K %I\; + ‘]( Y aNI ) + ‘]1(31)N }ﬁm Z—U +G (gl|ﬂ1| + gZUBZl)
where:
=05 T TN N, (17.74)

oF

and:
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i 1 i 1
9, =—§ti92i'92 :Etigli' (17.75)

The derivatives with respect to the other two coordinates are:

8
% Z ‘]( N aN ‘]2( 1)—)U - ztezl{g(J( K 86'\; J( K aNI) ‘]ésl)N }ﬁn (17 76)
i=1
1, N, N Y. S
+§tieli{§(~]( K PY: +‘]2(21 77)+‘]2(31)Ni}:82i :;Eui +G (908 + 95 82)s
8
&= T T -t ;.{m( PTG T R I }ﬂl.
i=1
aN ON.
| |{§(‘J( ) é: ( ) I) ‘]Z§3l)N }ﬂm ZEU +G (gl|ﬂl| + g2|ﬂ2|)
where:
=20 T IE T+ AN, arm
L 5'\; £ 6D 5'\'.) IEON. .
Written in matrix form we have:
[ou | [ ON. T ou]
“u b G-X X G-X | —
aX . 8X i gll i g2| aé:
%u =2 aa';‘ G'g; Glo, 2—“ - (17.78)
i—1 n
o T eiol Gioy |
| oz | | oz Jo¢ |

The derivatives of the other two components can be provided similarly. Using the deriva-
tives we can calculate matrix B , which is the relationship between the strain components and

the nodal displacement parameters:

~ BU,, (17.79)

[™

where U, is the vector of nodal parameters in the local coordinate system. The vectors of
strain and stress components in the global system are:
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T

g =le, & & 1y v vel (17.80)

.
o :[ax o, O, T, T, Z'XZ].
Hooke’s law in the local system can be written as:

G=C&, (17.81)

where g is the constitutive matrix:

1 v O 0 0 0
v 1 0 0 0 0
0 0O 0 0 0
1-v
g::L_EV2 0 0O — 0 0 (17.82)
1-v
0 0O 0 k—— 0
2
000 O 0 ki Y

The matrix above differs from the general three dimensional case in accordance with the
followings. The stress normal to the shell surface is zero (3" row, 3 column). Since the ele-
ment is thick-walled it considers also the effect of transverse shear deformation, but only in
the form of an average stress. The constant in the elements of the 5" row, 5™ column, and the
6" row, 6™ column is a shear correction factor, k = 5/6 [1,4,5]. The reason for that is the real
distribution of the shear stresses is assumed to be parabolic over the thickness, and it is not
constant as considered in the shell model. The correction factor k is the ratio of the strain
energies from the two different distributions. Based on the transformation of local stress and
strain components we can write the followings:

(17.83)

1A

;
og,0=T

1Qq
1=

T-...
e,e=1 ¢,

1™

=

where T is the transformation matrix for general spatial stress and strain states. The calcula-
tion of T is possible using the definitions given by Eq.(11.62). Taking back Eq.(17.83) into

Hooke’s law we have:

To=CTs. (17.84)

The premultiplication with T~ leads to:
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-

*llg =T *Elg. (17.85)

,Viz.:

=
=
5

Il
II—|‘

SinceT is an orthogonal matrix we can write that: 1’1 =E, and

1q
I
-
4
10O

Te. (17.86)

The transformation matrix is [4]:

2 2 2

Ili mli nli Ili mli mli nli n1i I1i
2 2 2

I2i m2i r’|2i I2im2i m2inZi n2i|2i
2 2 2

I3i m3i n3i I3im3i rnSin3i r-]3i|3i

1—
Il

(17.87)
20, 2mym, 2ngn, lymy +lmy o mgng +myng gl 40yl

2,y 2myumy 20,0y LMy +lmy myng +mgny nyly +ngly

2yl 2mgmy o 2ngng my +limy mgng +myng gl +ngly |
where I;, m; and n; are the direction cosines of the unit basis vectors at the actual point [4,7]:

l; =cos(i,e;), m; = COS(J’gli) .y =cos(k,e;), (17.88)
l,; = cos(i,e;) , my; = COS(j,QZi) /Ny =cos(K,e,),
l; = cos(i,ey) , My = Cos(i@si) Ny =cos(K,ey).

The transformation matrix should be evaluated in the nodes, moreover due to the numeri-
cal integration even in the integration points. The stiffness matrix in the global coordinate
system can be calculated using Eq.(15.17):

K,=[B'TC'T"Bdv = [B'TC'T'BId&nd¢, (17.89)
Ve

] 5L
where J is the Jacobi determinant, which can be calculated using Eqs.(17.65) and (17.71).

For the determination of the force vector we recall the displacement vector field in the usual
form:

u(é,n,¢)=Nu,, (17.90)

where N is the matrix of interpolation polynomials. As a result, the vectors of body, sur-
face and line forces in the global coordinate system are:

Fo=[N"pdv=[N"p Jddnd¢, (17.91)
Ve Ve
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which can be determined by transformation into the global system in a similar way to that
presented in section 16. In the nodes concentrated forces may act, the relevant vector can be
obtained in the same way as that shown in plate elements. Because of he high number of
nodes it is not detailed here. The finite element equilibrium equation is formed in the usual
way, for a single element it is:

(17.92)

where F. is the sum of the vectors of body, surface, line and concentrated forces. Finally, the
structural equation is:

KU=F (17.93)

17.5. A shell-solid transition element

In complex structures sometimes there is the necessity of the simultaneous application of sol-
id and thick-walled shell elements. These elements can not be connected directly, because the
nodal degrees of freedom are not identical. In these cases it is reasonable to use a transition
element between the solid and shell elements [1,4,5]. A quadratic transition element is shown
in Fig.17.5, where the nodes 1-8 are located in the solid side, nodes 10-12 care located in the
shell side of the element.

Fig.17.5. A shell-solid transition element.

The geometry of the transition element is captured by the function below:

= YNGR O| Y, [+ SN v |+ 2N Em) S (17.99
i=1 7 i=9 7 i=9

N < X
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The indices i = 1...8 refer to the interpolation function of the solid element given by
Eq.(17.64), if i = 9...13 then the actual interpolation functions of the thick-walled shell ele-
ments are referred to in accordance with Eq.(17.65). The composed system of functions satis-
fies the following conditions [1]:

2Ni(Em )+ 2N (Em) =1, (17.95)

0, if izi
Ni(éjrnjagj):{l ilf iljjj,

0, if i=i
Ni(fpﬂ,-):{l ilf iljjj,

where &, n; and & are the nodal coordinates in the local coordinate system. Similarly to the
thick-walled shell elements the displacement field is expressed by:

£
=

<1
=<1

s < <

YNGR T |+ XNGED T |+ D NED S (Bt~ Bt (1796

=1
=1

The degrees of freedom in nodes 1-8 are equal to three, in nodes 9-13 there are five de-
grees of freedom. Consequently the transition element has 49 degrees of freedom. The further
calculations can be performed in similar fashion to that presented in the thick-walled shell
element.
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18. ANALYSIS OF 3D PROBLEMS WITH FINITE ELEMENT BASED
PROGRAM SYSTEMS. INTRODUCTION OF 3D ELEMENTS.

In several cases, the geometry of a structure or a body cannot be modeled as a line or surface.
In that special case it has to be modeled as a body. Bodies like these can only be approx-
imated by 3D elements in order to prevail neglecting important parts. Complex geometry ap-
pears in simple structures as well. For example, if a welded beam structure is modeled, then it
is suitable to use beam elements which is able to analyze the stress state of the structure. If
the stress state has to be analyzed in the joints of a structure, then shell model must be ap-
plied. If the weld coalescences have to be examined as well, then 3D model must be applied.
Naturally, the more precise modeling which involves more nodes, increases the amount of
calculations as well.

The 3D elements can be hexahedrons, tetrahedron, less often pentahedron (these elements
can be derived from hexahedrons) which can be described by linear-, quadratic of higher de-
gree of basis functions.

18.1. Hexahedron elements

The hexahedron elements are mapped to a cube with unit length of two. Depending on the
degree of the approximating polynomial, elements with 8, 20 or 32 nodes can be used as well.

A

Figure 18.1.: Local coordinate system of the Hexahedron
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318 Finite Element Method

The local coordinate system is derived from the global coordinates and the 2a, 2b, 2c lengths
of the cube. These coordinates are:

&= - (18.1)
5= y_byc and (18.2)
L= % (18.3)

Then the derivatives:

ae=% (18.4)
a
dn= d_g/ és (18.5)
d¢ = % . (18.6)
c
18.1.1. Hexahedron element with 8 nodes
7

1

Figure 18.2.: Hexahedron with 8 nodes and the mapped cube

If the investigated body is to be analyzed by linear hexahedrons, then elements with 8 nodes
must be used. The element is approximated by:
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x=>"Ni(&m.$)-%, (18.7)
y=>'Ni(&7.¢) y; and (18.8)
z2=> Ni(&n.¢) 7, (18.9)

formulas, where N,(&,7,¢) is the basis function of the i node:

N; :%(1+§§i)(1+7777i)(1+§§i)' (18.10)

where &,7.,¢, are the local coordinates of i node.
The J Jacobi-matrix determines the relationship between the local and global derivatives
of the basis function:

1N (E,72,8) = 3|0,0oN: (€,7,C)|, where (18.11)
x oy o]
0 08 0
jo| X ¥y (18.12)
=~ |on 0on OJn
x N &
o o 8¢

The basis functions, similarly to (3.20) equation, are interpolation functions. These func-
tions can be used to approximate the displacement of the element, thus there is no need to
introduce new interpolation functions but to apply the (18.10) basis functions in case of a
hexahedron element with 8 nodes.

U=2Ni(§,f7,é“)'uw
V:ZNi(égJ?,é,)‘Viv

w=>"N(&7,¢)-w.

The described elements are named as isoparametric elements.
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18.1.2. Hexahedron element with 20 nodes
7

I
®
I
I
I
1
I
I
1

Figure 18.3.: Hexahedron with 20 nodes and the mapped cube

If the investigated body is to be described by quadratic hexahedrons, then elements with 20
nodes must be used. The element is approximated by:

X:ZNi(QZ’Ua;)‘X“
y=>'N,(&n.¢) y; and

z =2Ni(‘§’n’§)'zi

formulas, where N,(&,7,¢) is the basis function of the i node. In case of an element with 20
nodes, the nodes in the corners and the nodes in the middle of the sides must be distinguished.

In case the node is located in a corner, the basis function is:
1
N, = §(1+ E& L+ U+ & NE + i+ & - 2), (18.13)

where &,,n;, ¢, are the local coordinate of corner i.
In case the node is located at the middle of a side, the basis function is:
If £ =0, then

N, =%(l—§2)(l+m7i)(1+ &) (18.14)
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If . =0, then
N = 0+ & )a-n )i+ &), (18.15
If £ =0, then
N; =%(1+ & YL+ )¢, (18.16)

where & 7., ¢ are the local coordinates of node i at the middle of the side.
Similarly to the element with 8 nodes, the J Jacobi-matrix determines the relationship be-
tween the local and global derivatives of the basis function:

alokNi(glnig): i[agmbNi(f,ﬂ,C)J, where

oy
g 05 0¢
j-|&* N
= |len on on|
x y a
|06 0¢  0O¢

If (18.13)-(18.16) basis functions are used to approximate the displacement of a hexahe-
dron with 20 nodes, then the elements are named as isoparametric elements as well.

18.1.3. Hexahedron element with 32 nodes

I
1
o]
I
I
I
1
1
\
feg

Figure 18.4.: Hexahedron with 32 nodes and the mapped cube
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If the investigated body is to be described by cubic hexahedrons, then elements with 32 nodes
must be used. The element is approximated by:

x=>"N,(&n.8)-x,
y=> Ni(&m.¢)-y; and
z =zNi(§’n’§)'Zi

formulas, where Ni(f,n,cj) is the basis function of the i node. In case of an element with 32
nodes, the nodes in the corners and the nodes along the sides must be distinguished.

In case the node is located in a corner, the basis function is:
1
N, = o 0 5 X o Yae 2 JOl&” + 77 +.¢7)-120), (18.17)

where &,n;, ¢, are the local coordinates of corner i .
The basis functions at the point of the third length of the side:

If & = i%, then

N, = - o 928 Mk o Y+ &) (18.18)
If n, = i% , then

N; :%(1+§§i)(1_772X1+97777iX1+§§i)- (18.19)
If ¢ :i%, then

N, =+ & e -6 a9, (18.20)

where &,7,,¢, are the local coordinates of node i along the side.

Similarly to the earlier, the J Jacobi-matrix determines the relationship between the local

and global derivatives of the bas_is function:
aIokNi (é:’ 7, é,) = i[aglobNi (é:’ 7, é/)J’ Where
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x oy o]
0 OF 8&
Jo|x ¥y
= |on on on|
ox oy o
| 0§ 0¢ O |

If (18.17)-(18.20) basis functions are used to approximate the displacement of a hexahe-
dron with 32 nodes, then the elements are named as isoparametric elements as well.

18.1.4. Pentagon elements

Among the pentagon elements mostly the prism and the pyramid is used, which are described
as a degenerated hexahedron.

18.2. Tetrahedron elements

Basis functions can be described in two kinds of coordinate systems in case of tetrahedron
elements: in a coordinate system where the element is mapped as a tetrahedron with unit
lengths, or in a so-called volume coordinate system (same as in the ANSYS). Both way of
description will be introduced.

In case of the first description, the origin of the local coordinate system is allocated in one
corner of the tetrahedron (Figure 18.5.).

g

Figure 18.5.: Tetrahedron in the unit length coordinate system

In this origin, the local coordinates are described by the a, b, ¢ lengths:

&= , (18.21)
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n=J —byA and (18.22)

z-1,
c

g = (18.23)

The volume coordinate system is defined by the following equation system:
X=LXx +LX, +Lx+L,X,,
y=Ly + LYy, + Ly, + Ly, (18.24)
z=Lz +Lz, +Lz,+L,z,
1=L+L +L+L,
X, Y, Z are the global coordinates of an inner point, x, ..., z, are the global coordinates of the

corners, L,,..., L, are the volume coordinates. By solving the (18.24) equation system the
volume coordinates are:

I_1:a1+blx+cly+dlz
6V 1
_ 8, +bXx+Cy+d,z

L
2 6V

L= a, +bx+cy+d,z
6V )

_a,+bx+c,y+d,z
6V

L, , Where

a, ..., d,are constants, and V is the volume of the tetrahedron. By setting and simplifying the

formulas, the single coordinates can be calculated at any inner P point of the tetrahedron, if
the original body is divided into four tetrahedrons with respect of point P.
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1

1
3

P
4

2

Figure 18.6.: Discretization of tetrahedron for volume coordinates

Thus the volume coordinates of P — related to each corner — can be obtained as the ratio of the
opposite volume of the examined small tetrahedron and the volume of the original tetrahe-
dron:

I_l _ VP234 , L2 _ Vp134 , L3 — VP124 , L, = VP123 ) (1825)

\Y \ Vv \Y
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18.2.1. Tetrahedron element with 4 nodes
4

2

Figure 18.7.: Map of tetrahedron element with 4 nodes to &,7,{ coordinates

If the investigated geometry of the body is to be described by linear tetrahedrons, then ele-
ments with 4 nodes must be used. In a &,7,4 coordinate system the element is approximated

by:

x=3 N,(£7.8)- %,

y =2 Ni(&m.8)-y, and
2=3 Ni(&n.¢) 2,

where N, (&,7,¢) is the basis function related to the i node:

N, =1-&E—p—C, (18.26)
N, =¢&, (18.27)
N, =7, (18.28)
N,=¢. (18.29)

In volume coordinate system the shape is approximated by:
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X:zNi(Ll’LZ'LS’L4)'XiI
y=Y Ni(L, L, L, L)y and

z :ZNi(Lv L, L, L4)' Z;

Formulas, where N, (L, L,,L,,L,) is the basis function of i node:

N, =L, (18.30)
N, =L, (18.31)
N, =L, (18.32)
N, =L,. (18.33)

18.2.2. Tetrahedron element with 10 nodes

Figure 18.8.: Map of tetrahedron element with 10 nodes to &,7,4 coordinates

If the investigated geometry of the body is to be described by quadratic tetrahedrons, then
elements with 10 nodes must be used. In a &,77,{ coordinate system the element is approx-
imated by:

x= > Ni(&71.8)-x,
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y:zNi(égiﬂa;)'yi and

2= Ni(&m.¢)-z

where N,(&,7,¢) is the basis function related to the i node in the corners:

N, =1-&-n-¢-261-¢é-n-¢)-200-&E-n-¢)-20(1-E-n-¢),

N, =& -26(Q-¢-n—¢)-25n-2&
Ny =7 —2&n -27(l-&—n—¢)-2n¢
N, =¢-2& —2n¢ -2{(1-&-n—¢).

The nodes in the middle of the sides:
Ny =451-¢-n-¢),

N = 4&7,
N, =4n(l—&-n-¢),
N, = 4¢2
Ng =4n¢,
Ny =4¢L-¢-7-¢).

In volume coordinate system the shape is approximated by:
x=2 Ni(L, Ly Ly, L) %,
y=>Ni(L Ly Ly L)y, and
2= Ni(L, L, L, L)

where N,(L,,L,,L,,L,) is the basis function related to the i node.
Basis functions in the corners:

N, =L (2L, -1),
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N, =L,(2L, -1),
N; = L,(2L, 1),
N, = L,(2L, -1).

In the middle of the sides:

N, =4LL,,
Ng = 4L,L,
N, =4LL,,
N, =4L,L,,
N, =4L,L,,
N,, =4LL,.

The advantage of the volume coordinate system becomes more obvious since the basis
functions are simple and similar to each other.

18.2.3. Tetrahedron element with 20 nodes

Figure 18.9.: Tetrahedron element with 20 nodes
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If the investigated geometry of the body is to be described by cubic tetrahedrons, then ele-
ments with 20 nodes must be used.

Since the volume coordinate description has a simpler form, only this method will be pre-
sented. In volume coordinate system the shape is approximated by:

x=> Ni(L,L,, Ly, Ly)- %,
y=2Ni(L.L,L,L,)-y, and
2= N(L L L L)z,

where N,(L,,L,,L,,L,) is the basis function related to the i node.
Basis functions in the corners:

N, =2 L3k - 18, -2),
N, = % L,(3L, -1)3L, - 2),
N, =5 L35 -1)3L, -2),

N, = % L, (3L, —1)3L, - 2).

Basis functions in the middle of the sides:

M=%HQ@M—Q.M=%hQBQ—ﬂ,
9 9

N, =2 LLBL-1). Ny =2 LL(EL 1),
9 9

N9 = E L1L4(3L1 _1)’ N1o ZE L1L4(3|—4 _1)’
9 9

Ny, = 92 L2L3(3|—2 _1)' Ny, = 2 L2L3(3L3 _1)'
9 9

N;; = E L3L4(3|—3 _1)' Ny, = E L3L4(3L4 _1)'
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9 9
Nys = 2 L2L4(3L2 _1)’ Ny = 2 L2L4(3L4 _1)-

Middle of the surface:
N;; = 27'—1'—2'—31

Nz =27LLL,,

Ny = 27'—1'—3'-4’
Ny =27L,L5L,.
18.3. Hierarchic basis functions

In case of elements with higher degree, hierarchic basis functions can be used, which has the
original degree of the function in the corners but lower degree along the sides and the surfac-
es.

18.4. Definition of stiffness matrix and nodal loads
18.4.1. Numerical Gauss integration method

In order to solve a finite element problem, the elements of the stiffness equation (stiffness
matrix, nodal loads) must be determined. These elements can be obtained by integration as it
is shown in Chapter 3.5. Most of the times the integrals cannot be solved analytically, thus
numerical integration techniques must be applied. In case of a three dimensional
F(x, Y, z)function with respect to a V volume, by the use of the Gauss integration method:

_[F(x, y, z)dV :m F(x, Y,z )dxdydz = ZZZKZ\NinWkF(Xi’yj’Zk)’

where:
W, W;, W, : weight factors,

X, ¥, Z, - Gauss coordinates.

If we choose to use &, 77, £ local coordinates, then:
[[] F(x.y. 2)dxdydz = [[[ F(£,7, & )det (£, 7, £ Jdzdmd =

:ZZZVVinWk deti(é:i’nj’é,k)lz(gi’njlé/k)’
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where:
- W, W,;,W,: Gauss weight factors,
- &.1;,6, - Gauss (local) coordinates,
- J : Jacobi-matrix.
18.4.2. Definition of stiffness matrix in case of 3D elements

In case of isoparametric elements the (3.23.) stiffness matrix must be defined as:

K. = I[Ee([)]T CB.(r)dV , where

B,(r)=2N,(r).

Let F_(x,y,z) be defined as function:

E.(xy.z)=[B.(x,y,2)] CB.(x.y.2),

Then the stiffness matrix of a hexahedron element:

.|£ x,y,2)dV =
Ve

»—\"—""_‘
»—\'—""

JIJE(&n &)det 2(&. . &) =

:zzzk: W W, det J(&,7,.¢, E. (&7,

18.4.3. Derivation of nodal loads from distributed force system on volume

The nodal loads are derived from the distributed force system on a volume or surface. Ac-
cording to (3.24) the load from the distributed force system on a volume:

qu = fﬁe(l)h dv .
Ve
Introducing the iqe(x, y,z) function:

f.(xv.2)=[N, (0] g,

Deriving the nodal load from the distributed force system on a volume of a hexahedron
element:
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qu:J'i xy, dV

Ve

H'—"_‘

H (& m, ¢ )det I(&, 7, $)dedmdg =

= ZZZWinWk deti(éti 516k )iqe(ii 117 ’é/k)

18.4.4. Derivation of nodal loads from distributed force system on surfacel
According to (3.25) the load from the distributed force system on a surface:

Fo=[IN,()] pda.

Figure 18.10.: Determination of the normal of a surface

In an arbitrary point of £ =1 coordinate the a, and a, tangents can be determined as:

By knowing these tangents, the normal a, vector is:
a; =2, X4a,.

The basis function is limited to the surface:
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Ni(&.7)=Ni(&.m.¢ =1).
Then the tangents are:

ON, 577 L N(En) o e Ni(En)
Z X1 Z o& Yi J+Z o& 4 K’

_or ¢ oN(&n) 577 )
8 =5, " P o N iy Miler), J+Z Z k.

And the force vector on an infinitesimal surface is defined as:
pdA=—p-dA=—p(a, xa,)d&dn =—pa,dddnr.

Substituting this into (3.25):

= IL rpdA——”L (&n)] padady.

-1-1

Introducing ipe(é,n) function:

f.Em =[N, En) pa,

Deriving the nodal load from the distributed force system on a surface of a hexahedron
element:

= _:ll.j.iqe(gg,ﬂ)dé:dﬂ = ZZWWJ f qe(é:l’nj)'
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19. ANALYSIS OF 3D PROBLEMS WITH FINITE ELEMENT BASED
PROGRAM SYSTEMS. APPLICATION OF 3D ELEMENTS.

19.1. Creation of geometric model

The geometric models of three-dimensional bodies are identical with the original 3D bodies if
3D elements are used during the creation. With the capacity of the modern computers even
the most complex structures (linear material law, static problem) can be solved in reasonable
time. Although, in many cases the complete, detailed analysis is irrelevant. The computational
time can be decreased, and in case of non-linear problems the modification of the original
shape of the body can be an essential condition. The importance of these questions will be
presented in the following chapter.

There are two ways to import the geometry of a body into a finite element program: we ei-
ther use to construct the model with the basic design module of the finite element program, or
we use a commercial design program to create and import the geometry of a body.

19.1.1. Editing the original geometry

During the creation of the geometric model — the pure digitalization of the geometry is not
sufficient — special surfaces must be created where:

— Loads and constraints can be applied,
— The mesh can be modified,
— Results can be plotted.

Further on, these routines can be only undertaken, if the appointed surfaces exist and are
available to refer in the program.

In Figure 19.1 an example is shown about the definition of surfaces. On the original geo-
metry the surface of the cylinder is a compact domain, but the load is applied on only one
individual surface. That surface has to be separated, since it will be treated as a reference sur-
face in case of defining force, pressure or deflection.

Figure 19.1.: Creation of surface on a cylinder
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19.1.2. Modeling sides and corners

3D models include the geometry of sides and chamfered or rounded corners. On the other
hand, it is recommended to decrease the computational time by selecting the essentially im-
portant parts for modeling and neglecting the ones which are less important related to the
analysis. As a general engineering rule of thumb, if we suspect peak stresses in a certain area,
then a more detailed model has to be used, while in case of an unloaded area the same model
is irrelevant. In case of Figure 19.2 we assume that the loads and constraints are located at the
ends of the shaft. Using rounded corners (signed as red) in this particular case only increases
the complexity of the model without adding more information. In contrary, the rounded green
part on the model has valid influence on the peak stresses, thus neglecting it would case great
unreliability in the calculation.

In case of this problem, the green rounded radius is given and appears in the model, while
the corners — signed with red color — is neglected and also not represented on the model.

Figure 19.2.: Modeling sides and corners

19.1.3. Modeling unloaded parts

During the modeling the unloaded parts can be neglected. If it is known that a decoration of
information board will be bolted to the crankshaft in Figure 19.3, then its influence can be
neglected, and the handle can be skipped in the model.
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a) b)

Figure 19.3: Modeling unloaded parts

19.14. Modeling symmetric parts

In case of modeling a machine element, the symmetry itself can be utilized if the load is
symmetric as well. It is sufficient to use the half of the geometry in case of single symmetry
while the one-forth of the geometry in case of double symmetry, while the proper constraints
have to be applied on the intersected surfaces in order to model the neglected parts (Figure
19.4). This method is correct in case of strength calculation and analysis, while in case of sta-
bility and eigenfrequency can only be used with some restrictions.

a) single symmetry b) double symmetry

Figure 19.4: Utilization of symmetry properties

19.2. Creation of finite element model

The geometry of the bodies are discretized to finite elements according to method and pre-
sented element types in Chapter 18. The discretization of the body is called meshing. The
meshing is carried out by the software although some parameters have to be specified (or the
default parameters modified). The two most important parameters are the type and the size of
the elements.
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19.2.1. Defining the mesh

In case of classic, commercial software the element type has to be chosen, which is followed
by the size or the numbers of the elements. After these steps comes the concrete meshing.
Modern software is able to mesh the geometry without setting any parameters. In this special
case the program uses a default setting which is appropriate for a rough estimation although
this only gives the user a line on the results. In most cases we can only give capital credit to
the mesh (feasible and appropriate) if the settings are well chosen. In the following chapter we
shall investigate the influence of the element type and size.

19.2.2. Influence of element size

Earlier, a crankshaft was examined — under different settings — with fixation applied on one
end and concentrated force applied on the other end. In Figure 19.5, the meshing was carried
out with the default setting. As it is seen, the application of tetrahedrons results a coarse mesh,
with maximal reduced stress of 48MPa.

47,995 Max
4268

| 37364
|| 321048

Figure 19.5: FEM mesh with default settings and calculated reduced stress (MPa)

Let us define the average element size to 5mm, which results finer mesh while the reduced
stress increases to 55MPa.

Figure 19.6: Calculated reduced stress in case of 5 mm average element size (MPa)
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It appears very visibly that the critical part is located at the transition of the diameters, at the
rounded corner. If we are already aware of the critical segments, the further refinement of the
mesh on the complete geometry is irrelevant. Let us reduce the element size, but only in the
critical segment, and investigate the additional influence.

Let us reduce the size the element size to 2 mm in the critical segment while the average
element size remains 5mm in other segments.

67,445 Max
59,969
52,493
45,017
37,54

30,064
22,588
15112
7,6357
0,15958

Figure 19.7: 5 mm of average element size, 2 mm of reduced element size in the critical segment and
the calculated reduced stress (MPa)

In Figure 19.7 it is seen, that further refinement in the mesh resulted additional 12MPa of
stress increment in the calculation. As long as the results are so sensitive to the mesh, the cor-
rect solution is not even close, thus let us reduce the element size to 1 mm in the critical seg-
ment.

69,603 Max
61,385
54,168
46,451
38,733
31,016
23,299
15,581
7,8637
0,11638

Figure 19.7: 5 mm of average element size, 1 mm of reduced element size in the critical segment and the
calculated reduced stress (MPa)

The further refinement in the mesh caused no relevant difference, thus the result started con-
verging. The solution is approximated and further refinement in the mesh will not have consi-
derable influence on the result. (Note, that the element size was halved, which causes powered
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increment in the element number. In three dimensions it increases the order of magnitude in
the critical segment with closely one.)

As a validation, let us consider a much finer mesh with 0.5 mm of element size in the crit-
ical segment. In Figure 19.8 it is seen that this mesh causes less than 0.5 % difference in the
result.

Figure 19.8: 5 mm of average element size, 0.5 mm of reduced element size in the critical segment
and the calculated reduced stress (MPa)

19.2.3. Influence of element type

Let us investigate the influence of the tetrahedron elements with 4 nodes (linear approxima-
tion) compared to the earlier presented tetrahedron elements with 10 nodes (quadratic approx-
imation). Very likely, the decrease of the order of approximate functions will have negative
influence on the results. The element type remains tetrahedron, only the nodes in the element
are reduced. The meshes are not presented (identical with Figure 19.5-8), only the reduced
stresses are compared in case of identical mesh, element size and different (10 or 4) nodes.

47,995 Max
4268
| 37364
| | 327040
| 26734
1 21419
= 16,104

10788

Tetrahedron with 10 nodes Tetrahedron with 4 nodes

Figure 19.9: Calculated reduced stress (MPa) in case of different tetrahedrons, element size is
default.
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In Figure 19.9 it is seen, that the tetrahedron with 4 nodes cannot approximate properly the
cylindrical geometry, since the side of certain elements are a plane due to the linear approx-

imate functions, in contrast with the 10 nodes element which can model the sides as curves as
well.

37,429 Max
33,298
| 29167
| 25,036
% 20,905

16,775
= 12,644

85127

Tetrahedron with 10 nodes Tetrahedron with 4 nodes

Figure 19.10: Calculated reduced stress (MPa) in case of different tetrahedrons, average element
size is5 mm

The rounding radius was set to 3 mm, thus the maximum stress did not change significantly
compared to the default setting. In the next step, the rounding radius is set to 2 mm, which
will very likely enhance the accuracy of the result.

67,445 Max
59,969
| 52403
|| 45017

51,313 Max
45,644
| 25,075
|| 34308
28,636
| 55065
| 17297
L1 11627

Tetrahedron with 10 nodes Tetrahedron with 4 nodes

Figure 19.11: Calculated reduced stress (MPa) in case of different tetrahedrons, average element
size is 5 mm, element size in the critical segment is 2 mm

In Figure 19.11 it is seen, that the results are highly refined if we use smaller elements than
the rounding radius. While the valid result was already approximated with the 10 nodes ele-
ment, the solution given by the 4 nodes element had relevant difference. Let us refine the
mesh — which was already appropriate for the elements with 10 nodes — and observe the influ-
ence on the elements with 4 nodes.
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Tetrahedron with 10 nodes Tetrahedron with 4 nodes

Figure 19.12: Calculated reduced stress (MPa) in case of different tetrahedrons, average element
size is 5 mm, element size in the critical segment is 1 mm

69,326 Max
61,63
53,933

64,475 Max
57,344
50,213
43,082
35,951
28,82
21,689
14,558
7,4273
0,296

46,237
38,541
30,845
23,149
15,453
77565
0,060

Tetrahedron with 10 nodes Tetrahedron with 4 nodes

Figure 19.13: Calculated reduced stress (MPa) in case of different tetrahedrons, average element
size is 5 mm, element size in the critical segment is 0.5 mm

In Figure 19.12 and 19.13 it is seen, that the elements with 4 nodes do not converge to the
valid solution even if the mesh if very fine. In case of tetrahedron elements with 10 nodes we
obtain an acceptable solution with fewer elements than the order of magnitude of two. We can
draw the following conclusions: the use of elements with 4 nodes has to be avoided if the
modeled body includes curved geometry. This means practically most cases.

19.3. Boundary conditions

Another most important part of FEM modeling is the proper settings of the boundary condi-
tions. We cannot make faults by using approximate functions with higher order or a very fine
mesh. That might relevantly increase the computational time, but the solution will be ulti-
mately valid. The fault of boundary conditions settings will appear independently from the

fine mesh. Many cases, the error due to the wrong boundary conditions is increased by the
finer mesh.
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19.3.1. Loads

Real bodies are subjected to distributed loads on their surface or volume. Loads can be con-
centrated in a point or distributed along a line if the modeling dimension is lower. The appli-
cation of these loads is a fault in the 3D modeling, which proportionally increases the error in
the solution by the refinement of the mesh.

In Figure 19.14 a cube is plotted with 20 mm of side length, and 100 N of concentrated
force is applied on the middle of its upper plane. The other lower plane of the cube is fixed.
Let us examine the stresses as a function of element size.

Figure 19.14: Cube loaded on the middle of its upper plane

If the force is acted on the total plane as a pressure:

F
o=—
A 20mm-20mm
Then normal stress appears in the total cross section. If we make the following fault by
applying a concentrated force in the middle of the upper plane instead of a pressure, then we
obtain different reduced stresses as a function of element numbers.

1,3007
1,0671
0,83353
0,59995
0,36637
0,13279 Min

Figure 19.15: Calculated stresses (MPa) in a cube loaded in a point with concentrated force (ele-
ment size 10 mm)
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7,3881 Max
B,5685

5,751

49324
41138
3,2953
24767
1,6581
0,53956
0,020989 Min

Figure 19.16: Calculated stresses (MPa) in a cube loaded in a point with concentrated force, (ele-
ment size 5 mm)

44,986 Max
49,988
14,99
29,992
24,994
19,995

0,0045286 Min

Figure 19.17: Calculated stresses (MPa) in a cube loaded in a point with concentrated force, (ele-
ment size 2 mm)

179,66 Max
159,7

139,74

119,77

99,613

79,85

59,388

39,926

19,964
0,0012998 Min

Figure 19.18: Calculated stresses (MPa) in a cube loaded in a point with concentrated force, (ele-
ment size 1 mm)

We can observe that the decrease of the element size constantly (and increase of the element
number) increases the reduced stress (Figure 19.19). By the decrease of the element size we
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step by step approximate the theoretical concentrated load which results infinite stress. We
obtain similar result if we apply distributed load along a line.

In case of 3D modeling we can only apply distributed loads on the surfaces and the
volumes. We do not analysis further the problem, but the similar problem appears if a line- or
shell element is directly connected to a 3D body.

200

160 /

140 /
/

/

[EEN
N
o

Eq. Stress [MPa]
H
(0] o
o o

\

o
/

O 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Nr. of elem.

Figure 19.19: Reduced stress as a function of element number

19.3.2. Constraints

We have to pay special attention to the constraints if we model 3D bodies. Since the con-
straints are infinitely rigid, they might result unexpected and unrealistic stresses and deforma-
tion in the calculations. Although, this problem does not appear always so directly as it was
demonstrated with the concentrated force in the earlier section. Due to this fact it can cause
problems since it is hard to notice. Let us examine a beam fixed in one end and loaded with a
concentrated force in the other end (Figure 19.20).
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Figure 19.20: Normal stresses (MPa) in a fixed beam, hexahedron elements with 10 mm

Calculated stress from pure bending:

F-1 _6-1000N - 200mm
K 20°mm?®

The calculated stress in the body is summarized in a table as a function of element type,
element number and number of nodes:

=18,75MPa
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Type Size Number  of | Number of | Max. normal | Max. reduced
nodes element stress [MPa] stress [MPa]
Tetrahedron | 10 (def.) 218 513 16,2 11
with 4 nodes |5 876 2747 21,4 15
4 1306 4265 24,7 16,9
3 2814 10359 26 18,4
2 7325 29154 30,4 22,2
1 35861 156570 38,9 27,8
Tetrahedron | 10 (def.) 442 1394 17,4 13
with 4 nodes | 5 2361 9270 21,1 16
(structured) | 4 3948 16038 22 16,5
3 6935 27324 23,6 17,9
2 16758 69312 26,2 20,3
1 78573 341083 32,4 26,4
Tetrahedron | 10 (def.) 1149 513 25,5 19
with 10 | 5 5182 2747 31,8 24,2
nodes 4 7860 4265 34,6 26,3
3 17814 10359 38,8 29,7
2 47927 29154 44,6 34,4
1 243813 156570 57,8 44,4
Hexahedron | 10 (def.) 525 320 20,3 18,7
with 8 nodes | 5 3321 2560 23,2 20,2
4 6171 5000 24,5 21
3 Could not mesh
2 44541 40000 30 24,6
Hexahedron | 10 (def.) 1865 320 23,6 19,5
with 20 |5 12465 2560 28,8 24,5
nodes 4 23441 5000 31 26,5
3 59710 13538 34,6 29,8
2 173481 40000 39,5 34,1
1 1333361 320000 51 44,1

By observing the results we can derive that the solution does not converge, but the in-
crease of the error is not as significant as it was with the concentrated force. This fault causes
unreliability during the validation of the results, since the calculated higher stresses are unrea-
listic due to the rigid fixation. Even higher stresses are resulted if the kinematic constraint is
defined only on a segment instead of the total surface.

The unrealistic stresses can be decreased by coarsing the mesh in the area of the ideal con-
straints. This is only a emergency solution, if we do not have the possibility to model contact
or realistic constraints.
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20. PRINCIPLES ABOUT MODELING, ACCURACY AND APPLI-
CABILITY. COMPARISON OF DIFFERENT FINITE ELEMENT MOD-
ELS, ANALYSIS OF RESULTS.

20.1. Modeling beams

Multiple models can be used in a finite element system in case of beams with constant cross
sectional area. Short beams can be modeled as 1D beam, 3D body while then-walled struc-
tures even as shells. In the followings, we are going to investigate that depending on the con-
ditions, which model is applicable. In order to compare the results, simple problems will be
solved by the use of different models.

20.1.1. Analysis of a beam with circular cross section

Let us consider a beam with circular cross section with 50 mm of radius and 1000 mm of
length. All rotations and translations are constrained at one side, while on the other side a
force with the magnitude of 1200 N is applied. Let us determine the maximum stress in the
beam. Two models will be applied to solve the problem. Applying line elements the beam is
modeled by its neutral axis (Fig. 20.1.a). In this case one end of the beam is fixed and the oth-
er end is loaded by a single force. By using 3D elements, the geometric model is a cylinder
which is loaded by a distributed force system at one end. At the other end no fixation is ap-
plied, because the constraint of deformation would cause additional stresses beside the bend-
ing stress. Instead, the same distributed load is applied — with opposite direction — at the other
end, while the axial displacement is prescribed to zero (Fig. 20.1.b.).

B [ Force: 1200, N
Force: 1200, N [B] Displacement
. Fixed Support [E] Force 2: 1200, N

=
a) b)

Figure 20.1.: Geometric model of the beam

The most important advantage of the 1D modeling related to the FEM is the reduced compu-
tation. The element itself is far simpler than the 3D elements, and beside the similar accuracy,
less element is needed in the modeling. The meshed models are shown in Fig. 20.2.
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a) b)

Figure 20.2.: FEM mesh with 1D and 3D elements

In case of beam elements 21 or 43 nodes are sufficient; while 33048 and 142911 nodes are
required to create an appropriately precise model with 3D elements. The number of 3D nodes
can be reduced if the elements are elongated axially, but ultimately far more are required; if
not 1D elements are used.

The stresses are determined analytically as well in order to compare it to the later numeri-
cal results. In case of a fixed beam with circular cross section, the maximum stress calculated
from the bending moment is:

M, 32-F-1 32-1200N -1000mm

oOo=——= 3 = 3 3 =97,78Mpa,
K d°r 50°mm’ - 7
where:
o Stress,
M, : Maximum bending moment,
F : Concentrated force,
K : Section modulus,
d : Diameter of the cross section.
97,987 Max 99,379 Max
87,1 77,296
212 56,213
3313 »
54,4 11,047 .
43,55 -11,037

-3312

10,887
4,2125e-12 Min

a) b)

Figure 20.3.: Calculated normal stresses in MPa
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350 Finite Element Method

The stresses are plotted in Fig. 20.3. The result related to the beam model is approximately the
same as the analytical result. The difference between the analytical result and the result of the
3D model is less than 2%, which is practically acceptable.

The application of beam elements could be useful if we wish to model large structures
with fine mesh, ignoring the use of 3D elements due to the limit of computational time or it is
simply beyond possibility. If the boundary conditions are properly given, the result is relia-
ble. Still, we have to be aware of the limit of beam elements. Fixed constraints, contact
stresses, cross section transitions cannot be realistically modeled with it. The calculated
stresses cannot be so described in details as good as if the geometry of the cross section is
involved in the model.

20.1.2. Modeling of thin-walled beams

Let us consider the beam in the previous section as a thin-walled rectangular cross section
with dimension of 60x60x4 and material of steel. In the modeling, now we have the possibili-
ty to use shell elements beside the 1D and 3D elements. It is clearly seen in Figure 20.4 that
the beam is modeled and described as a) line element, b) surface element, c) or body.

[&] Fixed Support [A] Displacernent [ Force: 1200, N
[B] Force 2:1200, N
[€] Displacement

. Force: 1200, N

. fiith 12U0GH Force 2: 1200, N

&

ol

a) b) c)
Figure 20.4: Geometric model of the beam with its constraints and loads

Similarly to the previous models, fixation is only applied in case of line elements. In case of
shell and body model, couple and axial constraint are applied since only the stresses from the
bending are demanded. By meshing each geometric models, we obtain the finite element
models (Figure 20.5).
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a) b) c)
Figure 20.5: 1D, 2D and 3D finite element models

The model — built from line elements — is in Figure 20.5.a includes 100 elements and 201
nodes. The model — built from shell element — includes 530 elements and 1622 nodes in Fig-
ure 20.5.b which is significantly more compared to the line elements. In case of the body
model — in Figure 20.5.c — the mesh is sparse axially, still 340 elements and 1907 nodes are
used to build the model. As it was expected during the meshing, the models with higher order
required proportionally more computational time due to the need of multiple elements and
nodes.

78,65 Max 82,644 Max

64,268

8,498
1,6007e-12

-78,772 Min -82,737 Min

a) b) c)
Figure 20.6: Calculated stresses of 1D, 2D and 3D finite element models in MPa

The maximum stress calculated from the bending moment is:

O =

% 6-F-1-a _6-1200N-1000mm-60mm:76’48MPa’

e = =
a*—(a—2v) 60°mm* —52*mm*
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352 Finite Element Method

where:
o . Stress,
M, : Maximum bending moment,

F : Concentrated force,

I,: Second moment of area,

a: Height, width of the cross section,
v : Thickness of the cross section,

e : Distance from the neutral axis.

In Figure 20.6.a it is seen that the result of the beam model completely corresponds with
the analytical solution, which is expected since the analytical solution is derived from the
theory of the beam model. The result — given by the shell mode — in Figure 20.6.b shows
closely 3% of increment, while in Figure 20.6.c this difference is 8%. The difference can be
deduced from the inequality of axial stresses in thin-walled cross sections, and only higher
ordered models can properly describe this phenomenon.

20.1.3. Modeling of thin-walled open cross section beams

In the followings, we shall investigate the error if simple beam model is used to model thin-
walled open cross section beams. The most significant difference is caused by the warping
effect, since most models are unable to describe this phenomenon. Let us use — similarly to
the previous example — a beam with 1000mm of length, while the dimension of the cold
formed U section is 100x100x4. The beam is loaded with one single force with 1200 N of
magnitude. First, let us determine the normal stresses analytically (the shear stresses are neg-
lected although we are aware that they cause additional increment in the equivalent stress).

The maximum stress calculated from the bending moment is:

o= My 1200N-1000mm g o6 5onpa,

I 2103829mm*

z

where:
o : Normal stress,
M, : Maximum bending moment,

F : Concentrated force,

4 _ _ 3 4 .093
I :a__(a v)(a 2v) :100 —96122 = 2103829mm*: second moment of area,

‘12 12 12

a: Height, width of the cross section,
v : Thickness of the cross section,
e : Distance from the neutral axis.

Calculation of maximum normal stress from warping moment:
Sectorial second moment of area of thin-walled open cross section:
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I, = %Zvisi = %(4mm)3(2 -98mm -+ 96mm) = 6229,3mm*,
where:

v, : Thickness of the flanges,
s, : Breadth of the flanges.

The sectorial coordinate function:

wzjdw:jydz—fzdy,

2o Yo

where:
y, z: are the coordinates of the cross section contour.

L

A 2021,76
2021,76 C
B
-2682,24
shear A centroid Cy
center .
42,12 32,89
2682,24
-2021,76

-2021,76
Figure 20.7: @ function with respect to the pole (mm2-ben)

The sectorial coordinate function is calculated with respect to the pole. By integrating the

square root of the function we obtain the second moment of area of the cross section with re-
spect to the pole:

48

98
1, = [’ dA=[ v ds =v[ w’ds =4- [.[(42,123)2ds + [ (202176 - 48s)zds} .2=2,054-10°mm°
A S S 0 0

Introducing:

a =

G-l \/ 80GPa - 6229,3mm*

G =0,00107477mm™,
E-I, 210GPa-2,054-10°mm
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where:
G =80GPa: Shear modulus,
E =210GPa: Young-modulus.

Relative angular displacement of the cross section with respect to the pole along the axis
[Csizmadia: Modellalkotas]:

M
G-

d(x)=c,-sh(a-x)+c,-ch(a-X)+ i (1—ch(a-x)),

where:
M : torsion with respect to the pole,

x : coordinate of the axis of the beam,
c,, C,: constants.

The derivatives:

49 _ e . ch(a- chia-x) —a e shia-
w =ac, -ch(a - x) + ac, - ch(a - x) aG~I sh(a - x) .

c

At the free end of the beam:
M:0, thus: ¢, =0.
dx

At the fixed end of the beam:

3(x) =0, thus: CZ:GMi (1— ch(l I)j'
. ¢ a.

By substituting the obtained constants, the relative angular displacement of a one-end-
fixed beam:

S(X):leli (1_sh(a.x)]_
A, ch(a-l)

The derivative of relative angular displacement:

c

d9(x)__a M. sh(e-x)
dx G-l ch(a-l)’

Normal stress with respect to the bimoment due to the warping:
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d3(x)
dx

: bimoment.

In our case:

7 TG, cha-l) a ch(a-1)

The maximum of the function is at the fixation x =1, van:
B, =—6,6267 10" Nmm?.

Then the stress in the corner of the U section due to bimoment in Figure 20.7, point ,,B”
(=2021,76mm?) is:

o,, =6521MPa,
At the end of the U section in Figure 20.7, point ,,C” (@ = —2682,24mm?):
.. =—86,52MPa.

Then the sum of stresses — caused by bending moment and bimoment — is:
oy =0+0,,=9373MPa,

o. =0+o0,. =—58MPa.

Normal stresses calculated by VEM models
Let us compare the analytically obtained stresses to the finite element models in case of

line-, shell- and body elements. The geometric models are described as the axis of the beam
(Figure 20.8.a), middle plane (Figure 20.8.b) or its complete cross section (Figure 20.8.c).
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a) b) c)
Figure 20.8: Geometric model of the beam with its constraints and loads

Similarly to the previous models, fixation is only applied in case of line elements while in
case of shell and body models, couple and axial constraint are used.

a) b) c)

Figure 20.9: 1D, 2D and 3D finite element models

The model — built from line elements shown in Figure 20.9.a — includes 20 elements and 41
nodes. The model — built from shell element shown in Figure 20.9.b — includes 375 elements
and 1206 nodes, while in case of the body model — in Figure 20.5.c —420 elements and 3148
nodes are used to build the model.

In Figure 20.10 the calculated stresses are plotted in MPa. It is obviously seen that simple
beam model with line elements takes only the bending into consideration, and neglects the
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bimoment (note: some commercial software are able to model warping with line elements, but
point of application in the cross section has to be defined by the user). The estimated results
given by the shell and body models are higher than the analytical results. The reason is origi-
nated to the analytical description, since the stresses were calculated with respect to the mid-
dle plane, and considered constant along the thickness of the flanges, while the finite element
models calculated the change along the thickness as well.

116,78 Max 119,17 Maxz
90,827 92679
BTE 6

a) b) c)
Figure 20.10: Calculated stresses in MPa in case of 1D, 2D and 3D finite element models

If we look at the stresses in the middle plane of the shell elements (Figure 20.11), that the
results (o =93,73MPa, o. =-58MPa) correlate with small error.

72,628
877

193,378 Max
76,831

Ll | |

-39,002 p R
5555Min @ @

Figure 20.11: Calculated stresses (MPa) in the middle plane in case of shell
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20.1.4. Modeling of thick-walled cylinders, tubes

Let us examine a tube with 60mm of inside- and 120mm of outside diameter — while 30MPa
of internal pressure is acting in it — and determine how precisely the phenomenon can be de-
scribe with different models.

Analytical model
In the thick-walled tubes the distribution of the longitudinal stresses is assumed constant,

while they change along the radius as a function of quadratic hyperbole. The tube diagrams
are commonly plotted as a function of relative reciprocate radius:

2
_|r
P r ,
where:

r : the radius of the tube (variable),
I, : the internal radius of the tube.

In our case the number of p, — considering the external and internal radius — is:

2 2
I 60
=| x| =[] =0,25,
A er (30]

2
r-b
pb = —J =1
I’b
According to these numbers the tube diagram:
(e}
[Mpa]4
wa
Gk
c
0,25 1 P
Grk:-pkzo

Grh:_ph:_SO
Figure 20.12: Tube diagram

The radial stress in the external and internal wall equals the external and internal pressure. By
utilizing the proportionality of the stresses, the tangential stresses can be obtained
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as:o,, =50MPa, o, =20MPa. The longitudinal stress depends on the fact whether the tube

is closed or open, thus having a constant value of C or 0. Let us observe the results given by
each finite element model!

Finite element models

A thick-walled, pressurized tube can be properly described with either 2D or 3D models.
Simplification is also possible in case of the 3D model by utilizing the fact that the longitu-
dinal stresses are constant, thus only a short part of the original tube has to be analyzed. If the
symmetry is also utilized, then only the half or one-forth of the original tube is sufficient to
analyze, although we have to be aware of prescribing the correct constraints at the cut-off
part, according to the symmetry.

There are two possibilities to describe the tube with 2D models. We assume, that all cross
sections of the tube are under the same planar deformation, thus the tube can be modeled as
only one cross section. Here we can also utilize the symmetry by only using the half or one-
forth ring of the original cross section, carefully prescribing the correct constraints at the cut-
off part. The other option, is to utilize the axis-symmetric geometry and load, and selecting a
2D axis-symmetric model. Then it is sufficient to model only a segment of the complete tube.

In order to compare the results, three models will be solved and presented from the mul-
tiple choices.

a) b) c)

Figure 20.13: Modeling options of thick-walled tubes, loads, constraints

In Figure 20.13.a only a short segment of the tube is considered with the 3D model, the cut-
off parts are substituted by constraints: no axial translation is available on the intersected sur-
face (B). 30 MPa of pressure is defined on the internal surface of the tube.

In Figure 20.13.b the one-forth part of the cross section is modeled, thus we have to define
planar deformation in the 2D model. On line ,,B” and ,,C”, the perpendicular displacement is
inhibited by utilizing the symmetric geometry. The 30 MPa of load is applied on line ,,A”.
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In Figure 20.13.c the longitudinal section of the beam is modeled with 2D axis-symmetric
elements. The construction of the geometric model is carried out by setting 30 mm of distance
(the internal radius) between surface ,,A”’ and the axis of rotation. Vertical displacement is
inhibited on line ,,B” and on the other additional lines beside it as well. This is how the tube is
modeled furthermore. 30 MPa of pressure is applied on surface ,,A” as a constantly distributed
force system.

In Figure 20.14 the finite element models are shown, each of them built from predeter-
mined elements. The original complete finite element model — built from 3D elements — in-
cludes 44756 elements and 69542 nodes (Figure 20.14.a). The 2D model with planar defor-
mation condition is shown in Figure 20.14.b while the mesh includes 1104 elements and 3455
nodes. The axis-symmetric model in Figure 20.14.c is built from 2D elements as well and the
mesh includes 1887 elements and 5838 nodes. During the comparison it is worthy to note that
using elements with the same number and size, the nodes of the models can be reduced one-
fifth or even one-twentieth (in case of axis-symmetric modeling) of the original complete 3D
model, while the same precision is obtained. According to these calculations, the best (requir-
ing the least computational time) approximate finite element model is the axis-symmetric,
second is the planar deformation and the last one is the original body model.

a) b) c)
Figure 20.14: 3D, 2D planar deformation and 2D axis-symmetric models

Tangential stresses calculated by different models are shown in Figure 20.15.
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50,17 49,979 Max 49,993 Max
46,647 46,66
43,327
39,895

5,66

19,996 Min

a) b) c)

Figure 20.15: Tangential stresses calculated by 3D, 2D planar deformation and 2D axis-symmetric
models in MPa

By comparing the results to each other and to the analytical solution, the following conclu-
sions can be drawn; the best approximation is given by the axis-symmetric model although
none of the models performed more error than 0,5% compared to the analytical solution. The
difference can be emphasized better if the element size of the three models is determined to fit
to 5% of error. In this specific case, we have to utilize the double symmetry of the body mod-
el.

49,607 Max 49,56 Max

46,272
42,983
39,694
36,405
33116
29,827

23249

19,96 Min

24,

26,62
23,241
19,862 Min

a) b) c)

Figure 20.16: 3D, 2D planar-deformation, and the minimum number of element in case of 2D axis-
symmetric model with respect of 5% of error in the tangential normal stresses in MPa

The stresses in Figure 20.16 were obtained by continuously modifying the mesh until it
reached the 5% or error in the range of the theoretical 50 MPa. These coarse meshes are
shown in Figure 20.17.
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b)

c)

Figure 20.17: 3D, 2D planar-deformation, and the minimum number of element in case of 2D axis-

The number of elements and nodes related to each models:

symmetric model with respect of 5% of error

Model type Number of elements Number of nodes
Body 32 287
2D planar deformation 36 133
2D axis-symmetric 6 33

According to these results we can draw the same conclusions as earlier: the axes-symmetry
model provides the most precise result with the least computation time.
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21. EVALUATION AND APPLICATION OF COMPUTATIONAL RE-
SULT IN DESIGN AND QUALIFICATION RELATED MECHANICAL
ENGINEERING TASKS. RELATIONSHIP BETWEEN FINITE ELE-
MENT METHOD AND STANDARDIZED STRENGHT BASED DESIGN.

21.1. Precision of Finite Element Method

The Finite Element method is adequate to obtain approximation result about an engineering
problem. The necessary accuracy of the approximation depends on the application and pro-
duction of the structure or body, and it determines the quantity of the calculation. Considering
the practice, the appropriate accuracy of the result should be in the range of 5% of error, al-
though some cases demand even more accurate solution. In many cases, not even the loads are
known precisely, thus this error appears in the solution independently from the method of
calculation. Now, we are going to investigate the accuracy of calculation in case of given
boundary conditions. The accuracy of the result could be easily calculated if we knew the
exact solution, unfortunately apart from some simple problems, these exact solutions cannot
be obtained thus we have to estimate the error. If we know the magnitude of the error and it
does not meet the requirements, then the accuracy can be still improved. Mainly, there are two
methods to improve the accuracy. The first one — already introduced in the earlier chapter —is
based on the size reduction of the elements, which is called h-type approximation. The other
method is based on choosing higher-order approximating polynomials, then we are talking
about p-type approximation. The reduction of the element size and the increase of polynomial
order can be combined as well (hp-type approximation).

The attainable accuracy of a given boundary value problem — solved by finite element me-
thod - is mainly determined by the applied parameters (element type, size) during meshing. In
order to determine the accuracy of the solution, we have to calculate the difference between
the exact u displacement field and the u.,, displacement field which is calculated by finite

element method.
The question is, that if the exact solution is unknown, how can we determine

€=U—Uyy (21.1)

error? The problem can be solved by investigating the relationship between the degree of
freedom (N) of the finite element model and the norm of the error.
The energy norm of the displacement function can be defined as follows:

Jul =~U . (21.2)

Where U is the deformation energy:

U Z%IHQ dv .

\Y
We can utilize the geometric equation:
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and the constitutive equation:
o=Ce=Cau.

Where

Q : matrix of differential orders,
g : matrix of material constants.
Then the deformation energy:

1 1
U= EVj[g]Tg dv = EJ oul Coudv . (21.3)

The energy norm of the exact solution:

10 -{ leT cavov | @10

And the energy norm of the error:

CRHIDEEY @9

With the finite element method we need a kinematically admissible displacement field
(sum of functions with finite variable), which provides energy minimum. This requirement
satisfies the following equation as follows:

Ju— ey | = minfu —u|, (21.6)
Thus:
le]| = minju —Q . (21.7)

Where according to u and (21.7) |lg]| depends on the element size and the order of the ap-

plied polynomials, thus it contains N unknown parameters. Depending on the choosing the
increase of polynomial order or the decrease of element size, the result — given by the finite
element method - converges differently to the exact solution.
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21.1.1. Estimation of error in case of h-type approximation

The h-type approximation means that — during the discretization — we reduce the element size
but we do not vary the order of the approximate polynomials. Let us investigate how the error
varies as a function of element size in case of a beam with | length! Let us discretize the beam
to N number of elements with identical length. The length of one element is:

The approximate solution of u(x) exact displacement field is u,, (X), which is a piece-

wise function. This function provides equal values with the exact solution in the interpolation
points.

u(jh) =ue, (jh), j=0,1,...,N. (21.9)
The error of approximation in the i element:

e,(X) =u(x) —Uyg, (x), xel(i-Dh;in], i=1,2,...,N. (21.10)
If the solution is continuously differentiable, then the error function as well. According to

(21.9) the error is zero in the boundaries of the elements, and this continuity follows that the
error function will have an extrema inside the element. The location of the e, error is denoted

with x. (Figure 21). In this point

e (x)=0. (21.11)

e’ (x)=0

e(x)

\/

x=(i-1)h X; x=ih

Figure 21.1: Error function in the i element

Uy (X) linear, thus u, (X) =0, then
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e (x) = je (&) dé= ju (&) d¢, xe[(i~1h;in].

If ‘u”‘ <C,then
‘e )|<C, xel(i-Dh;ih], and (21.12)
max(e (x))<C h, xe[(i—Dh;in]. (21.13)

Let us expand the e, (x) function in the x. point into Taylor series (using the Lagrange
form of the remainder as well):

e (x)=e(X)+(x—x)e (x)+

(x= > x)’ e (). (21.14)

If the maximum of the error function is located in the second half of the element,

. h
ih—x < > (21.15)
then:

_ _ , (ih—x)? y
€ (ih) = 0=¢,(x) + (ih—x)e, (x)+==—="¢ (), & e[x;in]
substituting (21.11) and (21.12):
0=e (x)+(ih—x)-0+UN=%) 2X) e (£). (21.16)

from (21.16), utilizing (21.12) and (21.15):

(é)‘ n (21.17)

max|e; (X; )| = max

(ih - x)
2

If the maximum of the error is located in the first half of the element, then the Taylor se-
ries have to be investigated at x = ( )h where the value is zero, thus we obtain the (21.17)

equation.
The deformation energy of the beam:
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U= %Ij(AE(u')Z)dx, (21.18)

0

The deformation energy of the error:

U(e) = %Ij(AE(e')Z)dx iy T(AE(ei’)z Jox < %nh(AECZhZ),

2 i=1 (i-1)h
taking into consideration that n-h =1, and the summing the constants the norm of the error is:
le| =vU (e) <kcCh. (21.19)

In this formula the k; constant is known, and by knowing the solution of the finite element

model C can be estimated with small error. h stands as element size. In accordance with this
result, the error of the solution is proportional to the element size. If we wish to estimate the
error before solving the problem, then we have to summarize the constants. Then the maxi-
mum value of the error cannot be calculated due to not knowing C constant, but the conver-
gence of the result will be visible. From (21.19) and (21.8):

k
Jel< - (21.20)

In many problems related to the practice, the displacement functions are not smooth func-
tions. Then the relationship between the norm of the error and the number of elements
changes as follows:

Kk
lell <57 (21.21)

where £ depends on the p order of the approximate polynomials, and the A character of
the solution.

B= %min(p,i)- (21.22)

Stricter condition if not only the norm of the error, but the error itself is investigated on
the total domain. In some cases it is possible that the norm of the error monotonically con-
verges, but the solution is not monotonic. This can be only noticed if not only the global, but
the local error is investigated.

In Figure 21.2 a thin plate is bent, and the energy and solution convergence is examined.

The plate has 1mm thickness and INm moment is applied on it. Since the load of the plate is
co-planar, it is modeled as a planar stress problem as well.
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< M 20

NVAVAVAY,

40

A
A 4

Figure 21.2: Bent plate

The finite element model is used to investigate the h-type convergence, thus the element size
varies between 1 and 5 mm, while the order of the approximate polynomials stay unchanged.
The convergence is examined with linear- and quadratic interpolation functions as well.
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Figure 21.3: FEM mesh and normal stresses in MPa (element size of 1, 2, 3, 4, 5mm)
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In the following table, the necessary parameters and results are summarized in order to ex-
amine convergence.

Average ele- N degree of Max. Stress Min. Stress Energy
ment size freedom [MPa] [MPa] norm
[mm] [ mJ 1
p =1 (linear approximate function)
1 2052 56,78 -72,24 0,770136
2 591 55,51 -72,36 0,766342
3 306 53,52 -67,8 0,760592
4 180 51,65 -66,7 0,754844
5 135 49 4 -60,27 0,745319

In this case, both the calculated stress and the energy norm monotonically converged by in-
creasing the degree of freedom of the model (Figure 21.4).

60 0,775
— ——— -_ r 0,77
58 —_—
- L 0,765
= / - —
g 56 - 076
%3 S
4 / / r 0,755 = stress
= 54 3
@ I / - 075 5 — — norm
[+ <
€ 5o {1 0,745 W
o
2
/ L 0,74
50
L 0,735
48 . . . . 0,73
0 500 1000 1500 2000 2500

N

Figure 21.4: Result in the crucial point and the norm calculated on the complete domain

In this case, the error estimation can be determined according to the norm of the error func-
tion, thus it does not cause local problem.

Let us examine how the results change in case of quadratic approximate functions! The
model was executed with the same parameters and element sizes as earlier (Figure 21.5).

Figure 21.5: Model and boundary conditions
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Figure 21.6: FEM mesh and normal stresses in MPa (element size of 1, 2, 3, 4, 5mm)
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The obtained results with quadratic approximate function are summarized in the following

table.

Average ele- N degree of Max. Stress Min. Stress Energy

ment size freedom [MPa] [MPa] norm
[mm] [ mJ 1

p =2 (quadratic approximate function)

1 5946 57,11 -74,27 0,771466
2 1623 57 -74,23 0,77144
3 843 56,86 -72,05 0,771349
4 483 56,81 -74,43 0,771136
5 360 57,09 -68,93 0,770824

By examining the results we can draw the similar conclusion as earlier; the increase of the
degrees of freedom resulted convergence. Although, while the norm monotonically converges
through the complete domain, the stress converges with oscillation in the crucial point. (Fig-
ure 21.7). In this certain case, if we wish to estimate whether the solution is close to the exact
or not, then it only up to luck how sever error we will make.
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Figure 21.7: Result in the crucial point and the norm calculated on the complete domain

21.1.2.

The error of an approximate solution cannot be exactly determined due to the unknown con-
stant in (21.19). After the calculation, by knowing the approximate solution, the rela error can
be determined.

According to (21.21):

Calculation of error in case of h-type approximation

ef < kN7,

and
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el =l — Juvem | (21.23)
then:
Julf —uen | < k>N (21.24)

k value is unknown, but by having the solution of the same problem with two different
element sizes, the real error can be deduced.
Let us name the number of the unknown values at the first approximation as N,, the ap-

proximate solution as u,g,,, and at the second approximation: N, and Ug , -
According to (21.24) both approximation are valid:

Jull ~Juesss]” < KON, (21.25)

Julf —[luen | < kN, (21.26)
Let us deduce the energy of the exact solution from (21.25) in case of equilibrium:

JulF = e+ kN (21.27)

and from (21.26) the k* value:

_ e ||UvEM A (21.28)
2
Substituting (21.28) to (21.27) and setting the equation:
2
N
, ”gVEM 1”2 - ”QVEM 2”2(N2J
Jul| = . (21.29)

By knowing the exact energy the real error can be determined from (21.23). This type of
error estimation is called 'posteriori' meaning ‘estimation after calculation'.

Let us examine the exact solution derived from the (21.29) formula, related to the problem
in Figure 21.2. To determine ||g||2 value, the consecutive approximate solutions are taken into
account:
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Ny )
”QVEMi ”2 - HQVEM (il)Hz(I(\ll_l)]

28
1 Ny
Ni

The investigation is carried out by using linear approximate functions in case of f=0,5.

The results of the FEM approximation and the exact solution — calculated according to (21.30)
formula - are summarized in the following table:

Jul = (21.30)

i Average ele- N degree of lu ”2 ”u”z
. = VEMi =
ment size [mm] freedom
[mJ] [mJ]

1 0,5 7788 0,59464 -
2 1 2052 0,59311 0,595187
3 2 591 0,58728 0,595468
4 3 306 0,5785 0,596707
5 4 180 0,56979 0,590943
6 5 135 0,5555 0,61266

0,62

0,61 >

0,6 - -
= 0,59 L Uvem

E ey

> 0,58 ----U
0,57 /
0,56

0,55

0 500 1000 1500 2000 2500

Figure 21.8: Approximate energy and the calculated exact energy as a function of N,
linear approximation f#=0,5

The calculated results are plotted in Figure 21.8, which shows that the exact solution can be
derived from (21.29) with small error. The calculated result in case of rough discretization is
not accurate, highly fluctuates, but soon it converges to the constant exact solution. By the
increase of element numbers the solution has some deviation but does not alter significantly.

The results of the FEM approximation and the exact solution — calculated according to
(21.30) formula - are summarized in the following table, with quadratic approximate function
where, f=1.
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i Average ele- N degree of lu ”2 ”u”z
ment size [mm] freedom _[\;:3'] [r;”]

1 1 5946 0,59516 -

2 2 1623 0,59512 0,595163

3 3 843 0,59498 0,595172

4 4 483 0,59465 0,595141

5 5 360 0,59417 0,59525

0,5954

0,5952

0,595 /
= 0,5948 / Uvem
£
D 0,5046 t---u

0,5944 //
0,5942 1

0,594

0 200 400 600 800 1000 1200 1400 1600 1800

Figure 21.9: Approximate energy and the calculated exact energy as a function of N,quadratic
approximation f =1

As it is seen in Figure 21.9, the calculated exact energy converges to a constant value sooner
and with smaller error if quadratic approximate functions are used.

We can draw the following conclusion by comparing the results: the exact solution can be
calculated by using two approximate solution — independently from the type of approximate
functions — with small error.

21.1.3. p-type approximation

The convergence of the solution particularly depends on the meshing, as we discussed earlier.
The decrease of the element size in the mesh influences the accuracy of the solution as it was
demonstrated earlier. If we do not change the element size, but increase the order of the inter-
polation functions, then we are talking about p-type approximation. The convergence of this
approximation is exponential:

k-
exp(N?’)’

”! —Uyem ” <

where,
k, , 0 positive constants.

The p-type approximation proves to be much faster in convergence than the h-type. The
combination of the two types — the so-called hp-type approximation — provides the fastest
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convergence, when both the number of elements and the order of the approximate functions
are increased.

21.1.4. Convergence in singular locations

In case of singular locations, the earlier introduced error calculation method cannot be applied
since the (21.14) equation only works with analytical functions. According to the discretiza-
tion the problems are distinguished into three categories:

1. category: u is analytic on every elements and their boundaries thus it can be ex-

panded into Taylor series,
2. category: inside the element u is analytic, except some points in the boundaries,
3. category: the singular point can be anywhere in the element.
The estimation of error in case of specific 2D cases is summarized in the following table

[Paczelt 1999.]:

1. category 2. category 3. category
h-type  approxi- e < kNP e < kN* e < kN*
mation
p-type  approxi- lef| < kexp(=N°) lef < kN~ lef| < kN
mation
~ hp-type approx- lel| < kexp (=N )
imation

21.1.5. Modeling mistakes

In Chapter 21.1, the introduced error estimation and accuracy improving techniques are suita-
ble to determine the error and enhance the accuracy related to the finite element — numerical —
method. The modeling mistakes cover more than that, since the error due to the false me-
chanical model creation appears in the solution as well independently from the solving me-
thod.

21.2. Evaluation of the calculated results
21.2.1. Stresses beyond yield strength

The linear elastic constitutive equation is not adequate to model stresses beyond the yield
strength, plastic constitutive model is required. If we use a yield strength-based method, we
intend to avoid stresses beyond the yield point. It is not all the time possible to fulfill this idea
completely. One of these cases is the contact stress or so-called Hertz-stress. In this case,
stresses beyond the critical value appear only in the direct contact area, causing plastic defor-
mation on the surface, but not complete structural damage. If we use plastic constitutive
model, the rate of this deformation can be determined and by knowing the operation condi-
tions we can also decide if this deformation permissible or not. In case of highly complex
models, when even the linear calculation is problematic, the nonlinear problems become
simply impossible in those certain conditions. This problem requires simplification on some
area of the model, and we have to decide whether the obtained results are more accurate or
not.
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Crossing the yield strength is sometimes part of the test operation in case of certain struc-
tures. Some manufacturers — in order to simplify the production — produce simple cylindrical
heating covers for tanks. During the test, the heating cover is pressurized by several times
greater pressure than the operation pressure. This loading causes plastic deformation, thus the
cover takes on the ideal form. With this form the stresses will not cross the threshold of the
yield stress during operation condition. This approach makes the linear model completely
unsuitable even for rough approximation.

21.2.2. Singular locations

Geometric singularities generally appear during the geometric modeling. Real structures or
bodies do not have sides or corners with zero radiuses. Although it appears many times that
we have several sides and corners with small (sometimes unknown) radiuses, which we are
not aware of or it is just simply not relevant to describe with precise geometry. In these cases
we do not model these rounding, but we have to take them into consideration in the solution.
At the edges, if there is no connection with other bodies than it causes no problem either, but
if it is, then we have to deal with it.

The boundary conditions — especially the kinematical boundary conditions of ideal con-
straints — frequently cause singularity problems in the boundary of the domain. By defining a
prescribed displacement on a certain surface, the displacement constraint on the edge of the
surface vanishes without any transition. Singular location appears when the constraint does
not reach the boundary of the body’s surface. Then the body reacts as it was connected to an
infinitely rigid and sharp body. This problem can be evaded by using the original elastic body
instead of the constraint, although the computation time notably increases since the model is
expended with a contact problem. In addition, if we wish to model this problem with realistic
frictional relationship, then the small displacement theory cannot be used either. Due to these
existing problems, many times we are forced to use some simpler models and taking the sin-
gularities into consideration.

Those singular locations where the stresses are small cause no problem, since they reduce
the computation time and higher relative error can be also accepted. In the aspect of the load,
problems occur due to the critical points of the structure, since the design is based on these
hot-spots, thus the absolute error will be significant as well. In addition the solution will not
converge in the close area of these problematic parts, and the more accurate finite element
models will only result higher stresses and strains.

21.2.3. Standardized methods and the FEM

Standards provide mainly guidelines to determine boundary conditions. Applied loads in case
of individual fields, safety factors, material constants are determined by experimentally or
from practical fields rather for classic analytical methods.

The standardized values of loads assume that the required accurate method is not in hand.
Typical example is the standardized wind-load. To determine the wind-load, the applicable
wind velocity is prescribed. This is also required for the FEM. Although it is also prescribed
what to apply in case of cylindrical, flat, truss, splay structures, and what concrete pressure
distribution must be calculated with. These prescribed values were determined analytically or
experimentally, naturally not functions but simplified tables and graphs are derived from them
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and presented with the standard loads. During the application — in order to have a carry out
safe design — the factors must involve the influence of the difference between the real struc-
ture and the standardized structure. If finite element method — related to the fluid dynamics —
is used to determine the loads then we obtain more accurate results than the standardized. By
using the prescribed factors, the safety factor will be higher than the one which is based on the
standardized calculation. In such a case, the safety factor cannot be reduced arbitrary. If the
standards took the FEM into consideration in case of wind-load modeling, then it would pre-
scribe a turbulent model — with its own increase factor — beside the wind velocity and the
wind density.

We can draw the general conclusion, that the standards do not satisfy or solve the special
needs and upcoming questions in the practice of finite element method. The engineers still
have to lean on their own experiences when they model a structure or prescribe the boundary
conditions. This is the source of the upcoming problems in the practice of FEM.
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