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SUMMARY: 

The history of the finite element model, its mathematical foundation and its role in mechanical 

engineering design are presented. The necessary basic continuummechanical notions and equations 

for understanding of the method are also discussed. Element types the most commonly used in 

design (rod, beam, plane, axisymmetric, thin plate, shell) are described. Starting from the principle of 

total principle energy the derivation of matrix equilibrium equation related to linear elastic bodies 

discretized in space and the structure of coefficient matrices for different models are shown. In case 

of beam structures the structure of equation of motion and the method of eigenfrequency 

calculation are also presented.  

Understanding of theoretical chapters are highly facilitated by the large number of solved examples 

and the detailed discussion of solution of real problems obtained from industry.  
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1. HISTORY OF FINITE ELEMENT METHOD INCLUDING ITS 

EVOLUTION, EXTENSION AND ROLE OF APPLICATION IN ME-

CHANICAL ENGINEERING DESIGN 

1.1. Ancient application 

Finite elements: complex, and mostly (in case of certain conditions) insolvable problems can 

be simplified by them. The basic idea is to break up the geometry of the body into finite, sim-

ple shaped elements, thus the problem becomes solvable. By this way – instead of applying 

less but more difficult steps – simple but more mathematical calculation will be carried out in 

order to find the solution. 

 

Application of discretization on geometrical problems 

 Arc length and area of a circle (Fig. 1.1) 

 Volume of a cylinder and sphere, 

 Other complex geometries. 

 

 

Figure 1.1: Approximation of the area of the a circle 

In order to calculate the area of a circle plate, the geometry must be broken up to n identical 

elements, as it is seen on Figure 1.1.a. The approximated value of , and its error function 

related to the discretization is shown on Figure 1.2: 
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Figure 1.2:  Value of π and its error in the function of n discretization 

Tsu Ch’ung-Chih, Chinese engineer  (A.D 480) determined by the use of rectangles that the 

approximated value of π  is between 3,1415926 and 3,1415927. 

 

1.2. History of variation of calculus, basic definitions 

1.2.1. Brachistochrone problem 

Bernoulli formed a problem in 1696, which initiated the evolution of variation of calculus in 

order to find the solution. 

 

The problem: Two points (A and B) are given on a plane. These points are located at dif-

ferent heights and not on the same vertical line. Let us consider co-planar, vertical curves 

connecting the two points. If a particle is released from point A, without initial velocity and 

the effect of friction, on which curve would it descend to point B within the shortest time. The 

question is, whether such a function (among the curves) exists, which allows the particle to 

complete the motion in the shortest possible time, and if it does, how is it possible to deter-

mine it?  
P1

P2

x

y

x2

y2

 

Figure 1.3: Brachistochrone problem 
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The demanded y function intersects points 1P  and 2P , thus: 

0)0( y  and 22 )( yxy   (1.1) 

According to the Conservation of Energy: 

mgymv 2

2

1
 (1.2) 

The velocity: 

dt

ds
v   (1.3) 

The infinitesimal arc length: 

     222
dydxds   (1.4) 

(1.2) simplifying with the mass and substituting (1.3) and (1.4): 

gy
dt

dy

dt

dx

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Setting the equation: 
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By separating the variables, the demanded T time to run the arc length: 







2

0

2

2

'1
x

dx
yg

y
T . (1.8) 

Let us find that function which satisfies the (1.1) and provides minimum to (1.8). The so-

lution is a cycloid: 

2

2

1

1

1 2arcsin)( cxxc
c

x
cty  , (1.9) 
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where 21 ,cc  constants, and can be determined from (1.1) condition.  

 

This problem – which is practically extremizing a scalar quantity– drew the attention of 

the variation of calculus and started its evolution.  

 

1.2.2. Functionals, variations 

Similar problems as the ,,Brachistochrone” often appear in natural- and social science. We 

frequently face indexes, quantities which are defined by functions. The simplest example is 

the solution of an indeterminate integral, which depends on the chosen function. At the same 

time, an arc length, surface, volume or the potential energy of a beam bears the same mean-

ing. These quantities are called as functionals. 

 

An arbitrary set mapped to the set of real numbers is named functional or operator.  

 

It is a specific case of the general mathematic definition, when a set of functions is 

mapped to the set of real numbers, and named as functional.  

 

Let: RRf  3  given function, and RRy   possible function, which is continuous-

ly differentiable on its argument ],[ 211 xxCy  and intersects ),( 111 yxP  , and ),( 222 yxP   

points which are fixed at the boundary of the domain: 

11)( yxy  , 22 )( yxy  . (1.10) 

Then let us assign all y  to: 

 
2

1

)('),(,][

x

x

dxxyxyxfyI  (1.11) 

real number. Thus we can define I  as a functional. 

 

In most cases the problem is to extremize the values of the functional. The extreme value 

can be either absolute or local. 

 

If the  yI  functional is valid on the entire argumentum function yy ~ , and    yIyI ~ , 

then  yI ~  is absolute minimum. 

 

If the  yI  functional is only valid on a certain part of the argumentum, and    yIyI ~ , 

then  yI ~  is local minimum. 

 

The classical definition of the variation of calculus is analogue with the calculus. Lagrange 

introduced the variation – denoted by δ – and defined the rules, similarly as it is in the calcu-

lus. Let us examine the classical definition: 
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The variation of y~  function is y , and we know that 0)( 1 xy  and 0)( 2 xy . y  disap-

pears in the 1x  and 2x  points of the domain, while between them is arbitrary. yyy   pro-

vides a sum of (permitted) functions, which includes the solution as well. The variation of the 

functional is defined as:  

 
2

1

x

x

dxfI  . (1.12) 

The solution of y~  can be obtained if the functional has a minimum. According to the vari-

ation definition 

0I . (1.13) 

This is necessary condition of the extreme value.  

 

In case of a functional-minimum based method the solution of the problem can be defined 

as an exact or an approximate, which is analogue to the absolute and local minimum theory. 

 

Exact solution, if the function – which provides minimum to the functional – is chosen 

among all possible, existing function.  

 

To find that specific function is only possible in very simple cases. In most cases the exact 

solution cannot be found, since it is neither possible to solve the equations analytically, nor 

examining infinite functions to see which one provides minimum. Still the problem must be 

solved even if we are unable to provide the exact solution. Then an approximate solution must 

be found. 

x

y

y

x1 x2

P2

P1

y

 

Figure 1.4 : Classical Lagrange definition of variation 
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Approximate solution, if the function – which provides minimum to the functional – is 

not chosen among all possible, existing function. 

 

Direct methods were created to find approximate solution. The so called Euler’s broken 

lines were the elements of Euler’s variation method.  This method – by wielding the accesso-

ries of modern mathematics – gained attention and became the foundation of the direct me-

thods of variation of calculus.  

 

1.2.3. Direct method 

The first problem of the variation of calculus was the determination of extremizing functions 

which provides extreme values to the functional.  

Fundamentals of Euler’s method: let us consider the problem analogue with extrema prob-

lem of functions which depend on finite variables. Thus permitted functions have finite (n) 

describing variable, and the integral which is defined as functional (1.11) will be substituted 

with an approximate value. If n converges to infinite, then the approximate value converges to 

the value of the integral.  

 

Euler’s solution: the use of linear, continuous ,,Euler’s broken line’’ functions for each 

part of the domain. Let us divide the  21, xx  interval to 1n  identical part, and give arbitrary 

real numbers n ,...,1 . Then the length of the lines: 

1

12






n

xx
t . 

The points of          221211111 ,,,,...,,2,,,, yxntxtxtxyx n   are connected with 

broken lines, and it creates a continuous function which start and end points are fixed in 

),( 111 yxP   and ),( 222 yxP  . 

x

y

x1 x2

P2

P1

x +it1

i

t
 

Figure 1.5 : Euler’s broken lines 
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Then the (1.13) functional can be modified as: 

t
t

tixfI
n

i

ii

in 












 


1

1

1

1 ,,


 , (1.14) 

 21 : yn  . 

If the approximate value of nI  functional equals to the extreme value of any Euler’s bro-

ken line, then in the          221211111 ,,,,...,,2,,,, yxntxtxtxyx n    points the deriva-

tive: 

0




j

nI


, nj ,...,1 . (1.15) 

Let us introduce the partial derivative of a function with respect to the variable denoted by 

lower index:  

y

f
f y




: , 

'
:'

y

f
f y




 , … 

Then another denotation for the basic function is: 

  








 




t
tjxff

jj

jj

1

1 ,,:


   

Thus: 

     
1'' 





jyjyjy

j

n fftf
I


. (1.16) 

Setting the equation of (1.15) and (1.16): 

 
   

0
'1'







t

ff
f

jyjy

jy . (1.17) 

If n , 0t  and the series of the broken lines converges to a two times differentiable 

y function, then from (1.17)  

0)',,()',,( '  yyxf
dx

d
yyxf yy , (1.18) 

from (1.17), or in another form 
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0
'



















y

f

dx

d

y

f
. (1.19) 

This is a differential equation which belongs to the f basic function and named as Euler-

Lagrange differential equation. The solution is y, which provides the minimum of the (1.11) 

functional. Thus the (1.13) and (1.18) equations mean different definition of an extrama prob-

lem in case of a given functional. This equation can be also derived by examining the extrema 

of a one-parametric sum of functions (1.6. table), however Euler’s broken lines theory is the 

foundation of the direct methods that is why the classical definition was examined in details. 

 

According to the broken lines let us consider the series of the permitted functions – de-

noted as k – related to the absolute extrema value in the k
th

 steps equals to 




k

i

iia
0

  (1.20) 

which provides a function in each step. The obtained function series must be examined (if it is 

convergent) whether its extrema existence is satisfied or not. This method can be used as: 

 An approximate method for problems in variation of calculus, 

 If the boundary function has an extreme value and satisfies (1.18), thus the solution of 

a differential equation can be transform to a variation problem. 

This is called as the direct method of variation of calculus. 

 

1.3. Ritz-method 

In the Ritz-method, the direct method of variation of calculus is applied to find an approx-

imate solution.  In contrary with the finite element method, here the complete domain is mod-

eled with one function. 

 

Definition: Let n  series exist on a norm, and na  series on real numbers. n  series is 

complete, if to all   element there is a 

nnaa   ...11  

series, which arbitrary approximates it. 

 

Definition: Let I  be a functional, and n  series the argumentum of I. Let us consider, that 

I  minimizable on the linear combination of n  set, if: 

 A linear norm exists, which is part of the argumentum I, and n  is complete on it, 

 All linear combination of n  also part of the argumentum of I , 

 In all cases of n  exists an nI  minimal element, where  









 


n

i

iiI aD
n

1

:  . (1.21) 
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According to Ritz’s theorem, if a functional can be minimized on the linear combination 

of a n  set, then I must have a minimal element which is continuous and in that case, ny  – 

which is the series of the minimal function of I – is the minimizing series of I functional.  

 

Ritz method in elasticity 

 

Let us choose the potential energy of a flexible body as a functional. By the use of n , fi-

nite parameter, an approximate function of a kinematically admissible displacement field is 

created (definitions see at 3.1.1. and 3.3. chapters). According to the theorem of minimum 

potential energy, the potential energy is minimal in case of real displacement. 

The kinematically admissible displacement field is approximated by a function series: 

),...,,(... 2111 nnn aaauaau


  . (1.22) 

The derived potential energy includes the same number of n parameter: 

),...,,( 21 naaa


 . (1.23) 

The potential energy is a functional, thus its extrema is found in case of 

0


  (1.24) 

Thus: 

0...2

2

1

1




















n

n

a
a

a
a

a
a

 . (1.25) 

Since this integral depends on the parameters, the extrema is obtained by the derivation of 

the potential energy with respect the parameters and equaling to zero: 

0
1







a
, 

0
2







a
, 

…, 
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0





na
, thus we obtain a linear algebraic n degree system of equation which provides the 

parameters of n series. Naturally, the function series is arbitrary chosen, the solution is only 

approximated. The important element of the method, that the (1.22) displacement field must 

be kinematically admissible, therefore it would satisfy the kinematic boundary conditions. In 

case of complex problems, the determination of the functions are quite difficult, thus the me-

thod is limited to simple problems. The finite element method has the advantage to simplify 

the geometry of the body to simple elements, thus the approximate functions can be found 

easily. 

 

1.4. Evolution of modern finite element method 

1.4.1. Force method 

In the early ‘40s the jet planes appeared, and the high terminal and operating velocity de-

manded more complex structures, such as the swept and delta wings. The earlier methods to 

design these special wings appeared to be useless, since the unreliability of the calculation 

could not be compensated by safety coefficients due to the increasing price of the applied ma-

terials, operational costs. A sudden need arose for a reliable and precise calculation method 

for complex geometries. 

 Levy applied first the force method, which is based on the classic elasticity that the 

displacements were calculated from the equilibrium of the forces. He published his first paper 

about the jet planes with swept wings in 1947. In case of Delta wings problems appeared with 

the force method, thus another approach had to be used for the solution. 

 

1.4.2. Motion method 

Parallel with the force method, other methods – based on the displacements – were being re-

searched in order to put it into practice. In 1956, a research group of the Boeing Company – 

led by Turner – published a problem solved by a new method. The method based on the solu-

tion of a stiffness matrix derived from a kinematically admissible displacement, which in-

cludes the basics of the current modern finite element method.  

In the following decades new solutions were found for 2 and 3D problems, with large dis-

placement and various kinds of geometric, material and other non-linearities.  

After the recognizing the importance of the analysis of convergence and the parallelism 

between the matrix equations and elasticity principles, the finite element method was put on a 

new foundation in the ‘60s, which was called as: calculus of variation. 

The new method – which based on the virtual displacement – became almost the ultimate 

solution earth wide. The problems of applied mathematics and their solutions are still being 

developed as computer science is constantly evolving.  

The finite element method is widely applied on constructional, thermo- and fluid mechan-

ical problems, including linear- non-linear and FSI problems as well. Since the computers and 

the programs rapidly developed they became user-friendly and highly useful tools for the en-

gineers. However, the lack of theoretical background resulted inappropriate choice of boun-

dary conditions and models, which failed to provide the solution of the real problem. 
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1.5. Finite element method in engineering practice 

The spread of finite element method fundamentally changed the classical process of produc-

tion, since it was implemented into the production chain (Fig. 1.6). 

Prototípus 
legyártása

nem felel meg

GyártásTervezés Próbaüzem
megfelel

 

Figure 1.6.: Simplified model of classical production 

The production and operation of the prototype consumes considering cost during production. 

These phases require materials, machining, special conditions for the operation test, experi-

mental tools and rigs. Naturally, assistance with special skills are also demanded to carry out 

the production and the test of the prototype. These costs are only balanced if the production 

has either great volume or the manufactured pieces are simply expensive. This cost is rele-

vantly decreased by finite element simulation (Figure 1.7.). 

 

Prototípus 
legyártása

GyártásTervezés

Próbaüzem

megfelel

nem felel meg

Végeselem 
szimuláció

Prototípus 
szükséges

megfelelnem felel meg

igen

nem

 

Figure 1.7.: Finite element aided model of production 

The required number of prototypes is reduced by the finite element simulation, and in case the 

problem can be easily modeled, then the prototype production might be even neglected. In 

such a case, the mass production can begin and only the zero series must be tested during op-

eration. 

The simulation provides help during the technological design as well and not only in the 

strength check. Different software is available to model molding, forging, deep drawing 

processes, thus the high cost production methods also become cheaper. 

We can state that the finite element method – applied in the design – is spread to many 

fields: 

 Strength, thermodynamic, fluid, magnetic examination of the piece during normal 

operation conditions. This helps to improve the quality of the product and reduce the 

cost (i.e. reducing weight), 
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 Real-time simulation of the product during the manufacturing process in order to 

achieve an optimal cost for a proper manufacturing technique, 

 Simulation of tools, which provides additional information about tool life and optimal 

operation conditions. 

The finite element method is not only spread in the production, but in other scientific 

fields as well. Analogously with the manufacturing, the required prototypes and experiments 

can be greatly reduced, thus the design is cheaper, faster and more precise. 

 

1.6. Appendix 

1.6.1. Principals of calculus of variation 

u  function, )',,( uuxFF   functional. 

The variation of the function or its small scale perturbation: u . 

The first variation of the functional: 

'
'

u
u

F
u

u

F
F 









 , (1.26) 

Total derivative:  

'
'

' du
u

F
du

u

F
dx

x

F
F














 . (1.27) 

In case of 1F , 2F  functional the following equations are valid: 

2121 )( FFFF   , (1.28) 

212121 )( FFFFFF   , (1.29) 
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


,  (1.30) 

FnFF nn   1)( . (1.31) 

It is valid tou  function, that: 
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






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dx

du
u

dx

d
 , (1.32) 

  dxxudxxu )()(  . (1.33) 
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1.6.2. Euler-Lagrange differential equation 

Let RRf  3  a given function (base function), and RRy   is an admissible function, 

which is continuously derivative along its argumentum ],[ 211 xxCy , intersects ),( 111 yxP   

and ),( 222 yxP   fixed points on the boundary and valid to the following state-

ments: 11)( yxy  , 22 )( yxy  .  

Let us assign to all y  functions the 

 
2

1

)('),(,][

x

x

dxxyxyxfyI  (1.34) 

real number. 

 

Let us find that certain y  function to which the ][yI  functional stationer. (In case of cer-

tain conditions it takes on extreme values). 

 

Let RR   arbitrary function with fixed points of 

0)()( 21  xx  , (1.35) 

and R  real number. Then we can define an RR  2 parametric set of functions: 

)()(),( xxyx   . (1.36) 

x

y

 (x, )

 y= (x)

x1 x2

P2

P1

y(x)

 

Figure 1.8 : Solution of a variation problem and the varied curve 

by substituting (1.36) into (1.34): 
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    
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x
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dxxxyxxyxfdxxxxfI  . (1.37) 

In case of a given )(x  function the I  functional only depends on  . )(I  can be only 

stationer (satisfying the required boundary conditions), if 

0
d

dI
, (1.38) 

and 

0 . (1.39) 

According to the differential rules of the parametric integrals: 
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We apply the partial integration rule on 
'
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The first member of the right side of (1.41) is zero according to (1.35), thus substituting 

into (1.40): 
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Since  is necessary, the integral can only be zero, if 

0
'



















y

f

dx

d

y

f
. 

This is called as the Euler-Lagrange differential equation. 
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2. FOUNDAMENTAL DEFINITIONS IN CONTINUUM  

MECHANICS. DIFFERENTIAL EQUATION SYSTEM OF ELASTICITY 

AND ITS BOUNDARY ELEMENTS PROBLEM.  

2.1. Fundamental definitions in continuum mechanics 

Model: simplified approximation of reality, which behaves similarly as the examined phenomena. 

In order to solve problems in the strength of materials certain models are required as: 

 geometrical,  

 material-, 

 mechanical (load, constraints). 

Geometrical models – according to their dimensions – can be: 

 0D: particle model, all the geometrical dimensions are neglected, 

 1D: if two dimensions can be neglected compared to one. Classical beam-truss 

elements and line elements used in finite element method. 

 2D: if one dimension can be neglected compared to the two others. Plates and 

membranes. 

 3D: None of its dimensions can be neglected. Although this statement does not always 

include the complete geometry, since some parts can be still simplified in the 

mechanical point of view. Only those parts must be ignored which significantly 

increase the computation but less relevantly the precise of the result. 

Continuum model: A continuum model can be divided up to finite (or infinite) elements 

and described by continuous (and continuously derivative) functions. The points of the 

continuum body can be appointed by a position vector  

kzjyixr   (2.1) 

in a given coordinate system. 

 

Figure 2.1.: Continuum body and an infinitesimal  element 
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Infinitesimal element: an infinitesimally (arbitrarily) small element of a continuum body, 

depending on the model it can be an infinitesimal mass or volume. 

Rigid body: the length between two arbitrarily chosen points of a rigid body is always 

constant, independently the magnitude of the load. 

Elastic body: the body is capable to deform elastically. The length between its points 

changes depending on the applied load. 

Linear elastic material model: the relationship between the load and deformation is 

linear.  

Non-linear elastic material model: the relationship between the load and deformation is 

non-linear. 

Plastic material model: the subject remains deformed after the removal of the load and 

does not regain its original form. Several plastic models exist depending on the dominancy of 

linear, non-linear, elastic or plastic properties. 

 

 

Figure 2.2.: Material models 

Isotropic material: the behavior of the material does not depend on the direction; all 

properties are the same independently any arbitrarily direction. 

Displacement vector: the difference vector between P  and 'P points. The points 

represent an arbitrary point of an elastic body before- and after applying a load, thus the 

original – undeformed – and deformed states. 

kwjviuu PPPP   (2.2) 

Displacement field: displacement vector of all points of the body in the function of the 

position vector (2.1). 

krwjrviruru )()()()(   (2.3) 
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Small displacement: the displacement of the points of the body is irrelevantly small 

compared to the geometrical dimensions of the body.  

Kinematic boundary conditions: the given (or admissible) displacements of the body. 

Dynamic boundary conditions: the given (or admissible) load of the body. 

Deformation: the proportional displacement of the points of the body (related to a unit 

length). 

 Strain: the gradient of length of   vector,  

 Torsion of angle: the  angle gradient of perpendicular axes (Figure 2.4.b.), the torsion 

of angle is always symmetric. 

 The rigid body motion is not taken into account (Figure 2.4.a.). 

 

 

Figure 2.3.: Displacement vector 
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Deformation vector: this vector describes the displacement of a given unit vector. Defining it 

by kji ,,  unit vectors (trieder): 

kjia xzxyxx 
2

1

2

1
 , (2.4) 

kjia yzyyxy 
2

1

2

1
 , (2.5) 

kjia zzyzxz  
2

1

2

1
, (2.6) 

where, 

zxxzzyyzyxxy   ,, . 

The property of the vector coordinates: 

 Specific strains: zyx  ,,  properties without dimensions, 

0 , the length increases, 

0 , the length decreases.  

 Angle torsion: xzyzxy  ,,  the dimension is in radian 

0 , the angle decreases, 

0 , the angle increases.  

Deformation state: the sum of the deformation vectors related to all directions in a given 

point. Possible description: infinitesimal unit cube with deformation vectors, deformation 

tensor, Mohr circle. 

P

x

y

x

P’ P’

y

1


y

yx

  xy xy yx =  +

a) b)  

Figure 2.4.: The rigid body motion and deformation in the x-y plane 
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Tensor: linear, homogenous vector-vector function.  Description is possible with dyadic 

form or a matrix defined in a given coordinate system. 

Deformation tensor: It describes the deformation state of any point of an elastic body by 

assigning the deformation vector of a given direction to an arbitrary direction. Description is 

possible with three vectors in matrix or dyadic form in a given coordinate system. 

 In dyadic form: 

kajaia zyx   . (2.7) 

 In matrix form: 

























zyzxz

zyyxy

zxyxx









2

1

2

1
2

1

2

1
2

1

2

1

, (2.8) 

The deformation vector coordinates of x, y, z, are in the columns. 

The na  deformation vector related to an arbitrarily chosen n  direction is defined as: 

nan   . (2.9) 

Deformation tensor field: the deformation field of all points of the body in the function 

of position vector. 
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1

zy
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Figure 2.5.: Deformation state with deformation vector coordinates 
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 

     

     

     
























rrr

rrr

rrr

r

zyzxz

zyyxy

zxyxx









2

1

2

1
2

1

2

1
2

1

2

1

 (2.10) 

Stress: The intensity of the internal force system distributed on the internal face of the 

body. Dimension: Pa
m

N
11

2
 . 

Stress vector: the stress is defined by a stress vector. The 
n

  stress vector of a dA  

surface related to an arbitrarily chosen n  direction is defined as: 

dA

Fd
n
 . (2.11) 

 On a given surface, the normal coordinate of the stress vector is named as 

normal stress, and denoted by:  . 

0 , in case of tension, 

0 , in case of compression.  

 The coordinate of the stress vector which is parallel with the surface is 

named as shear stress, and denoted as:  . 

The stress vectors defined by kji ,,  unit vectors on a given surface: 

kji xzxyxx
  , (2.12) 

kji yzyyxy
  , (2.13) 

kji zzyzxz
  , (2.14) 

where, 

zxxzzyyzyxxy   ,, . 

Stress state: the sum of the stress vectors related to all directions in a given point. 

Possible description: infinitesimal unit cube with stress vectors, stress tensor, Mohr circle. 
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Stress tensor: It describes the stress state of any point of an elastic body by assigning the 

stress vector of a given direction to an arbitrary direction. Description is possible with three 

vectors in matrix or dyadic form in a given coordinate system. 

 In dyadic form: 

kji
zyx
   . (2.15) 

 In matrix form: 



















zyzxz

zyyxy

zxyxx







 . (2.16) 

n
 stress vector defined to an n  direction: 

n
n

  . (2.17) 

Stress tensor: the stress field of all points of the body in the function of position vector. 

 
     
     

     

















rrr

rrr

rrr

r

zyzxz

zyyxy

zxyxx







  (2.18) 

The element index of the stress- and strain tensor can be used in a reversed order not only 

y

z

x

x

xz

xy

yx

zy

yz

zx
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Figure 2.6.: Stress state presented on an infinitesimal cube 
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as it was presented earlier. 

The work of a force: a force acted along a rd  displacement carries out an rdF   

infinitesimal work (see the geometric description of the scalar multiplication on the Figure 

2.7; the force is multiplied by the force directed component of the displacement). The work 

carried out along a finite displacement is the sum of the infinitesimal works. 

rdrFW

r

r


2

1

)(  (2.19) 

Internal energy: (deformation energy) the energy of the internal forces 

 dVU
V

xzxzyzyzxyxyzzyyxx  
2

1
 (Linear case) (2.20) 

The internal energy can be derived from the double product of the stress and deformation 

tensor:  

dVU
V

  
2

1
 (2.21) 

 

Hamilton operator: (Nabla operator) is a vector, which coordinates are special orders to 

execute the partial differentiations of the given directions. In a Descartes coordinate system: 

k
z

j
y

i
x 












 . (2.22) 
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r r+d
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dW= d =Frcos =FdrF r  F

 

Figure 2.7.: Work of a force 
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In cylindrical (polar) coordinate system: 

zR e
z

e
R

e
R 












 



1
. (2.23) 

2.2. Differential equation system and boundary element problem of Elasticity  

2.2.1. Equilibrium equations 

The equilibrium equations describe the relationship between the )(rq  distributed force system 

acting on a volume and the  r  stress field tensor. 

If an arbitrarily chosen infinitesimal body inside of a body is in steady state, then the external 

(Figure 2.8.a.) and internal (Figure 2.8.b.) forces are in equilibrium.  By investigating the 

forces along the x axis (Figure 2.9.a.), it is clearly obvious: if no external forces are acting 

upon the body, then the internal forces (stresses) have equal magnitude and opposite senses on 

the proper sides of the body.  The change is caused by the external distributed force system 

acting on the volume. Stress is an internal force distributed on a surface, thus it must be 

recalculated onto the infinitesimal cube. x appears on the dydz  surface of the cube, and it 

turns to be a force system acting on a volume if it is divided by dx  side length. Similarly, zx  

shear stress must be divided by dz , while yx  must be divided by dy  side length. Then, all 

forces acting upon the infinitesimal body along the x axis are in equilibrium: 

0








x

yxyxyxzxzxzxxxx q
dydydzdzdxdx


. (2.24) 
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Figure 2.8.: Load case of an infinitesimal body 



34 Finite Element Method 

www.tankonyvtar.hu © István Oldal, SZIE 

The gradient of the stresses can be described by the partial derivative of the given 

direction: dx
x

x

x






 , dz

z

zx

zx






 , dy

y

yx

yx






 , which are substituted into (2.24) 

we obtain: 

0













x

zxyxx q
zyx


. (2.25) 

Analogously to the earlier, the other two directions: 

0













y

zyyxy
q

zyx


, (2.26) 

0













z

zyzxz q
zyx


. (2.27) 

The (2.25)-(2.27) equations are the so called equilibrium equations in Descartes 

coordinate system. 

  

In order to define generally the equilibrium equations let us consider a V volume inside of 

a body similarly to Figure 2.10. 

a) b)
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Figure 2.9.: Load case of an infinitesimal body along the x axis 
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The infinitesimal force acting on a dV  volume of the infinitesimal body:  

dVqFd  .  

The infinitesimal force acting on a dA  surface, and calculated from the 
n

  stress vector: 

dAndAFd
n

  . 

The V  internal body is in equilibrium, thus the sum of the forces acting on the surface and 

the volume are zero: 

 
AV

dAndVqF 0 . (2.28) 

According to the Gauss-Ostrogradsky integral-transformation theorem: 

dVdAn
VA

   . 

Substituting Gauss-Ostrogradsky into (2.28): 

dVdVq
VV

  0 , 

Setting the separated parts of the equation into one integral: 

 

Figure 2.10.: V volume inside a body with a force system acting on surface and volume 
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 dVq
V

  0  (2.29) 

Since the V volume is arbitrarily chosen, thus the (2.29) equation is only valid if the 

integral is zero. This is the equilibrium equation of elasticity. 

0 q . (2.30) 

2.2.2. Geometric equations 

The geometric (kinematic) equations define the relationship between the )(ru  displacement 

field and the  r  deformation tensor field. On Figure 2.8, the deformation of an infinitesimal 

cube is presented in the yx   plane of a Descartes coordinate system. 

Let us neglect the rigid-body motion, and let us investigate the relative displacement between 

point P  andQ . By plotting P  and 'P  points on each other, the gradient of PQ  length is the 

'QQ  vector, which is denoted by kdwjdviduud   infinitesimal displacement 

vector. It has two coordinates in a plan, namely du  and dv . Both coordinated can be broken 

up into two parts: yx dududu  , xy dvdvdv  . 

xdu : from the strain of dx  side (in the function of x ), 

ydu : from the strain of dy  side (in the function of y),), thus 

0









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

dx
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u xyx  and 
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Figure 2.11.: The geometric interpretation of deformation 



2. Foundamental of elasticity 37 

© István Oldal, SZIE www.tankonyvtar.hu 

ydv : from the strain of dy  side (in the function of y ), 

xdv : from the strain of dx  side (in the function of x ), thus 

0














dx

dv

x

v

x

v

x

v xyx  and 
dy

dv

y

v

y

v

y

v yyx 













0 . 

According to Figure 2.11, the strains are:
dx

du x

x  , 
dy

dv y

y  ,  

While the torsion of angle is: 

dy

du

dx

dv

dy

du

dx

dv yxyx

yxxyxy  arctanarctan . 

By the use of the partial derivatives related to the displacement vector: 

x

u
x




 , 

y

v
y




 , 

y

u

x

v
yxxy









  . 

This calculation can be carried out on all planes, which result the geometric equations in 

a Descartes coordinate system: 

x

u
x




 , 

y

v
y




 , 

z

w
z




 , (2.31) 

y

u

x

v
yxxy









  , 

y

w

z

v
zyyz









  , 

z

u

x

w
zxxz









  . (2.32) 

The geometric equations can be defined in a general form. Let us investigate the position 

of two points on an elastic body before and after applying an external load on it. The distance 

between the two points – in the undeformed state – is kdzjdyidxrd  .  

According to the definition of deformation the gradient of displacement between the two 

points has to be examined and described. 
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The difference of the two points is defined by the relative displacement of P  and Q  points: 

PPQ uuuuu  . 

Thus the displacement ofQ : 

uuu P  . (2.33) 

Let us approximate the  zyxu ,,  displacement function in the close environment of P by 

applying a Taylor-series on P point: 

  ududx
x

u
dz

z

u
dy

y

u
dx

x

u
uru P

PPPP

P 


















 ...

2

1 2

2

2

. (2.34) 

 

Figure 2.12.: Displacement and deformation 
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Figure 2.13.:  Displacement and deformation vectors 
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From (2.33) and (2.34) can be derived that in the close environment of P the difference 

and the derivative are approximately equal. In case of small displacement the higher 

derivatives can be neglected: 

dz
z

u
dy

y

u
dx

x

u
udu

PPP 












 . 

Taking into account rdidx  , rdjdy  , rdkdz   equilibriums, and the group theory 

between the scalar and dyadic product     cbacba   , the infinitesimal gradient of the 

displacement field is: 

      rdk
z

u
j

y

u
i

x

u
rdk

z

u
rdj

y

u
rdi

x

u
ud

PPPPPP












































  . 

By the use of the Hamilton operator: 

  rduud   . (2.35) 

Where   uT  the derivative tensor of the displacement field, which can be divided to 

a symmetric and anti-symmetric (skew-symmetric) tensors. 

       


 TuuuuTTTTT
TT

 
2

1

2

1

2

1

2

1
 

The symmetric part describes the deformation of the infinitesimal body while the anti-

symmetric describes the rotation of the infinitesimal body. Thus the deformation tensor 

derived from the displacement field is described as: 

 uu  
2

1
  (2.36) 

Equation (2.36) is the so-called geometric equation. 

 

The identical scalar equations of the tensor form are described in a Descartes coordinate 

system as it was mentioned earlier in (2.31) and (2.32) equations. 

The other type of geometric equations is the to so-called Saint-Venant compatibility 

equation: 

0  . 

The compatibility is also related to the neighbor infinitesimal elements, since the material 

is continuous, and the displacement of the neighbor elements have to be identical as well.  
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2.2.3. Constitution equations (material equations) 

The constitutional- or material equations determine the relationship between the stress and 

strain state. The behavior of the material on Figure 2.2 can be described as linear, and the 

Hooke law is suitable to describe to phenomena. In case of single axis stress state, the simple 

Hooke law can define the relationship between the strain and the stress:  E , where E  

(Young-modulus, elasticity modulus) is the coefficient between the stress and strain. In case 

of tension or compression, the stress has only one principle direction thus component, but 

strain appears in two directions as it is seen on Figure 2.14. There is positive elongation in the 

material along the axis of tension, but in the same time, it contracts perpendicularly. The 

relationship between the elongation and the contraction is described by the dimensionless 

Poisson-coefficient: xzy   . 

In case of multi-axes stress state, the relationship between the stress and strain state can be 

only described with a tensor equation, the so-called general Hooke law. The law has two 

isotropic form to linear, elastic materials: 











 EG 1

21
2 




 , (2.37) 











 E

G
1

12

1





 . (2.38) 

where, 

G : shear elastic modulus, which can be calculated as:   12GE , 

E : unit matrix, 

11, : the first scalar invariant of the tensors, (the sum of the main row?). 

The scalar equations with respect to (2.37) material equations: 

x

y

1

1

 

Figure 2.14.:  Strains, Poisson-coefficient 



2. Foundamental of elasticity 41 

© István Oldal, SZIE www.tankonyvtar.hu 

 
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

21
2 , 

 



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
 zyxzz G 




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21
2 , 

xyxy G  , yzyz G  , xzxz G  . 

2.2.4. Boundary conditions 

In case of an elasticity problem two types of boundary conditions can be defined: 

Kinematic boundary conditions: the admissible 0u  displacements (constraints) on uA  

surface. It stands for the solution that: 0uu  . 

Dynamic boundary conditions: the admissible 
0

p  load on pA  surface (the unloaded 

surfaces are included as well, since they have known load which equal to zero). It stands for 

the solution that: 
0

pp  , or 
0

pn  . 

Other boundary conditions can be defined as well, but these two are the most common. 

 

p0

u0
Ap

Au

x

y

z
 

Figure 2.15.:  Boundary conditions 
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2.2.5. Boundary element method 

The boundary element problem of elasticity is consisted the differential equations of elasticity 

and the boundary conditions: 

 0 q , equilibrium equations, 

  uu  
2

1
 , geometric equations, 

 









 EG 1

21
2 




 , constitutive equations, 

 0uu
uA
 , kinematic boundary conditions, 

 
0

pn
pA
 , dynamic boundary conditions. 

 

With this definition, it is proved that the boundary element problem has solution 

(existence criteria), and only one solution exist (unicity criteria). 
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3. ENERGY THEOREM OF ELASTICITY, CALCULUS OF VARIA-

TION, FINITE ELEMENT METHOD, DETERMINATION OF STIFF-

NESS EQUATION IN CASE OF CO-PLANAR, TENSED ELEMENT 

3.1. Approximate functions 

The approximate solution of an elasticity problem can be obtained by the approximation of 

displacement or internal forces (stresses). By the use of the elasticity equations the displace-

ment-, deformation or stress field of a body can be determined independently from the way of 

approach. 

 

3.1.1. Kinematically admissible displacement field 

A displacement field  ruu


 is kinematically admissible if: 

 Satisfies the kinematic boundary conditions (Figure 2.15.), 0uu
uA




, 

 Continuously differentiable (the geometric equations are satisfied). 

 

 

Figure 3.1.: Kinematically admissible displacement field of a fixed beam 

The kinematically admissible deformation field can be derived from 


u : 











uu 
2

1
 . 

The kinematically admissible stress field can be derived from the displacement field by the 

use of the constitution equation (material equation, general Hooke law): 















EG 1
21

2 



 . Since an elasticity problem can only have one  r  solution, while 

 r


  can have infinite solution thus generally it does not satisfy the equilibrium equations and 

the dynamic boundary conditions. 

 

3.1.2. Statically admissible stress field 

 r  Stress field is statically admissible if: 
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 Satisfies the dynamic boundary conditions (Figure 2.15.),
0

pn
pA
 , 

 Satisfies the equilibrium equations: 0 q . 

The kinematically admissible deformation field can be derived from this stress field by the 

use of the constitution equation: 









 E

G
1

12

1





 . This deformation field and the de-

rived kinematically admissible displacement field generally do not satisfy the geometric equa-

tions and the kinematic boundary conditions. 

 

3.2. Principle of virtual energy  

Virtual displacement: small, arbitrary, admissible displacement of the applied constraints, 

which can be derived from the difference of a kinematically admissible displacement field and 

the valid displacement field. uuu 


 . 

x

y

x1 x2

u02

u01

u



u

u

21;: xxAu 

 

Figure 3.2.: Kinematically admissible and virtual displacement fields 

Principle of virtual work: if an idyllically elastic system (body) is displaced from its equili-

brium state (in case of elasticity the equilibrium is defined by the load and constrains), then 

the virtual work of the external forces equal to the virtual change of internal energy: 

UWk   . (3.1) 

Work done by the forces on volume and surface: 

dApudVquW

pAV

k     (3.2) 

The virtual internal energy: 



3. Fundamentals of finite element method 45 

© István Oldal, SZIE www.tankonyvtar.hu 

dVdVdVU
VVV

  
2

1

2

1
 (3.3) 

In (3.3), the    formula (constitution equation) has been already used to de-

scribe the relationship between the stress and deformation state. 

(3.1) is the theorem of virtual work. Substituting (3.2) and (3.3) equations: 

dApudVqudV

pAVV

   . (3.4) 

3.3. Principle of minimum potential energy  

The potential energy of a body is the difference of the internal deformation energy and the 

work done by the external forces: 

kWU  , (3.5) 

dApudVqudV

pAVV

  
2

1
. (3.6) 

The internal deformation energy: 

dVU
V

  
2

1
, 

Work done by the external forces: 

dApudVquW

pAV

k   . 

Let us determine the potential energy by using a kinematically admissible displacement 

field: 



 kWU  (3.7) 

Work done by the external forces (forces on volume and surface) on an elastic body in 

case of a kinematically admissible displacement field: 

     


dApuudVquudApudVquW

pp AVAV

k   

  dApudApudVqudVqu

pp AAVV

  
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kk

AVAV

WWdApudVqudApudVqu

pp

 




























   (3.8) 

The kinematically admissible deformation field: 

    











uuuuuu  
2

1

2

1
 

      uuuu 
2

1

2

1
 (3.9) 

Internal energy stored in an elastic body due to deformation in case of a kinematically ad-

missible displacement field by applying the constitution equation   : 

     


dVdVU
VV


2

1

2

1
 

  dVdVdVdV
VVVV


2

1

2

1

2

1

2

1
 

UUUdVdVdV
VVV

2

2

1

2

1
    (3.10) 

The potential energy derived from a kinematically admissible displacement field by the 

use of (3.7), (3.8) and (3.10): 




kkk WWUUUWU  2  

     22  UWUWU kk , where (3.11) 

the potential energy of the valid displacement (solution) is: 

kWU  . 

The first variation of potential energy:  

kWU   , (3.12) 

The second variation of potential energy: 

U22   . (3.13) 
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The first variation of potential energy is zero according to the theorem of virtual work 

UWk   : 

0 , (3.14) 

The second variation of potential energy is an energy quantity, thus it is valid to any arbi-

trary u : 

.02   (3.15) 

Then the difference of a kinematically admissible and a valid displacement field is: 

 


20  . (3.16) 

The (3.16) formula is the principle of minimum total potential energy: among all kine-

matically admissible displacement fields, the potential energy is minimal in case of the valid 

displacement field. 

 

3.4. Principle of Lagrange variation 

The variation form of the principle of minimum total potential energy is the principle of La-

grange variation. By using the variation approach, the total potential energy is a functional 

depending on the displacement field: 

     uWuUu k ,  

Where the kinematic boundary condition in variation form is: 

0
uA

u . 

The condition of the extrema is: 0 , 

0 kWU  . (3.17) 

In case of elastic bodies, this principle is equal with the principle of virtual work (3.1). 

If the first variation is zero, then the functional can be stationery, minimum or maximum. 

In or case the second variation can be either positive or zero value 02  , thus it can be 

stationery, or stable minimum. 
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Figure 3.3.: Kinetic example of potential energy 

The variations of potential energy describe the stability conditions of a kinetic problem on 

Figure 3.3. 

 

3.5. Finite element model based on displacement method 

The most widely spread finite element method is based on the motion method; the commer-

cial programs mostly apply this basic method. The fundamentals of the method are the fol-

lowings: the body must be divided into elements, and then kinematically admissible dis-

placement fields must be considered on the elements by approximate functions. After that, by 

applying the geometric and constitution equation alongside with the boundary conditions a 

linear algebraic equation system is created. The solution of this equation system is the approx-

imate displacement field. The stress field, calculated from the displacement field, will particu-

larly satisfy the equilibrium equations. In the description, vectors (column matrixes) will be 

used instead of tensors. 

 

3.5.1. Introduction of vector fields 

Vector of stress components (column matrix): the vector, including the stress tensor compo-

nents is described in a spatial system as:  

 
 
 
 
 
 
























































zyx

zyx

zyx

zyx

zyx

zyx

r

xz

yz

xy

z

y

x

xz

yz

xy

z

y

x

,,

,,

,,

,,

,,

,,

























 , while in case of co-

planar system:  
 
 

 

















yx

yx

yx

r

xy

y

x

,

,

,







 . 
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Strain vector (column matrix): vector, including the stress tensor components is described 

in a spatial system as:  

 
 
 
 
 
 
























































zyx

zyx

zyx

zyx

zyx

zyx

r

xz

yz

xy

z

y

x

xz

yz

xy

z

y

x

,,

,,

,,

,,

,,

,,

























 , while in case of co-planar system: 

 
 
 
 


















yx

yx

yx

r

xy

y

x

,

,

,







 . 

If the displacement method is used, then the geometric and constitution equations are also 

required. These equations have to be reformulated to vector equations. Let us define the scalar 

components of the geometric equation  uu  
2

1
  in a Descartes coordinate system: 

x

u
x




 , 

y

v
y




 , 

z

w
z




 , 

y

u

x

v
yxxy









  , 

y

w

z

v
zyyz









  , 

z

u

x

w
zxxz









   

and substitute them into the deformation vector. Let us convert them into a product form:  

u

w

v

u

xz

yz

xy

z

y

x

z

u

x

w

y

w

z

v

y

u

x

v
z

w

y

v
x

u

xz

yz

xy

z

y

x








































































































































































































0

0

0

00

00

00













 .  

Thus the deformation vector is derived as product of u  displacement vector and   (in-

cluding the differential rules) differential operator matrix. The proper elements are substituted 

into the stress vector by the use of the constitution equation 









 EG 1

21
2 




 : 
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  zyxzyxxx

GG
GG 




















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2
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2

21
12
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2





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




















 , 

  zyxzyxyy
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G

G
G 

















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2

21
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








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
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









 , 

  zyxzyxzz G
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
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


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


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
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
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

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




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







21
12

21

2

21

2

21
2 , 

xyxy G  , yzyz G  , xzxz G  . 

Then, let us convert them into product form: 
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. 

Thus the stress vector is derived as a product of the   deformation vector and the C  ma-

trix which includes the material constants. Introducing the vector fields, both the geometric 

equation: 

u  (3.18) 

and the constitution equation: 
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 C . (3.19) 

are obtained as single products. Substituting (3.18) into (3.19): uC , thus the displace-

ment field is the unknown function, while the stress and deformation can be directly calcu-

lated.  

3.5.2. Elasticity problem and the method of solution 

The finite element method is presented on an elasticity problem. The general elasticity prob-

lem is the following: 
p0

q

u0

V

Au

x

y

z

Ap

r

P

 

Figure 3.4.: Elasticity problem 

According to Figure 3.4, the following data are given: 

 The geometry of the body, 

 The material constants of the body, 

 loads, 

 Constraints. 

Demanded functions:  ru ,  r ,  r . 

Steps to solution: 

 Firstly, the body is divided to finite domains so-called elements. Special points, nodes 

are appointed on these elements. The elements cover the total volume of the body, and 

their geometric representation is a mesh. The single elements are connected to each 

other by the nodes. 

 The displacement field is approximated element by element, generally with polyno-

mials which are fit to the nodes. The displacement fields of the nearby elements are fit 

to each other through the nodes, and they describe a continuous function on the body. 

 The approximate stress- and deformation field can be derived from the displacement 

field by the use of the geometric- and constitution equation. Then, by the applying the 

principle of Lagrange variation, a linear, algebraic equation system can be derived 

with respect to the nodes. This is the so-called ‘stiffness equation’. The algebraic sys-
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tem of equation is solvable, if a load or displacement parameter – derived from the ki-

nematic or dynamic boundary conditions – is specified to each nodes on the surface. 

Thus the unknown values are the displacements of the nodes. 

 By solving the system of equation, the approximate nodal displacement field is ob-

tained, thus the approximate stress- and deformation fields can be calculated as well. 

 

3.5.3. Finite element, approximate displacement field 

The body is divided to arbitrary shaped and sized finite domains, finite elements. Naturally, it 

is taken into account that the basis functions have to fit to the element. 

 

 

Figure 3.5.: Discretization, finite element 

The displacement field of e  element is approximated by a continuously differentiable func-

tion. The type of the function is determined, and according to this function, the demanded 

numbers of nodes (2 points in case of linear function, 3 points in case of quadratic function) 

are appointed on the element. Then the displacement field is described by the nodal displace-

ment. The displacement of element node i  on element: 



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




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


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ei
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u

u ,  

The displacement vector of element e  derived from the displacement of nkji ,,,,   nodes: 



3. Fundamentals of finite element method 53 

© István Oldal, SZIE www.tankonyvtar.hu 



















































en

ej

ei

en

en

en

ei

ei

ei

e

u

u

u

w

v

u

w

v

u

u


 ,  

while this vector consist n3  number of elements. The  rue  displacement vector (field) of e  

element is derived from the interpolation of eu  nodal displacement vector: 

    eee urNru  , (3.20) 

where  rN
e

 is the approximate matrix (matrix of the interpolation functions). This matrix is 

built up by (3x3) blocks, and each block includes the interpolation function of each node. 

The displacement of the element can be derived from the nodal displacement of i with re-

spect to e  element: 

    
     
     
      




































ei

ei

ei

eizzeizyeizx

eiyzeiyyeiyx

eixzeixyeixx

eieiei

w

v

u

rNrNrN

rNrNrN

rNrNrN

urNru , 

Where the elements of   rN
ei

 are the interpolation functions. Definition of the indexes:  

The  rNeixz  function defines the displacement along x direction of element e related to any 

arbitrary r  location due to the displacement of z direction of node i, while the other compo-

nents of the nodal displacement vector of element e are zero. 

The functions must to satisfy the following conditions: 

 The functions must be continuously differentiable, 

   ErN iei
 , the function must provide unit value of displacement in node i , 

     0 neijei
rNrN  , the function must equal to zero in the other nodes. 

The  rN
e

 matrix has n  elements, all the blocks related to the nodes  rN
ei

,  rN
ej

, …, 

 rN
en

 has to have the same size (3x3n): 

        rNrNrNrN
enejeie

 . 

By the approximation of the element’s displacement field, the deformation field can be ob-

tained by substituting (3.20) into (3.18): 

      eeee urNrur  , 

Introducing  rB
e

 nodal-deformation matrix as a product of the differential operator and 

the approximate matrix: 
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    eee urBr  . (3.21) 

The stress field of the element: 

      eeee urBCrCr   . (3.22) 

The potential energy of the element according to (3.6): 

        dAprudVqrudVrr

epee A

e

V

e

V

eee   
2

1
. 

Rewriting the formula by forming the scalar and double scalar products into matrix prod-

ucts (the constants of the internal energy are replaced) and introducing them as vectors instead 

of tensors: 

           dAprudVqrudVrr

epee A

T

e

V

T

e

V

e

T

ee   
2

1
. 

Substituting (3.20), (3.21), (3.22) and separating the constants out of the integrals: 

                 dAprNudVqrNuudVrBCrBu

epee A

T

e

T

e

V

T

e

T

ee

V

e

T

e

T

ee  
2

1
. 

Let us introduce the stiffness matrix: 

     dVrBCrBK

eV

e

T

ee  , (3.23) 

And the nodal load vectors with respect to the volume and surface forces: 

   dVqrNF

eV

T

eqe  , (3.24) 

   dAprNF

epA

T

epe  , (3.25) 

peqee FFF : . 

Thus the potential energy of the element is: 

    e

T

eee

T

ee FuuKu 
2

1
. 
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The energy theorems can only be applied on the whole body; they are not valid on indi-

vidual elements. If the body has Q number of elements, the potential energy of the body is 

derived from the sum of all elements’ potential energy. 

    FUUKU
TT

Q

e

e  
 2

1

1

. 

According to the principle of Lagrange variation, the first variation of the potential energy 

is zero: 

    FUKFUUKU
TT











2

1
0  . 

Setting the equation we derived the stiffness equation: 

FUK  , (3.26) 

where: 

K : is the stiffness matrix of the body, 

U : is the nodal displacement vector of the body, 

F : is the nodal force vector of the body. 

(3.26) equation is linear system of equation, which provides the solution of the elasticity 

problem. (The elements in the equation are a formulated according to a simple static problem, 

in case of thermal stresses, elastic constraints the stiffness matrix has more elements while in 

case of dynamic problem even other parts are added as well). 

 

3.6. Definition and solution of stiffness matrix in case of co-planar tensed truss  

element  

3.6.1. Stiffness matrix of 2D, tensed, truss element 

General property of the tensed-compressed structures (truss elements) that the element are 

only loaded axially. Let us a coordinate system fix to the axis of a truss element. On Figure 

3.6  0,ii FF  ,  0,jj FF  are represented as the nodal loads of element e with length L.  

x

y

L

i jFi Fj

ui uj

e

 

Figure 3.6.: Two nodes on a co-planar element 
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In node i  the displacement is  0,ii uu  , while in node j   the displacement is  0,jj uu  . 

The truss element: 

  0,),( xuyxu ee   (3.27) 

is approximated by a linear function: 

  xaaxu eee 10  , (3.28) 

The displacement field provides the displacement values in the nodes of the element: 

  00 10 eeie aauxu  , 

  LaauLxu eeje 10  . 

Setting the constants and substituting into (3.28): 

  x
L

uu
uxu

ij

ie


 . 

Then substituting this equation into (3.27) equation: 
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
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
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1
),( jie u

L

x
u
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x
yxu , 

Forming into matrix product: 
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where  yxN
e

,  is the approximation matrix of element e  and eu  is the nodal displacement 

vector. The approximation matrix is built up from two blocks, with the interpolation functions 

of node i  and j : 

 
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These interpolation functions satisfy the required conditions (continuous, provides unit 

value in its own node, disappears in other nodes) and shown on Figure 3.7. 

x

N (x,y)eixx

i
j

exe
i

j

N (x,y)ejxx

1 1

 

Figure 3.7.: Interpolation functions 

In case of truss elements, the only deformation is the elongation, thus the geometric equation: 

 
   

  ee

j

j

i

i

e
eex

e uyxB

v

u

v

u

LLu
dx

yxNd

dx

yxud
yx ,

0000

0
1

0
1,,

0
, 















































 . 

 yxB
e

,  nodal-deformation matrix has constant elements, which results constant strain in 

the truss. In case of single-stress state, the simple Hooke law can be applied in order to calcu-

late the stress: 

      eeee uyxBCyxCyx ,,,   . 

The constitution matrix: 


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0
. 

The stiffness matrix of the element: 
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, . (3.29) 

Then the stiffness equation of the element: 
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eee
FuK  ,  (3.30) 

where 

 Tjjiie vuvuu   is the nodal displacement vector of the element, 

 Tyjxjyixie FFFFF   is the nodal load vector of the element. 

In general case, the local coordinate systems fixed to truss elements are different, thus the 

stiffness equation must be transformed into global (so called absolute) coordinate system in 

order to summarize the stiffness matrixes of the complete body. 

 

x

y

v

u

x’

y’

u u= ’
v’

u’


 

Figure 3.8.: Vector in rotated coordinate system 

The vector coordinates show on Figure 3.8 are calculated in a coordinate system rotated by 

angle as follows: 

)sin()cos('   vuu , )cos()sin('   vuv . 

In matrix form: 

uT
v

u

v

u
u 





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





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
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








)cos()sin(

)sin()cos(

'

'
'




, (3.31) 

where T  is the transformation matrix. The matrix includes two vectors; eu  and eF  vectors 

can be described by two blocks, where one block relates to one vector: 
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)sin()cos(00
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00)sin()cos(
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

T . (3.32) 

Let us determine the stiffness matrix in a coordinate system rotated by angle ! In order to 

carry out this calculation, we have to determine the transformed (3.30) equation as well: 

eee FuK '''  . (3.33) 

According to(3.31): 

ee uTu '  ee uTu '
1

 , similar to this: ee FTF '
1

 . 

Substituting this form into (3.30): 

eee
FTuTK ''

11 
 .  

Let us multiply the equation withT  from the left side: 

eee
FTTuTKT ''

11 
 ,  

ETT 
1

 eee
FuTKT ''

1



, by the use of (3.33), we obtain the following: 

1
'


 TKTK

ee . (3.34) 

T  is asymmetric, thus 
T

TT 
1

, then: 

T

ee TKTK ' . (3.35) 

Let us calculate the stiffness matrix of a co-planar truss, defined as (3.35) in a global coor-

dinate system, with respect to formula (3.29) related to the use of the stiffness matrix in local 

coordinate systems: 
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ee
 (3.36) 

In case of a structure, all stiffness matrixes of the trusses must be transformed into a global 

coordinate system and there summarized. After then the stiffness equation can be applied on 

the structure, which provides the solution as displacements and forces in all nodes.  

 

3.6.2. Example 

x

y

1


23

1 2

3

F3

L1  

3.9. ábra: Trusses 

The structure on Figure 3.9 includes three trusses. The given data are: 

NF x 12003   

NF y 10003   

mL 2,11   
o50  

2

321 100mmAAAA   

GPaE 210  

Determine the forces and displacements in the nodes! 

Lengths of the trusses: 

mmtgLL 1,1430)(12    

mm
L

L 87,1866
)cos(

1
3 


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The stiffness matrix of truss 1 in the local (which is identical with the absolute) according 

to (3.29): 

mm

N

L

AE
K
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The 22x  nodal blocks (upper index is the number of the element; lower index is the num-

ber of the two nodes. The block describes the relationship between nodes): 














1

22

1

21

1

12

1

11

1
KK

KK
K . 

The stiffness matrix of truss 2 in the local coordinate system: 

mm

N

L

AE
K

















































0000

024,14684024,14684

0000

024,14684024,14684

0000

0101

0000

0101

2
2


. 

Truss 2 is perpendicular in the absolute coordinate system, thus its coordinates have to be 

recalculated in the absolute coordinate system according to (3.36): 































)(sin)sin()cos()(sin)sin()cos(

)sin()cos()(cos)sin()cos()(cos

)(sin)sin()cos()(sin)sin()cos(

)sin()cos()(cos)sin()cos()(cos

2

2

222

2

22

222

2

222

2

2

2

222

2

22

222

2

222

2

2

22











L

AE
TKTK

T

where o902  . 

mm

N

L

AE
K















































24,14684024,146840

0000

24,14684024,146840

0000

1010

0000

1010

0000

2
2

 

The 22x  nodal blocks: 














2

33

2

32

2

23

2

22

2
KK

KK
K . 
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The stiffness matrix of truss 3  in the local coordinate system: 

mm

N

L

AE
K

















































0000

078,11248078,11248

0000

078,11248078,11248

0000

0101

0000

0101

3
3


 

Truss 3 is rotated by angle   in the absolute coordinate system, thus its coordinates have 

to be recalculated in the absolute coordinate system: 































)(sin)sin()cos()(sin)sin()cos(

)sin()cos()(cos)sin()cos()(cos

)(sin)sin()cos()(sin)sin()cos(

)sin()cos()(cos)sin()cos()(cos

22

22

22

22

3

33











L

AE
TKTK

T
 

where o50 . 

mm

N
K





























06,660194,553806,660194,5538

94,553873,464794,553873,4647

06,660194,553806,660194,5538

94,553873,464794,553873,4647

3
 

The 22x  nodal blocks: 














3

33

3

31

3

13

3

11

3
KK

KK
K . 

The stiffness matrix is summarized by adding the identical describing blocks of the nearby 

nodes together, thus the stiffness matrix of the structure is: 


























3

33

2

33

2

32

3

31

2

23

2

22

1

22

1

21

3

13

1

12

3

11

1

11

KKKK

KKKK

KKKK

K  
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mm

N









































06,660124,1468494,553824,14684006,660194,5538

94,553873,46470094,553873,4647

24,14684024,14684000

00017500017500

06,660194,55380006,660194,5538

94,553873,464701750094,553873,464717500

 

The stiffness equation of the structure: 

FUK   





























































































y

x

y

x

y

x

F

F

F

F

F

F

v

u

v

u

v

u

3

3

2

2

1

1

3

3

2

2

1

1

3,2528594,553824,14684006,660194,5538

94,553873,46470094,553873,4647

24,14684024,14684000

00017500017500

06,660194,55380006,660194,5538

94,553873,464701750094,553873,22147

 

By substituting the known force and displacement boundary conditions: 































































































1000

1200

0

0

0

0

3,2528594,553824,14684006,660194,5538

94,553873,46470094,553873,4647

24,14684024,14684000

00017500017500

06,660194,55380006,660194,5538

94,553873,464701750094,553873,22147

2

2

1

3

3

1

y

x

y

F

F

F

v

u

u

. 

The product is the solution of a linear system of equations with six unknown values: 

mmu 068571,01   

mmu 523986,03   

mmv 16549,03   

NF y 1,14301   

NF x 12002   

NF y 1,24302   



 

www.tankonyvtar.hu © István Moharos, ÓE 

4. ANALYSIS OF TWO-DIMENSIONAL TRUSSES USING FINITE 

ELEMENT METHOD BASED PROGRAM SYSTEM 

4.1. Two-dimensional bar structures 

In several chapters of the mechanics, we meet structures, which consist of static bars. Their 

main properties are that they are loaded only at the two ends, and then only axial forces, con-

sequently, drawn or pressed. Such structures are called trusses. In this chapter we deal with 

two-dimensional trusses only. These structures are defined so that: 

 Axis of the bars lie in a common plane, 

 The bars are connected in an ideal plane joint, 

 The bars geometric axes intersect at one point, 

 The structure are linked to the ground by ideal joint constraints, 

 The external forces can act in the nodes and the lines of action of the forces are in the 

plane of the bars. 

During the examination of the trusses we usually look for the answer to the following 

questions: 

 magnitude and direction of the reaction forces 

 magnitude and direction of forces resulting in bars, 

 the forces and stresses generated in bars 

 the resulting displacements of each point of the structure and the deformation of each 

bar 

More structures, which generally contain bending bars (simply supported and cantilever 

beams, frame structure, curved bars etc) may be tested for the stability of the structure and 

dynamic behavior (the critical forces of compressed bars and natural frequencies). We deal 

these problems in chapters 5-8 and the instability of compressed bars in the chapter 9-10. 

In determining the reactions forces important issue is whether the beam is externally stati-

cally determined or indetermined. This is influence the used methods. 

In determining the bar forces an important issue whether the beam is internally statically 

determined or indetermined 

The calculation of displacements and deformations are very simply for both internally and 

externally determined structures. In this case we use geometric approach. For solve compli-

cated structures and statically indeterminate structures we use principles of energy (Castiglia-

no and Betti’s theorem). 

As we shall see, it is irrelevant whether the structure externally or internally indetermined, 

the procedure will not be affected, when we use the finite element method-based solution. 

 

4.2. Finite elements for modeling beams 

Generally there are two types of element available for modeling of beams in FEA (finite ele-

ment analysis) programs. For modeling of trusses TRUSS elements and, for the bent, sheared, 

twisted bars BEAM elements may be used. In both cases, the finite-element two-dimensional 

and characterized by a single line. 
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4.2.1. The TRUSS element properties 

The TRUSS elements are grouped according to use them for two- or three-dimensional mod-

eling. We distinguish two types of element, TRUSS2D (see Figure 4.1) and TRUSS3D (see 

Figure 4.2). 

The TRUSS2D elements are two-nodes, uniaxial elements, with two displacement degrees 

of freedom in both nodes. The element local coordinate system x-axis is defined by a vector 

that starts at the first node and points towards the second node. The y-axis is parallel the glob-

al coordinate system XY plane and perpendicular to the x-axis. 

Y

X

y
x

1

2

 

Figure 4.1 TRUSS2D elements 

The linear static analysis requires more constants to specify the real three-dimensional ele-

ment properties. In this case that is the cross-sectional area of the beam. This is not used only 

to calculate elastic properties of elements, but also it is needed for determination the tare 

weight. 

We will also need the material properties of the bars. In this case, it is sufficient to deter-

mine the elastic modulus. The calculations of the own weight of structures requires to deter-

mine the material density. 

We can perform buckling and heat transfer analysis using TRUSS2D elements. 

The BEAM3D is a two-node, uniaxial element too. For structural analysis, six degrees of 

freedom (three translations and three rotations) are considered per node. The x and y axis of 

the element coordinate system same as described above, and a third node is required to assign 

the element orientation. 
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Y

X

y x

1

2

Y
z

 

Figure 4.2 TRUSS3D element 

The necessary real constants and material properties are the same as given as for TRUSS2D 

elements. 

The TRUSS3D elements can also be used in stability, and thermal analysis problems 

 

4.2.2. Beam Element’s properties 

The BEAM2D element is a two-node uniaxial element, but unlike the truss elements, at both 

two-nodes there are three-degrees of freedom (two displacements and a rotation), so these is 

suitable for two-dimensional modeling of bent bars. 

The BEAM3D element two-node uniaxial element also, but unlike the truss elements, at 

both two-node are six-degrees of freedom (three displacement and three rotation). These ele-

ments suitable modeling three-dimensional bar structures. More detailed description of these 

elements is in chapter 4-6. 

 

4.3. Study solution 

The finite element study procedure:  

1. problem analysis, 

2. create a geometry for generate a finite element mesh, 

3. define properties of finite elements (element type, real constant, material properties), 

4. determine boundary conditions, and loads, 

5. solve the model, 

6. evaluation of the results 

 

At both ends supported trusses are loaded at two nodes. The forces are 120-120 kN each. 

(see Figure 4.3). The bars are steel pipes 100x10. 
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To be determined: 

 deflection of the structure, 

 stresses generated in the bars, 

3 x 4 = 12 m

3
 m

120 kN

120 kN

 

Figure 4.3 The tested trusses  

The finite element programs usually contain built-in 3D geometric modeler, graphics pre- and 

postprocessor. Thus, we can prepare the geometric model in its (see Figure 4.4) 

 

Figure 4.4. Geometric modeler in the finite element program 

These built-in geometric modelers do not always offer you the convenience of modern CAD 

systems. Often we have to analyze existing models. In this case, the data exchange procedure 

with other CAD systems can be convenient and efficient by any available standard file format 

such as SAT, IGS, DXF, etc.. (see Figure 4.5). 
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Figure 4.5. Import geometric model  

Do not forget, in this case the geometric model only helps to create a finite element mesh. It 

does not comply with the rules of a technical drawing, and has no relevance to the real shape 

of the structure. It is true in this exercise, because the 100 mm diameter pipes appear only 

lines (see Figure 4.3). Thus, we have to transform (simplify and extend) the technical docu-

mentation before the finite element analysis. This is shown in Figure 4.6, which shows the 

imported geometric model. The one piece chord bars are divided at nodes, because it helps the 

finite element mesh generation. 

It should be remembered, that we have to choose a unit system for finite element model-

ing. If the SI is selected, one drawing unit will be a meter during the data exchange of geome-

tric models.  

 

 

Figure 4.6. The imported geometric model 
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It is also shown that the elements lie in the XY plane. 

In the next step we determine the element group (see Figure 4.7). 

We have clarified that we use linear behavior, TRUSS2D elements. 

 

 

Figure 4.7. Determination of element group 

It is also necessary to determine the material properties of finite elements. It is sufficient to 

specify the value of the modulus of elasticity for the truss element (see Figure 4.8). Making 

sure to use the selected unit system. In this case, it is the SI system, where the dimensions are 

determined in meters, and the modulus of elasticity in Pa, (N/m2). 

 

 

Figure 4.8. Determination of material properties 

Next task is determine the real constants of the elements. (see Figure4.9). 

A complex finite element models contain various types of elements, so we have to also de-

termine the associated element group. 

As previously described, the real constant is only the cross-sectional area for TRUSS2D 

elements. Do not forget, we have to use the selected unit system in this case too. 
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Figure 4.9. Real constants determination 

After defining the the mesh properties, may follow the finite element mesh generation. The 

FEM programs offer several methods for this (see Figure 4.10). 

Because the bar forces do not change along the length of the bars, it is sufficient to be 

placed one element in each objects. 

 

 

Figure 4.10. Parametric mesh generation 

Because, the finite element mesh created each geometry object separately, it is necessary to 

merge the nodes in each end of the bars (see Figure 4.11). The redundant nodes are removed 

from the finite element model. 

 

 

Figure 4.11. Merge of the end of bars 

In the next step the boundary conditions should be given. In this case, these are two, 0 dis-

placement constrains on the ends of the trusses. 

The left side two degrees of freedom are fixed x and y directions and the other end only 

the y direction is fixed (see Figure 4.12). 
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Figure 4.12. Specify displacement constraints 

Finally, it should be given the loads (which shown in Figure 4.3), two 120 kN concentrated 

force (see Figure 4.13). The direction of forces must be given in the global coordinate system, 

so the downward forces are negative sign. 

 

 

Figure 4.13 Defining the concentrated forces 

By the finite element model is built. The calculation follows (see Figure 4.14). 

 

 

Figure 4.14 Run a linear static analysis 

After the successfully solving, the display and evaluation of the results follows. 

The displaying stresses generated in bars (see Figure 4.15) can be done in several ways. 

The stresses are interpreted on the element and in the element local coordinate system. 

There is a possibility that the results display on deformed shape. The deformation is not 

real of course, the program generates a specific scale factor, so that data can be evaluated. 
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Figure 4.15 Display stresses 

The results (see Figure 4.16) must be evaluated. The negative sign indicate compressive 

stress. 

Notice, that the bars were straight, can be interpreted no bending moment generated in 

them. 

 

 

Figure 4.16. Stresses on deformed shape 

Our aim was to examine the deflection (see Figure 4.17). 
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Figure 4.17 Deformed shape 

The deformations can be bi-directional displacement of nodes. The deflection is the y dis-

placement in the global coordinate system (see Figure 4.18). The negative sign of results 

represent a downward displacement. The value of the scale according to SI unit system. 

 

 

Figure 4.18 Displacement in y direction 
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It is possible to display the exact numerical results at nodes, forces generated in bars and dis-

placement components (Figure 4:19 to 4:20). 

Because the truss elements are loaded only by tension-compression stresses, so the table 

include only these stresses, interpreted in the element local coordinate system 

 

 

Figure 4.19 Fig. Stress component list 

The displacements of nodes are interpreted in the global coordinate system (see Figure 4.20). 

 

 

4.20. Fig. The displacements of nodes  
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4.4. Remarks 

During the solution, we have not dealt with buckling of the compressed bars. If this is a real 

problem, it should have to verify with solution a finite element problem, or with any analytic 

method. 

During the solutions the tare weight (~81.59 kN) was neglected because this order of 

magnitude smaller than the external load. 

Both problems are explained in later chapters which deal with BEAM elements. 

Furthermore, the structural joint was not examined. The other specialized areas of struc-

tural design deal with this problems. 
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5. TWO-DIMENSIONAL BENT BARS VARIATION PROBLEM, 

STIFFNESS EQUATIONS AND SOLVING THEM BY FINITE ELE-

MENT METHOD 

5.1. Two-dimensional bent beam element variation study 

Examine the two-dimensional, straight beam shown in figure 5.1. The loads are q(x) distri-

buted load, F concentrated force and M concentrated moment. During the solution we use the 

Euler-Bernoulli’s beam theory. According to this theory the cross-section of the beam remains 

normal to the beam neutral axis, so we do not account for the shear deformation. Thus, the 

total potential can be written as a functional read on v(x) displacement function. 

 

Figure 5.1 The tested beam 

The displacement function of the bent beam known as differential equation of the elastic 

curve: 

EI

)x(M
"v

z

h  (5.1) 

Also known as the bent beam strain energy: 


L z

2

h dx
)x(I

)x(M

E2

1
U . (5.2) 

Solving the differential equation of the elastic curve for Mh(x) and substituting this in the 

equation 

 
L

2

z dx)x("v)x(IE
2

1
))x(v(U   (5.3) 

Define the total potential energy needed the work of external forces, which consists of 

three members; 

Work of the concentrated forces are perpendicular to the beam: 

 )x(vF ii  (5.4)  
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work of the concentrated bending moments: 

 )x('vM jj  (5.5) 

work of the distributed loads perpendicular to the beam: 


bx

ax

dx)x(q)x(v  (5.6) 

So, the total potential: 

    )x('vM)x(vFdx)x(q)x(vdx)x("v)x(IE
2

1
)v( jjii

xL

2

z

bx

a

. (5.7) 

The 0  criterion of first variation of (5.7) potential leads to the basic equation and to 

the natural boundary conditions. The approximate solution of the task is the direct minimiza-

tion of the total potential energy. 

So, find the minimum of the potential )(v , and the corresponding v(x) function. This 

minimization problem is solved by using the Ritz method, when the unknown v(x) function is 

looking as the following form: 





n

0k

k

kxa)x()x(v  (5.8) 

where )(x  the shape function, which satisfies the kinematical boundary conditions, i.e. the 

displacements at the supports are 0)( x  and the angular displacements at the restrain are 

0)(' x . With this substitution the potential )(v  became a multivariable function for a1, 

a2...an . This function has a minimum when: 

0
ak





. (5.9) 

Since the Ritz-method is an approximation procedure, the solution accuracy depends on 

how many members of the shape functions. For simple task enough a single tag, so the above 

equation depends on the a0 only, i.e., univariate. 

Matrix formulation and solution of the equation system leads to the base equation of the 

finite element method: 

FuK  . (5.10) 

5.2. Solving the problem using finite element method 

The problem shown in Figure 5.2, is a two-dimensional rod structure. The structure is over-

loaded by two concentrated force lies in plane with the cantilever beam. Compression and 
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bending generated in the beam 1 of the structure and only bending stress generated in the 

beam 2, so this problem can not be solved by using TRUSS elements presented in the chapter 3. 

 

Figure 5.2 A two-dimensional rod structure 

Both beam of the structure are 60x40x4 box section. The properties of cross-sections are steel 

standards: 

A = 8.69 cm2 

Iz = 44.8 cm4. 

The two forces are 200 N each. 

During the solution we use bent beam elements according to Euler- Bernoulli’s beam 

theory. 

We have seen that the finite element solution means the solution of an equations system: 

FuK   (5.11) 

First we have to develop the element stiffness matrix, then assembly the stiffness matrix of 

total structure. 

 

5.2.1. The element stiffness matrix 

The previous equations system written to single element: 
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  (5.12) 
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The physical interpretation of columns of stiffness matrix is forces and moment necessary 

to ensure the one unit displacement and the boundary conditions. Using this, we can easily 

produce the stiffness matrix in case of using beam elements. Let one member of the u vector 

one unit and all other is zero. In this case the k11 element of stiffness matrix belongs to u1=1 

and according to the general procedure: 
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  (5.13) 

Solution of the equation system: 

F1x=k11 (5.14) 

F1y=k21 

M1=k31 

F2x=k41 

F2y=k51 

M2=k61 

 

The physical content of this case is illustrated in Figure 5.3. 

 

 

Figure 5.3 The physical interpretation of the first column of the stiffness matrix 

Based on the figure, the individual beam stressed by pure compression, so using the Hook's 

law: 

L

l
EE

A

F
k x 

 1
11   (5.15) 

The value of dl is one unit, so that after rearrangement: 
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L

AE
Fk x  111   (5.16) 

To satisfy the boundary conditions still necessary that: 

x2x1 FF   (5.17) 

i.e.: 

4111 kk   (5.18) 

The other members of the first column of the stiffness matrix are zero. 

We may act similarly with the second column of the stiffness matrix. In this case the equa-

tion system: 
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  (5.19) 

Solution of the equation system: 

F1x=k12 (5.20) 

F1y=k22 

M1=k32 

F2x=k42 

F2y=k52 

M2=k62 

The physical content of this case is illustrated in figure 5.4. This state is produced super-

position of cantilever beams. In the first case (see Figure 5.4 b) the end of the beam is loaded 

by concentrated force and in the other case (see Figure 5.4 c) loaded by concentrated bending 

moment. 

 

Figure 5.4 The physical interpretation of the second column of the stiffness matrix 
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These cases are well known in the strength of materials, so we can write it using equations 

which from solution of the differential equation of the elastic curve: 

IE

LM

IE

LF
v

y

23
1

2

1

3

1

211    (5.21) 

and the angular displacements: 

IE

LM

IE

LF y 1

2

1

21
2

0     (5.22) 

The solution of the multivariable equation system: 

2231

12
k

L

IE
F y   (5.23) 

3221

6
k

L

IE
M   (5.24) 

Furthermore, ensuring the equilibrium conditions: 

5212210 kFFFFF yyyyy   (5.25) 

and moments to the 2nd point: 

6222322y112 K
L

IE6
ML

L

IE12

L

IE6
MLFMM0M   (5.26) 

The first and fourth members in the second column of the stiffness matrix are zero. 

Elements in the third column of the stiffness matrix is determined similarly, so that the  1 

in v(x) vector is one unit, and all other member 0. 
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. (5.27) 

The solution of the equation system is: 
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F1x=k13 (5.28) 

F1y=k23 

M1=k33 

F2x=k43 

F2y=k53 

M2=k63 

The physical content of this case is illustrated in figure 5.5. 

 

Figure 5.5 The physical interpretation of the third column of the stiffness matrix  

The displacements presented in figure 5.5 is produced superposition of two displacements in 

this case too, so: 
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211    (5.29) 

and the angular displacements: 

IE

LM

IE

LF y 1

2

1

21
2

1     (5.30) 

The solution of the multivariable equation system is: 

2321

6
k

L

IE
F y   (5.31) 
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4
k

L

IE
M  . (5.32) 

Furthermore, ensuring the equilibrium conditions: 

5312210 kFFFFF yyyyy   (5.33) 

and moments to the 2
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 point: 
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5. Two-dimensional bent bars variation problem 83 

© István Moharos, ÓE www.tankonyvtar.hu 

The first and fourth members in the third column of the stiffness matrix is zero. 

The members in 4
th

-6
th

 column of stiffness matrix are defined similarly. Eventually the en-

tire element stiffness matrix: 
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k  (5.35) 

It should be noted that in generally the element stiffness matrix are generated by: 


eV

TT

e
dVBCBK  (5.36) 

equation, when C  is the matrix of material properties and B  is the matrix of deformation-

strain. This solution found in third chapter. The above presented solution would be difficult in 

case of using more complex elements. It is only for understanding of the concept of stiffness 

matrix. 

 

The stiffness properties of the element were determined only in the element local coordi-

nate system. In the global coordinate system these stiffness values change depending on the 

position of elements. Elements properties in the global coordinate system are produced using 

the transformation matrix which was presented in chapter 3 (3.35 equation). However, in this 

case the transformation matrix is of order 6x6 according to degree of freedom of beam ele-

ment. 
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T . (5.37) 

The members of transformation matrix can be easily calculated by known element nodal 

coordinates: 
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i
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i

L

xx 12cos


  (5.38) 

i
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i

L

yy 12sin


  (5.39) 

   212

2

12 iiiii yyxxL   (5.40) 

So the stiffness matrix of 1
st
 element in global coordinate system: 

 

5.2.2.  The entire structure stiffness matrix 

The size of the stiffness matrix of entire structure is equal to the number of degrees of free-

dom of the whole structure. So now the stiffness matrix of entire system is of order 9x9, be-

cause the system composed of two elements with 3 nodes, each with 3 degrees of freedom. In 

the whole stiffness matrix the elementary stiffness of the common nodes are added together, 

so: 
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5.2.3.  The complete equations system and the solution 
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During the solution the displacement 0 locations (at the supports) are skipped. So we can 

delete rows and columns of the stiffness matrix in these places. In our case, this is the first 

three rows and columns. Thus we get the condensed stiffness matrix and the equation system 

to solve: 
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Substituting the data, solving the equations we obtain: 
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The reaction forces can be calculated by the known results. From the equations of entire 

system, in this case, these are the first three lines: 

N 0kvkukF 2

1
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1
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1

14Rx   (5.46) 
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Nm 800kvkukM 2

1
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1

352

1

34R   

5.3. Remarks 

The program systems based on finite element method can handle not only Euler-Bernoulli's 

beams. In such a case the shear factor of the section must be determined. It should be noted, 

this shear factor can only be reliably used in the case of linear static analysis. 
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6. ANALYSIS OF TWO-DIMENSIONAL BENT BARS USING FI-

NITE ELEMENT METHOD BASED PROGRAM SYSTEM 

6.1. Planar beam structures 

As discussed in chapter 4, two-dimensional trusses are only a part of the bar structures which 

we have to analyze. In most cases the bending generated in beams can not be neglected. This 

situation arises when the bars of the beam structure are loaded not only by axial forces but 

even by bending moments.  

Such cases usually are: 

 A simply and multi-supported beams, cantilever beams, 

 Curved bars, 

 If the tare weight of the beam structure can not be neglected, 

 A two-dimensional frame structure, etc..  

This chapter deals with these beam structures. The chapters 7-8 deal with three-

dimensional, bent and twisted beams and the chapters 9-10 deal with buckling of the com-

pressed bars. 

Other than as described in chapter 4, there are some more questions to be answered: 

 The magnitude and direction of the forces and moments generated in supports, 

 Magnitude and direction of the axial and shear forces, bending and toque moments in 

each bar, 

 The x,y and τxy stresses which characterized of the planar-stressed state, 

 Displacements of each point of the structure, and deformation of each beam. 

These structures may be testing for the stability of the structure and dynamic behavior (the 

critical forces of compressed bars and natural frequencies). We deal with these problems in 

the chapters 5-10. 

The previous chapter has mentioned the externally and internally determination and inde-

termination structures. We will see that it is irrelevant in this case too. 

 

6.2. The used finite elements in modeling 

The chapter 4 clarified that program system based on the finite element method use two types 

of element for modeling beam structures. The TRUSS element for modeling structure loaded 

axial forces only and the BEAM element for modeling loaded axial and shear forces, bending 

and torque moments. In both cases, the finite elements are planar, so that is characterized by a 

single straight line. 

The properties of the TRUSS elements have already described in the previously chapters. 

 

6.2.1. Properties of the BEAM element 

The BEAM elements can be divided into two groups. The BEAM2D elements for models 

characterized by planar-stressed state, such as generally the planar structures, with symme-

trical cross-section bars, loaded the plane of the structure only. The BEAM3D elements are 

used for three-dimensional modeling. These is usually the three-dimensional constructions, or 
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two-dimensional constructions loaded perpendicular to own plane, or two-dimensional con-

struction consisting of asymmetrical cross-section bars. 

The chapters 7-8. will deal with BEAM3D elements. 

The BEAM2D elements are two-node uniaxial elements, have three degree of freedom in 

both nodes (two displacement and a rotational degrees of freedom). The local coordinate sys-

tem of the element is shown in figure 6.1. The coordinate system x-axis pointing from the first 

to the second node, the y-axis parallel to the global coordinate system XY plane and perpen-

dicular to x-axis, the z axis is perpendicular to x and y axis and create a right-handed Carte-

sian coordinate system. 

 

 

Figure 6.1 The BEAMD2D element 

The linear static analysis are required the real constants of BEAM2D elements. In this case it 

means cross-sectional area, the moment of inertia, depth of the section and shear factor. The 

value of shear factor depends on the shape of the section.  

We will also need the material properties of the bar. In this case, the elastic modulus and 

the Poison’s ratio determination is sufficient because there are planar-stressed state in all 

points of the BEAM2D elements. If the tare weight of the structure must be considered as a 

load, the material density determination is needed.  

The BEAM2D elements are suitable buckling and thermodynamic analysis. This requires 

additional real constants and material properties. 

 

6.2.2. The shear deformation 

The shear deformation is usually neglected. It is possible simply to take this into account us-

ing finite element model for more accurate results. 

The shear deformation is deduced from work of internal forces. The work of shear forces 

of the two-dimensional beam: 
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The work of the shear forces in constant cross-section beam: 
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This is the shape factor, and this inverse using in the finite element solution as shear fac-

tor. The shear factor values of some often used cross section shown in figure 6.2. 

The cross section fs The Shear factor 

Rectangle 

 

 

 

 

 

6/5=1,2 

 

 

 

5/6=0,833 

Circle 

 

 

 

 

10/9=1,11 

 

 

 

9/10=0,9 

Thin walled pipe 

 

 

 

 

 

2 

 

 

 

0,5 

Figure 6.2 Shear factor of sections 

In the technical practice we often use section where the tensioned chords and the sheared web 

are separable (see Figure 6.3). In this case, the approximate value of shear factor: 
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The cross section fs The Shear factor 

 

 

 

A/AWeb 

 

 

AWeb/A 

Figure 6.3 The simplified definition of shear factor 

6.3. The study solution 

The solution of the finite element studies we follow the following procedure: 

 Analysis of the problem, 

 Creation of the geometry model, 

 Define the properties of finite elements (element types, real constants, material 

properties), 

 Define the boundary conditions and loads, 

 Run the analysis, 

 Evaluation of the results. 

The open frame is shown in figure 6.4, loaded 10 kN on marked point. The force lies in 

plane of the structure. The bars are 100x100x4 cold bended box sections. 

We have to determine the reaction forces, the stress generated in the bars, the deflections, 

and the bending-, torque moments and shear force diagrams. 

 

Figure 6.4 The cross section 

The finite element programs usually contain built-in 3D geometric modeling, graphics pre- 

and postprocessor. Thus, we can prepare the geometric model in its (see Figure 6.5) 
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Figure 6.5 Geometric modeler in the finite element program 

These built-in geometric modelers do not always offer you the convenience of modern CAD 

systems. Often we have to analyze existing models. In this case, the data exchange procedure 

can be convenient and efficient with other CAD systems by any available standard file format 

such as SAT, IGS, DXF, etc.. (see figure 6.6). 
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Figure 6.6 Import geometric model from another geometric modeler 

Do not forget, in this case the geometric model only helps to create a finite element mesh. It 

does not comply with the rules of technical drawing, and has no relevance to real shape of the 

structure. It is true in this exercise, because the 100 mm box sections appears only lines (see 

Figure 6.7). Thus, we have to transform (simplify and extend) the technical documentation 

before finite element analysis. This is shown in Figure 6.7, which shows the imported geome-

tric model.  



6. Analysis of two-dimensional bent bars 93 

© István Moharos, ÓE www.tankonyvtar.hu 

 

Figure 6.7 The imported geometric model 

It is also shown that the elements lie in the XY plane. 

The next step is to determine element group (see Figure 6.8). 
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Figure 6.8 Determination of element group 

We have clarified that we use linear behavior, BAEM2D elements (see Figure 6.9). 

 

Figure 6.9 Select the BEAM2D elements and determination of these properties 

Next task is to determine the real constants of elements (see Figure 6.10). 
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Figure 6.10 Real constants definition 

As previously described we have to define real constants of BEAM2D elements, the cross-

sectional area of the bars, the inertial moment (Iz), deep of the section, and the shear factor 

(see Figure 6.11). Making sure use the selected unit system what is in this case the SI system. 

 

Figure 6.11 Real constants definition 

Needs to be explained in the fourth and fifth real constants (End-release code). The end-

release code for each and is specified by a six digit number with combinations of 0 and 1. The 

six digit code corresponds in order to the six degrees of freedom at each end of the beam ele-

ments. For example, end release code 000001 for a BEAM2D element represent a condition 

in which the moment about z axis is zero and forces in x- and y direction are to be calculated. 

The degree of freedom refers to the element local coordinate system (see Figure 6.1). 

The seventh and eighth real constants use only in thermal analysis, so we do not deal with 

them now. 

Still, the definition of material properties (see Figure 6.12). 

 

Figure 6.12 Definition of material properties 

It is sufficient to specify the value of the modulus of elasticity and Poisson’s coefficient 

for the beam elements, as shown in figure 6.13 and figure 6.14. 
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Figure 6.13 Definition of the elastic modulus 

 

Figure 6.14 Definition of the Poison’s coefficient 

If necessary, we can define more material properties. 

After defining properties of the finite element mesh, may follow the finite element mesh 

generation. The FEM programs offer several methods for this, now we select the automatic 

mesh (see figure 6.15). 

The size of the elements is determined by required precision of the results, the available 

capabilities of the computer and the available time. Now we choose 0,1 m average element 

size. 

 

Figure 6.15 Automatic mesh generation 

The finite element mesh and the numbered nodes shown in the Figure 6.16. 
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Figure 6.16 The finite element mesh 

It visible in the figure that created an independent node at each three endpoint of the beam 

elements. Because, the finite element mesh created each geometry object separately, it is ne-

cessary to merge the nodes in each end of the bars (see Figure 6.17). 

 

Figure 6.17 Merge of the end of bars 

In the next step the boundary conditions should be given. In this case, these are two size 0 

displacements on the supports. 

We fix two degrees of freedom of the structure, in x and y directions at the both support 

(see figure 6.18). 

 

Figure 6.18 Displacement constraints 
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Finally, it should be given the loads the 5 kN concentrated force (see Figure 6.19). The direc-

tion of forces must be given in the global coordinate system, so the downward forces are neg-

ative sign. 

 

Figure 6.19 Defining the load 

The completed finite element model is presented in Figure 6.20. 

 

Figure 6.20 The completed finite element model 

Follows, the running linear static analysis (see Figure 6.21). 
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Figure 6.21 Run linear static analyses 

After the successful solving, follows the display and evaluation of results. 

The displaying stresses generated in bars (see Figure 6.22) can be done in several ways. 

The stresses are interpreted on the element and in the element coordinate system like case 

of the TRUSS elements. 

 

Figure 6.22 Display stresses 

The results are shown in Figure 6.23. The deformation is not real, of course, the program ge-

nerates a specific scale factor, so that data can be evaluated. 

Notice, that the bars are bent, due to bending moments. 

 

Figure 6.23 Stresses on deformed shape 
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It is possible to display stress components (see Figure 6.24). The negative sign of the stress 

indicate compressive stress. 

 

Figure 6.24 Display stress components 

We examine the deflections i.e., y direction displacements in next step, (see Figure 6.25). 

 

Figure 6.25 Display the deflection 

The Figure 6.26 shows the results. The negative signs indicate downward displacements. 
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Figure 6.26 The deflections 

We can display the moment and shear force diagrams in beam elements (see Figure 6.27). 

 

Figure 6.27 Display the bending moment diagram 

The bending moment diagram shown in figure 6.28. There is not numerical value in diagram, 

even so useful because it helps to determine the minimal stressed locations. 
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Figure 6.28 Bending moment diagram 

It is possible to display the reaction forces and moments generated in supports (see Figure 

6.29). 

 

Figure 6.29 Display the reactions forces 

It is possible to list the force and moments components generated in elements (see Figure 

6.30). 
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Figure 6.30 List the force and moments components 

The listing of the nodal forces and moments are shown in the figure 6 31. 

 

Figure 6.31 The nodal forces and moments 

The listing of the stress component shows figure 6.32. 
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Figure 6.32 The stress component list 

The numerical results tables can be appear incomplete, some component is 0. As explained by 

the BEAM2D elements. The shear forces perpendicular to plane of structure, bending mo-

ments in this plane and torque does not exist in this case. 

 

6.4. Remarks 

During the solutions we do not deal with buckling of the compressed bars. If this is a real 

problem, one should be to verify with solution a finite element problem, or with any analytic 

method. 

During the solutions the tare weight was neglected. 

Both problems are explained in later chapters. 

Furthermore, the structural joint was not tested. The other specialized areas of structural 

design deal with this problems. 
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7. APPLICATION THE PRINCIPLE OF THE MINIMUM POTEN-

TIAL ENERGY IN FIELD OF THREE-DIMENSIONAL BENT BAR 

ELEMENTS, RITZ METHOD AND FINITE ELEMENT METHOD 

7.1. Three-dimensional bent bars variational problem 

The chapter 5 deals with the analysis of two-dimensional bent bars. Nodes of these elements 

have three degrees of freedom, two displacements and a rotation. 

In this section we analyze three-dimensional beam elements, extension of the previous 

chapters. The position of the element in the local element coordinate system and the used no-

tations are shown in Figure 7.1. 

 

Figure 7.1 Element position in the local element coordinate system 

The figure also shows that degrees of freedom of nodes are extended with displacement in the 

x-z plane, rotation in the x-z plane and rotation around x-axis (i.e. torsion). 

In addition, as previously described, between the angle displacement (twist) of the beam 

and the torque is a linear connection, so the work of the torque: 

 tM
2

1
W  (7.1) 

GI

LM

p

t  (7.2) 

thus: 

p

2

t

I

LM

G2

1
W   (7.3) 

In the previous chapter we saw that the basic formula of the finite element method is the 

following linear equation: 
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FuK   (7.4) 

which in this case, for the two nodes, 12 degree of freedom elements: 
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 (7.5) 

We can describe the deformation of the element by interpolation polynomials, like that 

seen in chapter 3. This way, displacement of a point: 
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The xk , yk , zk  interpolation functions satisfy the boundary conditions and differentia-

ble. According to the Euler-Bernoulli's beam theory, we approximate the displacement in x 

direction and rotation around x axis with linear interpolation functions: 

L

x
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x
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The bending of the element is approximated with cubic functions: 
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These functions can be obtained analytic solving the differential equation of the elastic 

curve of the bent beam. The total potential energy (the difference between strain energy and 

the work of external forces), is minimal in the equilibrium position of the rigid body, i.e. the 

first variation is zero 0)LU(  . The application of this theorem is based on the ex-

amination of the strain energy changes, so the strain energy belongs to each load cases have to 

be prescribed. 

The axial displacements belong to elongations: 
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Thus, the potential energy for constant cross-sectional bar: 
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The ij-th member of element stiffness matrix in case k=1 and k=7: 
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Deformation in case torsion around x-axis: 
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Thus, the potential energy for constant cross-sectional bar: 
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The ij
th

 member of element stiffness matrix in case k=4 and k=10: 
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The potential energy of bent beam is the function of the rotation (the shear deformation is 

neglected according to Euler-Bernoulli’s theory). In case bending in the xy plane: 
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Thus, the potential energy for constant cross-sectional bar: 
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The ij
th

 member of element stiffness matrix in case k=2, k=6, k=8 and k=12: 

dxxxEIdxuxEI
uu

k

L

x

yjyiz

L

x k

kykz

ji

ij  )(")(" )("
2

1

00

2
12

1
 
 


















   (7.25) 

Easy to see that, in case bending in the xz plane, Iy must be used instead of Iz. 

Thus, the ij
th

 member of element stiffness matrix in case k=3, k=5, k=9 and k=11: 
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Thus the element stiffness matrix: 
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The element stiffness matrix in global coordinate system can be produced using transforma-

tion matrix as well as described in chapter 5. In this case, the transformation matrix is of order 

12x12. The notations are shown in figure 7.2:  
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where:  -c – cos 

 -s – sin 

The element stiffness matrix in global coordinate system: 

TKTK
e

T

e



 (7.27) 
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Figure 7.2 The element position in global coordinate system 

7.2. Solving the problem using finite element method 

An outdoor information board is placed on a holder (see Figure 7.3,). The board weight is 50 

kg. A 300 N force acting on the board perpendicular to its plane (e.g. wind pressure). 

x

y

z

3
0
°

F=500 N

F=300 N

 

Figure 7.3 The holder 

We place the finite element model in x-y plane (see figure 7.4), so we have to develop the 

transformed stiffness matrix of the beam 2 only. 
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Figure 7.4 The placed holder in the global coordinate system 

The element 2 stiffness matrix by the following notation: 

 

the stiffness matrix of this element in global coordinate system: 
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Combine the stiffness matrix of the two elements so that in the common nodes, the stiff-

ness does add up. Thus, the system describing equations: 






























































































































































































































0

0

0

300-

0

500-

0

0

0

0

0

0

M

M

M

F

F

F

w

v

u

w

v

u

0

0

0

0

0

0

kkkkkkkkkkkk000000

kkkkkkkkkkkk000000

kkkkkkkkkkkk000000

kkkkkkkkkkkk000000

kkkkkkkkkkkk000000

kkkkkkkkkkkk000000

kkkkkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkkkkkkkkkk

000000kkkkkkkkkkkk

000000kkkkkkkkkkkk

000000kkkkkkkkkkkk

000000kkkkkkkkkkkk

000000kkkkkkkkkkkk

000000kkkkkkkkkkkk

Rz

Ry

Rx

Rz

Ry

Rx

3

3

3

3

3

3

2

2

2

2

2

2

2
1212

2
1211

2
1210

2
129

2
128

2
127

2
126

2
125

2
124

2
123

2
122

2
121

2
1112

2
1111

2
1110

2
119

2
118

2
117

2
116

2
115

2
114

2
113

2
112

2
111

2
1012

2
1011

2
1010

2
109

2
108

2
107

2
106

2
105

2
104

2
103

2
102

2
101

2
912

2
911

2
910

2
99

2
98

2
97

2
96

2
95

2
94

2
93

2
92

2
91

2
812

2
811

2
810

2
89

2
88

2
87

2
86

2
85

2
84

2
83

2
82

2
81

2
712

2
711

2
710

2
79

2
78

2
77

2
76

2
75

2
74

2
73

2
72

2
71

2
612

2
611

2
610

2
69

2
68

2
67

2
66

1
1212

2
65

1
1211

2
64

1
1210

2
63

1
129

2
62

1
128

2
61

1
127

1
126

1
125

1
124

1
123

1
122

1
121

2
512

2
511

2
510

2
59

2
58

2
57

2
56

1
1112

2
55

1
1111

2
54

1
1110

2
53

1
119

2
52

1
118

2
51

1
117

1
116

1
115

1
114

1
113

1
112

1
111

2
412

2
411

2
410

2
49

2
48

2
47

2
46

1
1012

2
45

1
1011

2
44

1
1010

2
43

1
109

2
42

1
108

2
41

1
107

1
106

1
105

1
104

1
103

1
102

1
101

2
312

2
311

2
310

2
39

2
38

2
37

2
36

1
912

2
35

1
911

2
34

1
910

2
33

1
99

2
32

1
98

2
31

1
97

1
96

1
95

1
94

1
93

1
92

1
91

2
212

2
211

2
210

2
29

2
28

2
27

2
26

1
812

2
25

1
811

2
24

1
810

2
23

1
89

2
22

1
88

2
21

1
87

1
86

1
85

1
84

1
83

1
82

1
81

2
112

2
111

2
110

2
19

2
18

2
17

2
16

1
712

2
15

1
711

2
14

1
710

2
13

1
79

2
12

1
78

2
11

1
77

1
76

1
75

1
74

1
73

1
72

1
71

1
612

1
611

1
610

1
69

1
68

1
67

1
66

1
65

1
64

1
63

1
62

1
61

1
512

1
511

1
510

1
59

1
58

1
57

1
56

1
55

1
54

1
53

1
52

1
51

1
412

1
411

1
410

1
49

1
48

1
47

1
46

1
45

1
44

1
43

1
42

1
41

1
312

1
311

1
310

1
39

1
38

1
37

1
36

1
35

1
34

1
33

1
32

1
31

1
212

1
211

1
210

1
29

1
28

1
27

1
26

1
25

1
24

1
23

1
22

1
21

1
112

1
111

1
110

1
19

1
18

1
17

1
16

1
15

1
14

1
13

1
12

1
11

 (7.28) 

During the solution the displacement 0 locations (at the supports) are skip. So we can de-

lete rows and columns of the stiffness matrix in these places. In our case, this is the first six 

rows and columns. Thus we get the condensed stiffness matrix and the equation system to 

solve. 

Substituting the data and solving the equations system obtained the displacements: 
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 (7.29) 

The reaction forces can be calculated by the known results. From the equations of entire 

system, which are in this case the first six lines: 

N 012350000000000500.0000002
1
17  ukFRx  (7.30) 

N 17-6847e86150468981.530199992
1
2122

1
28  kvkFRy  (7.31) 

N 012970000000000-300.000002
1
3112

1
39  kwkFRz  (7.32) 

Nm 84594059947820779.4228632
1
410  kM Rx  (7.33) 

Nm 132756766579701299.038102
1
5112

1
59  kwkM Ry  (7.34) 

Nm 00130000000000-1350.00002
1
6122

1
68  kvkM Rz  (7.35) 

7.3. Remarks 

We did not deal with not circle or ring cross sections. The properties of these cross-sections 

can be determined only by approximation methods (i.e. the Bredt’s formula for thin closed 

section, Weber’s formula for thin-wall open cross-section). 

Also did not deal with asymmetric sections, i.e. cold bended or rolled U sections. The 

shear center and center of gravity of those sections does not coincide, so the bending com-

bines with torsion usually. 

The shear deformation was neglected, because we used Euler-Bernoulli beam theory. 
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8. ANALYSIS OF THREE-DIMENSIONAL BENT BARS USING FI-

NITE ELEMENT METHOD BASED PROGRAM SYSTEM 

8.1. Three-dimensional beam structures 

In case of two-dimensional bent bar structures discussed in chapter 6, the deflections may be 

generated in plane of structure. In engineering practice, using three-dimensional models are 

required many of the cases. 

Such cases usually are: 

 Two dimensional construction, with asymmetrical cross section beams, 

 Two dimensional construction, with loads perpendicular to plane of structure, 

 The general three-dimensional beam structures. 

This chapter deals with these structures. The chapter 9-10. deals with buckling of the 

compressed bars. 

Because the buckling of the compression chords and the shear buckling of the web sheets 

require different calculations, so we do not deal with this. 

Questions to be answered 

 The magnitude and direction of the reaction forces and moments generated in supports, 

 Magnitude and direction of the axial and shear forces, bending and torque moments in 

each bar, 

 The  and τ stresses which characterized of the stressed state, 

 Displacements of each point of the structure, and deformation of each beam. 

These structures may be testing for the stability of the structure and dynamic behavior (the 

critical forces of compressed bars and natural frequencies). We deal with these problems later. 

The previous chapter has mentioned the externally and internally determination and inde-

termination structures. We will see that it is irrelevant in this case too. 

 

8.2. The used finite elements in modeling 

The chapter 4 clarified that program system based on the finite element method use two types 

of element for modeling beam structures. The TRUSS element for modeling structure loaded 

axial forces only and BEAM element for modeling loaded axial and shear forces, bending and 

torque moments. Both TRUSS and BEAM elements can be two- or three-dimensional. 

In all cases, the finite elements are characterized by a single straight line. 

The properties of the TRUSS and BEAM2D elements already described in the previously 

chapters. 

 

8.2.1. The properties of the BEAM3D elements  

The properties of the BEAM2D elements have already written in chapter 6. 

The BEAM3D characterized by three dimensional stressed state, and it is general three-

dimensional bar structures or displaced perpendicular to the own plane under the loads. 

The BEAM3D elements are two or three-node, uniaxial element, have six degrees of free-

dom (three translations and three rotations) per each end node. The third node points towards 



8. Analysis of three-dimensional bent bars 115 

© István Moharos, ÓE www.tankonyvtar.hu 

y-axis in the element local coordinate system. It or an orientation angle (as real constant) is 

required only for determine the element orientation.  

The element coordinate system shown in figure 8.1. The coordinate system x-axis pointing 

from the first to the second node, the y-axis perpendicular to x axis and central principal axes 

of cross section, z axis perpendicular to x-y plane and create a right-handed Cartesian coordi-

nate system. 

 
Figure 8.1 BEAMD3D element local coordinate system 

The linear static analysis requires some real constant (marking as shown Figure 8.2): 

 The cross-sectional area, 

 Moment of inertia about the element Y axis, 

 Moment of inertia about the element Z axis, 

 Depth of the beam, 

 Width of the beam, 

 Relationship between the ends of the connected elements (end release code, two sets of data), 

 Torsional constant J (see also 8.2.2), 

 Shear factor in the element y axis (see also 8.2.2), 

 Shear factor in the element z axis (see also 8.2.2), 

 Orientation angle of the cross section (only if the orientation does not define by the 

third node), 

 Constant for maximum shear stress calculation (see also 8.2.2), 

 x, y, z distance of the section centroid relative to the nodal point in each node of the 

beam (total six data), 

 y, z distance of the shear center relative to the section centroid at each node of the 

beam (total four data), 

 y, z distance of the point where stresses are to be calculated at each node of the beam 

(total four data), 

 Centroidal product if inertia of the element cross section 
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Usually there can be defined tapered beam properties and more real constant for thermal 

analysis also. These properties are not dealt in this chapter. 

In usually, we can specify often used cross-sections in engineering practice, such as rec-

tangular, a square hole, circle, ring, I, L, T sections, by geometrical dimensions. In this case 

the other sectional properties will be calculated by the program. 

 

Figure 8.2 BEAM3D elements properties 

We also need the material properties of the elements. In this case, is sufficient to specify the 

value of the modulus of elasticity, Poisson’s coefficient and density of the beam elements.  

If necessary, we can define more material properties for the buckling or heat transfer analysis. 

The interpretation of the bending moments and shear forces shown in Figure 8.3. 
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Figure 8.3 Forces and moments in BEAM3D elements 
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8.2.2. The special properties of BEAM3D elements  

The shear deformation is usually neglected. The chapter 6.2.2 has shown that how this can be 

taken into account. Also in this chapter we have properties of several common used sections. 

We have dealt with the simplified definition of the shear factor (see Figure 8.4). This con-

cept will also used in this chapter. 

 

The cross section fs The Shear factor 

 

 

 

A/AWeb 

 

 

AWeb/A 

Figure 8.4 The simplified definition of Shear factor 

The calculations will be needed to determine a shape factor (Ctor) for calculate the maximum 

stress τ comes from torsion. 

In case of circular and thin-walled ring section, the maximum stress τ generated on peri-

meter of the circle, so: 

r
I

T

P

max   

In case of non-circular cross section, the maximum stress τ depends on the section shape. 

In such cases we can use only approximate procedures, such as Constantin Weber approx-

imate method: 

W

tor

W
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K

T
C

I

T
  

where:  IW: Weber's centroidal product of inertia, 

 KW: Weber's polar section modulus, 

 Ctor: the shape factor. 

Circular cross section, of course, IW=IP, KW=KP and Ctor= r. 

An open cross-section (see figure 8.5), where h>> v, we can apply the splitting, and so: 
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Figure 8.5 Splitting of open cross-sections 

The η is a factor to correction error of splitting. 

 

 

Figure 8.6 The η factor of some cross-section 
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8.3. The study solution 

The study is a frame (see Figure 8.7), assembled by U120 standard steel. The actual live load 

is 5000 N, distributed forces. The horizontal load is the 6% of the live load, what is generated 

from movement on live load. The supports are from each end 100 to 100 mm. 

Have to determine the reaction forces, stresses generated in beams, the deflections and 

bending moment diagrams. 

5000 N

300 N

 

Figure 8.7 The tested frame 

The followed procedure: 

 Study analysis, 

 Create a geometry model, 

 Define the properties of finite elements (element type, real constant, material 

properties), 

 Define boundary conditions, and loads, 

 Run the analysis, 

 Evaluation of the results. 
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The cross-sectional properties of the used rolled bars U120 and geometric dimensions 

shown in Figure 8.8. These technical data are available in standards and design aids tables. 

 

Figure 8.8 The used U120 section 

We need some data what are not included in tables. 

First we have to define the shear factor in element y and z axis. We use the simplified cal-

culation shown in Figure 8.4. Using the Zuravsky’s theorem, the shear stress in a point of the 

cross section is: 

x

'

xT

sI

SF
  

where:  FT :shear force, 

 Sx: statical moment of an area outside a point about section x axis  

 Ix: Moment of inertia about the element x  

 s: width of the section at the point. 
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Of course, the stress distribution depends on the relative position of the section and shear 

force, so that it should be determined about the element z and y axis separately. The used 

U120 cross section properties known and shown in the Figure 8.9. 

 

Figure 8.9 Shear stress distribution in the cross section 

The exposed area of the shear can be determined by graphic editing, so the shear shape 

factor can be calculated: 
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In addition, we need the cross-sectional modulus of torsion, which can be determined by 

Weber's method (see Figure 8.5): 

4
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For the determination the largest shear stress τ caused by torsion: 

cm 9,0vC maxtor   

After determining the necessary data we can begin the computer-aided analysis. 

The geometrical model is very simple, so we can create it in the own graphics editor of fi-

nite element program. The structural model is created in the XY plane, but the loads and the 

deformations will be three-dimensional. In the figure 8.10, the drew lines represent the neutral 

axis of beams. 
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Figure 8.10. Draw line in the finite element program 

The orientation of BEAM3D element can be defined by the third node. We also need a 

geometric point (key point). Since the lines represent the neutral axis of beams, so the third 

node must lie in XY plane too. It is sufficient to take only one point because the neutral axis 

of all bars lies in a common plane. The definition a geometric point is shown in the Figure 

8.11. 

 

Figure 8.11 Place a geometric point (key point) 

The completed geometric model shown in Figure 8.12. 
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Figure 8.12 The geometric model 

In the next step we determine the element group. We have clarified that we are use linear be-

havior, BAEM3D elements (see Figure 8.13). 

 

Figure 8.13 Determination of element group 

During the determination the real constant (see figure 8.14) we use the SI unit system, i.e., 

the linear dimension must be defined in m, and the weight must be in kg. 
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Figure 8.14 The real constant definition 

It's also necessary to specify the material properties (see Figure 8.15). In this case it is suffi-

cient to enter the values of the modulus of elasticity and Poisson’s coefficient. If necessary, 

we can define more material properties e.g. the density to calculate tare weight of the struc-

ture. 

 

Figure 8.15 Specify the material properties 

During the finite element mesh generation, same size but different number of elements can be 

created on each bar (see Figure 8.16). 
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Figure 8.16 The finite element mesh generation 

Because, the finite element mesh created each geometry object separately, the ends of the 

beams are not in connection (see Figure 8.17) 

 

Figure 8.17 The finite element mesh 

To create connection between bars, necessary to merge the nodes in each end of the bars. (see 

Figure 8.18). 
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8.18. Fig. Merge nodes on the end of the bar 

The completed finite element mesh shown in Figure 8.19. 

 

Figure 8.19 The final finite element mesh 

The displacement constraints are placed on the finite element mesh. The constraints assumed 

rigid but the bar can deformed freely between the two supports. An example of place dis-

placement constrains shown in Figure 8.20. 
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Figure 8.20 Specify the displacement constraints 

Next step, define the distributed load on the horizontal bar which shown in the Figure 8.7. In 

our case, the specified force effect in all nodes of the element. The definition loads shown in 

Figure 8.21. 

 

Figure 8.21 Definition the distributed loads 

It is advisable to check what forces have been created. We can use listing commands for this 

(see Figure 8.22). 
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Figure 8.22 List forces 

The completed finite element model is presented in figure 8.23. 
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Figure 8.23 The comleted finite element model 

The running linear static analysis follows (see Figure 8.24). 

 

Figure 8.24. Run linear static analysis 

The generated stress results can be displayed on deformed shape (see Figure 8.25). 
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Figure 8.25 Display stress results 

The results are shown in Figure 8.26. 

 

Figure 8.26 The equivalent stresses 

We can use listing commands to display numerical results (see Figure 8.27). 
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Figure 8.27 Display stress components 

Examine the bending moment generated in the structure (see Figure 8.28). 

 

Figure 8.28 Display the moment diagrams for beams 

Since the bars are curved in two directions, so we examine bending moments caused by ver-

tical and horizontal loads separately (see Figure 8:29). 
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Figure 8.29 Ms and Mt bending moment diagrams 

Examine the deflections, i.e. the displacements in Y direction (see Figure 8.30) 

 

Figure 8.30 Display the deflections 

The results shown in Figure 8.31. 
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Figure 8.31 The deflections 

Display the numerical displacements result also possible (see Figure 8:32). 
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Figure 8:32 List of displacements components 

 

8.4. Remarks 

During the solutions are not dealt with buckling of the compressed bars. If this is a real prob-

lem, we should have to verify with solution a finite element problem, or with any analytic 

calculation. 

During the solutions the tare weight was neglected. 

Both problems are explained in later chapters. 

Furthermore, the structural joint was not tested. The other specialized areas of structural 

design deal with this problems. 
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9. DYNAMICS OF BEAM STRUCTURES, MASS MATRIX, NATU-

RAL FREQUENCY ANALYSIS 

9.1. Extending of the finite element method 

Such as the historical survey also showed, the finite element method "invention" does not 

associate to a date. It should not speak about invention, rather to talk about progress or devel-

opment. This development is begun in 1940-50s, and still continues today. After the first suc-

cessful solution in field of theory of elasticity, raised the possibility that, other physical prob-

lems can be solved using the finite element method. Thus, today we can get finite element 

solutions in fields of heat transfer, electromagnetic radiation, fluid flow, fatigue and oscillat-

ing systems analysis. The mathematical solutions are used in these areas slightly differ from 

those described at theory of elasticity. 

The development of the finite element solution of the structure-dynamics analysis began in 

the1960s, when the element mass matrix has been determined. 

 

9.2. Finite element formulation of the elastic bodies' natural oscillation 

The previous chapters dealt with elastic bodies in balance. We used the full potential is pre-

scribed as a function of the displacement u: 

 
AVV

dApudVqudV:
2

1
)u(  (9.1) 

The potential represents the equality of the elastic strain energy and the work of external 

forces i.e. the static equilibrium. 

D 'Alambert, rearranging the Newton 2
nd

 law and wrote the following form: 

0amF   

so the "ma" is no longer momentum, it is the force of inertia. According to the d'Alambert’s 

principle, the external forces and the force of inertia act on the body are balanced. This is 

called the kinetic equilibrium. 

Following the principle, we complement the above potential with the work of force of inertia 

and so we get the potential, which describes the system of kinetic equilibrium state: 

  
A VVV

dVüudApudVqudV:
2

1
)v(  (9.2) 

where: 

 -ü-the time of the second derivative of the displacement vector (i.e. acceleration) 

 - -Density of the material. 
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During the finite element solution we follow the method which is presented in a previous 

chapter with the addition that, the three coordinates of the function describing the motion of 

the body, are supplemented by the fourth coordinate which is the time: 

)t,z,y,x(uu   (9.3) 

We interpolate this function by the previously presented shape functions: 

)t(u)z,y,x(N)t,z,y,x(u e  (9.4) 

Thus, the acceleration: 

)t(ü)z,y,x(N)t,z,y,x(ü e  (9.5) 

With this supplementing the potential, work of the inertial forces on an element: 

ee

T

e

V

e

TT

e

V

T

V

üMuü)dVNN(udVüudVüu

eee

   (9.6) 

The 
e

M is the consistent mass matrix of the element which contains the inertial properties. 

The full potential can be written in a matrix form: 

ÜMUFUUKU
2

1 TTT
  (9.7) 

The equation which is satisfactory of the imummin  condition 

)t(FUKÜM   (9.8) 

a linear differential equation system. 

The right side of the equation contains constant and time variable forces (i.e. pre-loading 

and exciting forces). The engineering practice there is very much study when external forces 

do not act. Think of the most common engineering practice oscillation problem, determining 

of the critical angular velocity of rotating shafts. The critical angular velocity approximately 

equal to the smallest angular natural frequency of the shat. Thus, the equation system of an 

undamped vibration system without external forces becomes simpler: 

0UKÜM   (9.9) 

The body does harmonic oscillation, so the solution of differentialequations: 

)tsin(AU   (9.10) 

where: 
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 - A the amplitude vector of the nodes, 

 -   the natural frequency, 

 -   phase angle. 

substitute U, and the time of the second derivative of the U in the basic equation: 

0A)KM( 2   (9.11) 

we obtain a homogeneous algebraic equations system. Search the eigenvalues of A and the 

associated natural frequency  . 

The above equations have solution different the trivial solution, if the determinant of the 

coefficient matrix is zero, i.e.: 

0)KMdet( 2   (9.12) 

Since the M and K matrices in the equation system according to degrees of freedom of fi-

nite element model, the matrices are of order nxn, so the equations have n roots for 2 . The 

degrees of freedom of finite element models used in practice can be few hundred to several 

million. It need not determine so many eigenvalue and natural frequency, the first few value 

have relevance in the practice. 

 

9.3. Natural frequency calculation of two-dimensional bar structures using finite 

element method 

See a shaft bearings at the two ends, with a fast pulley at an intermediate point shown in Fig-

ure 9.1. Determined the shaft critical angular speed. 

 

Figure 9.1 The shaft 

The diameter of the shaft is 30 mm, made of solid steel. The pulley weighs 1 kg. The shaft 

length 400 mm, L1 = 250 mm and L2 =150 mm. 
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We have to determine the M mass matrix and the K stiffness matrix for solution the 

0A)KM( 2   equation. 

 

9.3.1. Determination of the element mass matrix 

As we have seen, for determination of the element mass matrix, the N (x, y, z) interpolation 

functions are used. 

First, place the element in an "s" coordinate system, which is independent of the length 

and coincides with the element axis. The element location in the global coordinate system is 

shown in figure 9.2 a, and the element location in the local "s" coordinate system shown in 

figure 9.2 b. 

 

Figure 9.2 The element local coordinate system 

The element mass matrix can be determined based on the following: 






1

1

T

e
ALdNNM  (9.13) 

The axial displacements are interpolated: 

2/)1(

,2/)1(

4

1




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

N

N
 (9.14) 

with shape functions linearly, 

the displacements perpendicular to beam are interpolated: 
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with shape functions cubical. 

For the linear members: 


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lin
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N
N  (9.16) 

If the cross-section of the beam element and density is constant, then the associated mass 

matrix is: 
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For the cubical members: 
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and the associated mass matrix: 
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
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This matrix is expanded, with the matrix associated linear members thus we get the total 

element mass matrix: 
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9.3.2. Element stiffness matrix 

The stiffness matrix of beam element is also derived from the above interpolation functions. 

The axial relative elongation of the element: 

ds

d

d

du

ds

du ee
s




   (9.21) 

The axial displacements of the element mark by 
d

ds
J   ,the strain-displacement vector: 
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and the element stiffness matrix is: 

 
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Similarly, the displacements and angular displacements perpendicular to element axis are 

approximated cubic interpolation: 
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and the stiffness matrix: 
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The element stiffness matrix can be obtained by the combination of the two stiffness ma-

trix: 
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9.3.3. The system total mass and stiffness matrix 

The mass point shown in Figure 9.1 has not mass matrix, we take into account the mass in the 

mass matrix of the entire system as an inertia on a node.  

The mass matrix of the entire system shown in Figure 9.1: 
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and stiffness matrix of the entire system: 
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If the axis of the element is not parallel to the global coordinate system X axis, then the 

stiffness and mass matrices of the element must be transformed first, using the transformation 

matrix described in previous chapters. 

The equations can now be simplified so that the displacements and angular displacements 

0 locations (at the bearings) are skipped. So we can delete rows and columns of the equation 

system in these places. In our case, this is the 1-3. and 7-9. rows and columns. Thus, the ma-

trices in the system of equations: 
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The problem to be solved: 

0)det( **2  KM  
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equations, which from we get the: 
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solution. Real roots of  : 
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9.4. Remarks 

In practice, we can use the simplified mass matrix: 
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which expresses that the mass of the element are divided into two equal parts, and place this 

to the two ends of the element. This corresponds to the analytical calculation when we reduce 

the mass of the bar to its endpoint. In the case of finite element solutions, sufficiently accurate 

results can be obtained using this procedure if the bar is divided sufficiently many finite ele-

ments. 
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10. DYNAMIC ANALYSIS OF THREE-DIMENSIONAL BARS, DE-

TERMINATION OF NATURAL FREQUENCY USING PROGRAM 

SYSTEM BASED ON FINITE ELEMENT METHOD  

10.1. Introduction 

The engineering works are all oscillating systems. Buildings, structures, vehicles, machine 

parts, vibrations carry out each. These are neglected usually, due to their high frequency and 

small amplitude. These do not disturb the functionality of the machine. 

However, there are many cases in which these vibrations can not or should not be ignored. 

Everyone knows disaster of the Tacoma Bridge. The oscillation of the bridge was forced by 

the wind. But in our daily lives we can find examples of the importance of oscillating sys-

tems. The wheels of our cars are balanced. The unbalanced wheels cause uncomfortable driv-

ing, and malfunction in bearings, shafts and tires. But the state of shock absorbers, are regu-

larly checked not only because of the convenience, but also because it is related to safety. In 

field of manufacturing process there are several examples to the vibration of machines and 

machinery parts can not be ignored.  

But there are some engineering applications, where the vibrations should not be damped or 

avoided, but on the contrary, should strengthen them. Consider, for example vibration feeders 

and screens machines are used in the field of materials handling, or vibration compaction ma-

chines are used in the field of building industry. 

 

10.2. Properties of the used finite elements 

The properties of BEAM3D elements used for three-dimensional modeling are described in 

chapters 8. 

However, we will use a new element. The finite element modeling programs use a 0-

dimensional MASS element (mass, or inertia). This element has only one node, in this node of 

the element accumulates the total mass and moment of inertia. The MASS element has mass 

(inertia) in X, Y and Z direction, and the moment of inertia is interpreted around the three-

axis. This interpretation allows me that in the case of 2D problems ignore some effects. 

 

10.3. The study description 

In the mechanical engineering practice, the most common tasks are the examination the bend-

ing and torsional vibration of the rotating shaft. In this study we analyze a rotating shaft with 

two flanges shown in Figure 10.1. 
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Figure 10.1 Tested shaft 

This problem has been also discussed in the subjects of mechanical engineering studies, in 

machine design, shafts and couplings, in mechanics dynamics. 

These subjects showed that the bending and torsional vibrations are generated in shafts. It 

also clarified that these vibrations can be dangerous, if the rotation angular velocity of the 

shaft equal to the first angular natural frequency of the system. 

 

The angular natural frequencies of bending vibrations in the structure shown in Figure 

10.1 are calculated by Dunkerley's simplified formula: 

22112
mm

1



  (10.1) 

where:  α - the angular frequency (10.1) 

 η - deflection of the shaft caused by a unit radial force. 

According to the known formulas: 

IE

a
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8
m

IE

a
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8
m

α

1 3

2

3

12
  (10.2) 

Thus, the angular natural frequency of the shaft is: 

α=276.76 1/s, which is equal to n=2642.86 rpm. 

The torsional vibrations from the characteristic equations of multi-degree-of-freedom sys-

tem are: 
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021

21
0

c


  (10.3)  

where: - Θ the moment of inertia of the disks around Y axis 

 - c0 the torsional spring constant,: 

GI

a
c

p

0   (10.4)  

where: -Ippolar moment of inertia 

 -G - modulus of rigidity 

On this basis, the torsional natural frequency is: 

α0 =1503.87 1/s i.e. n=14360.9 rpm. 

 

10.4. The finite element solution of the task 

Structure shown in Figure 10.1 is a very simple geometric model, shaft can be characterized 

by a single line. We draw it as three separated line to help generating of the finite element 

mesh. So we can place the MASS elements on the end of the sections, on geometrical (key-) 

points. The drawn sections shown in Figure 10.2. 

 

Figure 10.2. Creating a geometric model 

After the creation of the geometric model, follows the describing the properties of finite ele-

ment mesh. First we select the needed element type (element group) (see Figure 10.3), which 

is in our case the BEAM3D element. 
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Figure 10.3 Select the element type 

In the next step we define the required material properties, the elastic modulus and the mod-

ulus of rigidity (see Figure 10.4). 

 

 

Figure 10.4 Define the material properties 

Finally, the real constants are defined. The Figure 10.5 shows an example of simplified pro-

cedures for definition the real constant by geometrical dimensions. The "2" sign indicate that 

the cross-section is circular. 
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Figure 10.5 Definition the real constant 

If we have defined all properties of the finite elements, then we can create the finite element 

mesh (see Figure 10.6.). We create 10-10 element in each section. The section of BEAM3D 

elements is a circle, thus definition of the third node is not required. 

 

Figure 10.6 Create the finite element mesh 

We have to define the properties of the two disks. To this end, we define a new element group 

already described above, the MASS (inertial) element (see Figure 10.7). 

 

Figure 10.7 Define the MASS element 

To this element type does not belong to any material property, such as sufficient for definition 

the real constant. These constant of the first disc shown in Figure10.8. The moments of inertia 

of the disk around X and Z axis can be ignored, so their values shall be 0. 
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Figure 10.8 Real constant of first disk 

The MASS element is placed on a single node in the finite element mesh. The creation of the 

MASS element shown in Figure 10.9. 

 

Figure 10.9 Create a disc as finite element 

We have to define the real constant of the second disc (see Figure 10.10). 

 

Figure 10.10 Real constant of second disk 

The creation of the second disc is similar to the previous one, just on another point of the 

geometric model. 

The finite element mesh has five independent parts (the three shaft section and the two 

mass). We have to merge the common nodes to join these independent parts (see Figure 

10.11). 



150 Finite Element Method 

www.tankonyvtar.hu © István Moharos, ÓE 

 

Figure 10.11 Merge the common nodes 

In the next step we determine the boundary conditions, shown in Figure 10.1 as bearings. This 

is similar to the previous examples, it can be defined fixing the three displacement degree of 

freedom at both ends of the shaft (see Figure 10.12.). 

 

Figure 10.12 Define displacement constrains 

Thus the created finite element model shown in Figure 13.10. 
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Figure 10.13 The complete finite element model with the node numbering 

Before the solving it is possible to set number of the calculated natural frequency (see Figure 

14.10). It is appropriate to set calculate more harmonious, because we expect two-way bend-

ing and torsional vibrations. In this study we will calculate the first 10 natural frequencies. 

 

Figure 10.14 The natural frequency analysis settings 

After the setting follows the solution (see Figure 10.15) 
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Figure 10.15 Run frequency analysis 

After a successful run the results can be displayed. The calculated first eight natural angular 

frequencies are shown in Figure 10.16. 

 

Figure 10.16 The calculated natural angular frequencies 

In the list, the first natural angular frequency is 10
-5

 1/s , which is negligibly small in the en-

gineering practice. This is consistent with the learned in mechanics. The first natural frequen-

cy of the multi-degree-of-freedom systems is zero. We observe that the 2-3. and 4-5. natural 

frequencies are the same. Later we will see that these two oscillation generated in X and Z 

directions. The 6. natural frequency has not pair. This is the torsional oscillation of the shaft 

between the two disks. 

The finite element programs can display graphically the mode shapes as the deformed 

shape of the shaft (see Figure 17.10). 
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Figure 10.17 Display the mode shapes 

The finite-element programs offer a scale factor to display the deformed shape. We override 

this scale factor and use 0,5 to do comparable mode shapes (see Figure 10.18) 

 

Figure 10.18 The 2 4. and 6 mode shapes 

In the figure, we observe that only one node belongs to the first mode shape. Also observed 

that in case 6 mode shape there is not visible deformation because the twisting around the Y 

axis is not visible in this representation 

The displacements belong to 2. and 3. mode shapes are shown in Figure 10.19. 
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Figure 10.19 Values of 2 and 3 mode shape 

The table contains very small magnitude displacements. These are not real values, only gener-

ated during the solve as calculation errors.  

The mode shape 6th is shown in Figure 10.20. 

 

Figure 10.20. The 6. mode shape 

The table contains only rotation results around the Y axis. It is also shown that the torsional 

oscillation can only be between the two disks. 

10.5. Remarks 

In engineering practice the torsional vibration analysis usually are used only a long, flexible 

shafts, flexible couplings. 

The bending oscillation of rotating shaft with circle or pipe cross section may also be ex-

amined using BEAM2D elements. 
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11. INTRODUCTION TO PLANE PROBLEMS SUBJECT. APPLICA-

TION OF PLANE STRESS, PLANE STRAIN AND REVOLUTION 

SYMMETRIC (AXISYMMETRIC) MODELS 

11.1. Basic types of plane problems 

In the case of plane problems we have two-dimensional or two-variable problems; the basic 

equations of elasticity can be significantly simplified compared to spatial problems. There are 

two major categories of plane problems [1]: 

 plane stress – a thin structure with constant thickness under in-plane loading, 

(Fig.11.1a), 

 plane strain – a long structure with constant cross section under constant loads along 

the length (Fig.11.1b). 

We note that the generalized plane stress state belongs also to the two-variable problems, 

if we relate the mechanical quantities to their average values.  

 

Fig.11.1. Demonstration of plane stress (a) and plane strain (b) states. 

For plane problems the displacement vector field is the function of x and y only: 











),(

),(
),(

yxv

yxu
yxuu  (11.1) 

Consequently, even the strain and stress fields depend upon x and y: 

),( yx  , ),( yx  . (11.2) 

In the followings we develop the relationship among the former mechanical quantities. 

 

11.2. Equilibrium equation, displacement and deformation 

The equilibrium equation represents the internal equilibrium of a differential plane element. 

Based on Fig.11.2 it is possible to express the equilibrium of the forces in directions x and y 

as [1,2]: 
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0))()(  dxdyqdxddxddydyd xyxyxyxxxx  , (11.3) 

0))()(  dxdyqdyddyddxdxd yxyxyxyyyy  , 

where  is the normal,  is the shear stress, qx and qy are the components of density vector of 

volume forces. The simplification of Eq.(11.3) leads to the following equations: 
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yx


. (11.4) 

 

Fig.11.2. Equilibrium of a differential plane element. 

The equilibrium equation can be formulated also in vector form [1,2]: 

0 q , (11.5) 

where q = q(x,y) is the density vector of volume forces,  is the Hamiltonian differential op-

erator (vector operator) in two dimensions: 

j
y

i
x 







 .  (11.6) 

In order to establish the relationship between the strain and displacement fields we inves-

tigate the displacement and deformation of some points of the differential plane element de-

picted in Fig.11.3. The normal and shear strains in direction x of distance AB, and in direction 

y of distance AD of the element are: 

dx
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yx . (11.7) 
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By the help of the figure we can write the following: 

2222 )()()]1([)''( dx
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v
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x

u
dxdxBA x
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
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  , (11.8) 

from which we obtain: 
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The expression above is applicable to calculate the normal strain in direction x in the case 

of the so-called large displacement. After all, within the scope of elasticity, in most of the 

cases we obtain reasonably accurate results by the linearization of the expression above. The 

normal strain in direction y is derived similarly. Neglecting the higher order terms we obtain 

the linearized formulae: 

x

u
x




 , 

y
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y




 . (11.10) 

Utilizing Fig.11. 3 we calculate the angle denoted by  : 

dxxudx

dxxv

)/(

)/(




 . (11.11) 

 

Fig.11.3. Displacement and deformation of a differential plane element. 
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Assuming that there are only small angles, we can write: 
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 . (11.12) 

Based on Eq.(11.7) we obtain: 
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 . (11.13) 

We obtain the so-called strain-displacement equation by summarizing Eqs.(11.10) and 

(11.13) in tensorial form. The strain-displacement equation is valid also for spatial problems 

[1,2]: 

)(
2

1
uu   , (11.14) 

where the circle means dyadic product. 

 

11.3. Constitutive equations 

The material behavior, in other words the stress-strain relationship of a homogeneous, linear 

elastic, isotropic body is given by Hooke’s law [3]: 
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where  is Poisson’s ratio, E is the modulus of elasticity, G = E/(2(1+)) is the shear mod-

ulus, E  is the identity tensor, I and I are the first scalar invariants, respectively. 

 

11.3.1. Plane stress state 

The stress components under plane stress state are: 

),( yxxx   , ),( yxyy   , ),( yxxyxy    and 0 zyzxz  , (11.16) 

i.e. the normal stress perpendicular to the x-y plane and the shear stresses acting on the plane 

with outward normal in direction z are zero. The stress and strain tensors have the following 

forms:  
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From the first of Eq.(11.15) we obtain: 
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The normal strain in direction z is: 
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We note, that although z is not included in the equations, it can always be calculated by 

using the strains in the other two directions. Using the former equations we can express even 

the stresses: 
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An alternative formulation of the stress-strain relationship is that we collect the compo-

nents in vectors: 
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As a result, the relationship is established through a matrix: 

 C . (11.22) 

where C  is the constitutive matrix. On the base of Eqs.(11.20)-(11.22) under plane stress 

state matrix C becomes: 
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The inverse and the determinant of the matrix is: 
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The latter form of the stress-strain relationship is applied in finite element calculations. 

 

11.3.2. Plane strain state 

Under plane strain state the condition is: z = 0, i.e. the normal strain perpendicular to the x-y 

plane is zero. In this case the stress and strain tensors are: 
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According to Hooke’s law we obtain: 
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Developing the stress-strain relationship from  C we get: 
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and: 
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11.4. Basic equations of plane elasticity 

The number of unknowns in case of plane problems is always eight: x, y, xy, x, y, xy, u 

and v. Under plane stress z, under plane strain z component can always be calculated by the 

help of the components in directions x and y.  

 

11.4.1. Compatibility equation 

The combination of Eqs.(11.10) and (11.13) leads to the so-called compatibility equation 

[1,2]: 
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The equation above is equally true for plane stress and plane strain states. It is possible to 

formulate the compatibility equation in terms of stresses. Let us express Eq.(11.29) in terms 

of stresses for plane stress state by utilizing Eq.(11.19): 
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We express the mixed derivative of the shear stress from Eq.(11.4): 
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The combination of the two former equations results in: 
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In a similar way we can develop the following equation for plane strain state:  
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It can be seen, that if there is no volume force, then the compatibility equation has the 

same form under plane stress as that under plane strain. In that case, when the force field is 
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conservative, then a potential function, U exists, of which gradient gives the components of 

the density vector of volume force, i.e.: 

x

U
qx
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y

U
q y
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 . (11.35) 

11.4.2.  Airy’s stress function 

The equilibrium and the compatibility equations can be reduced to one equation by introduc-

ing the Airy’s stress function. Let  = (x,y) be the Airy’s stress function, which is defined in 

the following way [1,2]: 
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Taking them back into the equilibrium equations given by Eq.(11.4), it is seen that the eq-

uations are identically satisfied. The stress function can be derived for every stress field, 

which satisfies the equilibrium equations and the body force field is conservative. In terms of 

the stresses the compatibility equation given by Eq.(11.34) becomes: 

U24 )1(   , (11.37) 

where: 
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is called the biharmonic operator. Eq.(11.37) is the governing field equation for plane stress 

problems in which the body forces are conservative. If a function  = (x,y) is found such that 

it satisfies Eq.(11.37) and the proper prescribed boundary conditions, then it represents the 

solution of the problem. The corresponding stresses and strains may be determined from 

Eqs.(11.36) and (11.19), respectively. If the body forces are constant, or if U is a harmonic 

function, then the governing equation is: 

04   , (11.39) 

which is a partial differential equation called biharmonic equation. 

 

11.4.3. Navier’s equation 

Now let us formulate the governing equations in terms of displacement field for plane stress 

state! The combination of Eqs.(11.10), (11.13) and (11.19) provides the followings [1,2]: 
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After a simple rearrangement we obtain: 
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Substitution of the above stresses into the equilibrium equation given by Eq.(11.4) gives 

the Navier’s equation: 
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We can develop Navier’s equation for plane strain state in a similar way, the result is: 
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Under plane stress state the first scalar invariant of the stress tensor is: 

 2 yxI . (11.44) 

11.4.4. Boundary value problems 

It can be shown that for plates under symmetrically distributed external forces with respect to 

the plane z = 0, the exact solution satisfying all of the equilibrium and compatibility equations 

is [2]: 
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where: 
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which satisfies  
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The second term in Eq.(11.45), however, depends on z and may be neglected for thin 

plates, in which case we have: 

00

44   . (11.48) 

That is, for thin plates, solutions by Eq.(11.48) very closely approximate the stress distri-

butions by Eq.(11.45).  

Let us summarize what kind of requirements should be met of plane stress state! The ac-

tual elastic body must be a thin plate, the two z surfaces of the plate must be free from load, 

the external forces can have only x and y components, the external forces should be distri-

buted symmetrically with respect to the x and y axes. 

The governing equation system of plane problems is a system of partial differential equa-

tions (equilibrium equation, strain-displacement equation and material law) with correspond-

ing boundary conditions. The dynamic boundary condition is the relationship between the 

stress tensor and the vector of external load at certain points of the lateral boundary curve: 

pn  , (11.49) 

where p is traction vector of the corresponding boundary surface, n is the outward normal of 

the boundary surface or the outward normal of a certain part of it, which is parallel to the x-y 

plane. The kinematic boundary condition represents the imposed displacement of a point (or 

certain points): 

buyxu ),( 00 , (11.50) 

where ub is the imposed displacements vector, x0 and y0 are the coordinates of the actual point. 

The system of governing partial differential equations together with relevant dynamic and 

kinematic boundary conditions built a boundary value problem. 

We note that closed form solutions of the governing partial differential equations of plane 

problems with prescribed boundary conditions which occur in elasticity problems are very 

difficult to obtain directly, and they are frequently impossible to achieve. Because of this fact 

the inverse and semi-inverse methods may be attempted in the solution of certain problems 

[1]. In the inverse method we select a specific solution which satisfies the governing equa-

tions, and then search for the boundary conditions which can be satisfied by this solution, i.e., 

we have the solution first and then ask what problem it can solve. In the semi-inverse method, 

we assume a partial solution to a given problem. A partial solution consists of an assumed 

form for each dependent variable in terms of known and unknown functions. The assumed 

partial solution is then substituted into the original set of governing equations. As a result, 

these equations will be reduced to a set of simplified differential equations, which govern the 

remaining unknown functions. This simplified set of equations, together with proper boun-

dary conditions, is then solved by direct methods. 
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11.5. Examples for plane stress 

11.5.1. Determination of the traction on the boundaries of a square shape plate 

For the square shape plate shown in Fig.11.4 we know the Airy’s stress function in the x-y 

coordinate system [3]: 
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where p0 is the intensity of the distributed line load. The body force is negligible; we assume 

that the plate is in plane stress state. 

 

Fig.11.4. Square shape plate under plane stress. 

What kind of system of forces loads the boundary curves of the plate?  

 

First, we produce the stress field: 
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The traction vectors can be calculated by the help of the definition of dynamic boundary 

condition and the localization of it into the boundary curves. Therefore, we need the outward 

normal of each boundary curve: 

 

boundary 
curve 

constant 
coordinate 

outward 
normal 

(n) 

1 x = 0 -i 

2 x =a i 

3 y =0 -j 

4 y = a j 
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Furthermore, we need Eqs.(11.49) and (11.52). We obtain the traction vectors by applying the 

former equations: 
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The system of forces acting on the boundary curves can be obtained by plotting the com-

ponents of the vectors above along the corresponding boundary curve. Fig.11.5 demonstrates 

the function plots, where Fig.11.5a depicts the loads in the normal direction (perpendicularly 

to the boundary curve), Fig.11.5b represents the tangential (with respect to the boundary 

curve) stress distributions. 

 

Fig.11.5. Normal (a) and tangential (b) loads on the boundary curves of a square plate under plane 

stress state. 
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11.5.2. Analysis of a tangentially loaded plate 

For the plate shown in Fig.11.6 with dimensions of 2hL the body force is negligible, we can 

assume plane stress state. The form of the Airy’s stress function for the load shown in Fig. 

11.6 is [3]: 
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Fig.11.6. Thin plate loaded by tangentially distributed force under plane stress state. 

Is the given (x,y) function an exact solution of the problem above? 

 

A function, (x,y) is the exact solution of the problem if it satisfies the governing partial 

differential equation of plane problems and the dynamic boundary conditions. Based on the 

given (x,y) function it is seen that Eq.(11.39) is satisfied in this case, since the governing 

equation is a fourth order partial differential equation, while the functions contains to a maxi-

mum the third power of y. Let us investigate the dynamic boundary conditions! Similarly to 

the former example we calculate the stress field first: 
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Based on the stresses, the loads on the boundary curves are: 
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y = h: 0y , txy p , 

y = -h: 0y  , 0xy . 
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Finally, independently of Eq.(11.56) we formulate the dynamic boundary conditions by 

the help of Fig. 11.6. In accordance with the dynamic boundary condition definition the stress 

components acting on the actual boundary curve should be equal to the corresponding (normal 

or tangential) components of the traction vector. That means: 

x = L: 0x , 0yx , (11.57) 

y = h: 0y , txy p , 

y = -h: 0y  , 0xy . 

Comparing the boundary conditions to the boundary loads it is seen, that one condition is 

not satisfied, namely the shear stress, yx on the boundary at x = L is not zero, i.e. one of the 

conditions is violated. Nevertheless, there are two points, where in accordance with the for-

mula: 

0230
32

10
32

1
4

1 22

2

2

2

2









 hyhy

h

y

h

y

h

y

h

y
pt , (11.58) 

with solutions of y1 = 1/3h and y2 = h, i.e. at two points the dynamic boundary condition is 

satisfied. As a final word, the given (x,y) function is not the exact solution of the problem in 

Fig.11.6, because one of the dynamic boundary conditions is violated. After all, it is accepta-

ble, since together with Eq.(11.39) the given function satisfies eight from the total ten condi-

tions. It should be highlighted, that the boundary at x = 0 is a fixed boundary, which involves 

kinematic boundary condition, that is why we did not investigated this boundary curve in the 

example. 

 

11.6. The governing equation of plane problems using polar coordinates 

The solutions of many elasticity problems are conveniently formulated in terms of cylindrical 

coordinates. On the base of Fig.11.7 we have the functional relations [1]: 

cosrx  , sinry  , (11.59) 

x

y
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Fig.11.7. Parameters of a polar coordinate system. 

The derivatives of the polar coordinates with respect to x and y using the last of Eq.(11.59) 

are: 
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Again, the derivatives with respect to x and y can be formulated based on the chain rule: 
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To derive the governing equations in terms of polar coordinates we incorporate the stress 

transformation expressions [1]. The normal and shear stresses are transformed to a coordinate 

system given by rotation about axis z by an angle : 

nn
T

n   , 
T

mn m n  , (11.62) 

where: 

 0sincos 
T

n ,  0cossin 
T

m , (11.63) 

which leads to: 

  2sinsincos 22

rrx  , (11.64) 
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  2sincossin 22

rry  , 

)sin(coscossin)( 22    rrxy , 

The strain components (x, y, xy) can be transformed similarly. Taking Eq.(11.64) back 

into the equilibrium equations given by Eq.(11.4), moreover by assuming that there are also 

body forces, we have [1,2]: 

0
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where the former is the equation in the radial, the latter is the equation in the tangential direc-

tion. By a similar technique, the strain-displacement equations may be transformed into: 
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, (11.66) 

where ur and u are the radial and tangential displacements. Eliminating the displacement 

components we obtain the compatibility equation: 
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In the case of Hooke’s law there is no need to perform the transformation, due to the fact 

that the polar coordinate system is an orthogonal system. Therefore, e.g. in Eq.(11.20) refer-

ring to plane stress state, we have to substitute x by r, and y by: 
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The formulation incorporating plane strain state based on Eq.(11.26) leads to: 
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The first scalar invariant of the strain tensor (plane dilatation) under plane strain state is: 
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1)(1
. (11.70) 

Substituting the stress and strain components into the equilibrium equation given by 

Eq.(11.65) (plane strain) and incorporating the first scalar invariant we obtain the Navier’s 

equation in terms of polar coordinates [1,2]: 
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is the rotation about axis z,  is the Lamé-constant: 

)21)(1( 
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. (11.73) 

The governing equation of plane problems in terms of polar coordinates can be formulated 

by using the Hamilton operator. Based on Eqs.(11.48) and (11.61) we get: 
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The stresses may be obtained by using the differential quotients given by Eq.(11.61) and 

the transformation expressions given by Eq.(11.64): 
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The last three formulae are equally valid under plane stress and plane strain states. The 

equilibrium equations, strain-displacement relationship can also be formulated by using infi-

nitesimal elements in polar coordinate system [1]. 
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11.7. Axisymmetric plane problems 

The use of polar coordinates is particularly convenient in the solution of revolution symmetric 

or in other words axisymmetric problems. In this case displacement field, stresses are inde-

pendent of the angle coordinate (), consequently the derivates with respect to  vanish eve-

rywhere. In accordance with Eq.(11.74) the governing equation of plane problems becomes: 
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d
. (11.76) 

By introducing a new independent variable, , this equation can be reduced to a differen-

tial equation with constant coefficients: 

er  . (11.77) 

As a result, Eq.(11.76) becomes: 
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for which the general solution is: 

DCBeeA    22 . (11.79) 

Taking back e

 we have: 

DrCBrrAr  lnln 22 , (11.80) 

where A, B, C and D are constants. The stresses based on Eq.(11.75) are: 
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Taking the solution function back we see that: 

BA
r

C
rAr 2ln2

2
 , 

2
2 ln 3 2

C
A r A B

r
     , 0 r . (11.82) 

11.7.1. Solid circular cylinder and thick-walled tube 

Let us see some examples for the application of the equations and formulae above [1]! For a 

solid circular cylinder the stresses at r = 0 can not be infinitely high, therefore:  

0CA . (11.83) 



11. Introduction to plane problems subject 173 

© András Szekrényes, BME www.tankonyvtar.hu 

The stresses in a solid circular cylinder are: 

Br 2  , 0 r . (11.84) 

This is the solution of a circular cylinder loaded by external pressure with magnitude of 

2B on the outer surface. In the case of a hollow circular cylinder or a thick-walled tube 

(Fig.11.8a) it is not sufficient to investigate only the dynamic boundary conditions, we need 

to impose also kinematic boundary conditions. 

 

Fig.11.8. Hollow circular cylinder with imposed displacement at the inner boundary (a), thick-walled 

rotating disk (b). 

The strain components by using Eq.(11.66) become: 

dr

dur
r  ,

r

ur , 0 r . (11.85) 

Using the stress-strain relationship given by Eq.(11.68) we obtain the equations below: 
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where: 
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for plane stress, and 

E
K

2

1

1 
 , 2K , (11.88) 

for plane strain. Next, we express the strain components: 
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Integrating the former equation we get: 

))2ln2(2ln2( 21 H
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BrArrArK

r

C
BrArrArKur  , (11.90) 

where H is an integration constant. Dividing the formulae above by r and equating it to the 

second of Eq.(11.89) gives the following: 

04 HAr . (11.91) 

Since the equation must be satisfied for all values of r in the region, we must consider the 

trivial solution: 

0 HA . (11.92) 

The remaining constants, B and C, are to be determined from the boundary conditions im-

posed on the inner and outer boundary surfaces. Therefore, the general solution is: 

))1()1(2()( 221 K
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C
KBrKrur  .  (11.93) 

The problem of hollow circular cylinder can also be solved by Navier’s equation. If the 

displacement field is independent of coordinate , then  = 0, i.e. from Eqs.(11.70)-(11.71) 

we obtain: 

0
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r

u

dr

du
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ud rrr , (11.94) 

for which the general solution is: 

r

c
rcrur

2
1)(  . (11.95) 

It is seen that it is mathematically identical to (11.93). For a circular cylinder with fixed 

outer surface and with internal pressure the kinematic boundary conditions are: 

0)( uru br  , 0)( kr ru . (11.96) 

Based on the solution function the constants are: 
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and the solution is: 
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The strain components are to be determined by Eq.(11.85), the stresses by Eq.(11.68). 

 

11.7.2.  Rotating disks 

If the thickness of the circular cylinder is small, then it is said to be a disk (Fig.11.8b). If the 

disk rotates, then there is a body force in the reference coordinate system. The equilibrium 

equation in the radial direction (see Eq.(11.65)) becomes [2]: 
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where  is the angular velocity of the disk,  is the density of the disk material. Rearranging 

the equation we obtain: 
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This equation can be satisfied by introducing the stress function, F, in accordance with the 

following: 
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The strain components have already been derived for a hollow circular cylinder, eliminat-

ing ur from Eq.(11.85) we obtain: 
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Assuming plane stress state and utilizing Eq.(11.68) we have: 
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Taking it back into Eq.(11.101) yields the following: 
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i.e. we have a second order differential equation for the stress function, which involves the 

following solution: 
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The stress components based on Eq.(11.101) are: 
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where A and B are integration constants, which can be determined by the boundary condi-

tions. To calculate the displacement field we incorporate Eq.(11.85), from which we have: 
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and the integration of it yields: 
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The basic equations of the rotating disk are then: 
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Let us solve an example using the equations above! The elastic disk shown in Fig.11.9 is 

fixed to the shaft with an overlap of  [3].  

 

Fig.11.9. Rotating disk on a rigid shaft. 

Given: 

rb = 0,02 m, rk = 0,2 m, h = 0,04 m,  = 0,0210
-3

 m,  = 7800 kg/m
3
, E = 200 GPa, = 0,3. 

a. How large can be the maximum angular velocity if we want the disk not to get loose? 

b. Calculate the contact pressure between the shaft and disk, when the structure does not 

rotate! 

 

For point a. first we formulate the boundary conditions. A kinematic boundary condition 

is, that he radial displacement on the inner surface of the disk must be equal to the value of 

overlap: 
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The outer surface of the disk is free to load, therefore in accordance with the dynamic 

boundary condition, the radial stress perpendicular to the outer surface is zero: 
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If the disk gets loose, then a free surface is created, that is why the radial stress should be 

equal to zero, i.e.: 
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The system of equations contains three unknowns: A, B and , since a and b are not inde-

pendent of A and B. We now subtract Eq.(11.113) from Eq.(11.114) and we obtain: 
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The back substitution into Eq.(11.114) gives: 
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Taking the constants back into the kinematic boundary condition equation yields: 
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Incorporating the constant C1, and rearranging the resulting equation the maximum angu-

lar velocity becomes: 

maxs/rad5,880   . (11.119) 

In terms of the angular velocity the constants can be determined: 

Pa10008,1 8A , N39915B , 49

1 m/N10495,2 C , (11.120) 

49

2 m/N10436,1 C , 41053,3 a ,  27 m1059,2 b , 23 m/110439,3 c . 

For point b. we find out that if the disk does not rotate then  = 0 and this way: C1 = C2 = 

c = 0. Under these circumstances the radial displacement on the inner surface must be equal to 

the value of overlap: 
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The outer surface of the disk is still free to load, i.e.: 
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The solution is: 

Pa10530,1 6A , N9,61208B , (11.123) 
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610356,5 a , 27 m10978,3 b . 

The distribution of the radial and tangential stresses under two different conditions are 

demonstrated in Fig.11.10. 

 

Fig.11.10. Distribution of the radial and tangential stresses in the disk structure when the structure 

rotates (a) and when there is no rotation (b). 

 

11.8. Bibliography 

[1] Pei Chi Chou, Nicholas J. Pagano, Elasticity – Tensor, dyadic and engineering 

approaches, D. Van Nostrand Company, Inc., 1967, Princeton, New Jersey, To-

ronto, London. 

[2] S. Timoshenko, J. N. Godier. Theory of elasticity. McGraw-Hill Book Company, 

Inc., 1951, New York, Toronto, London. 

[3] József Uj, Lectures and practices of the subject Elasticity and FEM, Budapest 

University of Technology and Economics, Faculty of Mechanical Engineering, 

Department of Applied Mechanics, 1998/1999 autumn semester, Budapest (in 

Hungarian). 

 



 

www.tankonyvtar.hu © András Szekrényes, BME 

12. MODELING OF PLANE STRESS STATE USING FEM SOFT-

WARE SYSTEMS. MODELING, ANALYSIS OF PROBLEM EVALUA-

TION 

12.1. Finite element solution of plane problems 

In the application of the finite element method we divide the plane domain of the whole struc-

ture into discrete elements as it is illustrated in Fig.12.1 [1].  

 

Fig.12.1. The basic concept of the finite element method in the case of plane elements. 

In the FE method we apply the minimum principle of the total potential energy to develop the 

finite element equilibrium equations. For a single plane element the total potential energy is 

[2]: 

i

n

i

ii

T

V

T

A

T

V

T

e FyxudVqudApudVWU

epee





1

),(
2

1
 , (12.1) 

where  is the vector of stress components,  is the vector strain components, respectively: 

 xyyx

T
 ,, , (12.2) 

 xyyx

T
 ,, , 

moreover u = ui + vj is the displacement vector field, p is the density vector of surface 

forces, q is the density vector of volume (or body) forces, Fi is the vector of concentrated 

forces acting on the plane element with coordinates of point of action, xi and yi, Ape is that part 

of the boundary curves, which is loaded by surfaces forces, Ve is the volume of the element, 

respectively. We provide the displacement vector field by interpolation: 

euyxNyxu ),(),(  , (12.3) 
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where N is the matrix of interpolation functions, its dimension depends on the degrees of 

freedom of the plane element, ue is vector of nodal displacements. Referring to the basic equa-

tions of elasticity, the relationship between the strain and displacement fields in matrix form 

is: 

u , (12.4) 

where is the matrix of differential operators, it can be obtained by Eqs.(11.10) and (11.13): 






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
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
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
















xy

y

x

0

0

. (12.5) 

The combination of the latter relations gives: 

ee uBuNu  , (12.6) 

where B is the strain-displacement matrix. The stress field can be obtained by: 

 C , euBC , (12.7) 

whereC  is the constitutive matrix  its calculation has already been made in section 11 for 

plane stress and plane strain states. The strain energy for a single finite element is: 

ee

T

ee

TTT

e

V

T

e uKuvdxdyuBCBudVU

e
2

1

2

1

2

1
    , (12.8) 

where
e

K is the element stiffness matrix,  

   vdxdyBCBdVBCBK
TT

V

TT

e

e

, (12.9) 

its dimension depends on the degrees of freedom of the element. For plane elements the diffe-

rential volume is written in the form of: vdxdyvdAdV  , where v is the thickness of element. 

The work of external forces acting on the element by the help of Eq.(12.3) becomes: 

ec

T

e

V

TT

e
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TT

ei

n
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ii

T

V

T
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T

e FudVqNudApNuFyxudVqudApuW

epeepe
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),( , (12.10) 
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where ecF is the vector of concentrated forces acting in the nodes of element. Thus, the total 

potential energy can be written as: 

e

T

eee

T

ee FuuKu 
2

1
, (12.11) 

where: 

ecepebec

V

T

A

T

e FFFFdVqNdApNF

epe

  , (12.12) 

is the vector forces acting on the element. We can formulate the equilibrium equation in the 

element level by means of the minimum principle of the total potential energy: 

0 eee
FuK . (12.13) 

The assembly of element stiffness matrices, vector of nodal displacements and forces 

leads to the structural equilibrium equation: 

0 FUK , (12.14) 

where K is structural stiffness matrix,U is the structural vector of nodal displacements, F  is 

the structural vector of nodal forces, respectively. That is, the finite element equilibrium equa-

tion is a system of algebraic equations for which the solutions are the values of nodal dis-

placements. In terms of the nodal displacements we can calculate the nodal forces and 

stresses. 

For the solution of plane problems there exist many types of plane elements. In the sequel 

we review the simplest element types. 

 

12.2. Linear three node triangle element 

The linear triangle element (Turner triangle) [1,3], which is often called the triangle mem-

brane element or constant strain triangle (CST) element is  depicted in Fig.12.2. At each node 

there are two degrees of freedom. Consequently the degrees of freedom are equal to six for 

the whole element. The arrow in the center point of the element refers to the orientation of the 

element, i.e. for each element we have a direction, which means how the nodes are followed 

by each other. 

 

12.2.1. Interpolation of the displacement field 

We collect the nodal x, y coordinates and displacement components in vectors: 

 332211 yxyxyxx
T

e  , (12.15) 

 332211 vuvuvuu
T

e  . 
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Fig.12.2. Linear triangle element. Nodal coordinates and displacements. 

The triangle area can be expressed as a determinant: 

321122131132332

33

22

11

)()()(

1

1

1

2   yxyxyxyxyxyx

yx

yx

yx

Ae . (12.16) 

The u and v components of the displacement field are formulated as the linear function of 

x and y: 

yaxaayxu 210),(  , (12.17) 

ybxbbyxv 210),(  , 

where a0, a1, a2, b0, b1 and b2 are unknown constants. The vector of strain components is: 

 xyyx

T
 ,, , (12.18) 

where using Eqs.(11.10) and (11.13) we have: 

1a
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u
xy 









 . (12.19) 

The nodal displacements must be obtained if we take back the nodal coordinates into the 

u(x,y) and v(x,y) functions given by Eq.(12.17), i.e.: 

121101 yaxaau  , 121101 ybxbbv  , (12.20) 
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222102 yaxaau  , 222102 ybxbbv  , 

323103 yaxaau  , 323103 ybxbbv  . 

The solution of the system of equations above results in: 
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 
 , (12.21) 

where: 

23321 yxyx  , 321 yy  , 231 xx  , (12.22) 

31132 yxyx  , 132 yy  , 312 xx  , 

12213 yxyx  , 213 yy  , 123 xx  . 

Substituting the solution above back into the components of displacement field 

(Eq.(12.17)) we obtain: 

])()()[(
2

1
),( 333322221111 uyxuyxuyx

A
yxu

e

  , (12.23) 

])()()[(
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),( 333322221111 vyxvyxvyx

A
yxv

e

  . 

Considering the fact that for the triangle element we have three interpolation functions 

(see. Eq.(12.3)), we can write that: 


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ii uyxNuNuNuNyxu , (12.24) 
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ii vyxNvNvNvNyxv . 

In accordance with Eq.(12.21) the interpolation functions can be derived in the following 

form:  

e

iii

i
A
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yxN

2
),(

 
 , i = 1, 2, 3. (12.25) 
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Based on the relation of euyxNyxu ),(),(   the matrix of interpolation functions be-

comes: 











321

321

000

000

NNN

NNN
N . (12.26) 

The parameter lines of the interpolation function are shown in Fig.12.3, which implies the 

following properties: 

 at the nodes ),,( 321 NNN : )0,0,1( , )0,1,0( , )1,0,0( , 

 at the midpoints of the triangle sides ),,( 321 NNN : )0,2/1,2/1( , )2/1,0,2/1( , )2/1,2/1,0( , 

 at the centroid ),,( 321 NNN : )3/1,3/1,3/1( , 

 i.e., it is seen that at every point: 1321  NNN , 

 finally:  

e

A

kji A
kji

kji
dANNN

e

2
)!2(

!!!
321


 . (12.27) 

 

Fig.12.3. Parameter lines of the interpolation functions of linear triangle element. 

 

12.2.2. Calculation of the stiffness matrix 

According to Eq.(12.9) the definition of the element stiffness matrix is: 

vdxdyBCBK
TT

e   , (12.28) 

where the previously mentioned strain-displacement matrix using Eqs.(12.5) and (12.26) be-

comes: 
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 (12.29) 

This formulation implies that the elements of matrix B are independent of the x and y va-

riables, they depend only on the nodal coordinates. Therefore, the stiffness matrix can be writ-

ten as: 

e

TT

e

TT

e
VBCBvABCBK  , (12.30) 

where Ae is the element area, Ve = Aev is the element volume, respectively. As a consequence, 

the stiffness matrix of the linear triangle element can be computed in a relatively simple way 

and in closed form. 

 

12.2.3. Definition of the loads 

Body force or volume force. Let the vector of body forces be equal to: 
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from which we have: 
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. (12.32) 

Utilizing the special properties of the interpolation functions given by Eq.(12.27), e.g. if i 

= 1, j = 0 and k = 0, we have: 
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e
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AdAN

e
3

1
1  . (12.33) 

Consequently we have: 

 yxyxyxe

T

eb qqqqqqvAF
3

1
 . (12.34) 

As an explanation, the body force acting on the element (e.g. the whole weight and the re-

sulting resultant force) is divided into three equal parts and put into the nodes. The body force 

can be originated from gravitation or acceleration (inertia force). 

 

Distributed force along element edges. For the calculation of force vectors as a result of 

line loads along element edges we should take the 1-2 edge of the element shown in Fig.12.4 

into consideration. We define a dimensionless parameter,  along the element edge. The arc 

length along the element edge is then: 

12ls   and dlds 12 . (12.35) 

 

Fig.12.4. Linear triangle element with line load in direction x along element edge 1-2. 

The linearly distributed load in direction x can be described by the following function: 

 21 )1()( xxx ppp  . (12.36) 

Similarly, the displacement function in direction x along element edge 1-2 can be written 

as: 

 21 )1()( uuu  . (12.37) 

The work of the distributed load is generally the integration of the load function multiplied 

by displacement function between the corresponding nodes: 
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 (12.38) 

That is, the force vector from a linearly distributed line load becomes: 
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F . (12.39) 

If the line load is constant along the element edge, then px1 = px2 = px which implies: 

 0000
2

12
xx

T

ep pp
vl

F  . (12.40) 

The form of the vector of forces in the finite element equation is similar in the case of a li-

nearly distributed load in direction y. 

 

Concentrated forces. Concentrated forces can act only at nodes. The force vector can be 

simply formulated based on the nodes: 

 332211 yxyxyx

T

ec FFFFFFF  . (12.41) 

The total force vector is the sum of the vectors detailed in the previous points, i.e.: 

ecepebe FFFF  . (12.42) 

We demonstrate the solution of the finite element equation and the construction of the 

stiffness matrix and force vector through an example. 

 

12.3. Example for the linear triangle element – plane stress state 

The model shown in Fig.12.5a is loaded by distributed forces. Calculate the nodal displace-

ments and forces in that case when we built-up the plate using two linear triangle elements! 

Calculate the strain and stress components [4]!  



12. Modeling of plane stress state using FEM software systems 189 

© András Szekrényes, BME www.tankonyvtar.hu 

 

Fig.12.5. Plane model loaded by distributed forces (a), finite element model made by two linear trian-

gle elements (b). 

Given: 

px = 0,12 MPa, E = 150 GPa, a = 20 mm, c = 10 mm, py = 0,06 MPa,  = 0,25, b = 30 mm, v = 

5 mm 

 

In the course of the computation we calculate the distances in [mm] and the force in [N]. 

Following Fig.12.5b, we see that the model is constructed by two triangle elements. The nodal 

coordinates are: 

node x [mm] y [mm] 

1 0 0 

2 20 0 

3 20 30 

4 10 30 

 

The so-called element-node table is: 

 

element nodes 

1 1 2 4 

2 2 3 4 

 

The finite element equilibrium equation to be solved is: 

FUK  , (12.43) 

where: 

 44332211 vuvuvuvuU
T
 , (12.44) 
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is the structural vector of nodal displacements. Because of the boundary conditions (v1 = v2 = 

u2 = u3 = 0) we have: 

 4431 0000 vuvuU
T
 . (12.45) 

In order to calculate the stiffness matrix we need the constitutive matrix for plane stress 

state (see section 11.23): 
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The coefficients of the interpolation functions for the first element are: 

mm30421  yy , mm10241  xx , (12.47) 

mm30142  yy , mm10412  xx , 

mm0213  yy , mm20123  xx , 

and for the second element, respectively: 

mm0431  yy , mm10341  xx , (12.48) 

mm30242  yy , mm10422  xx , 

mm30323  yy , mm0233  xx . 

The triangle areas are: 
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Matrix B for the first element is: 
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For the second element it is: 
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Based on Eq.(12.30) the element stiffness matrices are: 
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N
10

5,405,45,105,1

01211210

5,416/355,23/45,1

5,1125,25,1215,0

013/413/40

5,105,15,005,0

5
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
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 e

TT

e
VBCBK , 

where Ve1 = Ae1v = 3005 = 1500 mm
3
 and Ve2 = Ae2v = 1505 = 750 mm

3
 are the element 

volumes. For the construction of the structural stiffness matrix we complete the element ma-

trices with empty rows and columns corresponding to the missing degrees of freedom. On the 

base of Fig.12.5 and the element-node table, it is seen, that the first element includes only 

nodes 1, 2 and 4. Consequently those rows and columns, which belong to node 3, should be 

filled up with zeros: 
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
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1
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1
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1
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1
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1
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K . (12.53) 
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In contrast, for the second element the rows and columns corresponding with the first node 

must be completed by the placement of zeros: 
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
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K . (12.54) 

The structural stiffness matrix is calculated as the sum of the two former matrices: 
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. (12.55) 

The force vector related to the distributed load is calculated by Eq.(12.39): 

 0000
2

14
1 xx

T

ep pp
vl

F  ,  (12.56) 

 yy

T

ep pp
vl

F 0000
2

34
2  , 

where m10003010 22

14 l  and l34 = 10 mm are the element edge lengths between 

the nodes indicated in the subscript. By completing the element vectors with zeros at the posi-

tions of the proper degrees of freedom, we get the structural force vectors: 

   N010300000103000000
2

14
1  xx

T

l pp
vl

F , (12.57) 

   N5.105.100000000000
2

34
2  yy

T

l pp
vl

F . 

We consider the reaction forces as concentrated forces at the constrained nodes: 
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 44332211 yxyxyxyx

T

c FFFFFFFFF  . (12.58) 

Taking it into account, that at node 4 there is no external force and that the surfaces are 

frictionless, i.e.: Fx1 = Fy3 = 0, we have: 

 0000 3221 xyxy

T

c FFFFF  . (12.59) 

The structural force vector is: 

cpp FFFF  21 . (12.60) 

The finite element equilibrium equation is FUK  , i.e. we have: 
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F
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. (12.61) 

The nodal displacements can be determined from the system of equations constructed by 

the 1
st
, 6

th
, 7

th
 and 8

th
 component equations of the matrix equation: 

1035,025,6 441  vuu , (12.62) 

5,15,46/35 443  vuv , 

103135,0 431  uvu , 

5,16/435,4 431  vvu . 

The equations above, in fact were obtained by the condensation of Eq.(12.61). When we 

perform the matrix condensation only those component equations remain, which contain un-

knowns with respect to the displacements only. On the right hand side, in the force vector 

there are no unknowns. The solutions are: 

mm10557,1 5

1

u , mm1022997,0 5

3

v , (12.63) 

mm10771983,0 5

4

u , mm1013633,0 5

4

v . 
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Taking the nodal displacements back into the 2
nd

, 3
rd

, 4
th

 and 5
th

 rows of the matrix equa-

tion, we can determine the nodal forces: 

1441 3/425,125,1 yFvuu  , (12.64) 

24431 5,25,05,175,5 xFvuvu  , 

24431 3/45,23/425,0 yFvuvu  , 

3443 5,1125,2 yFvuv   

The solutions are: 

N971095,01 yF , N339434,92 xF , (12.65) 

N0289,22 yF , N63423,93 xF . 

Using Eq.(12.19) we calculate now the strain components: 

1a
x

u
x 




 , 2b

y

v
y 




 , 12 ba

x

v

y

u
xy 









 . (12.66) 

For the first element we obtain: 

71
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 (12.67) 
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2 1
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
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
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v

A

vvv
b

e


. 

The vector of strain components fro the first element is: 
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  (12.68) 
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For the second element we can write: 

74

2

433221

1 107198,7
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2
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, (12.69) 
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vvv
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from which we have: 
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2

2

2

2 10

6416,93
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98,771
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
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
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 . (12.70) 

Since the plate is under plane stress state we can write based on Eq.(11.19) that: 

9

111 10787,274)(
1




 yxz 



 , (12.71) 

9

222 1088,282)(
1




 yxz 



 . 

The normal and shear strains are, accordingly constants within the individual elements, we 

referred to this fact in the introduction of the triangle element. Incorporating the constitutive 

matrix we can determine the stress components too based on Eq.(12.46): 


str

C . (12.72) 

This equation gives the stresses of the elements, which is in general referred to as „ele-

ment stress” in the commercial finite element packages. For the first element we have: 

MPa12644,010)4,06,1( 5

111  yxx  , (12.73) 

MPa038428,010)6,14,0( 5

111  yxy  , 
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MPa1013873,0106,0 35

11

 xyxy  . 

Similarly, for the second element the stresses are: 

MPa12658,010)4,06,1( 5

222  yxx  , (12.74) 

MPa043145,010)6,14,0( 5

222  yxy  , 

MPa1056185,0106,0 25

22

 xyxy  . 

Considering the stresses it is possible to produce nodal stress solution. By computing the 

average stresses in the mutual nodes we obtain the so-called „nodal stress” or „average stress” 

solution: 

Node 1: MPa12644,0x , 

MPa038428,0y , 

MPa1013873,0 3xy , (12.75) 

Node 2: MPa12651,0)(
2

1
21  xxx  , 

MPa0407865,0)(
2

1
21  yyy  , 

MPa1028786,0)(
2

1 2

21

 xyxyxy  . 

Node 3: MPa12658,0x , 

MPa043145,0y , 

MPa1056185,0 3xy . 

Node 4: MPa12651,0)(
2

1
21  xxx  , 

MPa0407865,0)(
2

1
21  yyy  , 
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MPa1028786,0)(
2

1 2

21

 xyxyxy  . 

The problem presented in section 12.3 was verified by the finite element code ANSYS 12, 

resulting in the same results. The solution with the above applied low mesh resolution is natu-

rally very inaccurate. 

 

12.4. Quadratic six node triangle element  

The more advanced version of the linear triangle element is the six node quadratic triangle 

element, in which there are additional nodes in the midpoints of the element sides [2,5]. Be-

cause of the additional nodes we need displacement functions including six unknowns, which 

are: 

2

5

2

43210),( yaxaxyayaxaayxu  , (12.76) 

2

5

2

43210),( ybxbxybybxbbyxv  . 

The calculation of the stiffness matrix and force vector can be performed in the same fa-

shion as it was done in the linear triangle element. Within the individual elements the strain 

and stress components vary linearly. As a consequence, using identical mesh resolution, the 

quadratic triangle element provides a better approximation of the problem than the linear one.  

 

12.5. Isoparametric four node quadrilateral 

The isoparametric quadrilateral (see Fig.12.6a) is one of the most important finite element 

type for plane problems [2,4,5]. An element is called isoparametric if we formulate the local 

geometry and displacement field by the same set of functions.  

 

 

12.5.1. Interpolation of the geometry 

For the sake of simplicity we map the quadrilateral element to a regular square into the - 

natural coordinate system, as it is shown in Fig 12.6b. We give the functions of the x and y 

coordinates of element edges in the following form: 

xNxNxNxNxNx
T

),(),(),(),(),(),( 44332211   , (12.77) 

yNyNyNyNyNy
T

),(),(),(),(),(),( 44332211   , 

where: 

 4321 xxxxx
T
 ,  4321 yyyyy

T
 . (12.78) 



198 Finite Element Method 

www.tankonyvtar.hu © András Szekrényes, BME 

 

Fig.12.6. Isoparametric quadrilateral in the global (a) and natural (b) coordinate systems. 

Due to the fact that we have four nodes, the interpolation function may contain to a maximum 

four unknowns: 

APaaaax
T

  3210),( , (12.79) 

where A  is the vector of coefficients, P  is the vector of basis polynomials, respectively: 

 3210 aaaaA
T
 ,  1

T
P . (12.80) 

The function given by Eq.(12.79) must satisfy the following conditions: 

13210)1,1( xaaaax  , (12.81) 

23210)1,1( xaaaax  , 

33210)1,1( xaaaax  , 

43210)1,1( xaaaax  . 

In matrix form it is: 

xAM  , (12.82) 

where: 
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M . (12.83) 
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Then the coefficients can be determined by using Eq.(12.82): 

xMA
1

  and: xMPAPx
TT 1

),(


 . (12.84) 

The solutions for the coefficients are: 

)(
4

1
43210 xxxxa  , )(

4

1
43211 xxxxa  , (12.85) 

)(
4

1
43212 xxxxa  , )(

4

1
43213 xxxxa  . 

Taking them back into Eq.(12.79) we get: 
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 (12.86) 

The interpolation polynomials on the base of Eq.(12.86) are: 
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)1)(1(
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),(3  N , )1)(1(

4

1
),(4  N . 

Performing the same computation for coordinate y we obtain the same interpolation func-

tions. The three dimensional plot of the Ni(,) interpolation functions represents line surfac-

es, of which value in the location of the i
th

 node is equal to unity, while in the location of the 

other nodes it is equal to zero, as it is demonstrated in Fig.12.7. 
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Fig.12.7. Interpolation functions of the isoparametric quadrilateral element. 

The summary of the geometry is given by the formulae below: 
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, (12.88) 

where:  

 44332211 yxyxyxyxR
T

e  , (12.89) 

is the vector of nodal coordinates, and: 
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The compact form of the interpolation functions is: 

)1)(1(
4

1
),( iiiN   , (12.90) 

where i and i are the corner node coordinates according to Fig.12.6b. 
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12.5.2. Interpolation of the displacement field 

The displacement vector field of the isoparametric quadrilateral element can be written as: 

euN
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u
u ),(
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where: 

44332211 ),(),(),(),(),( uNuNuNuNu   , (12.92) 
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moreover, the matrix of interpolation functions and the vector of nodal displacements are: 
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 44332211 vuvuvuvuu
T

e  . 

The displacement field must result in the nodal displacements if we substitute the coordi-

nates of the proper nodes back, i.e. it must satisfy the following conditions: 

1)1,1( uu  , 2)1,1( uu  , 3)1,1( uu  , 4)1,1( uu   (12.94) 

Mathematically this is the same set of conditions for the displacements as that formulated 

in the case of the geometrical parameters. Consequently the computation leads to the same 

interpolation functions as those given by Eq.(12.87). The quadrilateral element is called isopa-

rametric element because of the fact, that the same interpolation functions are applied for the 

displacement field and local geometry. 

 

12.5.3. Calculation of strain components, Jacobi matrix and Jacobi determinant 

The vector of strain components using Eq.(12.2) is the following: 
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where u,x is the partial derivative of u with respect to x, v,y is the partial derivative of v with 

respect to y. Moreover: 
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Apparently, matrix B contains the first derivatives of the interpolation functions with re-

spect to x and y. it can be elaborated based on Eq.(12.87) that the Ni interpolation functions 

are known in terms of  and . We refer to the chain rule of differentiation: 
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Utilizing Eq.(12.77) the local geometry and the first derivative of the functions with re-

spect to  and  are: 
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Writing it in matrix form we have: 
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where J is the so-called Jacobi matrix: 
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The Jacobi determinant is: 
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The derivatives with respect to x and y are provided by the help of the inverse Jacobi ma-

trix: 
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furthermore: 
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From which we obtain the followings: 

)(
1

1222













JJ

Jx
, (12.104) 

)(
1

1121













JJ

Jy
. 

With the aid of the former matrix B becomes: 
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We need the derivatives of the interpolations functions and the elements of the Jacobi ma-

trix, which are: 
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Based on the former equations we can formulate the Jacobi matrix either in the following 

form: 
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12.5.4.  The importance of the Jacobi determinant, example 

Calculate the elements of the Jacobi matrix for the quadrilateral shown in Fig.12.8! The nodal 

coordinates are: 

01 x , 01 y , ax 2 , 02 y , ax 3 , ay 3 , ax
3

2
4  , ay

3

1
4  . (12.109) 
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Fig.12.8. Isoparametric quadrilateral element with excessive distortion. 

The elements of the Jacobi matrix based on Eq.(12.107) are: 
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from which the Jacobi determinant is: 

)1(
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1 2

21122211   aJJJJJ . (12.111) 

The Jacobi determinant is 0, if e.g.  = -1 and  = 0, or  = 0 and  = -1. This case is said 

to be excessive distortion, it means that we have degenerate element. If J = 0, then the inverse 

Jacobi matrix does not exist at the point under consideration. Moreover, the parameter lines 

intersect each other outside the domain of the quadrilateral. That is why the sum of the inner 

angles of quadrilateral must be less than 180, in other words the quadrilateral can not be con-

cave.  

 

12.5.5. Calculation of the stress field 

The vector of stress components can be obtained from Eq.(12.7): 
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euBCC   , (12.112) 

where
str

CC  for plane stress and 
stn

CC  for plane strain (see section 11.) 

 

12.5.6. Calculation of the stiffness matrix 

The stiffness matrix for plane problems is calculated by Eq.(12.9): 

vdxdyBCBK
TT

e   . (12.113) 

In the case of the isoparametric quadrilateral the elements of matrix B contains the deriva-

tives of the interpolation functions. Consequently, for the stiffness matrix calculation the 

transformation of surface integrals must be performed. The vectors and parameters, which are 

required for the analysis, are shown in Fig.12.9. The ranges of parameters c1 and c2 are: 

11 1  c , 11 2  c . (12.114) 

 

Fig.12.9. Transformation of surface integral in the isoparametric quadrilateral. 

The differential vectors written by lowercase letters, can be formulated by utilizing Eq. 

(12.100): 
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and similarly: 
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The definition of the elementary area is: 
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this yields: 
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The stiffness matrix becomes: 
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i.e., the stiffness matrix can be computed by the help of an area integral. For the calculation 

we can apply analytical or numerical method. The commercial finite element packages, in 

general, implement the Gaussian quadrature to perform the integration. This method will be 

presented in section 12.6. 

 

12.5.7. Calculation of the force vector 

Distributed load along the element edge. The force vector resulting from the distributed load 

along element edge 1-2 shown in Fig.12.10 can be defined as: 

 dspNvF
T

ep 12
, (12.120) 

where: 

12
2

1
ls   and dlds 12

2

1
 , (12.121) 

where l12 is the element edge length between nodes 1 and 2.  
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Fig.12.10. Distributed load along the element edge of an isoparametric quadrilateral element. 

Moreover, we know that along edge 1-2  = 1 and 1    1 (see. Fig.12.6). We can write 

after all, that: 
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. (12.122) 

For further calculation we must evaluate the interpolation functions along the parameter 

line, for which  = -1: 

)1(
2

1
)1)(1(

4

1

1
11 





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N , (12.123) 
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

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0)1)(1(
4

1

1
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





N . 

This yields: 
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, (12.124) 
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By taking the results back into the force vector we obtain: 

 0000
2

1
12 yxyx

T

ep ppppvlF  . (12.125) 

The resultant of the uniformly distributed load is divided into two parts and (similarly to 

the beam and linear triangle elements) put into the nodes of element edge. The calculation can 

be made also in the case of linearly distributed load; naturally it results in a different force 

vector. 

 

Body force. The force vector calculated from the body force is: 

 
 



1

1

1

1

dJdqNvF
T

eb , (12.126) 

for which we need again the evaluation of surface integral. Similarly to the stiffness matrix, 

the Gaussian quadrature will be applied to evaluate the integral. 

 

Concentrated loads. For plane problems there are concentrated forces acting in the nodes 

and there are no moments. The x and y components of the concentrated forces are collected in 

a vector: 

 44332211 yxyxyxyx

T

ec FFFFFFFFF  . (12.127) 

The total vector of forces is the sum of vectors presented in the last three points: 

ecebepe FFFF  . (12.128) 

12.6. Numerical integration, the Gauss rule 

For the calculation of the element stiffness matrix and the body force vector of isoparametric 

quadrilaterals there are numerical integration schemes implemented in the finite element 

packages. Commonly, the Gauss rule is applied because it uses minimal number of sample 

points and it is relatively accurate [1,2,6]. 
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12.6.1. One dimensional Gauss rule 

The main aim is the approximate but relatively accurate calculation of the area under the 

curve shown by Fig.12.11 using the one dimensional rule.  

 

Fig.12.11. Sample points of the one dimensional Gauss rule. 

The approximate area under the curve is calculated by: 





p

i

ii FwdF
1

1

1

)()(  . (12.129) 

The sample (or integration) point coordinates, i and the integration weights, wi are listed 

in table 12.1. The one dimensional rule provides the exact solution for a polynomial up to the 

order of 2p-1. 

 

p i wi 

1 0 2 

2 
3/1  

3/1  

1 

1 

3 

5/3  

0 

5/3  

5/9 

8/9 

5/9 

4 

7/)5/623(   

7/)5/623(   

3 = -2 

4 = -1 

6/)6/5(2/1   

6/)6/5(2/1   

w3 = w2 

w4 = w1 

Table 12.1. Parameters of the one dimensional Gauss rule. 

Let us solve an example for the application of the Gauss rule! Calculate the exact value of the 

integral: 
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
3

1

1
dx

x
I   (12.130) 

as well as its approximate value using one, two and three integration points! 

Exact solution:  

  098612,11ln3lnln
3

1  xI . (12.131) 

Gauss rule, p = 1. Let  = x-2. If x = 3, then  = 1, on the other hand if x = 1, then  = -1, 

consequently: 







1

1

3

1
2

11



ddx

x
I , and:

2

1
)(





F .  (12.132) 

The approximate value of the integral is: 

1
2

1
2)0(11  FwI .  (12.133) 

That means an error of 9,9% compared to the exact solution. 

Gauss rule, p = 2. In this case: 

090909,1

23

1

1
1

23

1

1
1)

3

1
()

3

1
( 212 








 FwFwI . (12.134) 

The value of the integral differs with 0,7 % from the exact solution. 

Gauss rule, p = 3. 

0980387,1

2
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1
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2
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1
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5
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()0()
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3
( 3213 







 FwFwFwI . (12.135) 

The error of approximation is only 0,052%. 

 

12.6.2.  Two dimensional Gauss rule 

The two dimensional Gauss rule makes it possible to evaluate the approximate value of sur-

face integrals. The integral is approximated by the expression below: 

  
  


n

j

ji

n

i

jiji

b

a

d

c

JfwwdJdfdxdyyxf
1 1

1

1

1

1

),(),(),(),(  , (12.136) 
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where wi and wj are the integration weights, i and j are the integration point coordinates, 

moreover, the ranges are -1  i  1, -1  j  1, respectively. Depending on the number of 

integration points we can define different Gaussian quadratures, as it is demonstrated in 

Fig.12.12.  

 

Fig.12.12. Integration points of the 1x1, 2x2, 3x3 and 4x4 Gaussian quadratures. 

For the 1x1 quadrature there is only a single integration point, for the 2x2 we have 4, etc. The 

parameters of the 1x1, 2x2 and 3x3 Gaussian quadratures are summarized in Table 12.2.  

 

1x1 2x2 3x3 

 3/1a  5/3b  wi wj 

1 = 0 1 = -a 1 = -a 1 = -b 1 = -b 5/9 5/9 

1 = 0 2 = a 2 = -a 2 = b 2 = -b 5/9 5/9 

w1 = 2 3 = a 3 = a 3 = b 3 = b 5/9 5/9 

 4 = -a 4 = a 4 = -b 4 = b 5/9 5/9 

   5 = 0 5 = -b 8/9 5/9 

 w1 = 1 w2 = 1 6 = b 6 = 0 5/9 8/9 

 w3 = 1 w4 = 1 7 = 0 7 = b 8/9 5/9 

   8 = -b 8 = 0 5/9 8/9 

   9 = 0 9 = 0 8/9 8/9 

Table 12.2. Parameters of the Gaussian quadratures. 

Example for the application of Gaussian quadrature. Calculate the approximate value of the 

integral: 
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
A

xydAI  (12.137) 

using the 2x2 Gauss quadrature for the domain of parallelogram depicted in Fig.12.13! Com-

pare the result to that of the exact integration [4]!  

 

Fig.12.13. Example for the application of Gaussian quadrature. 

The nodal coordinates are: 

x1 = 1, x2 = 3, x3 = 4, x4 = 2, y1 = 1, y2 = 2, y3 = 4, y4 = 3. (12.138) 

Based on the approximate expression of the 2x2 Gaussian quadrature we can write: 


 


2

1

2

1

),(),(
i j

jijiji

A

JfwwxydAI  . (12.139) 

The calculation requires the elements of the Jacobi matrix. We need the nodal coordinates 

and also the derivatives of the interpolation functions (see Eq.(12.110)): 

  12)1(4)1(3)1(1)1(
4

1
11  J , (12.140) 

 
2

1
3)1(4)1(2)1(1)1(

4

1
12  J , 

 
2

1
2)1(4)1(3)1(1)1(

4

1
21  J , 

  13)1(4)1(2)1(1)1(
4

1
22  J . 

The Jacobi matrix is: 
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and the Jacobi determinant is: 

const
4

3

2

1

2

1
11 J . (12.142) 

The x and y parameters utilizing the interpolated form given by Eq.(12.77) are: 
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The function, f(,) is: 

 )25()25(
4

1
),(   xyf . (12.144) 

We can calculate the approximate value of the integral based on the figure and table 

above: 

75,19
4

3
)],(),(),(),([  aafaafaafaafI . (12.145) 

The exact value of the integral is: 

  75,19
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3
)25()25(
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1
),(
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1

1

1

1

1

1

1
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  

 ddxyddfI . (12.146) 

It is shown apparently, that the Gaussian quadrature provides the exact value in this case. 

Most of the commercial finite element packages implements 2x2 quadrature. 

 

12.7. Example for the isoparametric quadrilateral 

Solve the example presented in section 12.3 using one isoparametric quadrilateral element! 

The data are the same as those given in the linear triangle element. Apply a single finite ele-

ment by following Fig.12.14 [4]. Determine the nodal displacements and the reactions! 
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Fig.12.14. Example for the application of the isoparametric quadrilateral element. 

The finite element equilibrium equation to be solved is: 

FUK  . (12.147) 

Since we have only a single element, in this case Eq.(12.147) corresponds to the equili-

brium equation in the element level: 

eee
FuK  , (12.148) 

where: 

 44332211 vuvuvuvuU
T
  (12.149) 

is the vector of nodal displacements. Due to the boundary conditions (v1 = v2 = u2 = u3 = 0) we 

have: 

 4431 0000 vuvuU
T
 . (12.150) 

Similarly to the linear triangle element, we have a system of equations including four un-

knowns. The element stiffness matrix is calculated by the Gaussian quadrature, i.e. we can 

write, that: 
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The elements of the Jacobi matrix are equally required: 
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Constructing the Jacobi matrix we have: 
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and the Jacobi determinant is: 


2
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225
J . (12.154) 

It can be seen, that if 11   , then J > 0 for each case, consequently the element is not 

degenerate, which is obviously seen based on Fig.12.5. The inverse Jacobi matrix is: 
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As a next step, we calculate matrix B (see Eq.(12.96)), where referring to Eq.(12.105) we 

have: 
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Matrix B becomes: 
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We calculate the element [1,1] of the stiffness matrix by the Gaussian quadrature. For that, 

let us calculate the following: 
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and: 
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where v = 5 mm is the thickness of the plate. We carry out the calculation in three ways, by 

using the 2x2, 3x3 Gaussian quadratures and the exact integration, respectively. 

I. 2x2 Gaussian quadrature: 

 
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 (12.160) 

II. 3x3 Gaussian quadrature: 
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III. Exact integration: 

 
mm

N
108666,4 5

1,1 
e

K . (12.162) 

Calculating all of the components of the element stiffness matrix we obtain: 
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The vector of forces can be constructed in a similar way to that shown in the triangle ele-

ment: 

   N010300000103000000
2

14
1  xx

T

p pp
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F , (12.164) 

   N5,105,100000000000
2

34
2  yy

T

p pp
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F . 

We consider the reactions as concentrated forces in the kinematically constrained nodes: 
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 44332211 yxyxyxyx

T

c FFFFFFFFF  . (12.165) 

Considering the fact that the surfaces are frictionless and that at node 4 there is no external 

force, we have Fx1 = Fy3 = Fx4 = Fy4 = 0, which leads to: 

 0000 3221 xyxy

T

c FFFFF  . (12.166) 

The structural force vector becomes: 

cpp FFFF  21 . (12.167) 

The construction of the finite element equilibrium equation results in: 
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 (12.168) 

In the stiffness matrix we eliminate those rows and columns, for which the corresponding 

displacement component is a prescribed (here constrained) value. This way we obtain the so-

called condensed stiffness matrix, which is used to expand the system of equations, of which 

solutions are the nodal displacements: 
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The solutions are: 

mm105078,1 5

1

u , mm1029199,0 5

3

v , (12.170) 

mm10822016,0 5

4

u , mm1010532,0 5

4

v . 

Then, the reactions are calculated by the 2
nd

, 3
rd

, 4
th

 and 5
th

 component equations of Eq. 

(12.168). The solutions are: 

N0678,11 yF , N27494,92 xF , (12.171) 

N93216,12 yF , N6987,93 xF . 
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The strain and stress components of the element can be expressed in parametric form (as 

the function of  and ) from Eqs.(12.95) and (12.105). Taking the coordinates of the corres-

ponding node back, the strain and stress components can be calculated. The example above 

was verified by the finite element code ANSYS 12. 

 

12.8.  Quadratic isoparametric quadrilateral 

The advanced version of the linear quadrilateral is the quadratic quadrilateral, in which the 

curves of the element sides as well as the displacements are approximated by a second order 

function of the  and  coordinates [2,7]. On each element edge we provide a midside node, 

as it is shown in Fig.12.15, implying 8 nodes and 8 unknown coefficients in the approximate 

function of e.g. the x coordinate: 
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Using the nodal conditions we can derive the interpolation functions of the quadratic ele-

ment in a similar way to that shown in the four node quadrilateral. The interpolation functions 

become: 
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Fig.12.15. Quadratic isoparametric quadrilateral. 

The interpolation functions can be formulated also in compact from: 
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)1)(1)(1(
4

1
 iiiiiN  , i = 1, 3, 5, 7, (12.174) 
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1 2222   iiiiiN , i = 2, 4, 6, 8. 

where i and i are the coordinates of the nodes. Fig.12.16 shows the function plot of the in-

terpolation functions N5 and N8.  

 

Fig.12.16. Interpolation functions of the quadratic isoparametric quadrilateral. 

The value of Ni corresponding to the i
th

 node is equal to unity, in the other nodes it is zero. 

The calculation of the stiffness matrix and the vector of forces can be made in the same way 

as that shown in the quadrilateral with straight edges. The Jacobi determinant and the Gaus-

sian quadrature is equally required. 
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13. MODELING OF AXISYMMETRIC STATE BY FEM SOFTWARE 

SYSTEMS. MODELING, ANALYSIS OF PROBLEM EVALUATION 

13.1. Finite element solution of axisymmetric problems 

For axisymmetric problems both the geometry and the load are independent of the angle 

coordinate, . An example is shown in Fig.13.1. 

 

Fig.13.1. Thick-walled tube under internal pressure (a), axisymmetric model of the tube (b), and the 

simplified finite element problem (c). 

Plane problems are defined in plane as the meridian section of an actual body; mathematically 

they can be solved as two-variable problems. The element types of axisymmetric problems 

are actually ring shape elements. That is why there is no concentrated force in such problems, 

except for the case when the force coincides with the axis of symmetry. A line load with con-

stant intensity on the outer surface of the model defined by a radius of r, looks as a concen-

trated force. For axisymmetric problems the displacement field has the following form [1]: 

zr ezrwezruu ),(),(  . (13.1) 

The strain-displacement equation is: 

)(
2

1
uu   , (13.2) 

where is the Hamilton operator in cylindrical coordinate system (CCS). It can be derived 

by the help of Eq.(11.61). Based on Fig.11.7 the radial and tangential unit basis vectors be-

come [1]: 

jier  sincos  , jiet  cossin  . (13.3) 
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Operator nabla in the x-y-z coordinate system is: 

k
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
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Utilizing Eq.(11.61) and substituting it into Eq.(13.4) leads to: 
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The strain components in CCS can be written as [2,3] (see Eq.(11.66)): 
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In vector form: 
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T
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The vector of strain components is written in the following form: 

u , (13.8) 

where, based on Eq.(13.6) the matrix of differential operators is completed with an additional 

element compared to the plane stress or plane strain states: 
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The vector of stress components is: 

 rzztr

T
  . (13.10) 

Independently of the coordinate system we have Hooke’s law in the form below: 
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from which we have: 
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Accordingly, the constitutive matrix based on  C  is [2,3]: 
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The calculation of the element stiffness matrix is possible through the following definition 

[4]: 


eV

TT

e
dVBCBK , (13.15) 

where the dimension of matrix B depends on the degrees of freedom of the element. The vec-

tor of forces can be determined in the same way as it was shown for plane problems. 

The domain of axisymmetric bodies can be meshed by ring shape elements. Elements can 

be defined in the meridian section, i.e. in plane. In the finite element softwares the same ele-

ment types are available as those for plane problems; however the axisymmetric behavior 

should be set. In the course of the finite element analysis the same interpolation functions are 

applied as those presented for plane stress and plane strain states. In most of the finite element 

codes the plane model should be prepared in the x-y plane, where y is the axis of revolution 

(see Fig.13.1c). In the sequel we review the application of the linear triangle and the isopara-

metric quadrilateral elements. 
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13.2.  Axisymmetric linear triangle element 

The steps of the finite element discretization using linear triangle element have already been 

presented in section 12.2. Some modification is required considering the axisymmetric appli-

cation of the triangle element. In the displacement field we change the x and y parameters to r 

and z, respectively [1]: 

euzrN
zrw

zru
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 , (13.16) 

where the displacement components can be provided by changing the coordinate x to r and 

coordinate y to z in Eq.(12.24), respectively: 

332211 ),(),(),(),( uzrNuzrNuzrNzru  , (13.17) 

332211 ),(),(),(),( wzrNwzrNwzrNzrw  , 

moreover, the matrix of interpolation functions and the vector of nodal displacements be-

come: 











321

321

000

000
),(

NNN

NNN
zrN , (13.18) 

 332211 wuwuwuu
T

e  . 

The calculation of the strain components is made in a similar fashion to that presented in 

plane problems: 

ee uBuNu  , (13.19) 

where the strain-displacement matrix using Eqs.(13.9) and (13.18) is: 
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 (13.20) 

where in the second row the term Ni/r appears. Considering the axisymmetric nature of the 

problem we can write that: 

   rdrdzBCBrdABCBK
TT

A

TT

e

e

 22 .  (13.21) 

The vector of forces consists of three different terms even in axisymmetric problems. For 

a distributed load the formula is: 

 rdspNF
T

ep 2 , (13.22) 

where p is the vector of pressures in the radial and axial directions: 











z

r

p

p
p . (13.23) 

In the case of body force the force vector becomes: 

  rdrdzqNF
T

eb 2 , (13.24) 

where: 











z

r

q

q
q  (13.25) 

is the density vector of volume forces. Finally, the vector of concentrated forces is: 
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 zrzrzr

T

ec FFFFFFF 332211 . (13.26) 

The total force vector is the sum the following three vectors: 

ecebepe FFFF  . (13.27) 

The problem solution involves the composition of the element and structural stiffness ma-

trices. We calculate first the nodal displacements from the structural equation, then the reac-

tions and strain and stress components, respectively. Let us see an example for the application 

of the element. 

 

13.3. Example for the application of axisymmetric triangle element 

Fig.13.2 shows a hollow disk with triangular cross section under internal pressure. The angu-

lar velocity of the disk is  = 5 rad/s. Consider also the own weight of the disk! Calculate the 

nodal displacements and reactions! 

 

Fig.13.2. Finite element model of a hollow disk with triangular cross section. 

Given: 

pr = 20 KPa, E = 200 GPa, d = 6 m, D = 8 m, g = 9,81 m/s
2
,  = 0,3, h = 1 m 

 

Solve the problem using a single axisymmetric triangular element [1]! The distances are 

given in [m], the force is given in [N]. The nodal coordinates are: 

node r [m] z [m] 

1 3 0 

2 4 0 

3 3 1 

 

Since we have only a single element, the element equilibrium equation is the same as the 

structural equation: 
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eee
FuK  , (13.28) 

where: 

 332211 wuwuwuu
T

e  . (13.29) 

Because of the boundary conditions only four unknowns remain, i.e.: 

 3321 00 wuuuu
T

e  . (13.30) 

The constitutive matrix based on Eq.(13.14) is: 

Pa10

9,76000

02,26938,11538,115

038,1152,26938,115

038,11538,1152,269
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000

01

01

01

)21)(1(

9





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

E
C

. (13.31) 

The coefficients of the interpolation functions using Eq.(12.22) and Fig.13.2 are: 

2

23321 m4 zrzr , 2

31132 m3 zrzr , 012213  zrzr , (13.32) 

m1321  zz , m1132  zz , 0213  zz , 

m1231  rr , 0312  rr , m1123  rr . 

The area of the triangle is: 

2

331 m
2

1
)034(

2

1
)(

2

1
 eA . (13.33) 

The interpolation functions can be calculated as: 

e

iii

i
A

zr
zrN

2
),(

 
 , (13.34) 

which yields: 
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zrzrN  4),(1 , rzrN  3),(2 , zzrN ),(3 . (13.35) 

Matrix N becomes: 
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Accordingly, the strain-displacement matrix B is: 
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The stiffness matrix is given by: 

,
m

N
10

82,212,0033,182,209,1

12,085,081,014,093,090,0

081,081,0081,081,0

33,114,0010,333,180,2
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 (13.38) 

where all of the elements were calculated by exact integration (using the code Maple). The 

upper range of the first integration is the equation of the hypotenuse of the triangle: z = 4-r.  

The vector of forces is constructed as the sum of three vectors. The first one is related to dis-

tributed load along element edge 1-3, based on Eq.(13.21) it is: 

 rdspNF
T

ep 2 , KPa
0

20








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








z

r

p

p
p . (13.39) 

Obviously, the radius is r = 3 m constant along element edge 1-3, furthermore the coordi-

nate of integration is z, leading to: 
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The force vectors related to the revolution and own weight requires vector q, which is cal-

culated using g and : 
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. (13.41) 

After this, we calculate Feb using Eq.(13.23): 
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i.e., we have: 

  N10829,089,6893,0995,7829,089,6 5 
T

ebF . (13.43) 

Finally, the unknown reactions are collected in vector Fec. Considering the boundary con-

ditions we obtain: 

 0000 21 zz

T

ec FFF  . (13.44) 

Thus, the finite element equilibrium equation becomes: 
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The solution can be obtained by the 1
st
, 3

rd
, 5

th
 and 6

th
 component equations. The other 

possibility is the application of the matrix equation using the condensed stiffness matrix, 

which has already been presented in section 12. The solutions are: 

m10701,3 5

1

u , m10400,3 5

2

u , m10675,3 5

3

u , m103424,0 5

4

w . (13.46) 

The reactions utilizing the 2
nd

 and 4
th

 component equations of the finite element equili-

brium equation are: 

N10272,7 5

1 zF , N741442 zF . (13.47) 

The example was verified by the finite element code ANSYS 12. We note that similarly to 

the examples of section 12 we considered the reactions in the vector of external forces. 

The term Ni/r appearing in the second row of matrix B can cause trouble in the course of 

integration if one of the element edges lies on the axis of revolution (where r = 0). To avoid 

this problem a local coordinate system is introduced for each element, or the integration is 

made by approaching r to zero by constructing a hole with very small diameter [1]. 

 

13.4. Axisymmetric isoparametric quadrilateral element 

The isoparametric quadrilateral element for plane problems has been presented in section 12. 

The element is applicable to solve axisymmetric problems too. The functions of the local r 

and z coordinates of element edges are [4]: 

rNrNrNrNrNr
T

),(),(),(),(),(),( 44332211   , (13.48) 

zNzNzNzNzNz
T

),(),(),(),(),(),( 44332211   , 

where in Eq.(12.77) coordinate x was changed to r, coordinate y was changed to z. Conse-

quently the same interpolation functions can be used: 
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4

1
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The displacement is formulated in the usual way: 
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where: 
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44332211 ),(),(),(),(),( uNuNuNuNu   , (13.51) 

44332211 ),(),(),(),(),( wNwNwNwNw   , 

with that the matrix of interpolation functions and the vector of nodal displacements are, re-

spectively: 
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 44332211 wuwuwuwuu
T

e  . (13.53) 

The well-known strain-displacement matrix is used to calculate the strain components as: 

ee uBuNu  , (13.54) 

where: 
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 (13.55) 

As it is shown, we need the derivatives of the interpolation functions with respect to r and 

z. Due to the fact that the functions Ni are known in terms of the natural coordinates  and , 

we need again the Jacobi matrix and its determinant, referring to Eq.(12.104) we have [4]: 
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where: 
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Matrix B can be produced in a similar way as it was shown by Eq.(12.105), except for the 

fact that we must consider the term Ni/r appearing in the second row of the matrix. The calcu-

lation of the new terms is possible incorporating Eqs.(13.48)-(13.49). Coordinate r in terms of 

ξ and η parameters is given by Eq.(13.48). The formula of the stiffness matrix is: 

 
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

1

1

1

1

2  drJdBCBK
TT

e
. (13.58) 

To provide the vector of forces we need three vectors, the first one is: 






1

1

2  rJdpNF
T

ep , 




1

1

2  rJdpNF
T

ep , (13.59) 

depending on the fact that which one of the element edges is loaded by the line load, 

moreover the second and third vectors are: 

 
 



1

1

1

1

2  drJdqNF
T

eb , (13.60) 

 44332211 zrzrzrzr

T

ec FFFFFFFFF  . (13.61) 

Finally the total force vector is: 

ecebepe FFFF  . (13.62) 

In the sequel we present an example for the application of the element. 
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13.5. Example for the application of axisymmetric isoparametric quadrilateral 

element 

Solve the problem of the rotating disk of which analytical solution has been presented in sec-

tion 11.6.2 using two isoparametric quadrilateral elements! The finite element model of the 

disk is shown in Fig.13.3. 

a. The angular velocity of the disk is  = 880,5 rad/s, verifiy if the disk gets loose! 

b. Calculate the stresses in that case when there is no revolution, i.e.:  = 0, but there is 

an overlap of  = 0,0210
-3

 m! 

 

Given: 

rb = 0,02 m, rk = 0,2 m, h = 0,04 m,   = 7800 kg/m
3
, E = 200 GPa,  = 0,3. 

 

Fig.13.3. A simple finite element model of a rotating disk. 

We give the distances in [m] and the force in [N]. The nodal coordinates are: 

 

node r [m] z [m] node r [m] z [m] 

1 0,02 0 4 0,11 0,04 

2 0,02 0,04 5 0,2 0 

3 0,11 0 6 0,2 0,04 

 

The element-node table becomes: 

 

element node 

1 1 3 4 2 

2 3 5 6 4 

 

In the knowledge of the boundary conditions the structural vector of nodal displacements is: 

 66554433221 0 wuwuwuwuwuuU
T
 . (13.63) 

The constitutive matrix using Eq.(13.14) is: 
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Pa10

9,76000

02,26938,11538,115

038,1152,26938,115

038,11538,1152,269
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















C . (13.64) 

The elements of the Jacobi matrix must be produced for both elements based on 

Eq.(13.57): 

  045,0)1()1()1()1(
4

1
2431

)1(

11  rrrrJ  , (13.65) 

  0)1()1()1()1(
4

1
2431

)1(

12  zzzzJ  , 

  0)1()1()1()1(
4

1
2431

)1(

21  rrrrJ  , 

  02,0)1()1()1()1(
4

1
2431

)1(

22  zzzzJ  . 

and: 

  045,0)1()1()1()1(
4

1
4653

)2(

11  rrrrJ  , (13.66) 

  0)1()1()1()1(
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1
4653

)2(
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4

1
4653

)2(

22  zzzzJ  . 

The elements of the Jacobi matrix, and so the determinant is constant and identical for 

both elements: 

0009,0)2()1(  JJJ . (13.67) 

Continuing the calculation we compute the derivatives of interpolation functions with re-

spect to r and z in accordance with Eq.(13.56). Due to the identical Jacobi determinants of the 

elements, the derivatives of the interpolation functions will be identical too. Therefore, we can 

omit the superscripts of the elements of Jacobi matrix: 
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Coordinate r should be given for both elements separately based on Eq.(13.48): 

),1)(1(005,0)1)(1(0275,0)1)(1(0275,0)1)(1(005,0

24433211

)1(

 

 rNrNrNrNr  (13.70) 

),1)(1(0275,0)1)(1(005,0)1)(1(005,0)1)(1(0275,0

44635231

)2(

 

 rNrNrNrNr
 

where we considered also the element orientation (the local numbering of the nodes of ele-

ment). As a next step, we provide the strain-displacement matrix for each element using 

Eq.(13.55). The elements of matrices are the functions of  and , which are extremely com-

plicated, therefore we do not give them here. The element stiffness matrices can be calculated 

using the B matrices: 
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As the node numbering does not correspond to the element orientations we need to rear-

range the element stiffness matrices in accordance with the numerals of degrees of freedom. 

Let the vector of nodal displacements be equal to: 

 443322111 wuwuwuwuu
T

e  , (13.72) 

 665544332 wuwuwuwuu
T

e  . 

Corresponding to the former, the original element stiffness matrices are rearranged as: 
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Based on the nodes of the second element the rearrangement is made as: 
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Now, we can construct the structural stiffness matrix. The mutual nodes are the third and 

fourth ones. Accordingly, the combination of the two matrices results in: 
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We note that the finite element codes provide the structural stiffness matrix using the ele-

ment-node table. The numerical values can be obtained using Eq.(13.71). The force vector 

consists of the vectors of body and concentrated forces. The density vector of the body force 

is: 
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from which we have: 
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Similarly to the stiffness matrices, the rearrangement is required also in the force vectors 

according to the local node numbering: 
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The structural force vector is calculated as the sum the two former vectors: 

  .N10004,10004,10020,9020,9001,1001,1 5
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FFFFF  (13.79) 

The vector containing the reaction is: 

 00000000000 1z

T

c FF  . (13.80) 

The structural force vector is: 

cb FFF  . (13.81) 

Finally, the structural equation is: 

FUK  . (13.82) 
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The system of equations consists of twelve equations. From the 1
st
 and 3

rd
-12

th
 equations 

we determine the nodal displacements. The solutions are: 

m100168,0 3

21

 uu , 01 w , m100149,0 3

2

w  (13.83) 

m100368,0 3

43

 uu , m1000365,0 3

3

w , m100113,0 3

4

w , 

m100440,0 3

65

 uu , m100051,0 3

5

w , m100098,0 3

6

w , 

It is seen that if the disk rotates with maximal angular velocity, then in accordance with 

the finite element model we do not reach the overlap value of 0,0210
-3

 m calculated from the 

analytical model, i.e. the disk will not get loose. This disagreement can be explained by the 

coarse mesh of the finite element model, which consists of only two elements. The deformed 

shape of the structure compared to the original state is shown in Fig.13.4. Based on the dis-

placement solutions we construct the nodal displacement vectors of the elements: 

 22443311 0 wuwuwuuu
T

e  , (13.84) 

 446655332 wuwuwuwuu
T

e  . 

In the former two vectors we followed the original order of the local node numbering, be-

cause matrix B was constructed in accordance with this fact. The vectors of strain components 

for both elements are calculated using matrix B : 

1

)1()1(

euB , 2

)2()2(

euB . (13.85) 

The vector of stress components are: 

)1()1(
 C , 

)2()2(
 C . (13.86) 

 

Fig.13.4. Deformed shape of the finite element model of rotating disk. 
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The results are summarized in Tables 13.1 and 13.2. In the tables we listed the nodal solu-

tions. Element solutions are possible to calculate only at mutual nodes 3 and 4 by averaging 

the nodal solution. According to Table 13.2 it is seen that the dynamic boundary conditions 

are violated, concretely speaking the radial stress at nodes 1, 2, 5 and 6 is not zero. The reason 

for that is the low resolution of the mesh and the linear interpolation. On the contrary, the tan-

gential stress agrees quite well at the inner and outer boundaries with the results presented in 

Fig.11.10a. The example was verified by the code ANSYS 12. 

 

element node r [10-3] t [10-3] z [10-3] rz [10-3] 

1 

1 0,222 0,840 -0,373 -0,041 

2 0,222 0,840 -0,373 0,041 

3 0,222 0,335 -0,191 -0,041 

4 0,222 0,335 -0,191 0,041 

2 

3 0,080 0,335 -0,191 -0,016 

4 0,080 0,335 -0,191 0,016 

5 0,080 0,220 -0,118 -0,016 

6 0,080 0,220 -0,118 0,016 

Table 13.1. Strain components in the rotating disk in the case of  = 880,5 rad/s. 

 

element node r [MPa] t [MPa] z [MPa] rz [MPa] 

1 

1 113,7 208,7 22,1 -3,1 

2 113,7 208,7 22,1 3,1 

3 76,4 93,7 12,9 -3,1 

4 76,4 93,7 12,9 3,1 

2 

3 38,1 77,3 -3,5 -1,25 

4 38,1 77,3 -3,53 1,25 

5 33,4 54,9 2,97 -1,25 

6 33,4 54,9 2,97 1,25 

Table 13.2. Stresses in the rotating disk in the case of  = 880,5 rad/s. 

In that case, when there is no rotation the structural vector of nodal displacements becomes: 

 6655443320 wuwuwuwuwU
T

 . (13.87) 

The stiffness matrix remains the same, the vector of forces is: 

 000000000211 rzr

T

c FFFF  . (13.88) 

The solutions are: 

m1002,0 3

21

 uu , 01 w , m100049,0 3

2

w , (13.89) 

m100055,0 3

43

 uu , m100056,0 3

3

w , m100020,0 3

4

w , 
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m100038,0 3

65

 uu , m100022,0 3

5

w , m100027,0 3

6

w . 

Table 13.3 contains the stresses in the disk when there is no rotation. Compared to the re-

sults of the analytical solution the differences are quite large, which can be explained again by 

the low resolution finite element mesh and the linear interpolation. 

 

element node r [MPa] t [MPa] z [MPa] rz [MPa] 

1 

1 58,1 236,6 63,9 -2,5 

2 58,1 236,6 63,9 2,5 

3 -34,8 -2,3 -6,7 -2,5 

4 -34,8 -2,3 6,7 2,5 

2 

3 3,2 13,9 9,6 0,6 

4 3,2 13,9 9,6 -0,6 

5 -4,5 1,4 -3,6 0,6 

6 -4,5 1,4 -3,6 -0,6 

Table 13.3. Stresses in the disk in the case of  = 0. 
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14. MODELING OF THIN-WALLED SHELLS AND PLATES. IN-

TRODUCTION TO THE THEORY OF SHELL FINITE ELEMENT 

MODELS 

14.1. Plate and shell theories 

Plane structures are called plates if the thickness of structure is significantly less than the oth-

er dimensions, moreover if the structure is loaded perpendicularly to its plane. The plate can 

be bounded along its sides by an optional geometrical object; the kinematic boundary condi-

tions can be various (point-supported, rigidly or elastically supported along the sides, simply 

supported, etc.) [1]. The plate can be considered as the extension of a beam in two dimen-

sions, because both implies the dominance of the bending load and most commonly the load 

is introduced transversely. Nevertheless, there are significant differences too, since e.g. the 

flexure of the beam can be either straight or curved, on the other hand the midplane of a plate 

is always flat. If the midplane of the plate is curved then it is no longer plate but a shell [2]. In 

the sequel we overview the most important details of the theory of plates and shells. 

 

14.2. The basic equations of  Kirchhoff plate theory 

The Kirchhoff plate theory is often called the theory of thin plates. We note that if the plate is 

relatively thick then the transverse shear deformation can be considered too. The relevant 

plate solution is provided by the Mindlin plate theory [1]. 

 

14.2.1. Displacement field 

Based on Fig.14.1 we investigate the displacement of a point of the midplane of an elastic flat 

plate [2,3]. The displacement field can be captured by three components: the transverse dis-

placement along z and the rotations about x and y, i.e.: 



















w

z

z

u 



, (14.1) 

where  = (x,y) is the rotation about axis x,  = (x,y) is the rotation about axis y and w = 

w(x,y) is the transverse displacement. 

 

Fig.14.1.Displacement of a point in the midplane of a flat plate. 
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14.2.2. Strain components 

Assuming small strains we can calculate the strain components by using the strain-

displacement equation defined in section 11 by Eq.(11.14) [1,4]: 

z
x

u
xx , 




 , z

y

v
yy , 




 , 0z , (14.2) 

z
x

v

y

u
xyxy )( ,,  









 , xxz w

x

w

z

u
,









  , yyz w

y

w

z

v
,









  , 

where – for the sake of simplicity - the derivatives with respect to x and y are indicated in the 

subscript. In the sequel we assume that the cross section planes remain flat and the outward 

normal of each cross section is perpendicular to the cross section plane after the deformation. 

This assumption is called Kirchhoff-Love hypothesis [1]. From the latter it follows that in the 

planes perpendicular to the midplane of the plate the shear strains are equal to zero: 

0 yzxz   xw,  and yw, . (14.3) 

Utilizing the former we obtain from Eq.(14.1) that: 























w

zw

zw

u y

x

,

,

.  (14.4) 

The strain components become: 

zw xxx  , , zw yyy  , , zw xyxy  ,2 . (14.5) 

Consequently in the midplane points z = 0. According to the Kirchhoff plate theory under 

the assumption of small strains the components of the displacement and strain field can be 

defined by w(x,y) . 

 

14.2.3. Stress field, forces and moments in the midplane 

Assuming plane stress state we express the stress components by Eqs.(11.18) and (14.5): 

  zAzwwE
E

yyxxyxx 


 )()
1

,,12



 , (14.6) 

  zBzwwE
E

xxyyxyy 


 )()
1

,,12



 , 
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zCzwE
E

xyxyxy 


 ,1 )1(
)1(2




 , 

where E1 = E/(1-2
), A, B and C are constants. Similarly to the theory of beams subjected to 

bending the stress distributions are given by linear functions along the thickness direction, as 

it is shown by Fig.14.2. 

 

Fig.14.2. Distribution of the stresses along the thickness direction of a differential plate element. 

The stress couples in the midplane of the plate are calculated by integrating the stresses over 

the thickness [3]: 

)( ,,11
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t

t

xx wwEIdzAzzdzM  
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 , (14.7) 
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xy
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yxyx wEIdzCzzdzM ,11
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2

2/

2/

)1(   


, 

where Mx is the bending moment along axis x, My is the bending moment along axis y, Mxy 

and Myx are the twisting moments. Moreover: 

12

3

1

t
I  , (14.8) 
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which is – similarly to beams – the second order moment of inertia of the cross section. The 

stress couples in the midplane of the plate are demonstrated in Fig.14.3a. The relationships 

between stresses and stress couples (bending and twisting moments) based on Eqs.(14.6) and 

(14.7) are: 

z
I

M x

x

1

 , z
I

M y

y

1

 , z
I

M xy

xy

1

 . (14.9) 

For the equilibrium of a differential plate element transverse shear forces are required. 

Transverse shear forces are shown by Fig.14.3b and they can be calculated using the follow-

ing formulae [1,3]: 






2/

2/

t

t

xzx dzQ  , 




2/

2/

t

t

yzy dzQ  . (14.10) 

 

Fig.14.3. Stress couples in the midplane of a thin differential plate element (a) and its equilibrium in 

the case of transverse shear forces and distributed load (b). 

 

14.2.4. The equilibrium and governing equation of thin plates 

The homogeneous equilibrium equation with respect to the stress field has already been intro-

duced in section 11. [4]: 

0 , (14.11) 

of which first component equation is: 

0














zyx

xzxyx 
. (14.12) 

Integrating the equation with respect to z yields: 

00 








 xzxzCzdz

y
Azdz

x
 , (14.13) 



248 Finite Element Method 

www.tankonyvtar.hu © András Szekrényes, BME 

and: 

xzxzCz
y

Az
x

 











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


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
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 022

2
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1
, (14.14) 

finally: 

xzxzxyx z
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1
. (14.15) 

Next, we integrate Eq.(14.15) within the ranges of –t/2 and t/2: 
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))((2  , (14.16) 

where 0
xz is an integration constant. A possible solution for xz, which satisfies even the dy-

namic boundary conditions is [3]: 











2

2
0 4

1
t

z
xzxz  . (14.17) 

In fact Eq.(14.17) gives the difference between the area under a rectangle and a parabola, 

which is 1/3 of the total area. Accordingly, if it is multiplied by two, then mathematically we 

obtain the area under the parabola, that is, from Eq.(14.16) we have: 

x

t

t

xz

t

t

xzxz Qdzzdzz  


2/

2/

2/

2/

0 ))((2  , (14.18) 

which is not else than the shear force along axis x given by Eq.(14.10). Taking Eqs.(14.6), 

(14.9) and (14.18) back into the equilibrium equation we obtain: 

0








x

xyx Q
y

M

x

M
. (14.19) 

The second component equation and the corresponding equilibrium equation in terms of 

the stress couples and transverse shear force are: 

0
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



zyx
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, (14.20) 
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and: 

yxxy MM  . (14.21) 

From the third component equation of Eq.(14.11) we obtain the following: 

0














zyx

zyzxz 
. (14.22) 

We integrate Eq.(14.22) within the ranges of –t/2 and t/2 with respect to z: 
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and: 

0
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
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 . (14.24) 

Based on Eq.(14.10) the first two terms are the shear forces Qx and Qy, the third one is – in 

accordance with the dynamic boundary condition – the intensity of the distributed load, p, 

perpendicularly to the midplane, i.e.: 

0








p

y

Q

x

Q yx . (14.25) 

Summarizing the equilibrium equations we have: 

0,,  xyxyxx QMM , (14.26) 

0,,  yxyxyy QMM , 

0,,  pQQ yyxx . 

To derive the plate equation we rearrange the first two equations: 

yxxyxxxxx MMQ ,,,  , (14.27) 

xyyxyyyyy MMQ ,,,  . 

Taking them back into the third of Eq.(14.26) we obtain the following:  
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02 ,,,  pMMM yyyxyxyxxx . (14.28) 

By the help of Eq.(14.7) we have: 

pwwwwwEI xyxyxxyyyyyyyyxxxxxx  ))1(2( ,,,,,11  , (14.29) 

which, after a simple rearrangement have the form of [5]: 
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
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


, (14.30) 

or: 

11

22 ),(
EI

p
yxw  . (14.31) 

Consequently the governing equation is a fourth order partial differential equation with the 

proper kinematic and dynamic boundary conditions. That means that the problem of plates 

subjected to bending is a boundary value problem. 

 

14.3. Finite element equations of thin plates 

For the finite element solution of the problem of thin plates subjected to bending we collect 

the strain and stress field components into vectors and we assume plane stress state [1,6]: 

 xyyx

T
 ,, , (14.32) 

 xyyx

T
 ,, . 

Based on Eq.(14.5) the strain components can be written as: 

 z
T

 , (14.33) 

where  is the vector of curvatures: 





































xy

yy

xx

xy

y

x

w

w

w

,

,

,

2





 . (14.34) 

Incorporating the material law we formulate the vector of stress components as: 


str

C . (14.35) 
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The strain components can be obtained by a two-variable function w(x,y), the finite ele-

ment interpolation of the w(x,y) function depends on the element type and the chosen degrees 

of freedom, but it can always be formulated in the form below: 


T

Ayxw ),( , (14.36) 

where A is the vector of unknown coefficients,  is the vector of basis polynomials. The vec-

tor of nodal displacements is: 

AMu e  , (14.37) 

which, for example in the case of a triangle element with three nodes becomes: 

 333222111  wwwu
T

e  . (14.38) 

In Eq.(14.37) matrix M can be calculated based on the approximate w(x,y) function and 

Eq.(14.1). The i and i parameters are the rotations about the axes x and y in the correspond-

ing nodes, where i = 1, 2, 3. From Eq.(14.37) we have: 

euMA
1

 . (14.39) 

Generally speaking, the vector of strain components can be determined using the strain-

displacement matrix: 

euB , (14.40) 

where Eq.(14.40) can be reformulated utilizing Eqs.(14.5), (14.37) and (14.39) as follows: 

euMRAR
1

 , (14.41) 

where matrix R establishes the relationship between the vector of strain components and 

the vector of unknown coefficients, its dimension is element dependent. Consequently we 

have: 

1
 MRB . (14.42) 

Following the definition by Eq.(12.9) we formulate the element stiffness matrix as: 

dVBCBK

eV

TstrT

e  . (14.43) 
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The dimension of the element stiffness matrix depends on the number of nodes and the 

number of nodal degrees of freedom. Similarly to the plane membrane element, the vector of 

forces is composed as the sum of several terms. The most common is the distributed (surface) 

load and concentrated force. By formulating the work of external forces we derive the force 

vector related to the distributed load: 

ep

T

e

A

e FudAyxwpW

pe

  ),( , (14.44) 

where p is the intensity of the distributed load perpendicularly to the midplane of the plate, 

w(x,y) is the approximate function of the deflection surface according to Eq.(14.36). The vec-

tor Fep can be determined based on the vector of nodal displacements. In the case of concen-

trated loads, considering e.g. a triangular shape plate element with three nodes, at each node 

there can be a force perpendicularly to the plate surface and even concentrated moments act-

ing about the x and y axes, respectively: 

 333222111 yxzyxzyxz

T

ec MMFMMFMMFF  . (14.45) 

Thus, the vector of forces becomes: 

ecepe FFF  . (14.46) 

Eventually, the finite element equilibrium equation for a single element and for the whole 

structure is: 

eee
FuK  , FUK  . (14.47) 

Similarly to the plane membrane elements there is large number of plate bending ele-

ments. These elements will be reviewed in section 15. 

 

14.4. Basic equations of the technical theory of thin shells  

In that case when the midplane of a thin-walled structure is not flat but curved, then we talk 

about shells. The analytical investigation of shells requires considerably complicated mathe-

matical computations. Therefore in the sequel only the most important equations will be pre-

sented. 

 

14.4.1. Geometrical equations 

Due to the fact that the midsurface of shells is curved, we need to introduce curvilinear coor-

dinate systems, as it is shown by Fig.14.4.  
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Fig.14.4. Coordinate lines and unit basis vectors of the midsurface of a shell. 

The two-parameter representation of the midsurface of shells can be formulated in the form of 

a vector equation [1,4]: 

),( 21 qqRR  , (14.48) 

where: 

),( 21 qqXX  , ),( 21 qqYY  , ),( 21 qqZZ  , (14.49) 

are the global coordinates, R is the position vector of a point in the, q1 and q2 are the general 

or curvilinear coordinates of the surface (see Fig.14.4). If the parameters take on the values q1 

= constant and q2 = constant, we obtain the q1 and q2 coordinate lines. The tangent unit vec-

tors ei and the arc lengths dSi of the coordinate lines are: 

i

iii

i R
Hq

R

H
e

11





 , iii dqHdS  , (14.50) 

where: 

ii RH , , i = 1, 2, (14.51) 

are the so-called Lamé parameters [1] or metric coefficients [4]. In the followings we assume 

that the local coordinate axes are mutually perpendicular at each point, and the curvilinear 

system is orthogonal, i.e. e1e2 = 0. The outward unit normal vector of the midsurface be-

comes: 

21 een  .  (14.52) 

The triad of unit orthogonal vectors [e1, e2, n] determines an orthogonal curvilinear coor-

dinate system at an actual point P. The curvature and the torsion of coordinate lines are given 

by the Frenet formulae [1,7]: 
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 , 

where R1 and R2 are the radii of curvature. If R12 = 0, then the q1 and q2 lines are the lines of 

principal curvatures on the midsurface, moreover the directions of the unit basis vectors e1 

and e2 are the principal directions. The curvature of the midsurface is a tensor quantity. If the 

directions of vectors e1’ and e2’ are not the principal directions, then the angle, which deter-

mines the principal directions can be obtained by: 

'
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1

'

12
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R
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
 . (14.54) 

The values of the principal curvatures are [1,7]: 
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In the followings we investigate the special case, when the directions of unit basis vectors 

coincide with the principal directions. The derivatives of the unit basis vectors of the coordi-

nate system on the midsurface are [1,4]: 

n
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H
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, , j
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j e
R

H
n , , ji  , i, j = 1, 2. (14.56) 

Point P
*
 is located on a surface parallel to the midsurface and the distance of point P

*
 from 

point P is given by coordinate z measured along the normal vector n. Based on Fig.14.4 the 

position vector of point P
*
 is: 

nzRR 
*

. (14.57) 

The unit vectors are independent of coordinate z, viz.: 

ii ee 
*

. (14.58) 

The derivative of the position vector of point P* can be written as: 
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i

i

iiii e
R
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HnzRR )1(,,

*

,  . (14.59) 

Consider the followings: 

)1(*

i

ii
R

z
HH   and )1(*

i

ii
R

z
dSdS  , i = 1, 2. (14.60) 

which are the Lamé parameters and arc lengths with respect to point P*. 

 

14.4.2. Stress resultants and couples, equilibrium equations 

Fig.14.5 shows the stresses on the boundary planes of a differential shell element, while 

Fig.14.6 presents the stress resultants and couples (internal forces and moments) on the mid-

surface of the differential shell element with dimensions of dS1xdS2.  

 

Fig.14.5. Stress components on the boundary planes of a differential shell element. 

 

Fig.14.6. Internal forces and moments in the midsurface of a differential shell element. 

We must consider the relationship between the arc lengths dSi and dSi
*
 given by Eq.(14.60) 

when we establish the relationship between the stresses acting on the differential shell element 
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with thickness t and the internal forces, moments on the midsurface of the shell element. The 

stress resultants and stress couples acting on the curve with outward normal e1 are: 
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 , (14.61) 

where N11 is the in-plane normal force, N12 and N21 are the in-plane shear forces, Q1 is the 

transverse shear force, M11 is the bending moment, M12 and M21 are the twisting moments, 

respectively. It must be taken into consideration that although the reciprocity law of shear 

stresses implies 12 = 21, in the equations above N12  N21 and M12  M21, which can be ex-

plained by the fact that the radii of curvatures are in general not equal to each other, i.e.: R1  

R2. The development of equilibrium equations establishing the equilibrium between external 

loads and internal forces and moments in the shell structure is also very complicated. There-

fore we present only the resulting equations. The equilibrium equations in the case of stress 

resultants are [1,7]: 

0)()()( 1
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Q
HHHNHNNHNH , (14.62) 
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where p1 and p2 are the tangentially distributed loads along directions 1 and 2, p3 is the distri-

buted load perpendicularly to the shell midsurface. The equilibrium equations in the case of 

stress couples and moment of stress resultants are: 

0)()( 2212,1111,2212,2211,122  QHHHMHMMHMH , (14.63) 

0)()( 1211,2222,1122,2111,112  QHHHMHMMHMH , 
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M

R

M
, (14.64) 

where in the subscript the comma and the number refer to the differentiation with respect to 

the corresponding coordinate. 
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14.4.3. Displacement field, strain components 

Based on Fig.14.7 the vector of displacements and rotations in a point P on the shell midsur-

face can be written as: 

nweveuu  21 , nee 32211   . (14.65) 

 

Fig.14.7. Displacement of a point on the midsurface of a thin shell. 

In accordance with the kinematic hypothesis of the shell theory the components of vector u in 

a point P
*
 out of the midsurface are [1,7]: 

zuu 1

*  , zvv 2

*  , ww * , (14.66) 

i.e. the line of material points, which is perpendicular to the shell midsurface remains perpen-

dicular during the deformation. The equations describing the in-plane strains and changes in 

curvature are [1,7]: 
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where 1 and 2 are the in-plane strains in the directions of q1 and q2 coordinate lines, 12 is the 

shear strain related to the change of angle between unit vectors e1 and e2 during the deforma-

tion, 11 and 22 are the changes in curvatures in the directions of q1 and q2 parameters, 12 is 

the twisting curvature. The shear strains related to the unit normal and unit vectors e1, e2 are 

[1,7]: 
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. (14.68) 

We assume that during the deformation of shell an actual line of material points remain 

perpendicular to the curved shape of shell midsurface, accordingly the shear strains given by 

(14.68) are equal to zero. The kinematic hypothesis of shell theory together with the one men-

tioned before is called the Kirchhoff–Love hypothesis. Under theses assumptions we have: 

1,
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v
 . (14.69) 

In other words the additional transverse shear deformation is neglected (similarly to Kir-

chhoff’s theory of thin plates). The rotation about axis z can be formulated by the following 

expression [1,7]: 

])()[(
2

1
2,11,2

21

3 uHvH
HH

 .  (14.70) 

Nevertheless, in most of the cases the rotation about z is negligible; therefore it is not con-

sidered in the equations. 

 

14.4.4. Approximations within the technical theory of thin shells 

The shell is considered to be thin if the thickness is relatively small compared to the smaller 

radius of curvature, viz. [1]: 

1
2


R

z
. (14.71) 

Consequently, the Lamé parameters and the arc lengths on the midsurface and out of the 

midsurface are approximately equal, which leads to: 

ii HH *  and: ii dSdS * , i = 1, 2. (14.72) 

Accordingly, Eq.(14.61) can be simplified significantly: 
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It is seen that in this case the transverse shear forces and torsional moments are equal to 

each other, which violates the equilibrium equations given by Eq. (14.64). This approximation 

is permitted within the technical theory of thin shells.  

 

14.5. Major steps in the finite element modeling of shells 

In the course of the finite element discretization of shells – similarly to the plane and plate 

problems – we proceed the interpolation of the geometry and the displacement field [1,7]. The 

vector of displacement and rotation components in a point located on the shell midsurface is: 

 wvuu
T
 , (14.74) 

 321  
T

. 

The components of these vectors are not independent of each other. From Eq.(14.67) we 

calculate the in-plane strains and the changes in curvature: 

 122211 2 
T

, (14.75) 

 122211 2 
T

. 

We collect the in-plane forces and moments into a vector: 

 122211 NNNN
T
 , (14.76) 

 122211 MMMM
T
 . 

Transverse shear forces Q1, Q2 are not considered in the calculation of the deformation. 

Finally the vectors of the surface loads and concentrated forces and moments are: 
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T
 , (14.77) 
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where p contains the distributed loads in the directions of coordinate lines q1 and q2 and also 

the distributed load perpendicularly to the shell midsurface, N and M contain the concen-

trated forces and moments acting in the nodes. Using the vectors given by Eqs.(14.75)-(14.77) 

the total potential energy is formulated as: 
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We assume that the material of the thin shell is linear elastic, homogeneous and isotropic. 

Then, the vector of in-plane forces and vector of moments can be calculated as follows: 
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where the constitutive matrix assuming plane stress state is: 
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Accordingly, Eq.(14.78) becomes: 
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 (14.81) 

Utilizing the definition of the element stiffness matrix and the vector of nodal forces we 

can derive the expression below: 

e
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eee
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ee FuuKu 
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1
, (14.82) 

from which the finite element equilibrium equation for a single element (the first of 

Eq.(14.47)) can be derived. As a next step we summarize the potential energy of each ele-

ment: 

FUUKU
TT
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2

1
, (14.83) 

and finally applying the minimum principle of the total potential energy we obtain the struc-

tural equilibrium equation: 
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FUK  . (14.84) 

For the finite element modeling of shells there is very large number of element types. Not 

only the flat shell elements, which give more accurate result under high mesh resolution, but 

also the curved (e.g. cylindrical shell element) and doubly-curved shell element types are 

available, which approximate better both the geometry and the displacement field using the 

same element number. The different plate and shell elements are discussed in sections 15-17. 
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15. MODELING OF IN-PLANE THIN-WALLED SHELLS UNDER IN-

PLANE AND TRANSVERSE LOAD BY FINITE ELELEMT METHOD 

BASED SOFTWARE SYSTEMS 

15.1. Plate elements subjected to bending 

Flat plate elements are suitable to determine the internal forces, stress resultants and stress 

couples in plate shape structures. The plate element is the extension of beam elements so that 

bending, shear and torsion take place in two orthogonal planes involving some interactions. 

Similarly to the plane membrane elements, the triangle and quadrilateral shape elements are 

available for the modeling of shells. The application of general triangle shape elements is rea-

sonable when the shape of the structure is irregular, triangular or similar to the triangle. In this 

section we overview primarily the plate elements subjected to transverse load. In that case 

when the plate is loaded in-plane and also transversely we can solve the problem by combin-

ing the plane membrane and plate bending elements. We have already seen by Eq.(14.3) that 

due to neglecting the transverse shear forces the rotations in an actual point of the plate are: 

xw,  and yw, . (15.1) 

The curvatures related to the bending deformation are: 
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For thin plates we assume plane stress state, i.e.: 

 xyyx

T
 ,, . (15.3) 

In the course of the introduction of Kirchhoff plate theory we have observed that the def-

lection surface is given by a two-variable w(x,y) function, with that both the curvatures and 

strain components can be calculated. For plate bending problems this w(x,y) function must be 

produced by interpolation polynomials, and then we can provide the element stiffness matrix 

and force vector. In the followings we give the details of few element types for plate bending. 

 

15.2. Triangular plate bending element or Tocher triangle element 

In the course of the finite element discretization of plate shape structures we approximate the 

transverse deflection by a third order polynomial in terms of the x and y coordinates [1,2]: 
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This approximation was one of the first triangular finite elements, which was published by 

Tocher [1]. The element is shown in Fig.15.1. The deflection surface in vector form is: 


T

Ayxw ),( , (15.5) 

where A is the vector unknown coefficients,  is the vector of basis polynomials, respectively: 

 876543210 aaaaaaaaaA
T
 , (15.6) 

 322322 )(1 yxyyxxyxyxyx
T

 . 

 

Fig.15.1. The nine degrees of freedom Tocher triangular plate element. 

The unknown coefficients can be calculated based on the nodal conditions. Namely, the dis-

placement function must give back the actual nodal displacement if we substitute the nodal 

coordinates of the same node. Therefore, in Eq.(15.4) the number of terms is always equal to 

the number of degrees of freedom. For the Tocher triangle element the eighth term contains 

the sum of x
2
y and xy

2
. Actually, in vector A there is nine unknown coefficients. Following 

Fig.15.1 the vector of nodal degrees of freedom for a single element is: 

 333222111  wwwu
T

e  , (15.7) 

where wi is the transverse displacement perpendicularly to the midplane, i and i are the ro-

tations about axes x and y, respectively. Accordingly, the Tocher plate element has nine de-

grees of freedom. The nodal conditions for the calculation of the coefficients are [1,2]: 
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w
. 

We need the derivatives of the w(x,y) function with respect to x and y to calculate both the 

coefficients and the strain components, i.e we can write using Eq. (15.4): 
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The substitution of the derivatives above into Eq.(15.7) leads to the following system of 

equation reduced to matrix form [1]: 

AMue  , (15.10) 

where: 
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The coefficients of the interpolation function are the solutions of the system of equation 

given by Eq.(15.10): 

euMA
1

 . (15.12) 

The expressions of the coefficients are extremely complicated; hence they are not detailed 

here. The vector of strain components based on Eqs.(14.5) and (15.5) are: 
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where matrix R is: 
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Taking back Eq.(15.12) into Eq.(15.13) the strain-displacement matrix can be derived: 

ee uBuMRAR 
1

 . (15.15) 

For thin plates we assume plane stress state, consequently we can write: 
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where matrix
str

C refers to plane stress state. According to Eq.(14.43) the definition of the 

element stiffness matrix is: 
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Incorporating Eq.(15.15) we obtain: 
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The middle term in the expression above is [1]: 
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 (15.19) 

where I1 = t
3
/12 and E1 = E/(1-2

). To calculate the stiffness matrix the inverse of matrix M is 

required. Since it is very complicated, it is not detailed here. In Eq.(15.19) it is possible to 

simplify the components by the surface integral transformations given below [1]: 
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here Ae is the triangle area, xi and yi, i = 1, 2, 3 are the nodal coordinates, respectively. In most 

of the cases the force vector is composed by two terms. The force vector related to the distri-

buted force can be derived by expressing the work of external force: 

ep

T

e

A

e FudAyxpwW

pe

  ),( . (15.21) 

The calculation of Fep is difficult, we need the inverse of matrix M and the simplification 

of surface integrals, respectively. The concentrated forces and moments are collected in a vec-

tor in accordance with the nodal degrees of freedom: 

 333222111 yxzyxzyxz

T

ec MMFMMFMMFF  , (15.22) 

where Fzi is the concentrated force perpendicularly to the midplane of plate, Mxi and Myi are 

the concentrated moments acting in the x and y directions. In the sequel we present a detailed 

example. 

 

15.3. Example for the application of the Tocher triangle plate element  

Determine the displacement and the reactions of the built-in plate depicted in Fig.15.2 [1]!  

 

Fig.15.2. Triangle shape built-in plate loaded by concentrated force. 
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Given: 

E = 200 GPa,  = 0,3, t = 5 mm, F = 1 kN, a = 200 mm, b = 75 mm. 

  

The nodal coordinates are: 

 

node x y 

1 0 -b/2 

2 a 0 

3 0 b/2 

 

In the sequel the distances are calculated in [mm], the force is given in [N]. Because of the 

kinematic constraints (built-in nodes) the vector of nodal displacements becomes: 

 000000 222 wu
T

e  . (15.23) 

For the calculation of stiffness matrix we need the constitutive matrix, which is: 
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Utilizing the nodal coordinates we calculate matrix M based on Eq.(15.11): 
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The determinant of matrix M is 4,8610
12

, i.e. the matrix is not singular, its inverse ex-

ists. The stiffness matrix is obtained by calculating matrix R  (see Eq.(15.14)) and computing 

the surface integrals: 
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In Eq.(15.26) only the independent components are indicated, the reason for that is the 

stiffness matrix is always symmetric. The force vector based on the concentrated loads is: 

 333111 00 yxzyxz
T
ec MMFFMMFF  . (15.27) 

The condensed stiffness matrix and the resulting matrix equation for the calculation of 

nodal displacements is the following: 
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The nodal solutions are: 

mm1764,132 w , rad03176,02  , rad130477,02  . (15.29) 

It is seen that although the problem is symmetric with respect to axis x for both the geome-

try and load, the deformation of the triangle element is not symmetric. Taking the nodal dis-

placements back to original equation we can determine the reactions: 

N5,5541 zF , Nmm5,407841 xM , Nmm6,660681 yM . (15.30) 

Using Eq.(15.15) the vectors of strain and stress components are: 
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The strain and stress components can be obtained at any point of the triangle element by 

taking back the coordinates in [mm]. The example above was verified by a finite element 
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code developed in Matlab [3] and we obtained the same results. In general the accuracy of the 

Tocher plate element is not satisfactory and even the convergence of the results is bad. To 

reduce the deficiencies of the Tocher triangle the so-called reduced triangle element was de-

veloped, where area coordinates are introduced [4]. Apart from the Tocher triangular plate 

element there are several more element types, e.g.: Adini or Cowper triangle element, Adini-

Clough-Melosh, Bogner-Fox-Scmit rectangle element, etc [1]. In the sequel we present some 

rectangle shape plate elements. 

 

15.4. Incompatible rectangular shape plate element 

Fig.15.3 presents one of the first rectangle shape elements in a global, local and natural coor-

dinate system.  

 

Fig.15.3. Incompatible rectangle shape plate element in a global (a), local (b) and natural (c) coordi-

nate system. 

The dimensionless local  and  coordinates are: 
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The following differential quotients are also required: 
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According to Fig.15.3b we consider three degrees of freedom in the local coordinate sys-

tem at each node, which are the displacement w perpendicularly to the midplane of plate and 

the rotations about the x and y axes, respectively. The vector of nodal displacements for a sin-

gle element is: 

 444333222111  wwwwu
T

e  , (15.34) 

i.e. totally the element has 12 degrees of freedom, where the rotations can be determined by 

means of Eq.(15.1) and the Kirchhoff-Love hypothesis. The displacement in direction z and 

the rotations are not independent of each other and there can only be to a maximum of 12 un-

known parameters in the interpolation function. Along the element edges the expression of w 

should be a third order function, and accordingly the derivative in the normal direction should 

vary linearly [2]. A complete third order function contains 10 terms, but in accordance with 

the number of nodal parameters we need two additional terms in the interpolated function. We 

can choose from the three possibilities below: 

 3  and 3 , or: 23 and 32 , or: 22  and 33 . (15.35) 

Any of the above possibilities is chosen, we obtain a cubic change in the derivatives in the 

normal direction instead of the expected linear one [1,2]. Therefore this element is not com-

patible, in other words it is incompatible. Choosing the first alternative we have: 
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The nodal conditions for the determination of the unknown coefficients are: 
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Taking back the coefficients into the function given by Eq.(15.36), moreover by utilizing 

the fact that the displacement function can be formulated as the product of interpolation func-

tions and nodal parameters it is possible to obtain: 
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 (15.38) 

from which we obtain the mathematical form of the interpolation functions: 
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and: 

e

T
uNw ),(  , (15.40) 

where: 

 121110987654321 NNNNNNNNNNNNN
T
 , (15.41) 
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is the vector of interpolation polynomials. As a next step we express the vector of strain com-

ponents using Eq.(14.5): 


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where: 
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. (15.43) 

where N,xx, N,yy and N,xy are vectors containing the second order derivatives of the interpola-

tion functions by Eq.(15.40) with respect to the corresponding subscript. Hence, the vector of 

strain components and the vector of stress components become: 

euz  , (15.44) 

e

strstr
uCzC   . 

The vector of bending and twisting moments can be given in vector form; they are calcu-

lated based on Eqs.(14.7) and (15.43): 
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Taking the previously calculated vectors back into the total potential energy we obtain: 

 
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1 2  . (15.46) 

We transform the volume integral over the element by integration with respect to the pa-

rameters x, y and z. Moreover, we assume that in the second term the intensity of the distri-

buted load is constant. Consequently we can write: 

ep
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0
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 , (15.47) 

where the element stiffness matrix is: 
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TstrT

e
, (15.48) 

and the force vector from the uniformly distributed load is: 

,
66

1
66

1
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1
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1
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1
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ep

ababababpab

ddNabpF


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






   

 (15.49) 

that is, similarly to the beam element subjected to bending the distributed load is represented 

by concentrated forces and moments at the nodes referring  to the discretization procedure. It 

is also necessary to consider that there can be concentrated loads in the nodes, viz.: 

 444333222111 yxzyxzyxzyxz

T

ec MMFMMFMMFMMFF  , (15.50) 

and: 

epece FFF  . (15.51) 

The application of the minimum principle yields the element equilibrium equation: 

eee
FuK  , (15.52) 

which can be used only if the structure consists of a single element. For multi-element struc-

tures we obtain the structural equation by summing the potential energies of the elements: 

FUK  . (15.53) 

Let us solve an example for the incompatible rectangle shape element! 

 

15.5. Example for the application of the incompatible rectangle shape element 

Calculate the nodal displacements and the reactions of the built-in plate shown in Fig.15.4!  



15. Modeling of in-plane thin-walled shells 275 

© András Szekrényes, BME www.tankonyvtar.hu 

 

Fig.15.4. Example for the application of incompatible plate element. 

Given: 

E = 200 GPa,  = 0,3, t = 1 mm, F = 5 N, a = 600 mm,  b = 400 mm. 

 

In the sequel the distances are substituted in [m], the force is given in [N]. The nodal 

coordinates are: 

 

node x y 

1 0 0 

2 a 0 

3 a b 

4 0 b 

 

Considering the kinematic constraints in the construction of the vector of nodal displacement 

we obtain: 

 000000 333222  wwu
T

e  . (15.54) 

The force vector considering the external force and the reactions is: 

 414111 00000 yxzyxz

T

ec MMFFMMFF  . (15.55) 

For plane stress state the constitutive matrix is: 
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Next we calculate matrix which is required for the stiffness matrix: 
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 (15.57) 

The dimension of the stiffness matrix is 12x12; therefore it is not detailed here. Instead of 

the stiffness matrix we give the resulting finite element equilibrium equation system from 

Eq.(15.52): 

1333222 6912615845196874228502711 zFβ,-α,w,-β,-α,w,  , (15.58) 

13322 8,8558,61-14,5950,28 xMww   , 

13322 4,8712,696,2442,87 yMww   , 

519,0128,89741,05-55,37137,22926,23 333222   ww , 

016,15128,89-5,0035,41137,22 33222   ww , 

02,740,1919,485,0055,37 33222   ww , 

055,37137,22926,230,19128,89741,05- 333222   ww , 

05,0-5,413137,22-16,15128,89 33322   ww , 
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019,485,0055,372,740,19 33322   ww , 

4333222 42,87-50,2811,2712,69-58,61196,45- zFww   , 

43322 14,5950,28-8,8558,61 xMww   , 

43322 6,2442,874,8712,69 yMww   . 

Calculating the nodal displacements from the 4
th

, 5
th

, 6
th

, 7
th

, 8
th

 and 9
th

 equations of 

Eq.(15.56) we have: 

m0655,02 w , rad 039,02  , rad159,02  , (15.59) 

m0448,03 w , rad0645,03  , rad122,03  . 

From the 1
st
, 2

nd
, 3

rd
 and 10

th
, 11

th
, 12

th
 equations of Eq.(15.56) we can determine the reac-

tions: 

N42,51 zF , Nm47,01 xM , Nm79,11 yM , (15.60) 

N42,04 zF , Nm30,04 xM , Nm21,14 yM . 

The bending and twisting moments can be obtained from Eq.(15.45), the stresses can be 

determined from Eq.(15.44) by taking back the nodal coordinates. Example 15.5 was verified 

by the finite element code ANSYS 12 and we obtained the same results. 

 

15.6. Compatible rectangular shape plate element 

In that case when we want to develop a compatible plate element the interpolation function 

given by Eq.(15.36) has to be modified in accordance with the followings [2]: 

.

),(

33

15

32

14

23

13

22

12

3

11

3

10

3

9

2

8

2

7

3

6

2

54

2

3210





aaaaaaa

aaaaaaaaaw




 (15.61) 

However, this formulation implies 16 unknown nodal parameters. That is, at each node we 

must consider the mixed derivative w,xy. The vector of nodal displacement becomes: 

 .4,4443,3332,2221,111 xyxyxyxy

T

e wwwwwwwwu   (15.62) 

The conditions for the determination of the unknown parameters are: 
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The deflection surface is approximated by using 16 interpolation functions: 
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 (15.64) 

The interpolation functions can be written by the help of the Hermitian polynomials, 

which are presented in the beam finite elements (see Fig.15.5) [2]: 

132)( 23

1  f , 23

2 32)(  f ,  (15.65) 

  23

3 2)(f , 23

4 )(  f , 

with that the 16 interpolation functions become: 

)()( 111  ffN  , )()( 229  ffN  , (15.66) 

)()( 312  ffbN  , )()( 4210  ffbN  , 

)()( 133  ffaN  , )()( 2411  ffaN  , 

)()( 334  ffbaN  , )()( 4412  ffbaN  , 

)()( 125  ffN  , )()( 2113  ffN  , 

)()( 326  ffbN  , )()( 4114  ffbN  , 

)()( 147  ffaN  , )()( 2315  ffaN  , 

)()( 348  ffbaN  , )()( 4316  ffbaN  . 
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Fig.15.5. Function plot of the Hermitian interpolation polynomials. 

By using the interpolation polynomials the stiffness matrix can be built-up by the same 

methodology as that presented in the incompatible plate element. The only difference is that 

we obtain a matrix with dimension of 16x16. Assuming a constant distributed force, the rele-

vant term in the force vector is:  

,
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 (15.67) 

i.e., similarly to the plane beam element subjected to bending the distributed load is 

represented by concentrated forces and moments in the nodes. As usual, we have to consider 

the case of concentrated loads, the relevant vector term is: 


........

........

44443333

22221111

xyyxzxyyxz

xyyxzxyyxz

T

ec

MMMFMMMF

MMMFMMMFF 
 (15.68) 

Example 15.5 was solved by using the compatible plate element too. In this case the nodal 

displacements are: 

m0658,02 w , rad062,02  , rad165,02  , 
m

rad
2414,02, xyw , (15.69) 

m0450,03 w , rad043,03  , rad128,03  , 
m

rad
0415,02, xyw . 

The reactions are given below: 

N512,51 zF , Nm676,01 xM , Nm84,11 yM , 2

1 Nm138,0xyM . (15.70) 
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N512,04 zF , Nm471,04 xM , Nm155,14 yM , 2

4 Nm115,0xyM . 

It is seen, that the difference between the results of the two solutions is not significant. 

 

15.7. Plates under in-plane and transverse load 

If the plate is loaded by in-plane and transverse forces simultaneously, then we have to pro-

duce an element by having both in-plane and bending load-carrying capability, i.e. it means 

the superposition of plane membrane and plate bending elements. This problem can be solved 

based on sections 12 and 15 in a relatively simple way. First we collect the corresponding 

nodal displacements into a vector. Second, we create the stiffness matrix of the combined 

element by placing the stiffness matrix components corresponding to the membrane and bend-

ing deformation into the right positions. The vector of forces is obtained by a similar combi-

nation of the element vectors. This technique is suitable to model in-plane plate structures too. 

However, if we connect the elements by containing an angle differing from 180 among the 

surfaces, then it is possible to approximate curved surfaces. In other words the combined 

membrane-plate element is suitable to model spatial shells and shell structures too. Since in 

the modeling of plane and spatial shells similar steps are required, these issues will be detailed 

in section 16. 
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16. MODELING OF SPATIAL THIN-WALLED SHELLS BY FINITE 

ELEMENT METHOD-BASED SOFTWARE SYSTEMS 

16.1. Simple flat shell elements 

The stiffness matrix of flat shell elements are easily calculated using the stiffness matrices of 

the membrane and plate bending elements. Accordingly, it is possible to derive the different 

version of flat shell finite elements by combining the available triangle and rectangle shape 

elements [1,2]. The approximation of a curved surface by flat shell elements is shown by 

Fig.16.1. This kind of approximation is another source of error apart from the displacement 

field interpolation. By increasing the number of elements we can decrease the geometrical 

inaccuracies. The application of flat shell elements is justified, when the advantage of the 

higher order elements – namely the larger element size – can not be exploited. In the sequel 

we demonstrate the combination of the linear (membrane) triangle and the Tocher plate 

(bending) elements. 

 

Fig.16.1. Triangular shape flat shell element in the global and local coordinate systems. 

 

16.2. Superposition of the linear triangle and Tocher bending plate elements 

The element mentioned above is not conform because of the discontinuity of displacements at 

the element boundaries [1,2]. However, due to its simplicity we use this combination to dem-

onstrate the application of flat shell elements. The linear triangular membrane element (see 

Fig.12.2) has two degrees of freedom at each node, the stiffness matrix in the local element 

coordinate system is: 
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where the submatrices ( m

ijk
~

) correspond to the stiffness matrix components associated with 

nodes i and j. The tilde over the matrix indicates the local coordinate system; the superscript 

(m) refers to the membrane action. The finite element equation is: 

161666

~~~




m

e

m

e

m

e
FuK , (16.2) 

where the vector of nodal displacements and concentrated forces of the membrane element 

are: 
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, (16.3) 
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, 

where u is the displacement in the local x, v is the displacement in the local y direction. In the 

displacement vector we refer to the local parameters by using the tilde. In the force vector we 

identify the local parameters by lowercase x, y and z in the subscript of components. A dis-

tinction like that was not necessary until now, which can be explained by the fact that in all of 

the previous examples the local and global coordinate systems coincided. 

At each node of the Tocher triangular plate element (see Fig.15.1) there are three degrees 

of freedom; therefore the stiffness matrix has nine rows and nine columns: 
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where the superscript b indicates bending action. In the local coordinate system the displace-

ment and concentrated force vectors of the Tocher triangular plate element are: 
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, (16.5) 
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. 

The degrees of freedom of the combined element are shown by Fig.16.2. The membrane 

and bending stiffness matrices have to be combined in accordance with the following observa-

tions [2]: 

a. for small displacement s the membrane and bending stiffnesses are uncoupled 

(independent), 

b. the in-plane rotation in the local x-y plane is not necessary for a single element, 

however,  and its conjugate moment Mz have to be considered in the analysis by 

including the appropriate number of zeros to obtain the element stiffness matrix 

for the purpose of assembling several elements or assembling the flat shell element 

with different type of elements. 

 

Fig.16.2. Combination of the linear membrane triangle element and the Tocher triangular plate  

bending element. 

The nodal displacement vector of the combined element in the local coordinate system is: 



.~~~~~~~~~...............

...................~~~~~~~~~~

333333222

222111111
118





wvu

wvuwvuu
Tbm

e 




 (16.6) 

The vector of concentrated forces becomes: 
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Accordingly, the stiffness matrix is shown below [1,2]: 
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The stiffness matrix above is valid in the local coordinate system. We highlight again, that the 

tilde over the matrices and vectors refers to the local system. In the analysis of three-

dimensional structures in which different finite elements have different orientations, it is ne-

cessary to transform the local stiffness matrices to a common set of global coordinates. In the 

quantities of global coordinate system there is no tilde indicated. The transformation of the 

element stiffness matrix is given by the expression below: 


18181818

~










bm

e

Tbm

e
KK , (16.9) 

where is the transformation matrix with dimension of 18 x 18: 
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and: 



















000

000

000

0 . (16.11) 

Matrix L contains the unit basis vectors of the local coordinate system, e1, e2 and e3, (see 

Fig.16.1) in the form of column vectors formulated in the global coordinate system: 
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Eventually matrix L contains the direction cosines of the angles between the local and 

global axes. The definition of the direction cosines for an optional A vector based on Fig.16.3 

is [4]: 
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Fig.16.3. Direction cosines of vector A. 

Since the basis vectors e1, e2 and e3 are unit vectors it is not easy to see, that their components 

are eventually the direction cosines. To construct the structural stiffness matrix the local quan-

tities have to be transformed into the global system. The vector of nodal displacement and 

vector of forces in the global system are: 

bm

e

Tbm

e uu


 ~ , (16.14) 
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e
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e FF



~

 . 

For shell structures the most common load type is the constant pressure perpendicularly to 

the shell surface, i.e. in direction of the local z axis. It is a reasonable assumption, that there is 

membrane stress state, under these assumptions the force vector is: [2]: 

 000100000100000100
3

~ e
bm

ep

A
pF 



, (16.15) 

where Ae is the triangular area. If the pressure on the shell surface is not constant, but its 

change over the element area is insignificant, then we can still use the vector above, but we 

use the pressure averaged by the nodal loads instead of p: 

)(
3

1
321 pppp  . (16.16) 

Finally we summarize the finite element equations. In the local x, y, z system the quantities 

indicated by the tilde are used, i.e.: 

bm
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e
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e
FuK
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~~~

. (16.17) 

Transforming Eq.(16.17) into the global X,Y,Z system by using the transformation matrix, 

we have: 
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where the quantities in the global coordinate system are calculated based on Eqs.(16.9) and 

(16.14). For the whole structure the finite element equation is:  

bmbmbm
FUK


 , (16.19) 

of which solutions are the components of vector U
m+b

, which are the nodal displacements in 

the global coordinate system. From that we can calculate the global element displacement 

vectors, ue
m+b

, and then we can transform them into the local system by the following expres-

sion: 
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1~  . (16.20) 

The transformation matrix is orthogonal, therefore we can write that: 
T
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1

and 

E
TT
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1

, viz.: 

bm

e
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 ~ . (16.21) 

Using the local displacements in the nodes we can calculate the membrane and bending 

stresses. 

A significant advantage of the flat shell elements is a novel software can be easily con-

structed by combining the softwares of the existing membrane and plate elements, which can 

be used for engineering calculations [2,3]. This computation requires only the knowledge of 

matrix L . The accuracy of the results depends on the element size. Higher mesh resolution is 

necessary, where the curvature of the surface is larger, or the change in stresses is expected to 

be more significant. The expected error of the calculation is higher in the vicinity of the sides, 

notches and the connection of different surfaces. Let us solve an example to understand the 

application of the method! 

 

16.3. Example for the combination of the linear triangle and Tocher triangle elements 

Solve the shell problem given in Fig.16.4! Calculate the nodal displacements, reactions in the 

local coordinate system, and transform the results into the global coordinate system! 
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Fig.16.4. Flat triangular shell element in the local and global coordinate systems (a), application 

example for the flat shell element (b). 

Given: 

a = 0,8 m, b = 0,5 m, t = 3 mm, E = 200 GPa,  = 0,3, Fx = 6000 kN, Fy = 8000 kN,   

p = 1200 N/m
2
 

 

The distances are substituted in [m], the force is interpreted in [N]. The nodal coordinates 

in the local coordinate system are: 

 

node x y z 

1 0 -b/2 0 

2 a 0 0 

3 0 b/2 0 

 

We give the nodal coordinates also in the global coordinate system. We note that the global 

coordinates depend on how the element is built-in the actual structure. 

 

node X [m] Y [m] Z [m] 

1 0,6795 0,57 0,2 

2 0,4 1,225 0,5 

3 0,5004 0,6 0,4 

 

The vectors of nodal displacements and concentrated forces in the local coordinate system 

are: 

 333322222121
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The terms in. the force vector related to the distributed load can be calculated based on the 

integral transformation formulae presented in section 15. We can construct the force vector of 

the Tocher triangle from distributed load by formulating the work of the distributed load: 

ep

T

e

A

e FudAyxpwW

pe

~~),(   . (16.23) 

Based on Eq.(16.23) and the integral transformation expressions given by Eq.(15.20) we 

have:  
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We note that in the Tocher triangle the distributed load is divided into three parts and put 

into the nodes; however the division is made in unequal degree, as it is seen in the vector of 

forces. On the other hand, by summing the forces in direction z and the moments about x and 

y we obtain: 
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which are the resultant forces in direction z and the resultant moments about axes x and y. The 

force vector of the 18 degrees of freedom flat shell element in the local coordinate system is: 



290 Finite Element Method 

www.tankonyvtar.hu © András Szekrényes, BME 

.

0

3125,8

6,11

75,87

8000000

0

25,1

8,12

0,72

0

6000000

0

6875,7

6,7

25,80

0

0069.0

0097.0

0731.0

0

0

0

0010.0

0107.0

0600.0

0

0

0

0064.0

0063.0

0069.0

0

0

0

0

0

0

0

0

0

0

0

0

~~~

3

3

2

1

1

1

3

3

2

1

1

1

118118118






























































































































































































































z

x

z

z

y

x

z

y

x

z

x

z

y

x

Tbm

ep

Tbm

ec

Tbm

e

F

F

F

F

F

F

p

F

F

F

F

F

F

F

F

FFF

 (16.26) 

The stiffness matrix of the linear (membrane) triangle element based on the calculations of 

section 15 is: 

m

N
10

64,6.....

44,148,2....

36,015,172,0...

73,126,1052,2..

28,629,036,073,164,6.

29,022,115,126,144,148,2

~ 8

66










































m

e
K , (16.27) 

where due to symmetry of the matrix only the independent components are indicated. The 

stiffness matrix of the Tocher triangular element in the local coordinate system is: 
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.10

97,0........

53,015,1.......

52,145,380,13......

15,005,038,031,0.....

29,028,003,10007,029,0....

01,140,090,177,015,090,2...

32,026,038,016,017,053,059,0..

32,019,095,105,009,033,010,096,0.

51,005,390,1188,388,099,091,028,290,12

~ 3

99






















































b

e
K

 (16.28) 

The combination of the membrane and bending stiffness matrices based on Eq.(16.8) lead 

s to: 






1818

~ bm

e
K  

 

64,644,1

44,148,2

 

108 

0         0         0 

0         0         0 

 

0 

0 

 

36,073,1

15,126,1





 

108 

0         0         0 

0         0         0 

 

0 

0 
28,629,0

29,022,1





 

108 

0         0         0 

0         0         0 

 

0 

0 

 

 

0        0 

0        0 

0        0 
59,010,091,0

10,096,028,2

91,028,29,12





 

103 

0 

0 

0 

 

0         0 

0         0 

0         0 

 

16,017,052,0

05,009,033,0

88,388,099,0







 

103 

0 

0 

0 

 

0         0 

0         0 

0         0 

 

32,026,038,0

32,019,095,1

51,005,39,11







 

103 

0 

0 

0 

 

0        0 0         0         0 0 0         0 0         0         0 0 0         0 0         0         0 0 

36,015,1

73,126,1





 

108 

0         0         0 

0         0         0 

 

0 

0 

 

72,00

052,2

 

108 

0         0         0 

0         0         0 

 

0 

0 

 

36,015,1

73,126,1





 

108 

0         0         0 

0         0         0 

 

0 

0 

 

0        0 

0        0 

0        0 

 

16,005,088,3

17,009,088,0

52,033,099,0







 

103 

0 

0 

0 

 

0         0 

0         0 

0         0 

 

31,00007,077,0

0007,029,015,0

77,015,090,2





 

103 

0 

0 

0 

 

0         0 

0         0 

0         0 

 

15,005,038,0

29,028,003,1

01,140,090,1







 

103 

0 

0 

0 

 

0        0 0         0         0 0 0         0 0         0         0 0 0         0 0         0         0 0 

28,629,0

29,022,1





 

108 

0         0          0 

0         0          0 

 

0 

0 

 

36,073,1

15,126,1





 

108 

0         0         0 

0         0         0 

 

0 

0 

 

64,644,1

44,148,2





 

108 

0         0         0 

0         0         0 

 

0 

0 

 

0        0 

0        0 

0        0 

 

32,032,051,0

26,019,005,3

38,095,19,11







 

103 

0 

0 

0 

 

0         0 

0         0 

0         0 

 
15,029,001,1

05,028,040,0

38,003,190,1 

 

103 

0 

0 

0 

 

0         0 

0         0 

0         0 

 

97,053,052,1

53,015,145,3

52,145,38,13







 

103 

0 

0 

0 

 

0        0 0         0         0 0 0         0 0         0         0 0 0         0 0         0         0 0 

 

 (16.29) 

The next step is the construction of the finite element equation using Eq.(16.17). The nod-

al displacements are calculated from the 4
th

, 5
th

, 7
th

, 8
th

, 10
th

, 11
th

, 14
th

, 16
th

 and 17
th

 equations 

of the system of equations. The solutions are: 
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rad00406,0~
1  , rad02278,0

~
1  , (16.30) 

m0187,0~
2 u , m00368,0~

2 v , rad0948,0~
2  , rad00319,0

~
2  , 

m00737,0~
3 v , rad01833,0~

3  , rad01994,0
~

3  . 

In the knowledge of the displacements we can determine the reactions utilizing the 1
st
, 2

nd
, 

3
rd

, 9
th

, 13
th

, and 15
th

 equations: 

N30000001 xF , N80000001 yF , N88,911 zF , (16.31) 

N34.742 zF , N30000003 xF , N78,733 zF . 

We note that the results by Eq.(16.31) are the components of the vector of concentrated 

forces, which is the first term in Eq.(16.26). Moreover the 6
th

, 12
th

 and 18
th

 component equa-

tions were not utilized here, which is explained by the fact that these equations are associated 

to the local rotations about axis z, and their values are zero in the local system. The total force 

vector by using Eq.(16.31) and Eq.(16.26) becomes:  














































































0

3125,8

6,11

973,13

8000000

3000000

0

25,1

8,12

344,2

0

6000000

0

6876,7

6,7

629.11

8000000

3000000

~

118

Tbm

eF

. (16.32) 

In the sequel, we transform the results into the global X,Y,Z coordinate system. The global 

position vectors of the nodes based on the global coordinates are: 
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m

5004,0

4,0

6795,0

1

















R , m

6,0

225,1

57,0

2

















R , m

4,0

5,0

2,0

3

















R . (16.33) 

The position vector of the origin of local coordinate system can be given in the global sys-

tem as: 

  m

4502,0

45,0

43975,0

2

1
310

















 RRR . (16.34) 

We determine the unit basis vectors based on the position vectors in the global system us-

ing Fig.16.4: 























18725,0

96875,0

162825,0

02

02

1
RR

RR
e . (16.35) 

Similarly, the unit vectors e2 and e3 are 



























2008,0

2,0

959,0

03

03

2
RR

RR
e , (16.36) 



























96159,0

14688,0

23197,0

03

03

3
RR

RR
e . 

Based on the unit basis vectors and Eq.(16.12) matrix L becomes: 

 1 2 3

0,162825 0,959 0,23197

0,96875 0,2 0,14688  

0,18725 0,2008 0,96159

  
 

  
 
  

L e e e . (16.37) 

With that it is possible to construct matrix with dimension of 18x18. Using Eqs.(16.10), 

(16.22) and (16.30) the nodal displacements in the global coordinate system are: 

01 u , 01 v , 01 w , (16.38) 

rad02141,01  , rad00845,01  , rad002405,01  , 
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m00662,02 u , m017215,02 v , m004883,02 w , 

rad012352,02  , rad091582,02  , rad02153,02  , 

m0071365,03 u , m0014733,03 v , m001082,03 w , 

rad0223,03  , rad013587,03  , rad0071797,03  . 

It is seen that although in the local coordinate system the rotations about z are zero, in the 

global system as a result of the transformation even rotations about Z exist.  The nodal forces 

are the followings: 

N82386001 XF , N12770001 YF , N18710001 ZF , (16.39) 

Nm21,61 XM , Nm8259,81 YM , Nm6338,01 ZM , 

N9769202 XF , N57540002 YF , N13918003 ZF , 

Nm8732,02 XM , Nm525,122 YM , Nm7856,22 ZM , 

N72615003 XF , N44770003 YF , N4791003 ZF , 

Nm9414,93 XM , Nm4615,93 YM , Nm9118,33 ZM . 

Accordingly, in the global system there are bending moments about axis Z, which are in 

fact the projections of the moments about local x and y axes with respect to Z. The solution 

method is applicable also for rectangle shape elements. 
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17. MODELING OF CURVED AND DOUBLY-CURVED SHELLS BY 

FINITE ELEMENT METHOD BASED SOFTWARE SYSTEMS 

17.1. Curved shell elements 

Curved shell elements are suitable to model the midsurface geometry more accurately. In the 

case of certain surfaces – for example the cylindrical shell – it means the exact description of 

the original surface. For more complicated cases – similarly to the displacement field - the 

curvatures of the surface are approximated by interpolation functions. In this respect such 

elements belong to the parametric element types [1]. 

 

17.2. Thin-walled cylindrical shell element 

The thin cylindrical shell element is presented in Fig.17.1. In accordance with the basic equa-

tions of the technical theory of thin shells the geometrical properties of the cylindrical shell 

are the followings [1,2]: 

xq 1 , 11 H , 1R , (17.1) 

2q , RH 2 , RR 2 . 

 

Fig.17.1. Parameters of the thin cylindrical shell element. 

Apart from the displacement components u, v and w we can derive the angle of rotations by 

applying the basic equations of the technical theory of thin shells based on Eqs.(14.69) and 

(14.70): 

xx ww
HR

u
,1,

11

1

1
  , (17.2) 
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)(
11

,2,

22

2  wv
R

w
HR

v
 , 

)(
2

1
,,3  uRv

R
x  . 

Next, we calculate the strain components using the parameters of the cylindrical shell sur-

face (see Eq.(14.67)): 

xx uw
R

v
HH

H
u

H
,

121

2,1

1,

1

11

11
  , (17.3) 

)(
111

,

221

1,2

2,

2

22 wu
R

w
R

u
HH

H
v

H
  , 

xx vu
RH

v

H

H

H

u

H

H
,,

1,21

2

2,12

1
12

1
22 

















  , 

xxx w
HH

H

H
,2

21

2,1

1,1

1

11

1
  , 

)(
11

,,21

21

1,2

2,2

2

22   wv
RHH

H

H
 , 

)2(
111

22 3,,3

121,1

2

1

2

2,2

1

2

1
12 


  


























 xxx vw

RRRHH

H

HH

H
. 

The rigid body-like motion of the element involves six degrees of freedom, which are giv-

en by the displacement vector field given below [1]: 

 sin)cos(cos 3210 RaRaau  , (17.4) 

 cossin)1cos(coscossin 654320 aaRaxaxav  , 

 sincoscossinsincos 654320 aaRaxaxaw  . 

In matrix form: 

000 u , (17.5) 

where: 
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 0000 wvuu
T
 , (17.6) 





























sincoscossinsincos0

cossin)1cos(coscossin0

000sin)cos(cos1

0

Rxx

Rxx

RR

, 

 6543210 aaaaaa
T
 . 

where
0

 is the matrix of interpolation functions, which capture the rigid body-like motions, 

0 is the vector of unknown coefficients. The displacement field of rigid body-like motion 

and that of the deformation together give the total displacement field, which is: 



















w

v

u

uuu 010 , (17.7) 

where: 

 01010101 wvuu
T
 , (17.8) 

 xaaxau 98701  , 

 xaav 111001  , 

.33

24

32

23

23

22

3

21

22

20

3

19

3

18

2

17

2

16

3

15

2

1413

2

1201





xaxaxaxaxaxa

axaxaxaaxaxaw




 

In matrix form we have: 

1100010   uuu , (17.9) 

where
1

 is the interpolation functions matrix related to the deformation displacement field: 

.

00000

0000000000000000

000000000000000

3332233223322322
1

























xxxxxxxxxxx

x

xx

 (17.10) 

1 is the vector of unknown coefficients: 
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
.

.........

242322212019181716

1514131211109871

aaaaaaaaa

aaaaaaaaa
T


 (17.11) 

In the expression above there are 24 unknown coefficients. To determine all of them 24 

displacement parameters are required, let us choose the followings: 


,~~~~~~~~~~~~.........

.....~~~~~~~~~~~~~

4,444443,33333

2,222221,11111









xxxx

xxxx

T

e

wwvuwwvu

wwvuwwvuu 
 (17.12) 

i.e. at each node there are displacements in the direction of the basis vectors, there are rota-

tions about e1 and e2, the sixth degrees of freedom is chosen to be the mixed derivative w,x. 

The degrees of freedom for the cylindrical shell element based on Eqs.(17.2) and (17.7) are: 

010 uuu  , 010 vvv  , 010 www  , (17.13) 

,32323

232sincos

32

24

3

23

22

22

3

21

2

20

2

19

2

1716

2

15131232,





xaxaxaaxaxa

axaxaaxaaaw xx




 

),33232

322(
1

)(
1

23

24

22

23

3

22

2

21

2

20

3

19

2

1817

2

16141311104,



 

xaxaxaxaxaxa

axaxaaxaxaaRa
R

wv
R




 

.96634

322cossin

22

24

2

23

2

22

2

2120

2

1917161332,





xaxaxaaxa

xaaxaaaaw x




 

The conditions for the determination of the parameters ai, i = 1...24 are: 

1
~),2/( uLu  , 2

~),2/( uLu  , (17.14) 

3
~),2/( uLu   , 4

~),2/( uLu   , 

1
~),2/( vLv  , 2

~),2/( vLv  , 

3
~),2/( vLv   , 4

~),2/( vLv   , 

1
~),2/( wLw  , 2

~),2/( wLw  , 

3
~),2/( wLw   , 4

~),2/( wLw   , 

1

~
),2/( xx L   , 2

~
),2/( xx L   , 
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3

~
),2/( xx L   , 4

~
),2/( xx L   , 

1

~
),2/(   L , 2

~
),2/(   L , 

3

~
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),2/(   L , 

1,,
~),2/(   xx wLw  , 2,,

~),2/(   xx wLw  , 

3,,
~),2/(   xx wLw  , 4,,

~),2/(   xx wLw  . 

The vector of nodal displacements is formulated similarly to the plate element presented in 

section 15, viz. [3]: 

AMu e 
~ , (17.15) 

where vector A contains the elements of 0  and 1  in order, i.e.: 


...........
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T


 (17.16) 

The coefficients of the interpolation polynomials are determined by the inversion of M : 

euMA ~1
 . (17.17) 

Due to their large length, the coefficients are not detailed here. Assuming that the angle 

rotation, 3 is approximately zero the strain components are formulated as follows: 

xx u, , )(
1

, wu
R

  , xx vu
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1
2   , (17.18) 
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 , )2(
1

2 ,, xxx vw
R

  . 

The strain components can be classified into two parts: strains, shear strains and the curva-

tures, respectively. We can write that: 
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where matrices
0

R and
1

R are calculated based on the derivatives of the displacement func-

tions: 
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.

966343
0

2

66262
0

62

62602600

....

....

2
00

1
0

2
0000000

2

cos

2

sin
0

00
2

00
1

000000000

2600200000000000

222222

2

3

2

2

2

3

22

2

22

3322

2221































R

x

R

x

R

x

RR

x

R

x

R

R

x

R

x

R

x

R

x

R

x

RR

x

xxx

R

x

RRRR

RR

x

R

x

R











 (17.21) 

For the calculation of the stiffness matrix and the force vector related to the distributed 

load we formulate the total potential energy of a single element. We note that the expression 

below contains only the strain energy and the work of the distributed load: 

 

pee A

T

V

T

e dApudV
2

1
. (17.22) 

The constitutive law of the linear elastic material is: 

 C , (17.23) 

where, similarly to the plates we assume plane stress state, i.e. 
str

CC  . Using Eqs.(17.17) 

and (17.19) we obtain: 

ee uBuMRAR ~~
0

1

000 


 , (17.24) 

1

00


 MRB , euBCC ~

000   , 
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furthermore: 

ee uBuMRAR ~
1

1

11



 , (17.25) 

1

11


 MRB , euBCzCz ~

11    

Based on Eq.(17.7) the displacement field becomes: 

euMAu ~1
  , (17.26) 

where: 

 
10

 .  (17.27) 

Eq.(17.24) is related to the stress resultants, while Eq.(17.25) is related to the stress 

couples. The total potential energy becomes: 
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, (17.28) 

which is written as: 
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 (17.29) 

It is important to note that in Eq.(17.29) the term related to the concentrated loads is ex-

cluded, consequently the vector of concentrated loads should be produced additionally. This is 

an easy task based on the nodal degrees of freedom: 


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444444333333

2,22222111111
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T

ec

MMMFFFMMMFFF

MMMFFFMMMFFFF   (17.30) 

and the completed total potential energy becomes: 

)
~~

(~~~~

2

1
ecep

T

eee

T

ee FFuuKu  . (17.31) 

In Eq.(17.31)
e

K
~

is the element stiffness matrix in the local coordinate system 
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The force vector from the distributed load is: 

 
 




2/

2/

1~
L

L

TT

ep dxdRpMF





 . (17.33) 

Finally the well-known finite element equilibrium equation in the local system is: 

eee
FuK
~~~

 , (17.34) 

which is applicable only for a single element. The global equation of developed by a proper 

transformation. The structural equation is required when there are several elements connected 

to each other, which is mathematically the same as Eq. (14.86). The advantage of the thin 

cylindrical shell element is that the cylindrical surface is captured exactly; as a consequence it 

provides accurate result even if the number of elements is relatively low. 

 

17.3. Axisymmetric shell problems – conical shell element 

The midsurface of axisymmetric shells is produced by the rotation of the meridian curve 

about a straight axis [1]. An example is shown by Fig.17.2.  

 

Fig.17.2. Axisymmetric shell. 

The meridian curves and the circular curves perpendicularly to the meridian curves are 

principal curvature lines of the surface. If the load of the structure is axisymmetric, then in 

this kind of problem the displacement field is the function of arc length along the meridian 

curve only. 
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The meridian curve can be modeled by straight lines, and so we approximate the original 

shell structure by conical shell elements. Referring to the basic equations of the technical 

theory of thin shells, the parameters of the conical shell element shown in Fig.17.3 are: 

sq 1 , 11 H , 1R , (17.35) 

2q , rH 2 ,
cos

2

r
R  , 

where s is the arc length,  is the angle coordinate, r is the radius for a point P,  is the 

half angle of inclination. To calculate the strain components we need to determine the r(s) 

relationship, based on Fig.17.3 we have: 

1sin)( rssr    and sin
ds

dr
. (17.36) 

 

Fig.17.3. Axisymmetric conical shell element and its nodal parameters. 

Using Eqs.(14.67), (14.69) and (14.70) of the technical theory of thin shells we can calculate 

the strain components as: 

ss w,1   , 02  , 03  , (17.37) 

ss u,11   , )cossin(
1

22   wu
r

 , 012  , 

sss w,11   , sw
r

,22

sin
   , 012  . 

The displacement in the tangential direction at point P is v = 0 due to the axisymmetry. 

The admissible rigid body-like motion of the element is a displacement given by d in direc-

tion Z, for which the displacement components are u = -dcos and w = dsin (see Fig.17.3). 

We consider three degrees of freedom at each node, these are: u (displacement along the me-

ridian direction), w (displacement perpendicularly to the meridian curve) and s (angle of ro-
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tation about the axis perpendicularly to the meridian curve in accordance with Fig.17.3), 

therefore the element has six degrees of freedom. The displacement in the meridian direction 

is interpolated by a linear function of the arc length. On the other hand we apply third order 

interpolation with respect to the displacement in the normal direction: 

 




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
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
32100

00001

sss

s

w

u
, (17.38) 

where  is the vector of unknown coefficients: 

 654321 aaaaaa
T
 . (17.39) 

The vector of nodal displacements is: 

 222111

~~~~~~~
ss

T

e wuwuu  . (17.40) 

The conditions required for the determination of the coefficients are: 

11211
~)( usaasu  , (17.41) 
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252432
~)( wsasasaasw  , 

2

2

262542

~
32)( ss sasaas   . 

The solutions for the coefficients are moderately complicated, therefore they are not in-

cluded here. The displacement functions can be formulated also in the way presented below: 

2211
~~)( uNuNsu  , (17.42) 

26251413

~~~~)( ss NwNNwNsw   , 

where Ni, i = 1...6 are the interpolation functions: 
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and: 
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The strain components in matrix form are: 
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where the strain-displacement matrix is: 
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We collect also the curvatures in matrix form: 
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Based on the constitutive law the vector of stress components is: 

euBCC ~
0   , (17.49) 

euHCzCz ~
1   . 
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The vectors of strain components and curvatures contain only two elements, therefore the 

constitutive matrix reduces to: 


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
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
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1

1

1 2 





E
C . (17.50) 

Taking the former back into the total potential energy (similarly to the cylindrical shell 

element) we can calculate the element stiffness matrix in the local coordinate system: 
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In the above expression it was considered that s1 = 0 and s2 = l and so r = ssin. The exact 

computation of the stiffness matrix is quite complicated, and consequently the finite element 

codes implement numerical methods, e.g. the Gauss rule presented in section 12 is suitable to 

calculate the matrix components. The force vector is composed by two terms. The vector of 

concentrated forces can be constructed based on the nodal degrees of freedom: 

 222111

~
MFFMFFF nsns

T

ec  , (17.52) 

where F refers to the concentrated force, M is a concentrated moment about the same direc-

tion tan that of s. The force vector from the distributed load is calculated based on the work 

of the load: 
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accordingly: 
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Considering that lsin  = r2-r1 and assuming that both ps and pn are constants, we obtain: 
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In the local coordinate system the nodal displacement and reactions are calculated form 

the usual: 

eee
FuK
~~~

  (17.56) 

equation, where: 

epece FFF
~~~

 . (17.57) 

For a finite element structure we need the structural equation given by Eq.(14.86). Since 

the elements are connected under a given angle, the local displacement coordinates should be 

transformed into the global cylindrical coordinate system with longitudinal axis given by Z. 

The transformation can be performed based on Fig.17.3: 
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Based on the former the transformation of the stiffness matrix becomes: 


e
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 , (17.59) 

where: 
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is an orthogonal transformation matrix. The transformed force vector is: 
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ee FTF
~

 . (17.61) 

For a single element the finite element equation in the global system is: 

eee
FuK  , (17.62) 

Moreover, for the whole structure we have: 

FUK  . (17.63) 

In the finite element literature there are more element types, e.g. curved axisymmetric 

shell element [4,5,6], which operates similarly to the conical shell element. 

 

17.4. Thick-walled shell elements 

For the solution of three-dimensional problems we can apply the spatial (SOLID type) ele-

ments. Fig.17.4 shows a 20 node isoparametric element. Isoparametric representation means 

that the geometry and the displacement field is described by the same set of interpolation 

functions [1,4,5]: 
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Fig.17.4. Quadratic two and three dimensional elements. 

The thick-walled shell elements are constructed in accordance with isoparametric formulation, 

in this respect we point out that the sides perpendicularly to the shell midsurface are straight, 

i.e. the interpolation in the thickness direction is linear. The element is determined by the 8 

nodes of the  = 0 midsurface. As it can be seen in Fig.17.4 the direction of the unit basis vec-

tors changes from point to point, therefore the nodal number is indicated by subscript „i”.  
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The coordinates of the points on the midsurface of the thick-walled shell element are given 

by: 
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where ni are the column vector of normal vectors at the midsurface nodes, ti is the thickness in 

the actual node, Ni are the interpolation functions, respectively. The interpolation functions 

are the same as those of the quadratic isoparametric plane membrane element (see section 12). 

The compact form of the interpolation function is: 

)1)(1)(1(
4

1
 iiiiiN  , i = 1, 3, 5, 7, (17.66) 
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1 2222   iiiiiN , i = 2, 4, 6, 8, 

where i and i are the local nodal coordinates. On the midsurface the  and  coordinate 

lines are orthogonal, therefore the basis vectors are calculated as: 
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The nodal displacement parameters are the ui, vi, wi displacements and the 1i and 2i angle 

of rotations. In the case of eight nodes it means that the element has 40 degrees of freedom. 

Vector ni can be formulated by using the rotations and the basis vectors e1i, e2i: 

iii een 2112

~~
  , (17.68) 

which is the term capturing the transverse shear deformation, it causes an increment in u and 

v. According to the isoparametric representation the displacement field becomes: 

)
~~

(
2

),(
~

~

~

),( 2112

8

1

8

1

iiiii

i

i

i

i

i

i

i eetN

w

v

u

N

w

v

u




 






































. (17.69) 

To calculate the stiffness matrix we have to establish the strain-displacement relationship. 

The derivatives of the displacement parameters with respect to the local coordinates are: 
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For the other two components we obtain similar equations. The further computations re-

quire the Jacobi matrix and determinant [1,4,5]: 
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The elements of the Jacobi matrix can be obtained using Eq.(17.65). Also, the derivatives 

of the displacement components can be determined in the global coordinate system. For ex-

ample, the derivatives of the component u in matrix form are: 
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where Jij
(-1)

 are the elements of the inverse Jacobi matrix. Based on Eq.(17.70) we obtain the 

following: 
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and: 
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The derivatives with respect to the other two coordinates are: 
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Written in matrix form we have: 
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The derivatives of the other two components can be provided similarly. Using the deriva-

tives we can calculate matrix B , which is the relationship between the strain components and 

the nodal displacement parameters: 

euB~~  , (17.79) 

where eu~ is the vector of nodal parameters in the local coordinate system. The vectors of 

strain and stress components in the global system are: 
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T
  . 

Hooke’s law in the local system can be written as: 

 ~~ C , (17.81) 

where C  is the constitutive matrix: 
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The matrix above differs from the general three dimensional case in accordance with the 

followings. The stress normal to the shell surface is zero (3
rd

 row, 3
rd

 column). Since the ele-

ment is thick-walled it considers also the effect of transverse shear deformation, but only in 

the form of an average stress. The constant in the elements of the 5
th

 row, 5
th

 column, and the 

6
th

 row, 6
th

 column is a shear correction factor, k = 5/6 [1,4,5]. The reason for that is the real 

distribution of the shear stresses is assumed to be parabolic over the thickness, and it is not 

constant as considered in the shell model. The correction factor k is the ratio of the strain 

energies from the two different distributions. Based on the transformation of local stress and 

strain components we can write the followings:  

 T~ ,  ~T
T , (17.83) 

 T~ ,  ~T
T , 

where T  is the transformation matrix for general spatial stress and strain states. The calcula-

tion of T  is possible using the definitions given by Eq.(11.62). Taking back Eq.(17.83) into 

Hooke’s law we have: 

 TCT  . (17.84) 

The premultiplication with 
1

T leads to: 
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 TCTTT
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 .  (17.85) 

SinceT is an orthogonal matrix we can write that: ETT 
1

, and 
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 TT
T

, viz.: 
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The transformation matrix is [4]: 
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where li, mi and ni are the direction cosines of the unit basis vectors at the actual point [4,7]: 

),cos( 11 ii eil  , ),cos( 11 ii ejm  , ),cos( 11 ii ekn  , (17.88) 

),cos( 22 ii eil  , ),cos( 22 ii ejm  , ),cos( 22 ii ekn  , 

),cos( 33 ii eil  , ),cos( 33 ii ejm  , ),cos( 33 ii ekn  . 

The transformation matrix should be evaluated in the nodes, moreover due to the numeri-

cal integration even in the integration points. The stiffness matrix in the global coordinate 

system can be calculated using Eq.(15.17): 
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where J is the Jacobi determinant, which can be calculated using Eqs.(17.65) and (17.71). 

For the determination of the force vector we recall the displacement vector field in the usual 

form: 

euNu ~),,(  , (17.90) 

where N is the matrix of interpolation polynomials. As a result, the vectors of body, sur-

face and line forces in the global coordinate system are: 
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which can be determined by transformation into the global system in a similar way to that 

presented in section 16. In the nodes concentrated forces may act, the relevant vector can be 

obtained in the same way as that shown in plate elements. Because of he high number of 

nodes it is not detailed here. The finite element equilibrium equation is formed in the usual 

way, for a single element it is: 

eee
FuK  , (17.92) 

where Fe is the sum of the vectors of body, surface, line and concentrated forces. Finally, the 

structural equation is: 

FUK  . (17.93) 

17.5. A shell-solid transition element 

In complex structures sometimes there is the necessity of the simultaneous application of sol-

id and thick-walled shell elements. These elements can not be connected directly, because the 

nodal degrees of freedom are not identical. In these cases it is reasonable to use a transition 

element between the solid and shell elements [1,4,5]. A quadratic transition element is shown 

in Fig.17.5, where the nodes 1-8 are located in the solid side, nodes 10-12 care located in the 

shell side of the element. 

 

Fig.17.5. A shell-solid transition element. 

The geometry of the transition element is captured by the function below: 
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The indices i = 1...8 refer to the interpolation function of the solid element given by 

Eq.(17.64), if i = 9...13 then the actual interpolation functions of the thick-walled shell ele-

ments are referred to in accordance with Eq.(17.65). The composed system of functions satis-

fies the following conditions [1]: 
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where j, j and j are the nodal coordinates in the local coordinate system. Similarly to the 

thick-walled shell elements the displacement field is expressed by: 
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. (17.96) 

The degrees of freedom in nodes 1-8 are equal to three, in nodes 9-13 there are five de-

grees of freedom. Consequently the transition element has 49 degrees of freedom. The further 

calculations can be performed in similar fashion to that presented in the thick-walled shell 

element.  
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18. ANALYSIS OF 3D PROBLEMS WITH FINITE ELEMENT BASED 

PROGRAM SYSTEMS. INTRODUCTION OF 3D ELEMENTS. 

In several cases, the geometry of a structure or a body cannot be modeled as a line or surface. 

In that special case it has to be modeled as a body. Bodies like these can only be approx-

imated by 3D elements in order to prevail neglecting important parts. Complex geometry ap-

pears in simple structures as well. For example, if a welded beam structure is modeled, then it 

is suitable to use beam elements which is able to analyze the stress state of the structure.  If 

the stress state has to be analyzed in the joints of a structure, then shell model must be ap-

plied. If the weld coalescences have to be examined as well, then 3D model must be applied. 

Naturally, the more precise modeling which involves more nodes, increases the amount of 

calculations as well. 

The 3D elements can be hexahedrons, tetrahedron, less often pentahedron (these elements 

can be derived from hexahedrons) which can be described by linear-, quadratic of higher de-

gree of basis functions. 

18.1. Hexahedron elements 

The hexahedron elements are mapped to a cube with unit length of two. Depending on the 

degree of the approximating polynomial, elements with 8, 20 or 32 nodes can be used as well. 
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Figure 18.1.: Local coordinate system of the Hexahedron 
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The local coordinate system is derived from the global coordinates and the 2a, 2b, 2c lengths 

of the cube. These coordinates are: 

a

xx C
 ,  (18.1) 

b

yy C
  and  (18.2) 

c

zz C
 . (18.3) 

Then the derivatives: 

a

dx
d  ,  (18.4) 

b

dy
d   és  (18.5) 

c

dz
d  . (18.6) 

18.1.1. Hexahedron element with 8 nodes 
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Figure 18.2.: Hexahedron with 8 nodes and the mapped cube 

If the investigated body is to be analyzed by linear hexahedrons, then elements with 8 nodes 

must be used. The element is approximated by:  
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  ii xNx   ,, , (18.7) 

  ii yNy   ,,  and (18.8) 

  ii zNz   ,,  (18.9) 

formulas, where   ,,iN  is the basis function of the i
th

  node: 

   iiiiN   111
8

1
, (18.10) 

where iii  ,,  are the local coordinates of i
th

  node. 

The J  Jacobi-matrix determines the relationship between the local and global derivatives 

of the basis function: 

     ,,,, iglobilok NJN  , where (18.11) 
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

zyx

zyx

zyx

J . (18.12) 

The basis functions, similarly to (3.20) equation, are interpolation functions. These func-

tions can be used to approximate the displacement of the element, thus there is no need to 

introduce new interpolation functions but to apply the (18.10) basis functions in case of a 

hexahedron element with 8 nodes. 

  ii uNu   ,, , 

  ii vNv   ,, , 

  ii wNw   ,, . 

The described elements are named as isoparametric elements. 
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18.1.2. Hexahedron element with 20 nodes 
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Figure 18.3.: Hexahedron with 20 nodes and the mapped cube 

If the investigated body is to be described by quadratic hexahedrons, then elements with 20 

nodes must be used. The element is approximated by: 

  ii xNx   ,, , 

  ii yNy   ,,  and 

  ii zNz   ,,  

formulas, where   ,,iN  is the basis function of the i
th

  node. In case of an element with 20 

nodes, the nodes in the corners and the nodes in the middle of the sides must be distinguished. 

 

In case the node is located in a corner, the basis function is: 

    2111
8

1
 iiiiiiiN  , (18.13) 

where iii  ,, are the local coordinate of corner i . 

In case the node is located at the middle of a side, the basis function is: 

If 0i , then 

   iiiN   111
4

1 2 . (18.14) 
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If 0i , then 

   iiiN   111
4

1 2 . (18.15) 

If 0i , then 

   2111
4

1
  iiiN , (18.16) 

where iii  ,, are the local coordinates of node i  at the middle of the side. 

Similarly to the element with 8 nodes, the J  Jacobi-matrix determines the relationship be-

tween the local and global derivatives of the basis function: 

     ,,,, iglobilok NJN  , where 
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If (18.13)-(18.16) basis functions are used to approximate the displacement of a hexahe-

dron with 20 nodes, then the elements are named as isoparametric elements as well.  

18.1.3. Hexahedron element with 32 nodes 
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Figure 18.4.: Hexahedron with 32 nodes and the mapped cube 
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If the investigated body is to be described by cubic hexahedrons, then elements with 32 nodes 

must be used. The element is approximated by: 

  ii xNx   ,, , 

  ii yNy   ,,  and 

  ii zNz   ,,  

formulas, where   ,,iN  is the basis function of the i
th

  node. In case of an element with 32 

nodes, the nodes in the corners and the nodes along the sides must be distinguished. 

 

In case the node is located in a corner, the basis function is: 

      199111
64

1 222   iiiiN , (18.17) 

where iii  ,, are the local coordinates of corner i . 

The basis functions at the point of the third length of the side:  

If 
3

1
i , then 

    iiiiN   11911
64

9 2 . (18.18) 

If 
3

1
i , then 

    iiiiN   19111
64

9 2 . (18.19) 

If 
3

1
i , then 

    iiiiN  91111
64

9 2  , (18.20) 

where iii  ,,  are the local coordinates of node i  along the side. 

Similarly to the earlier, the J  Jacobi-matrix determines the relationship between the local 

and global derivatives of the basis function: 

     ,,,, iglobilok NJN  , where 
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If (18.17)-(18.20) basis functions are used to approximate the displacement of a hexahe-

dron with 32 nodes, then the elements are named as isoparametric elements as well. 

 

18.1.4. Pentagon elements  

Among the pentagon elements mostly the prism and the pyramid is used, which are described 

as a degenerated hexahedron. 

 

18.2. Tetrahedron elements 

Basis functions can be described in two kinds of coordinate systems in case of tetrahedron 

elements: in a coordinate system where the element is mapped as a tetrahedron with unit 

lengths, or in a so-called volume coordinate system (same as in the ANSYS). Both way of 

description will be introduced. 

In case of the first description, the origin of the local coordinate system is allocated in one 

corner of the tetrahedron (Figure 18.5.).  
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Figure 18.5.: Tetrahedron in the unit length coordinate system 

In this origin, the local coordinates are described by the a, b, c lengths: 

a

xx A
 ,  (18.21) 
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b

yy A
  and  (18.22) 

c

zz A
 . (18.23) 

The volume coordinate system is defined by the following equation system: 

44332211 xLxLxLxLx  , 

44332211 yLyLyLyLy   (18.24) 

44332211 zLzLzLzLz   

43211 LLLL   

zyx ,,  are the global coordinates of an inner point, 41 ...,, zx  are the global coordinates of the 

corners, 41 ...,, LL  are the volume coordinates. By solving the (18.24) equation system the 

volume coordinates are:  

V

zdycxba
L

6

1111
1


 , 

V

zdycxba
L

6

2222
2


 , 

V

zdycxba
L

6

3333
3


 , 

V

zdycxba
L

6

4444
4


 , where 

41 ...,, da are constants, and V  is the volume of the tetrahedron. By setting and simplifying the 

formulas, the single coordinates can be calculated at any inner P point of the tetrahedron, if 

the original body is divided into four tetrahedrons with respect of point P. 
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Figure 18.6.: Discretization of tetrahedron for volume coordinates 

Thus the volume coordinates of P – related to each corner – can be obtained as the ratio of the 

opposite volume of the examined small tetrahedron and the volume of the original tetrahe-

dron: 

V

V
L P234

1  , 
V

V
L P134

2  , 
V

V
L P124

3  , 
V

V
L P123

4  . (18.25) 
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18.2.1. Tetrahedron element with 4 nodes 


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Figure 18.7.: Map of tetrahedron element with 4 nodes to  ,,  coordinates 

If the investigated geometry of the body is to be described by linear tetrahedrons, then ele-

ments with 4 nodes must be used. In a  ,,  coordinate system the element is approximated 

by: 

  ii xNx   ,, , 

  ii yNy   ,,  and 

  ii zNz   ,, , 

where   ,,iN  is the basis function related to the i  node: 

 11N , (18.26) 

2N , (18.27) 

3N , (18.28) 

4N . (18.29) 

 

In volume coordinate system the shape is approximated by: 
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  ii xLLLLNx  4321 ,,, , 

  ii yLLLLNy  4321 ,,,  and 

  ii zLLLLNz  4321 ,,,  

Formulas, where  4321 ,,, LLLLNi  is the basis function of i  node: 

11 LN  , (18.30) 

22 LN  , (18.31) 

33 LN  , (18.32) 

44 LN  . (18.33) 

18.2.2. Tetrahedron element with 10 nodes 
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Figure 18.8.: Map of tetrahedron element with 10 nodes to  ,,  coordinates 

If the investigated geometry of the body is to be described by quadratic tetrahedrons, then 

elements with 10 nodes must be used. In a  ,,  coordinate system the element is approx-

imated by: 

  ii xNx   ,, , 
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  ii yNy   ,,  and 

  ii zNz   ,,  

where   ,,iN  is the basis function related to the i  node in the corners: 

       12121211N , 

   22122 N , 

   21223 N , 

   12224N . 

The nodes in the middle of the sides: 

   145N , 

46 N , 

   147N , 

48 N , 

49 N , 

   1410N . 

In volume coordinate system the shape is approximated by: 

  ii xLLLLNx  4321 ,,, , 

  ii yLLLLNy  4321 ,,,  and 

  ii zLLLLNz  4321 ,,,  

where  4321 ,,, LLLLNi  is the basis function related to the i  node.  

Basis functions in the corners:  

 12 111  LLN , 
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 12 222  LLN , 

 12 333  LLN , 

 12 444  LLN . 

In the middle of the sides: 

215 4 LLN  , 

326 4 LLN  , 

317 4 LLN  , 

428 4 LLN  , 

439 4 LLN  , 

4110 4 LLN  . 

The advantage of the volume coordinate system becomes more obvious since the basis 

functions are simple and similar to each other. 

18.2.3. Tetrahedron element with 20 nodes 
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Figure 18.9.: Tetrahedron element with 20 nodes 
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If the investigated geometry of the body is to be described by cubic tetrahedrons, then ele-

ments with 20 nodes must be used. 

 

Since the volume coordinate description has a simpler form, only this method will be pre-

sented. In volume coordinate system the shape is approximated by: 

  ii xLLLLNx  4321 ,,, , 

  ii yLLLLNy  4321 ,,,  and 

  ii zLLLLNz  4321 ,,,  

where  4321 ,,, LLLLNi  is the basis function related to the i  node.  

Basis functions in the corners: 

  2313
2

1
1111  LLLN , 

  2313
2

1
2222  LLLN , 

  2313
2

1
3333  LLLN , 

  2313
2

1
4444  LLLN . 

Basis functions in the middle of the sides: 

 13
2

9
1215  LLLN ,  13

2

9
2216  LLLN , 

 13
2

9
1317  LLLN ,  13

2

9
3318  LLLN , 

 13
2

9
1419  LLLN ,  13

2

9
44110  LLLN , 

 13
2

9
23211  LLLN ,  13

2

9
33212  LLLN , 

 13
2

9
34313  LLLN ,  13

2

9
44314  LLLN , 
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 13
2

9
24215  LLLN ,  13

2

9
44216  LLLN . 

Middle of the surface: 

32117 27 LLLN  , 

42118 27 LLLN  , 

43119 27 LLLN  , 

43220 27 LLLN  . 

 

18.3. Hierarchic basis functions 

In case of elements with higher degree, hierarchic basis functions can be used, which has the 

original degree of the function in the corners but lower degree along the sides and the surfac-

es. 

 

18.4. Definition of stiffness matrix and nodal loads 

18.4.1. Numerical Gauss integration method 

In order to solve a finite element problem, the elements of the stiffness equation (stiffness 

matrix, nodal loads) must be determined. These elements can be obtained by integration as it 

is shown in Chapter 3.5. Most of the times the integrals cannot be solved analytically, thus 

numerical integration techniques must be applied. In case of a three dimensional 

 zyxF ,, function with respect to a V volume, by the use of the Gauss integration method: 

     kji

V i j k

kji zyxFwwwdxdydzzyxFdVzyxF ,,,,,,   , 

where: 

 kji www ,, : weight factors, 

 kji zyx ,, : Gauss coordinates. 

 

If we choose to use  ,,  local coordinates, then: 

         dddJFdxdydzzyxF ,,det,,,,  

   
i j k

kjikjikji FJWWW  ,,,,det , 
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where: 

 kji WWW ,, : Gauss weight factors, 

 kji  ,, : Gauss (local) coordinates, 

 J : Jacobi-matrix. 

 

18.4.2. Definition of stiffness matrix in case of 3D elements 

In case of isoparametric elements the (3.23.) stiffness matrix must be defined as: 

     dVrBCrBK

eV

e

T

ee  , where  

   rNrB
ee

 . 

Let  zyxF
e

,,  be defined as function: 

       zyxBCzyxBzyxF e

T

ee
,,,,,,  ,  

Then the stiffness matrix of a hexahedron element: 

         
  

1

1

1

1

1

1

,,det,,,,  dddJFdVzyxFK
e

V

ee

e

 

   
i j k

kjiekjikji FJWWW  ,,,,det  

 

18.4.3. Derivation of nodal loads from distributed force system on volume 

The nodal loads are derived from the distributed force system on a volume or surface. Ac-

cording to (3.24) the load from the distributed force system on a volume: 

   dVqrNF

eV

T

eqe  . 

Introducing the  zyxf
qe

,,  function: 

     qrNzyxf
T

eqe
,, , 

Deriving the nodal load from the distributed force system on a volume of a hexahedron 

element: 
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         
  

1

1

1

1

1

1

,,det,,,,  dddJfdVzyxfF
qe

V
qeqe

e

 

   
i j k

kjiqekjikji fJWWW  ,,,,det  

 

18.4.4. Derivation of nodal loads from distributed force system on surfacel 

According to (3.25) the load from the distributed force system on a surface: 

   dAprNF

epA

T

epe  . 



y

z

x

r

i
j

k

a1 a2

a3





 

Figure 18.10.: Determination of the normal of a surface 

In an arbitrary point of 1  coordinate the 1a  and 2a  tangents can be determined as: 






r
a1  és 






r
a2 . 

By knowing these tangents, the normal 3a vector is: 

213 aaa  . 

The basis function is limited to the surface: 
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   1,,,   ii NN . 

Then the tangents are: 

     
kz

N
jy

N
ix

Nr
a i

i
i

i
i

i 


















 















,,,
1 , 

     
kz

N
jy

N
ix

Nr
a i

i
i

i
i

i 


















 















,,,
2 . 

And the force vector on an infinitesimal surface is defined as: 

   ddapddaapAdpdAp 321  . 

Substituting this into (3.25): 

      
 



1

1

1

1

3,  ddapNdAprNF
T

e

A

T

epe

ep

. 

Introducing   ,
pe

f  function: 

     3,, apNf
T

epe
  , 

Deriving the nodal load from the distributed force system on a surface of a hexahedron 

element:  

   jiqe
i j

jiqepe fWWddfF  ,,

1

1

1

1

  
 

. 
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19. ANALYSIS OF 3D PROBLEMS WITH FINITE ELEMENT BASED 

PROGRAM SYSTEMS. APPLICATION OF 3D ELEMENTS. 

19.1. Creation of geometric model 

The geometric models of three-dimensional bodies are identical with the original 3D bodies if 

3D elements are used during the creation.  With the capacity of the modern computers even 

the most complex structures (linear material law, static problem) can be solved in reasonable 

time. Although, in many cases the complete, detailed analysis is irrelevant. The computational 

time can be decreased, and in case of non-linear problems the modification of the original 

shape of the body can be an essential condition. The importance of these questions will be 

presented in the following chapter. 

There are two ways to import the geometry of a body into a finite element program: we ei-

ther use to construct the model with the basic design module of the finite element program, or 

we use a commercial design program to create and import the geometry of a body. 

 

19.1.1. Editing the original geometry 

During the creation of the geometric model – the pure digitalization of the geometry is not 

sufficient – special surfaces must be created where: 

 Loads and constraints can be applied, 

 The mesh can be modified, 

 Results can be plotted. 

Further on, these routines can be only undertaken, if the appointed surfaces exist and are 

available to refer in the program. 

In Figure 19.1 an example is shown about the definition of surfaces. On the original geo-

metry the surface of the cylinder is a compact domain, but the load is applied on only one 

individual surface. That surface has to be separated, since it will be treated as a reference sur-

face in case of defining force, pressure or deflection. 

  

Figure 19.1.: Creation of surface on a cylinder 
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19.1.2. Modeling sides and corners 

3D models include the geometry of sides and chamfered or rounded corners. On the other 

hand, it is recommended to decrease the computational time by selecting the essentially im-

portant parts for modeling and neglecting the ones which are less important related to the 

analysis. As a general engineering rule of thumb, if we suspect peak stresses in a certain area, 

then a more detailed model has to be used, while in case of an unloaded area the same model 

is irrelevant. In case of Figure 19.2 we assume that the loads and constraints are located at the 

ends of the shaft. Using rounded corners (signed as red) in this particular case only increases 

the complexity of the model without adding more information. In contrary, the rounded green 

part on the model has valid influence on the peak stresses, thus neglecting it would case great 

unreliability in the calculation.  

In case of this problem, the green rounded radius is given and appears in the model, while 

the corners – signed with red color – is neglected and also not represented on the model. 

 

19.1.3. Modeling unloaded parts 

During the modeling the unloaded parts can be neglected. If it is known that a decoration of 

information board will be bolted to the crankshaft in Figure 19.3, then its influence can be 

neglected, and the handle can be skipped in the model. 

 

Figure 19.2.: Modeling sides and corners 
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19.1.4. Modeling symmetric parts 

In case of modeling a machine element, the symmetry itself can be utilized if the load is 

symmetric as well. It is sufficient to use the half of the geometry in case of single symmetry 

while the one-forth of the geometry in case of double symmetry, while the proper constraints 

have to be applied on the intersected surfaces in order to model the neglected parts (Figure 

19.4). This method is correct in case of strength calculation and analysis, while in case of sta-

bility and eigenfrequency can only be used with some restrictions. 

19.2. Creation of finite element model 

The geometry of the bodies are discretized to finite elements according to method and pre-

sented element types in Chapter 18. The discretization of the body is called meshing. The 

meshing is carried out by the software although some parameters have to be specified (or the 

default parameters modified). The two most important parameters are the type and the size of 

the elements. 

 
                                   a)                                                                         b) 

Figure 19.3: Modeling unloaded parts 

 
                    a) single symmetry                                  b) double symmetry  

Figure 19.4: Utilization of symmetry properties 
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19.2.1. Defining the mesh 

In case of classic, commercial software the element type has to be chosen, which is followed 

by the size or the numbers of the elements. After these steps comes the concrete meshing. 

Modern software is able to mesh the geometry without setting any parameters. In this special 

case the program uses a default setting which is appropriate for a rough estimation although 

this only gives the user a line on the results. In most cases we can only give capital credit to 

the mesh (feasible and appropriate) if the settings are well chosen. In the following chapter we 

shall investigate the influence of the element type and size. 

 

19.2.2. Influence of element size 

Earlier, a crankshaft was examined – under different settings – with fixation applied on one 

end and concentrated force applied on the other end.  In Figure 19.5, the meshing was carried 

out with the default setting. As it is seen, the application of tetrahedrons results a coarse mesh, 

with maximal reduced stress of 48MPa. 

Let us define the average element size to 5mm, which results finer mesh while the reduced 

stress increases to 55MPa. 

 

Figure 19.5: FEM mesh with default settings and calculated reduced stress (MPa) 

 

Figure 19.6:  Calculated reduced stress in case of 5 mm average element size (MPa) 
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It appears very visibly that the critical part is located at the transition of the diameters, at the 

rounded corner. If we are already aware of the critical segments, the further refinement of the 

mesh on the complete geometry is irrelevant. Let us reduce the element size, but only in the 

critical segment, and investigate the additional influence. 

Let us reduce the size the element size to 2 mm in the critical segment while the average 

element size remains 5mm in other segments. 

 

In Figure 19.7 it is seen, that further refinement in the mesh resulted additional 12MPa of 

stress increment in the calculation. As long as the results are so sensitive to the mesh, the cor-

rect solution is not even close, thus let us reduce the element size to 1 mm in the critical seg-

ment. 

The further refinement in the mesh caused no relevant difference, thus the result started con-

verging. The solution is approximated and further refinement in the mesh will not have consi-

derable influence on the result. (Note, that the element size was halved, which causes powered 

 

Figure 19.7: 5 mm of average element size, 2 mm of reduced element size in the critical segment and 

the calculated reduced stress (MPa) 

 

Figure 19.7: 5 mm of average element size, 1 mm of reduced element size in the critical segment and the 

calculated reduced stress (MPa) 
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increment in the element number. In three dimensions it increases the order of magnitude in 

the critical segment with closely one.) 

As a validation, let us consider a much finer mesh with 0.5 mm of element size in the crit-

ical segment. In Figure 19.8 it is seen that this mesh causes less than 0.5 % difference in the 

result. 

19.2.3. Influence of element type 

Let us investigate the influence of the tetrahedron elements with 4 nodes (linear approxima-

tion) compared to the earlier presented tetrahedron elements with 10 nodes (quadratic approx-

imation). Very likely, the decrease of the order of approximate functions will have negative 

influence on the results. The element type remains tetrahedron, only the nodes in the element 

are reduced. The meshes are not presented (identical with Figure 19.5-8), only the reduced 

stresses are compared in case of identical mesh, element size and different (10 or 4) nodes. 

 

Figure 19.8: 5 mm of average element size, 0.5 mm of reduced element size in the critical segment 

and the calculated reduced stress (MPa) 

 
                     Tetrahedron with 10 nodes                               Tetrahedron with 4 nodes 

Figure 19.9: Calculated reduced stress (MPa) in case of different tetrahedrons, element size is 

default. 
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In Figure 19.9 it is seen, that the tetrahedron with 4 nodes cannot approximate properly the 

cylindrical geometry, since the side of certain elements are a plane due to the linear approx-

imate functions, in contrast with the 10 nodes element which can model the sides as curves as 

well. 

The rounding radius was set to 3 mm, thus the maximum stress did not change significantly 

compared to the default setting. In the next step, the rounding radius is set to 2 mm, which 

will very likely enhance the accuracy of the result. 

In Figure 19.11 it is seen, that the results are highly refined if we use smaller elements than 

the rounding radius.  While the valid result was already approximated with the 10 nodes ele-

ment, the solution given by the 4 nodes element had relevant difference. Let us refine the 

mesh – which was already appropriate for the elements with 10 nodes – and observe the influ-

ence on the elements with 4 nodes. 

 
                      Tetrahedron with 10 nodes                               Tetrahedron with 4 nodes 

Figure 19.10:  Calculated reduced stress (MPa) in case of different tetrahedrons, average element 

size is 5 mm 

 
                      Tetrahedron with 10 nodes                               Tetrahedron with 4 nodes 

Figure 19.11:  Calculated reduced stress (MPa) in case of different tetrahedrons, average element 

size is 5 mm, element size in the critical segment is 2 mm 
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In Figure 19.12 and 19.13 it is seen, that the elements with 4 nodes do not converge to the 

valid solution even if the mesh if very fine. In case of tetrahedron elements with 10 nodes we 

obtain an acceptable solution with fewer elements than the order of magnitude of two. We can 

draw the following conclusions: the use of elements with 4 nodes has to be avoided if the 

modeled body includes curved geometry. This means practically most cases.  

19.3. Boundary conditions 

Another most important part of FEM modeling is the proper settings of the boundary condi-

tions. We cannot make faults by using approximate functions with higher order or a very fine 

mesh. That might relevantly increase the computational time, but the solution will be ulti-

mately valid. The fault of boundary conditions settings will appear independently from the 

fine mesh. Many cases, the error due to the wrong boundary conditions is increased by the 

finer mesh. 

 
                      Tetrahedron with 10 nodes                               Tetrahedron with 4 nodes 

Figure 19.12: Calculated reduced stress (MPa) in case of different tetrahedrons, average element 

size is 5 mm, element size in the critical segment is 1 mm 

 

 
                      Tetrahedron with 10 nodes                               Tetrahedron with 4 nodes 

Figure 19.13: Calculated reduced stress (MPa) in case of different tetrahedrons, average element 

size is 5 mm, element size in the critical segment is 0.5 mm 
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19.3.1. Loads 

Real bodies are subjected to distributed loads on their surface or volume. Loads can be con-

centrated in a point or distributed along a line if the modeling dimension is lower. The appli-

cation of these loads is a fault in the 3D modeling, which proportionally increases the error in 

the solution by the refinement of the mesh. 

In Figure 19.14 a cube is plotted with 20 mm of side length, and 100 N of concentrated 

force is applied on the middle of its upper plane. The other lower plane of the cube is fixed. 

Let us examine the stresses as a function of element size. 

If the force is acted on the total plane as a pressure: 

MPa
mmmm

N

A

F
25,0

2020

100



  

Then normal stress appears in the total cross section. If we make the following fault by 

applying a concentrated force in the middle of the upper plane instead of a pressure, then we 

obtain different reduced stresses as a function of element numbers. 

 

 

Figure 19.14: Cube loaded on the middle of its upper plane 

 

Figure 19.15: Calculated stresses (MPa) in a cube loaded in a point with concentrated force (ele-

ment size 10 mm) 
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We can observe that the decrease of the element size constantly (and increase of the element 

number) increases the reduced stress (Figure 19.19). By the decrease of the element size we 

 

Figure 19.16: Calculated stresses (MPa) in a cube loaded in a point with concentrated force, (ele-

ment size 5 mm) 

 

Figure 19.17: Calculated stresses (MPa) in a cube loaded in a point with concentrated force, (ele-

ment size 2 mm) 

 

Figure 19.18: Calculated stresses (MPa) in a cube loaded in a point with concentrated force, (ele-

ment size 1 mm) 
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step by step approximate the theoretical concentrated load which results infinite stress. We 

obtain similar result if we apply distributed load along a line. 

 

In case of 3D modeling we can only apply distributed loads on the surfaces and the 

volumes. We do not analysis further the problem, but the similar problem appears if a line- or 

shell element is directly connected to a 3D body. 
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Figure 19.19: Reduced stress as a function of element number 

 

19.3.2. Constraints 

We have to pay special attention to the constraints if we model 3D bodies. Since the con-

straints are infinitely rigid, they might result unexpected and unrealistic stresses and deforma-

tion in the calculations. Although, this problem does not appear always so directly as it was 

demonstrated with the concentrated force in the earlier section. Due to this fact it can cause 

problems since it is hard to notice. Let us examine a beam fixed in one end and loaded with a 

concentrated force in the other end (Figure 19.20). 
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Calculated stress from pure bending: 

MPa
mm

mmN

K

lF
75,18

20

20010006
33







  

The calculated stress in the body is summarized in a table as a function of element type, 

element number and number of nodes: 

 

Figure 19.20: Normal stresses (MPa) in a fixed beam, hexahedron elements with 10 mm 
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Type Size Number of 

nodes 

Number of 

element 

Max. normal 

stress [MPa] 

Max. reduced 

stress [MPa] 

Tetrahedron 

with 4 nodes  

10 (def.) 218 513 16,2 11 

5 876 2747 21,4 15 

4 1306 4265 24,7 16,9 

3 2814 10359 26 18,4 

2 7325 29154 30,4 22,2 

1 35861 156570 38,9 27,8 

Tetrahedron 

with 4 nodes 

(structured) 

10 (def.) 442 1394 17,4 13 

5 2361 9270 21,1 16 

4 3948 16038 22 16,5 

3 6935 27324 23,6 17,9 

2 16758 69312 26,2 20,3 

1 78573 341083 32,4 26,4 

Tetrahedron 

with 10 

nodes 

10 (def.) 1149 513 25,5 19 

5 5182 2747 31,8 24,2 

4 7860 4265 34,6 26,3 

3 17814 10359 38,8 29,7 

2 47927 29154 44,6 34,4 

1 243813 156570 57,8 44,4 

Hexahedron 

with 8 nodes 

10 (def.) 525 320 20,3 18,7 

5 3321 2560 23,2 20,2 

4 6171 5000 24,5 21 

3 Could not mesh    

2 44541 40000 30 24,6 

Hexahedron 

with 20 

nodes 

10 (def.) 1865 320 23,6 19,5 

5 12465 2560 28,8 24,5 

4 23441 5000 31 26,5 

3 59710 13538 34,6 29,8 

2 173481 40000 39,5 34,1 

1 1333361 320000 51 44,1 

By observing the results we can derive that the solution does not converge, but the in-

crease of the error is not as significant as it was with the concentrated force. This fault causes 

unreliability during the validation of the results, since the calculated higher stresses are unrea-

listic due to the rigid fixation. Even higher stresses are resulted if the kinematic constraint is 

defined only on a segment instead of the total surface.  

The unrealistic stresses can be decreased by coarsing the mesh in the area of the ideal con-

straints. This is only a emergency solution, if we do not have the possibility to model contact 

or realistic constraints.  
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20. PRINCIPLES ABOUT MODELING, ACCURACY AND APPLI-

CABILITY. COMPARISON OF DIFFERENT FINITE ELEMENT MOD-

ELS, ANALYSIS OF RESULTS. 

20.1. Modeling beams 

Multiple models can be used in a finite element system in case of beams with constant cross 

sectional area. Short beams can be modeled as 1D beam, 3D body while then-walled struc-

tures even as shells. In the followings, we are going to investigate that depending on the con-

ditions, which model is applicable. In order to compare the results, simple problems will be 

solved by the use of different models.  

 

20.1.1. Analysis of a beam with circular cross section 

Let us consider a beam with circular cross section with 50 mm of radius and 1000 mm of 

length. All rotations and translations are constrained at one side, while on the other side a 

force with the magnitude of 1200 N is applied. Let us determine the maximum stress in the 

beam. Two models will be applied to solve the problem. Applying line elements the beam is 

modeled by its neutral axis (Fig. 20.1.a). In this case one end of the beam is fixed and the oth-

er end is loaded by a single force. By using 3D elements, the geometric model is a cylinder 

which is loaded by a distributed force system at one end. At the other end no fixation is ap-

plied, because the constraint of deformation would cause additional stresses beside the bend-

ing stress. Instead, the same distributed load is applied – with opposite direction – at the other 

end, while the axial displacement is prescribed to zero (Fig. 20.1.b.). 

The most important advantage of the 1D modeling related to the FEM is the reduced compu-

tation. The element itself is far simpler than the 3D elements, and beside the similar accuracy, 

less element is needed in the modeling. The meshed models are shown in Fig. 20.2. 

 
                                      a)                                                                   b) 

Figure 20.1.: Geometric model of the beam 
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In case of beam elements 21 or 43 nodes are sufficient; while 33048 and 142911 nodes are 

required to create an appropriately precise model with 3D elements. The number of 3D nodes 

can be reduced if the elements are elongated axially, but ultimately far more are required; if 

not 1D elements are used. 

The stresses are determined analytically as well in order to compare it to the later numeri-

cal results. In case of a fixed beam with circular cross section, the maximum stress calculated 

from the bending moment is: 

MPa
mm

mmN

d

lF

K

Mh 78,97
50

100012003232
333











 , 

where: 

 : Stress, 

hM : Maximum bending moment, 

F : Concentrated force, 

K : Section modulus, 

d : Diameter of the cross section. 

 
                                      a)                                                                   b) 

Figure 20.2.: FEM mesh with 1D and 3D elements 

 
                                      a)                                                                   b) 

Figure 20.3.: Calculated normal stresses in MPa 
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The stresses are plotted in Fig. 20.3. The result related to the beam model is approximately the 

same as the analytical result. The difference between the analytical result and the result of the 

3D model is less than 2%, which is practically acceptable. 

The application of beam elements could be useful if we wish to model large structures 

with fine mesh, ignoring the use of 3D elements due to the limit of computational time or it is 

simply beyond possibility.  If the boundary conditions are properly given, the result is relia-

ble. Still, we have to be aware of the limit of beam elements. Fixed constraints, contact 

stresses, cross section transitions cannot be realistically modeled with it. The calculated 

stresses cannot be so described in details as good as if the geometry of the cross section is 

involved in the model. 

 

20.1.2. Modeling of thin-walled beams  

Let us consider the beam in the previous section as a thin-walled rectangular cross section 

with dimension of 60x60x4 and material of steel. In the modeling, now we have the possibili-

ty to use shell elements beside the 1D and 3D elements. It is clearly seen in Figure 20.4 that 

the beam is modeled and described as a) line element, b) surface element, c) or body. 

Similarly to the previous models, fixation is only applied in case of line elements. In case of 

shell and body model, couple and axial constraint are applied since only the stresses from the 

bending are demanded. By meshing each geometric models, we obtain the finite element 

models (Figure 20.5). 

 
                       a)                                               b)                                         c) 

Figure 20.4: Geometric model of the beam with its constraints and loads 
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The model – built from line elements – is in Figure 20.5.a includes 100 elements and 201 

nodes. The model – built from shell element – includes 530 elements and 1622 nodes in Fig-

ure 20.5.b which is significantly more compared to the line elements. In case of the body 

model – in Figure 20.5.c – the mesh is sparse axially, still 340 elements and 1907 nodes are 

used to build the model. As it was expected during the meshing, the models with higher order 

required proportionally more computational time due to the need of multiple elements and 

nodes.  

The maximum stress calculated from the bending moment is: 

 
MPa

mmmm

mmmmN

vaa

alF
e

I

M

z

h 48,76
5260

60100012006

2

6
444444










 , 

 
                       a)                                               b)                                         c) 

Figure 20.5: 1D, 2D and 3D finite element models 

 
                       a)                                               b)                                         c) 

Figure 20.6: Calculated stresses of 1D, 2D and 3D finite element models in MPa 
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where: 

 : Stress, 

hM : Maximum bending moment, 

F : Concentrated force, 

zI : Second moment of area, 

a : Height, width of the cross section, 

v : Thickness of the cross section, 

e : Distance from the neutral axis. 

In Figure 20.6.a it is seen that the result of the beam model completely corresponds with 

the analytical solution, which is expected since the analytical solution is derived from the 

theory of the beam model.  The result – given by the shell mode – in Figure 20.6.b shows 

closely 3% of increment, while in Figure 20.6.c this difference is 8%. The difference can be 

deduced from the inequality of axial stresses in thin-walled cross sections, and only higher 

ordered models can properly describe this phenomenon.  

 

20.1.3. Modeling of thin-walled open cross section beams 

In the followings, we shall investigate the error if simple beam model is used to model thin-

walled open cross section beams. The most significant difference is caused by the warping 

effect, since most models are unable to describe this phenomenon. Let us use – similarly to 

the previous example – a beam with 1000mm of length, while the dimension of the cold 

formed U section is 100x100x4. The beam is loaded with one single force with 1200 N of 

magnitude. First, let us determine the normal stresses analytically (the shear stresses are neg-

lected although we are aware that they cause additional increment in the equivalent stress). 

 

The maximum stress calculated from the bending moment is: 

MPamm
mm

mmN
e

I

M

z

h 52,2850
2103829

10001200
4




 , 

where: 

 : Normal stress, 

hM : Maximum bending moment, 

F : Concentrated force, 

  4
3434

2103829
12

9296

12

100

12

)2(

12
mm

vavaa
I z 





 : second moment of area, 

a : Height, width of the cross section, 

v : Thickness of the cross section, 

e : Distance from the neutral axis. 

 

Calculation of maximum normal stress from warping moment: 

Sectorial second moment of area of thin-walled open cross section: 
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    43
3,6229969824

3

1

3

1
mmmmmmmmsvI iic   , 

where: 

iv : Thickness of the flanges, 

is : Breadth of the flanges. 

 

The sectorial coordinate function: 

  
s

y

y

z

z

dyzdzyd

00

 , 

where: 

y , z : are the coordinates of the cross section contour. 

The sectorial coordinate function is calculated with respect to the pole. By integrating the 

square root of the function we obtain the second moment of area of the cross section with re-

spect to the pole: 
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Figure 20.7:   function with respect to the pole (mm2-ben)  
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where: 

GPaG 80 : Shear modulus, 

GPaE 210 : Young-modulus. 

Relative angular displacement of the cross section with respect to the pole along the axis 

[Csizmadia: Modellalkotás]: 

))(1()()()( 21 xch
IG

M
xchcxshcx

c

c 


  , 

where: 

cM : torsion with respect to the pole, 

x : coordinate of the axis of the beam, 

1c , 2c : constants. 

 

The derivatives: 

)()()(
)(

21 xsh
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M
xchcxchc

dx
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c

c 

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

. 

At the free end of the beam: 

0
)(


dx

xd
, thus: 01 c . 

At the fixed end of the beam: 

0)( x , thus: 
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By substituting the obtained constants, the relative angular displacement of a one-end-

fixed beam:  



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The derivative of relative angular displacement: 
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M
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. 

Normal stress with respect to the bimoment due to the warping: 
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where: 
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EIB

)(
  : bimoment. 

In our case: 
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The maximum of the function is at the fixation lx  , van: 

27106267,6 NmmB  . 

Then the stress in the corner of the U section due to bimoment in Figure 20.7, point ,,B” 

( 276,2021 mm ) is: 

MPaB 21,65 , 

At the end of the U section in Figure 20.7, point ,,C” ( 224,2682 mm ): 

MPaC 52,86 . 

Then the sum of stresses – caused by bending moment and bimoment – is: 

MPaBB 73,93  , 

MPaCC 58  . 

 

Normal stresses calculated by VEM models 

 

Let us compare the analytically obtained stresses to the finite element models in case of 

line-, shell- and body elements. The geometric models are described as the axis of the beam 

(Figure 20.8.a), middle plane (Figure 20.8.b) or its complete cross section (Figure 20.8.c). 
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Similarly to the previous models, fixation is only applied in case of line elements while in 

case of shell and body models, couple and axial constraint are used. 

The model – built from line elements shown in Figure 20.9.a – includes 20 elements and 41 

nodes. The model – built from shell element shown in Figure 20.9.b – includes 375 elements 

and 1206 nodes, while in case of the body model – in Figure 20.5.c –420 elements and 3148 

nodes are used to build the model. 

In Figure 20.10 the calculated stresses are plotted in MPa. It is obviously seen that simple 

beam model with line elements takes only the bending into consideration, and neglects the 

 
                       a)                                               b)                                         c) 

Figure 20.8:  Geometric model of the beam with its constraints and loads 

 
                       a)                                               b)                                         c) 

Figure 20.9: 1D, 2D and 3D finite element models 
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bimoment (note: some commercial software are able to model warping with line elements, but 

point of application in the cross section has to be defined by the user). The estimated results 

given by the shell and body models are higher than the analytical results. The reason is origi-

nated to the analytical description, since the stresses were calculated with respect to the mid-

dle plane, and considered constant along the thickness of the flanges, while the finite element 

models calculated the change along the thickness as well.  

If we look at the stresses in the middle plane of the shell elements (Figure 20.11), that the 

results ( MPaB 73,93 , MPaC 58 ) correlate with small error. 

 
                       a)                                               b)                                         c) 

Figure 20.10: Calculated stresses in MPa in case of 1D, 2D and 3D finite element models 

 

Figure 20.11: Calculated stresses (MPa) in the middle plane in case of shell 
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20.1.4. Modeling of thick-walled cylinders, tubes 

Let us examine a tube with 60mm of inside- and 120mm of outside diameter – while 30MPa 

of internal pressure is acting in it – and determine how precisely the phenomenon can be de-

scribe with different models. 

 

Analytical model 

 

In the thick-walled tubes the distribution of the longitudinal stresses is assumed constant, 

while they change along the radius as a function of quadratic hyperbole. The tube diagrams 

are commonly plotted as a function of relative reciprocate radius: 
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where: 

r : the radius of the tube (variable), 

br : the internal radius of the tube. 

In our case the number of k  – considering the external and internal radius – is: 
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According to these numbers the tube diagram: 

The radial stress in the external and internal wall equals the external and internal pressure. By 

utilizing the proportionality of the stresses, the tangential stresses can be obtained 





10,25

[Mpa]

C

b

k

rb b=-p =-30

rk k=-p =0

 

Figure 20.12: Tube diagram 
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as: MPab 50 , MPak 20 . The longitudinal stress depends on the fact whether the tube 

is closed or open, thus having a constant value of C  or 0. Let us observe the results given by 

each finite element model! 

  

Finite element models 

 

A thick-walled, pressurized tube can be properly described with either 2D or 3D models. 

Simplification is also possible in case of the 3D model by utilizing the fact that the longitu-

dinal stresses are constant, thus only a short part of the original tube has to be analyzed. If the 

symmetry is also utilized, then only the half or one-forth of the original tube is sufficient to 

analyze, although we have to be aware of prescribing the correct constraints at the cut-off 

part, according to the symmetry.  

There are two possibilities to describe the tube with 2D models. We assume, that all cross 

sections of the tube are under the same planar deformation, thus the tube can be modeled as 

only one cross section. Here we can also utilize the symmetry by only using the half or one-

forth ring of the original cross section, carefully prescribing the correct constraints at the cut-

off part. The other option, is to utilize the axis-symmetric geometry and load, and selecting a 

2D axis-symmetric model. Then it is sufficient to model only a segment of the complete tube. 

In order to compare the results, three models will be solved and presented from the mul-

tiple choices. 

In Figure 20.13.a only a short segment of the tube is considered with the 3D model, the cut-

off parts are substituted by constraints: no axial translation is available on the intersected sur-

face (B). 30 MPa of pressure is defined on the internal surface of the tube. 

In Figure 20.13.b the one-forth part of the cross section is modeled, thus we have to define 

planar deformation in the 2D model. On line „B” and „C”, the perpendicular displacement is 

inhibited by utilizing the symmetric geometry. The 30 MPa of load is applied on line „A”. 

 
                       a)                                               b)                                         c) 

Figure 20.13: Modeling options of thick-walled tubes, loads, constraints 
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In Figure 20.13.c the longitudinal section of the beam is modeled with 2D axis-symmetric 

elements. The construction of the geometric model is carried out by setting 30 mm of distance 

(the internal radius) between surface ,,A’’ and the axis of rotation.  Vertical displacement is 

inhibited on line „B” and on the other additional lines beside it as well. This is how the tube is 

modeled furthermore. 30 MPa of pressure is applied on surface „A” as a constantly distributed 

force system. 

In Figure 20.14 the finite element models are shown, each of them built from predeter-

mined elements. The original complete finite element model – built from 3D elements – in-

cludes 44756 elements and 69542 nodes (Figure 20.14.a). The 2D model with planar defor-

mation condition is shown in Figure 20.14.b while the mesh includes 1104 elements and 3455 

nodes. The axis-symmetric model in Figure 20.14.c is built from 2D elements as well and the 

mesh includes 1887 elements and 5838 nodes. During the comparison it is worthy to note that 

using elements with the same number and size, the nodes of the models can be reduced one-

fifth or even one-twentieth (in case of axis-symmetric modeling) of the original complete 3D 

model, while the same precision is obtained. According to these calculations, the best (requir-

ing the least computational time) approximate finite element model is the axis-symmetric, 

second is the planar deformation and the last one is the original body model. 

Tangential stresses calculated by different models are shown in Figure 20.15. 

 
                       a)                                               b)                                         c) 

Figure 20.14: 3D, 2D planar deformation and 2D axis-symmetric models 
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By comparing the results to each other and to the analytical solution, the following conclu-

sions can be drawn; the best approximation is given by the axis-symmetric model although 

none of the models performed more error than 0,5% compared to the analytical solution. The 

difference can be emphasized better if the element size of the three models is determined to fit 

to 5% of error. In this specific case, we have to utilize the double symmetry of the body mod-

el. 

The stresses in Figure 20.16 were obtained by continuously modifying the mesh until it 

reached the 5% or error in the range of the theoretical 50 MPa. These coarse meshes are 

shown in Figure 20.17. 

 
                       a)                                               b)                                         c) 

Figure 20.15:  Tangential stresses calculated by 3D, 2D planar deformation and 2D axis-symmetric 

models in MPa 

 
                       a)                                               b)                                         c) 

Figure 20.16: 3D, 2D planar-deformation, and the minimum number of element in case of  2D axis-

symmetric model with respect of 5% of error in the tangential normal stresses in MPa 



362 Finite Element Method 

www.tankonyvtar.hu © István Oldal, SZIE 

The number of elements and nodes related to each models: 

 

Model type Number of elements Number of nodes 

Body 32 287 

2D planar deformation 36 133 

2D axis-symmetric 6 33 

 

According to these results we can draw the same conclusions as earlier: the axes-symmetry 

model provides the most precise result with the least computation time. 

 

 
                       a)                                               b)                                         c) 

Figure 20.17: 3D, 2D planar-deformation, and the minimum number of element in case of  2D axis-

symmetric model with respect of 5% of error 
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21. EVALUATION AND APPLICATION OF COMPUTATIONAL RE-

SULT IN DESIGN AND QUALIFICATION RELATED MECHANICAL 

ENGINEERING TASKS. RELATIONSHIP BETWEEN FINITE ELE-

MENT METHOD AND STANDARDIZED STRENGHT BASED DESIGN. 

21.1. Precision of Finite Element Method 

The Finite Element method is adequate to obtain approximation result about an engineering 

problem.  The necessary accuracy of the approximation depends on the application and pro-

duction of the structure or body, and it determines the quantity of the calculation. Considering 

the practice, the appropriate accuracy of the result should be in the range of 5% of error, al-

though some cases demand even more accurate solution. In many cases, not even the loads are 

known precisely, thus this error appears in the solution independently from the method of 

calculation. Now, we are going to investigate the accuracy of calculation in case of given 

boundary conditions. The accuracy of the result could be easily calculated if we knew the 

exact solution, unfortunately apart from some simple problems, these exact solutions cannot 

be obtained thus we have to estimate the error. If we know the magnitude of the error and it 

does not meet the requirements, then the accuracy can be still improved. Mainly, there are two 

methods to improve the accuracy. The first one – already introduced in the earlier chapter – is 

based on the size reduction of the elements, which is called h-type approximation. The other 

method is based on choosing higher-order approximating polynomials, then we are talking 

about p-type approximation. The reduction of the element size and the increase of polynomial 

order can be combined as well (hp-type approximation). 

The attainable accuracy of a given boundary value problem – solved by finite element me-

thod – is mainly determined by the applied parameters (element type, size) during meshing. In 

order to determine the accuracy of the solution, we have to calculate the difference between 

the exact u  displacement field and the FEMu  displacement field which is calculated by finite 

element method.  

The question is, that if the exact solution is unknown, how can we determine 

VEMuue   (21.1) 

error? The problem can be solved by investigating the relationship between the degree of 

freedom (N) of the finite element model and the norm of the error. 

The energy norm of the displacement function can be defined as follows:  

Uu  . (21.2) 

Where U  is the deformation energy: 

  dVU
V

T
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2

1
. 

We can utilize the geometric equation:  
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u  

and the constitutive equation: 

uCC   . 

Where 

 : matrix of differential orders, 

C : matrix of material constants. 

Then the deformation energy: 

    dVuCudVU
V

T

V

T

 
2

1

2

1
 . (21.3) 

The energy norm of the exact solution: 

 
2

1

2

1













  dVuCuUu

V

T
. (21.4) 

And the energy norm of the error: 

 
2

1

2

1













  dVeCee

V

T
. (21.5) 

With the finite element method we need a kinematically admissible displacement field 

(sum of functions with finite variable), which provides energy minimum. This requirement 

satisfies the following equation as follows: 



 uuuu VEM min , (21.6) 

Thus: 



 uue min . (21.7) 

Where according to 


u  and (21.7) e  depends on the element size and the order of the ap-

plied polynomials, thus it contains N unknown parameters. Depending on the choosing the 

increase of polynomial order or the decrease of element size, the result – given by the finite 

element method – converges differently to the exact solution.  
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21.1.1. Estimation of error in case of h-type approximation 

The h-type approximation means that – during the discretization – we reduce the element size 

but we do not vary the order of the approximate polynomials. Let us investigate how the error 

varies as a function of element size in case of a beam with l length! Let us discretize the beam 

to N number of elements with identical length. The length of one element is: 

N

l
h  . (21.8) 

The approximate solution of )(xu  exact displacement field is )(xuVEM , which is a piece-

wise  function. This function provides equal values with the exact solution in the interpolation 

points. 

)()( jhujhu VEM , Nj ,,1,0  . (21.9) 

The error of approximation in the i
th

 element: 

)()()( xuxuxe VEMi  ,   ihhix ;1 , Ni ,,2,1  . (21.10) 

If the solution is continuously differentiable, then the error function as well. According to 

(21.9) the error is zero in the boundaries of the elements, and this continuity follows that the 

error function will have an extrema inside the element. The location of the ie  error is denoted 

with ix  (Figure 21). In this point  

0)( 


ii xe . (21.11) 

)(xuVEM  linear, thus 0)( 


xuVEM , then 

x

x=(i-1)h x=ih

e (x)i

e ’(x )=0i i

xi  

Figure 21.1:  Error function  in the i
th
 element 
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 dudexe

x

x

x

x

ii

ii








)()()( ,   ihhix ;1 . 

If Cu  , then 

Cxei 


)( ,   ihhix ;1 , and (21.12) 

hCxei 




 

)(max ,   ihhix ;1 . (21.13) 

Let us expand the )(xei  function in the ix point into Taylor series (using the Lagrange 

form of the remainder as well): 

)(
2

)(
)()()()(

2







 i
i

iiiiii e
xx

xexxxexe . (21.14) 

If the maximum of the error function is located in the second half of the element,  

2

h
xih i  ,  (21.15) 

then: 

)(
2

)(
)()()(0)(

2







 i
i

iiiiii e
xih

xexihxeihe ,  ihxi; . 

substituting (21.11) and (21.12): 

)(
2

)(
0)()(0

2




 i
i

iii e
xih

xihxe . (21.16) 

from (21.16), utilizing (21.12) and (21.15): 

C
h

e
xih

xe i

i

ii
8

)(
2

)(
max)(max

22




  . (21.17) 

If the maximum of the error is located in the first half of the element, then the Taylor se-

ries have to be investigated at  hix 1 , where the value is zero, thus we obtain the (21.17) 

equation. 

The deformation energy of the beam: 
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   

l

dxuAEuU
0

2

2

1
)( , (21.18) 

The deformation energy of the error: 

       22

1 )1(

2

0

2

2

1

2

1

2

1
)( hAECnhdxeAEdxeAEeU

n

i

ih

hi

i

l

  
 

, 

taking into consideration that lhn  , and the summing the constants the norm of the error is: 

ChkeUe 1)(  . (21.19) 

In this formula the 1k  constant is known, and by knowing the solution of the finite element 

model C  can be estimated with small error. h  stands as element size. In accordance with this 

result, the error of the solution is proportional to the element size. If we wish to estimate the 

error before solving the problem, then we have to summarize the constants. Then the maxi-

mum value of the error cannot be calculated due to not knowing C constant, but the conver-

gence of the result will be visible. From (21.19) and (21.8):  

N

k
e  . (21.20) 

In many problems related to the practice, the displacement functions are not smooth func-

tions. Then the relationship between the norm of the error and the number of elements 

changes as follows: 

N

k
e  ,  (21.21) 

where   depends on the p  order of the approximate polynomials, and the   character of 

the solution. 

  ,min
2

1
p . (21.22) 

Stricter condition if not only the norm of the error, but the error itself is investigated on 

the total domain. In some cases it is possible that the norm of the error monotonically con-

verges, but the solution is not monotonic. This can be only noticed if not only the global, but 

the local error is investigated. 

 

In Figure 21.2 a thin plate is bent, and the energy and solution convergence is examined. 

The plate has 1mm thickness and 1Nm moment is applied on it. Since the load of the plate is 

co-planar, it is modeled as a planar stress problem as well. 
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The finite element model is used to investigate the h-type convergence, thus the element size 

varies between 1 and 5 mm, while the order of the approximate polynomials stay unchanged. 

The convergence is examined with linear- and quadratic interpolation functions as well. 

40

20

R20

M

 

Figure 21.2: Bent plate 
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Figure 21.3:  FEM mesh and normal stresses in MPa (element size of 1, 2, 3, 4, 5mm) 
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In the following table, the necessary parameters and results are summarized in order to ex-

amine convergence. 

 
Average ele-

ment size 

[mm] 

N degree of 

freedom 

Max. Stress 

[MPa] 

Min. Stress 

[MPa] 

Energy 

norm 

[ mJ ] 

1p  (linear approximate function) 

1 2052 56,78 -72,24 0,770136 

2 591 55,51 -72,36 0,766342 

3 306 53,52 -67,8 0,760592 

4 180 51,65 -66,7 0,754844 

5 135 49,4 -60,27 0,745319 

 

In this case, both the calculated stress and the energy norm monotonically converged by in-

creasing the degree of freedom of the model (Figure 21.4). 

In this case, the error estimation can be determined according to the norm of the error func-

tion, thus it does not cause local problem.  

Let us examine how the results change in case of quadratic approximate functions! The 

model was executed with the same parameters and element sizes as earlier (Figure 21.5). 

 

Figure 21.5: Model and boundary conditions 
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Figure 21.4: Result in the crucial point and the norm calculated on the complete domain 
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Figure 21.6:   FEM mesh and normal stresses in MPa (element size of 1, 2, 3, 4, 5mm) 
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The obtained results with quadratic approximate function are summarized in the following 

table. 

 
Average ele-

ment size 

[mm] 

N degree of 

freedom 

Max. Stress 

[MPa] 

Min. Stress 

[MPa] 

Energy 

norm 

[ mJ ] 

2p  (quadratic approximate function) 

1 5946 57,11 -74,27 0,771466 

2 1623 57 -74,23 0,77144 

3 843 56,86 -72,05 0,771349 

4 483 56,81 -74,43 0,771136 

5 360 57,09 -68,93 0,770824 

 

By examining the results we can draw the similar conclusion as earlier; the increase of the 

degrees of freedom resulted convergence. Although, while the norm monotonically converges 

through the complete domain, the stress converges with oscillation in the crucial point. (Fig-

ure 21.7). In this certain case, if we wish to estimate whether the solution is close to the exact 

or not, then it only up to luck how sever error we will make.  

21.1.2. Calculation of error in case of h-type approximation 

The error of an approximate solution cannot be exactly determined due to the unknown con-

stant in (21.19). After the calculation, by knowing the approximate solution, the rela error can 

be determined. 

According to (21.21): 

 kNe , 

and 
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Figure 21.7:   Result in the crucial point and the norm calculated on the complete domain 
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222

VEMuue  , (21.23) 

then: 

2222  Nkuu VEM  (21.24) 

k  value is unknown, but by having the solution of the same problem with two different 

element sizes, the real error can be deduced. 

Let us name the number of the unknown values at the first approximation as 1N , the ap-

proximate solution as 1VEMu , and at the second approximation: 2N  and 2VEMu . 

According to (21.24) both approximation are valid: 

2

1

22

1

2 
 Nkuu VEM , (21.25) 

2

2

22

2

2 
 Nkuu VEM . (21.26) 

Let us deduce the energy of the exact solution from (21.25) in case of equilibrium: 

2

1

22

1

2 
 Nkuu VEM , (21.27) 

and from (21.26) the 2k  value: 

2

2

2

2

2

2






N

uu
k

VEM
. (21.28) 

Substituting (21.28) to (21.27) and setting the equation: 





2

1

2

2

1

22

2

2

1
2

1 





















N

N

N

N
uu

u

VEMVEM

. (21.29) 

By knowing the exact energy the real error can be determined from (21.23). This type of 

error estimation is called 'posteriori' meaning 'estimation after calculation'. 

 

Let us examine the exact solution derived from the (21.29) formula, related to the problem 

in Figure 21.2. To determine 
2

u  value, the consecutive approximate solutions are taken into 

account: 
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The investigation is carried out by using linear approximate functions in case of 5,0 . 

The results of the FEM approximation and the exact solution – calculated according to (21.30) 

formula – are summarized in the following table: 

 
i Average ele-

ment size [mm] 
N degree of 

freedom 

2

VEMiu   

[mJ] 

2
u  

[mJ] 
1 0,5 7788 0,59464 - 

2 1 2052 0,59311 0,595187 

3 2 591 0,58728 0,595468 

4 3 306 0,5785 0,596707 

5 4 180 0,56979 0,590943 

6 5 135 0,5555 0,61266 

The calculated results are plotted in Figure 21.8, which shows that the exact solution can be 

derived from (21.29) with small error. The calculated result in case of rough discretization is 

not accurate, highly fluctuates, but soon it converges to the constant exact solution. By the 

increase of element numbers the solution has some deviation but does not alter significantly. 

The results of the FEM approximation and the exact solution – calculated according to 

(21.30) formula – are summarized in the following table, with quadratic approximate function 

where, 1 . 
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Figure 21.8: Approximate energy and the calculated exact energy as a function of N,  

linear approximation 5,0  
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i Average ele-

ment size [mm] 
N degree of 

freedom 

2

VEMiu   

[mJ] 

2
u  

[mJ] 
1 1 5946 0,59516 - 

2 2 1623 0,59512 0,595163 

3 3 843 0,59498 0,595172 

4 4 483 0,59465 0,595141 

5 5 360 0,59417 0,59525 

As it is seen in Figure 21.9, the calculated exact energy converges to a constant value sooner 

and with smaller error if quadratic approximate functions are used. 

We can draw the following conclusion by comparing the results: the exact solution can be 

calculated by using two approximate solution – independently from the type of approximate 

functions – with small error. 

 

21.1.3. p-type approximation 

The convergence of the solution particularly depends on the meshing, as we discussed earlier. 

The decrease of the element size in the mesh influences the accuracy of the solution as it was 

demonstrated earlier. If we do not change the element size, but increase the order of the inter-

polation functions, then we are talking about p-type approximation. The convergence of this 

approximation is exponential: 

)exp( N

k
uu VEM  , 

where, 

k ,  ,   positive constants. 

The p-type approximation proves to be much faster in convergence than the h-type. The 

combination of the two types – the so-called hp-type approximation –  provides the fastest 
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Figure 21.9: Approximate energy and the calculated exact energy as a function of N,quadratic 

approximation 1  
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convergence, when both the number of elements and the order of the approximate functions 

are increased. 

 

21.1.4. Convergence in singular locations 

In case of singular locations, the earlier introduced error calculation method cannot be applied 

since the (21.14) equation only works with analytical functions. According to the discretiza-

tion the problems are distinguished into three categories: 

1. category: u  is analytic on every elements and their boundaries thus it can be ex-

panded into Taylor series, 

2. category: inside the element u  is analytic, except some points in the boundaries, 

3. category: the singular point can be anywhere in the element. 

The estimation of error in case of specific 2D cases is summarized in the following table 

[Páczelt 1999.]: 

 

 1. category 2. category 3. category 

h-type approxi-

mation 

pkNe    kNe   kNe  

p-type approxi-

mation 
)exp( Nke 

 

 kNe  5,0 kNe  

hp-type approx-

imation 

 )exp( Nke 

 

 

21.1.5. Modeling mistakes 

In Chapter 21.1, the introduced error estimation and accuracy improving techniques are suita-

ble to determine the error and enhance the accuracy related to the finite element – numerical – 

method.  The modeling mistakes cover more than that, since the error due to the false me-

chanical model creation appears in the solution as well independently from the solving me-

thod.  

 

21.2. Evaluation of the calculated results 

21.2.1. Stresses beyond yield strength 

The linear elastic constitutive equation is not adequate to model stresses beyond the yield 

strength, plastic constitutive model is required. If we use a yield strength-based method, we 

intend to avoid stresses beyond the yield point. It is not all the time possible to fulfill this idea 

completely. One of these cases is the contact stress or so-called Hertz-stress. In this case, 

stresses beyond the critical value appear only in the direct contact area, causing plastic defor-

mation on the surface, but not complete structural damage.  If we use plastic constitutive 

model, the rate of this deformation can be determined and by knowing the operation condi-

tions we can also decide if this deformation permissible or not. In case of highly complex 

models, when even the linear calculation is problematic, the nonlinear problems become 

simply impossible in those certain conditions. This problem requires simplification on some 

area of the model, and we have to decide whether the obtained results are more accurate or 

not. 
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Crossing the yield strength is sometimes part of the test operation in case of certain struc-

tures. Some manufacturers – in order to simplify the production – produce simple cylindrical 

heating covers for tanks. During the test, the heating cover is pressurized by several times 

greater pressure than the operation pressure. This loading causes plastic deformation, thus the 

cover takes on the ideal form. With this form the stresses will not cross the threshold of the 

yield stress during operation condition.  This approach makes the linear model completely 

unsuitable even for rough approximation. 

 

21.2.2. Singular locations 

Geometric singularities generally appear during the geometric modeling. Real structures or 

bodies do not have sides or corners with zero radiuses. Although it appears many times that 

we have several sides and corners with small (sometimes unknown) radiuses, which we are 

not aware of or it is just simply not relevant to describe with precise geometry.  In these cases 

we do not model these rounding, but we have to take them into consideration in the solution. 

At the edges, if there is no connection with other bodies than it causes no problem either, but 

if it is, then we have to deal with it. 

The boundary conditions – especially the kinematical boundary conditions of ideal con-

straints – frequently cause singularity problems in the boundary of the domain. By defining a 

prescribed displacement on a certain surface, the displacement constraint on the edge of the 

surface vanishes without any transition. Singular location appears when the constraint does 

not reach the boundary of the body’s surface. Then the body reacts as it was connected to an 

infinitely rigid and sharp body. This problem can be evaded by using the original elastic body 

instead of the constraint, although the computation time notably increases since the model is 

expended with a contact problem. In addition, if we wish to model this problem with realistic 

frictional relationship, then the small displacement theory cannot be used either. Due to these 

existing problems, many times we are forced to use some simpler models and taking the sin-

gularities into consideration.  

 

Those singular locations where the stresses are small cause no problem, since they reduce 

the computation time and higher relative error can be also accepted. In the aspect of the load, 

problems occur due to the critical points of the structure, since the design is based on these 

hot-spots, thus the absolute error will be significant as well. In addition the solution will not 

converge in the close area of these problematic parts, and the more accurate finite element 

models will only result higher stresses and strains.  

 

21.2.3. Standardized methods and the FEM 

Standards provide mainly guidelines to determine boundary conditions. Applied loads in case 

of individual fields, safety factors, material constants are determined by experimentally or 

from practical fields rather for classic analytical methods.  

 

The standardized values of loads assume that the required accurate method is not in hand. 

Typical example is the standardized wind-load. To determine the wind-load, the applicable 

wind velocity is prescribed. This is also required for the FEM. Although it is also prescribed 

what to apply in case of cylindrical, flat, truss, splay structures, and what concrete pressure 

distribution must be calculated with. These prescribed values were determined analytically or 

experimentally, naturally not functions but simplified tables and graphs are derived from them 
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and presented with the standard loads. During the application – in order to have a carry out 

safe design – the factors must involve the influence of the difference between the real struc-

ture and the standardized structure. If finite element method – related to the fluid dynamics – 

is used to determine the loads then we obtain more accurate results than the standardized.  By 

using the prescribed factors, the safety factor will be higher than the one which is based on the 

standardized calculation. In such a case, the safety factor cannot be reduced arbitrary. If the 

standards took the FEM into consideration in case of wind-load modeling, then it would pre-

scribe a turbulent model – with its own increase factor – beside the wind velocity and the 

wind density.   

 

We can draw the general conclusion, that the standards do not satisfy or solve the special 

needs and upcoming questions in the practice of finite element method. The engineers still 

have to lean on their own experiences when they model a structure or prescribe the boundary 

conditions. This is the source of the upcoming problems in the practice of FEM. 
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