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a b s t r a c t 

When a dynamical system has a complex structure of fixed points, periodic cycles or even 

chaotic attractors, Cell Mapping methods are excellent tools to discover and thoroughly 

analyse all features in the state space. These methods discretize a region of the state space 

into cells and examine the dynamics in the cell state space. By determining one or more 

image cells for each cell, the global behaviour within the region can be quickly determined. 

In the simplest case – Simple Cell Mapping (SCM) method – only one image corresponds 

to a cell and usually a rectangular grid of cells is used. In typical applications the grid of 

cells is refined at specific locations. 

This paper, however, introduces a different approach, which is useful to expand the 

analysed state space region to include all features which properly characterize the global 

dynamics of the system. Instead of refining the initial cell state space, we start with a small 

initial state space region, analyse other interesting regions of the state space and incorpo- 

rate them into a cluster of cell mapping solutions. By this approach, trajectories escaping 

the original state space region can be followed automatically and additional objects in the 

state space can be discovered. 

To illustrate the benefits of the method, we present the exploration of the phase-space 

of the micro-chaos map – a simple model of digitally controlled systems. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Cell Mapping methods (or shortly CM methods) were introduced by C.S. Hsu [1] , in order to make the quick and thorough

global analysis of nonlinear systems possible. CM methods discretize a region of the state space, thus creating the so called

cell state space. For each cell one or more image cell is assigned (to where the dynamics lead from that cell), and by

analysing the resulting graph or Markov-chain, periodic orbits, fixed points and their domains of attraction can be found. 

The simplest CM method is the Simple Cell Mapping (SCM) and in the simplest case the cell state space is an n -

dimensional grid of cells of the same size. The basic idea of the SCM method is that each cell has a single image, which

is usually determined using the Centre Point Method [1] , namely, a single trajectory from the centre of the cell domain is

examined. In other words, all states within a cell are mapped to a single cell. Due to this property, the method is able to
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Fig. 1. Explanation of the definitions introduced in Section 1.1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

classify cells either as periodic cells (belonging to a periodic group) or transient cells (leading to a periodic group). Successful

classification of all cells forms the solution of the SCM . 

There are many variation of the CM methods, usually a relatively fast CM method (for example SCM) is applied to the

initial state space region, then further analysis is carried out at certain locations, using more advanced methods (Generalized

Cell Mapping, for instance), typically with refined cell state space [2–4] . These methods are excellent if the interesting region

of the state space is known, but if that is not the case, a method capable of automatically extending the analysed state space

region could be more suitable. Our goal is to extend the Simple Cell Mapping with such capability. 

To emphasize the relevance of adaptive state space extension, one could recall the following situations: 

• The dynamical system has an expectedly complex state space and the enclosing region of state space objects is not

known. 
• The dynamical system has more than one attractors, and not all of them are found in the initial state space region.

Escaping trajectories indicate the possible direction of other attracting structures. 
• A lower dimensional state space object, e.g., a basin boundary is being followed. 
• Examination of global bifurcations or crises in dynamical systems in cases when the structure and/or the size of state

space objects change abruptly during the variation of certain parameters. This situation is typically encountered in piece-

wise smooth systems. 
• Analysing diffusion-like processes, for example intermittent maps [5] . 

Our approach to solve the problem of state space extension is to find an adjacent region to the initial state space, to

where most of the trajectories escape. Afterwards, a separate CM solution is calculated on that region and the two solutions

are joined. Upon the joining procedure, new state space objects residing on the boundary of the two cell state spaces are

also discovered. This paper introduces this extension, particularly for the Simple Cell Mapping method, because it is the

simplest adequate method to discover all objects in the state space [1] . The method of joining separate SCM solutions to

a cluster of SCM solutions is referred to as Clustered SCM method. Based on these results, optional later analysis can be

carried out using more advanced CM methods [6] . 

As an example of application, we show the analysis of the so-called micro-chaos map [7] , where multiple disconnected

attractors – possibly consisting of distinguishable communicating repellers are present in the state space. The behaviour of

this piecewise smooth system fits into most of the aforementioned situations, as it exhibits a pattern of chaotic attractors

and crisis phenomena with the appearance or disappearance of chaotic attractors/repellers [8] . 

1.1. Definitions and abbreviations 

This section describes the basics terms, definitions and properties related to the Simple Cell Mapping, which are used

throughout the paper. Also some auxiliary subroutines are presented, which are necessary for the implementation of the

method (see Fig. 1 ). 

• Cell state space (CSS): the bounded and discretized state space region, which is continuously covered by arbitrary cell

domains . In the simplest case n -dimensional rectangular cuboids of the same size can be used to discretize an n -

dimensional state space. 
• Cell domain : bounded domain of the state space, part of the cell state space . In the simplest case it can be represented

by a centre point in the state space and lengths along each dimension. 
• Cell : object having its unique index referencing to a cell domain and various properties (e.g. image, pre-image ). 
• Cell index (or shortly index ): cell property; a unique identifier. 
• Image : property of a cell, one or more reference to other cells. The dynamics from the cell domain corresponding to the

cell lead to the cell domain(s) indexed by the image(s) . 
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• Pre-image : property of a cell, one or more reference to other cells. The dynamics from the cell domain(s) indexed by the

pre-image(s) lead to the cell domain corresponding to the cell. 
• Sink cell (SC): a special cell indexing the unbounded region of the state space outside the CSS. Once a trajectory enters

the sink, its evolution is no longer followed, to express this, the image of the sink is itself by definition. 
• State-to-index (or shortly index() ) function: is a surjective function returning the index corresponding to the cell domain

covering the given point in the state space. 
• Index-to-domain (or shortly domain() ) function: is a bijective function returning the cell domain representation for the

given index . 
• Cell sequence : A set of cells formed by tracking the image of cells subsequently. 

(See cells {7, 2, 4, 11, 18, 24, 16} in Fig. 1 .) 
• Periodic group (PG): A part of a cell sequence, that might constitute a periodic motion. A periodic cycle of n cells forms

a periodic group, with periodicity n (or shortly an n -P group). Each cell within the PG is a periodic cell with period n , or

shortly n -P cell [1] . (For example, the sink cell is a 1-P cell and forms a 1-P group.) 
• Transient cell : Cell sequences leading to an n -P cell contain an n -P group at the end of the sequence. All other cells within

the sequence are transient cells leading to that periodic group, forming a transient cell sequence . 
• Transient cell sequence : cell sequences with their destination n -P cells removed form a transient cell sequence , see Fig. 1 . 
• Group number ( g ): For each periodic group a unique group number is assigned. All periodic cells within a PG and all

transient cells leading to that PG have the same specific group number assigned. 
• Step number ( s ): property of a cell, the number of steps required to reach a PG. Periodic cells’ step number is s = 0 , while

transient cells’ step number is s > 0. 
• Domain of Attraction (DoA): the DoA of a PG with group number g is the set of (transient) cells with the same group

number g and step number s > 0. The Domain of Attraction can be thought as the discretization of the Basin of Attraction

(see [9] , [10] and for its numerical exploration [11] .) 
• SCM solution : After the successful execution of the SCM method, besides the initial cell properties, the group number

and step number properties are assigned to each cell. At this stage all periodic groups and their domain of attraction are

found, and we call the cell state space and its properties the SCM solution . 

2. Joining two SCM solutions 

This section describes the procedure of joining two SCM solutions with non-overlapping cell state spaces. No other re-

strictions apply to the cell state spaces, even non-adjacent regions can be joined. First, the possible relationships between

cells of the SCMs are examined, then the algorithm of joining is explained supported by a pseudo-code of the procedure. 

We adopt the following conventions regarding the SCM solutions to aid the joining procedure. 

• Group number g = 0 is assigned to the sink cell. Also the sink cell’s index is 0. 
• A new property, called cell mapping index (shortly: cmid ) is assigned to each cell as an extension to its group number

indicating which SCM contains the group referenced by the group number . Initially all SCM solutions have a unique cmid ,

and all cells within an SCM solution have that same cmid . 
• Cells have an auxiliary state property, which can take any of the following three values: untouched , under_processing ,

processed . This property is used to keep track of the solution procedure. 

2.1. Relationship of two SCM solutions 

Upon joining two SCM solutions, transient cell sequences leading to the sink cell are examined, because these cell se-

quences might enter the other SCM’s cell state space and lead to an object within the united cell state space – the union of

the two cell state spaces. The state space region outside the united cell state space is called reduced sink . While examining

an SCM solution’s transient cell sequences leading to the original sink, the following cases can occur ( Fig. 2 ). 

1. The transient cell sequence leads to a known destination: 

(a) the reduced sink or 

(b) a periodic or transient cell with group number g > 0 of the other SCM. 

2. The transient cell sequence leads to a cell of the other SCM, which belongs to the domain of attraction of the sink (so the

cell’s group number is g = 0 ). This means that the final destination of the sequence is not known yet. 

Considering the above cases, only Case 2 requires further analysis. Otherwise, transient cell sequences can be updated with

a new group and step number (along with a new cell mapping id), corresponding to their new destination. 

The procedure of joining two SCM solutions is therefore divided into two stages. Stage 1 enumerates all transient cell

sequences and also updates those corresponding to Case 1. Stage 2 analyses the remaining sequences of Case 2. 
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Fig. 2. Joining of previously calculated adjacent SCM solutions. Cell sequences which lead to a known destination can be updated in Stage 1 (green cells), 

while sequences leading to another unclassified sequence or transient cell need further analysis in Stage 2 (orange cells). As a result, new periodic groups 

can be found close to the boundary of SCM1 and SCM2. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 3. Illustration of the notion of cell tree mapping. Cell trees 1 and 2 are mapped to each other. The graph formed by them contains a cycle (new 

periodic group), and all other branches are transient cells leading to that group. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

2.2. Cell tree mapping 

It is clear, that cell sequences leading to the other SCM’s sink cell’s domain of attraction (See Case 2 in Section 2.1 ) will

eventually have one of the already existing periodic groups (including the reduced sink ) as their destination, or they might

form a new periodic group possibly with some extra transient cells leading to that PG. 

This calls for the idea of mapping these remaining transient cell sequences onto each other (or some already determined

cell). Transient cell sequences form trees called cell trees having a single cell as destination (which belongs to the other

SCM), therefore these trees can be handled just like cells in SCM. The image of a cell tree is either a cell which was updated

in the first stage of the joining procedure (Case 1 in Section 2.1 ), or alternatively a member cell of another cell tree of the

other SCM. Tracking the images of cell trees creates tree sequences . A tree sequence either leads to an already existing periodic

group or forms a new periodic group and some transient cells leading to that group. Fig. 3 illustrates two cell trees mapped

to each other. 
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Shortly, the SCM method can be applied to the cell trees . If a tree sequence leads to a previously processed cell, all of its

member cells can be tagged with the appropriate cmid, group and step numbers. Otherwise the trees form a graph containing

a single cycle – the new periodic group – and branches which are transient cells belonging to that group, hence the cmid,

group and step numbers can be updated. (The new periodic groups obtained this way must be added to one of the SCM

solutions to have a valid cell mapping index .) 

2.3. The algorithm of joining 

This subsection describes the algorithm of joining adjacent SCM solutions. The algorithm is divided into preprocessing

and two stages of classifying cell sequences which previously led to the sink cell. 

Throughout the presentation of the algorithm, multiple SCM solutions will be examined. For the sake of simplicity, object

oriented notation is used, with simple classes for describing the cell and SCM solution including the cell state space. See

Algorithms 1 and 2 for these classes. In the pseudo codes the . (dot) operator is used to access data or function members

of these objects. For instance scm.cells[i].index accesses the index of the i th cell of the scm object. Furthermore, �
indicates clarifying comments. 

Algorithm 1 Class for cell 

class Cell 

index ⊂ N 

image ⊂ N 

domain 

group ⊂ N 

step ⊂ N 

type ⊂ { unknown , transient , periodic } 
state ⊂ { untouched , under_processing , processed } 

end class 

Algorithm 2 Class for simple cell mapping 

class SCM 

cell array of Cell objects 

cel l Count ⊂ N � the number of cells in the cell state space 

periodicGroupCount ⊂ N � the number of periodic groups in the SCM solution 

index ( . . . ) 

domain ( . . . ) 

end class 

During the preprocessing the cells corresponding to the domain of attraction of the sink cell for both SCM solutions

are identified. This can be done by selecting cells with group number 0, which belong to the 1-P group of the sink cell.

Checking the step number is not necessary, since all cells with 0 group number must be transient cells. For the pseudo code

of preprocessing see Algorithm 3 and 4 . 

Algorithm 3 Identification of sink cell’s domain of attraction 

Input: scm object representing an SCM solution 

Output: array of indices of sink cell’s domain of attraction 

1: function GetSinkDomainOfAttraction ( scm ) 

2: sinkDoA ← ∅ 
3: for i ← 1 , scm.cel l Count do 

4: if scm.cel l [ i ] .group = 0 then 

5: sinkDoA ← sinkDoA ∪ i 

6: scm.cel l [ i ] .state ← untouched � invalidate previously processed cell 

7: end if 

8: end for 

9: return sinkDoA 

10: end function 

Once the domain of attraction of the sink cell is identified for each SCM solution, the first stage of joining examines

transient cell sequences and updates cells in Case 1 of Section 2.1 , see Algorithm 5 . The for loop in line 3 starts a new cell

sequence by taking the next untouched cell from the domain of attraction of the sink cell. The while loop in line 10 builds
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Algorithm 4 Preprocessing of two SCM solutions 

Input: objects representing SCM solutions 

Output: array of indices for both sink’s domain of attraction 

1: function Preprocess ( scm 1 , scm 2 ) 

2: sinkDoA 1 ← GetSinkDomainOfAttraction ( scm 1 ) 

3: sinkDoA 2 ← GetSinkDomainOfAttraction ( scm 2 ) 

4: return { sinkDoA 1 , sinkDoA 1 } 
5: end function 

 

 

 

 

the cell sequence and updates all cells accordingly. If the condition in line 12 is true, then the cell sequence is still within

the original cell state space. In this case the cmid is checked in line 14. If the currently examined cell has the same cmid ,

the current cell sequence either touches another cell sequence (line 16) and prepended to that cell sequence (thus forming

a cell tree), or touches an already processed cell (line 23) in which case the cell sequence can be updated accordingly, or

touches an untouched cell (line 29) which results in continuing the current sequence by examining that cell’s image. 

Algorithm 5 Stage 1 of the joining procedure 

Input: Examined SCM solution and its DoA of sink, other SCM solution 

Output: Updated SCM solution object scm , cell trees which require further processing 

1: function Stage1 ( scm, sinkDoA, otherScm ) 

2: cel l T rees ← ∅ 
3: for i ← 0 , sinkDoA.size do 

4: seq ← ∅ 
5: z ← sinkDoA [ i ] 

6: if scm.cel l [ z] .state = untouched then 

7: � Create new cell sequence 

8: seq ← seq ∪ z 

9: le f t ← false 

10: while le f t = false do 

11: imz ← scm.cel l [ z] .image 

12: if imz � = 0 then 

13: cmimz ← scm.cel l [ imz] .cmid 

14: if cmimz = cmid then 

15: if scm.cel l [ imz] .state = under_processing then 

16: � This sequence touches another sequence under processing 

17: le f t ← true 

18: ct ← scm.cel l [ imz] .cel l T reeIndex 

19: Tag cells in seq as under_processing , assign ct as cel l T reeIndex 

20: � The current sequence is prepended to cell sequence/tree with index ct

21: cel l T rees [ ct] ← seq ∪ cel l T rees [ ct] 

22: else if scm.cel l [ imz] .state = processed then 

23: � This sequence touches an already processed cell (Case 1.b) 

24: le f t ← true 

25: g ← scm.cel l [ imz] .group 

26: cm ← scm.cel l [ imz] .cmid 

27: Tag cells in seq as processed and assign new group number g and cmid cm 

28: else 

29: � Append cell to sequence and continue 

30: seq ← seq ∪ imz 

31: z ← imz 

32: end if 

33: else 

34: � This sequence touches another sequence transiting to the other SCM (Case 1) 

35: le f t ← true 

36: g ← scm.cel l [ imz] .group 

37: cm ← scm.cel l [ imz] .cmid 

38: Tag cells in seq as processed and assign new group number g and cmid cm 

39: end if 
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40: else 

41: � This sequence leaves the cell state space ( imz = 0 ) 

42: le f t ← true 

43: � Get image using the other SCM’s cell state space 

44: imz ← otherScm.index (step(scm.cel l [ z] .center)) 

45: if imz � = 0 then 

46: � This sequence enters other SCM solutions cell state space 

47: g ← otherScm.cel l [ imz] .group 

48: if g � = 0 then 

49: � This sequence touches a periodic group with g > 0 (Case 1.b) 

50: cm ← otherScm.cel l [ imz] .cmid 

51: Tag cells in seq as processed and assign new group number g and cmid cm 

52: else 

53: � This sequence touches a transient cell of the other SCM’s sink, 

54: � save this sequence for further analysis (Case 2) 

55: Tag cells in seq as under_processing and assign new group g and cmid cm 

56: cel l T rees ← cel l T rees ∪ seq 

57: end if 

58: else 

59: � This sequence leads to the reduced sink (Case 1.a) 

60: Tag cells in seq as processed 

61: end if 

62: end if 

63: end while 

64: else 

65: � skip cell 

66: end if 

67: end for 

68: return cel l T rees 

69: end function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the condition in line 14 ( cmid check) yields false, the cell sequence touches another cell sequence transiting to the

other SCM’s state space, therefore the current sequence can be updated accordingly. In cases, when imz = 0 is fulfilled (line

40), the cell sequence leaves the cell state space. Line 45 checks whether the current cell sequence enters the cell state space

of the other SCM. In this case the sequence either touches a cell with g � = 0 (line 48) when the current sequence is updated,

or touches a cell with g = 0 (line 52) when the current cell sequence ( seq ) is stored in the array of cell trees ( cellTrees ) for

further analysis. Lastly, if both cell state space have 0 (sink) index for the cell (see line 58), the current sequence leads to

the reduced sink. 

In the second stage, for Case 2 in Section 2.1 a cell tree mapping is carried out ( Algorithm 6 ). The for loop in line 3 starts

examining an untouched cell tree and the while loop in line 10 builds a sequence of cell trees (see variable: treeSequence ).

While examining the image tree ( ctImage ) of the current cell tree ( cellTrees [ i ]), the following cases can occur: 

• The image of the current cell tree is a cell which was updated in Stage 1 of the procedure (line 11). All cells in the

sequence of trees can be updated. 
• The image tree of the current cell tree is processed (line 18), therefore, the sequence of trees touches a known destina-

tion, and all cells in the sequence of trees can be updated accordingly. 
• The image tree of the current cell tree is under_processing (line 23), and a new periodic group and transient cells are

found. All cells within the sequence of trees are examined and tagged as periodic (cycle in the sequence of trees) or

transient (branches). See Fig. 3 . 
• The image tree of the current cell tree is untouched (line 29), the image tree is appended to the sequence of trees, and

the examination of the tree sequence is continued. 

In the end of Stage 2, all cell trees are processed and new periodic groups (if any) with their domain of attraction

(transient cells) are found. The complete procedure of joining is summarized in Algorithm 7 . The two SCM solutions joined

this way form a cluster of cell mapping solutions, which can be further extended similarly. 
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Algorithm 6 Stage 2 of the joining procedure 

Input: Cell Sequences Tree arrays and SCM objects 

Output: Updated SCM solutions 

1: function Stage2 ( cel l T rees 1 , cel l T rees 2 , scm 1 , scm 2 ) 

2: cel l T rees ← cel l T rees 1 ∪ cel l T rees 2 

3: for i ← 0 , cel l T rees.size do 

4: if cel l T rees [ i ] .state = untouched then 

5: � Start examining sequence of cell trees 

6: cel l T rees [ i ] .state ← under_processing 

7: treeSequence ← ∅ ∪ i 

8: processing ← T rue 

9: ctImage ← cel l T rees [ i ] .imageT ree 

10: while processing do 

11: if ctImage = null then 

12: � There is no sequence image, image cell must be already processed in Stage 1 

13: imageCel l ← cel l T rees [ i ] .cel l [0] .image 

14: Update all cells in each cell tree of the current treeSequence 

15: Tag all cell tree in treeSequence as processed 

16: else 

17: � Cell tree mapping 

18: if cel l T rees [ ctImage ] .state == processed then 

19: � The sequence of trees leads to a known destination 

20: Update all cells in each cell tree of the current treeSequence 

21: Tag all cell tree in treeSequence as processed 

22: processing ← F alse 

23: else if cel l St ate [ ctImage ] .st ate = under_processing then 

24: � New periodic group and transient cells are found 

25: g ← nextGroupNumber() 

26: Update all cells in each cell tree of the current treeSequence 

27: Tag all cell tree in treeSequence as processed 

28: processing ← F alse 

29: else 

30: � cel l T rees [ ctImage ] .state == untouched 

31: � Tag this cell tree as under_processing , 

32: � append to treeSequence and continue 

33: treeSequence ← treeSequence ∪ ctImage 

34: cel l T rees [ ctImage ] .state ← under_processing 

35: end if 

36: � Get next image sequence 

37: ctImage = cel l T rees [ ctImage ] .imageSeq 

38: end if 

39: end while 

40: else if cel l T rees [ i ] .state = processed then 

41: � Skip already processed cell tree 

42: end if 

43: end for 

44: return { scm 1 , scm 2 } 
45: end function 

Algorithm 7 Procedure of joining two SCM solutions 

Input: SCM objects representing SCM solutions 

Output: updated SCM objects 

1: function Join ( scm 1 , scm 2 ) 

2: { sinkDoA 1 , sinkDoA 2 } ← Preprocess (scm 1 , scm 2) � See Algorithm 4 

3: cel l T rees 1 ← Stage1 (scm 1 , sinkDoA 1 , scm 2) � See Algorithm 5 

4: cel l T rees 2 ← Stage1 (scm 2 , sinkDoA 2 , scm 1) 

5: { scm 1 , scm 2 } ← Stage2 (cel l T rees 1 , cel l T rees 2 , scm 1 , scm 2) � See Algorithm 6 

6: return { scm 1 , scm 2 } 
7: end function 
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Table 1 

Computation times for Example 1. (See Figs. 7 –9 .). 

Number of cells CPU time [ms] 

t SCM1 t SCM2 t joining t total scm on full region 

50 0,0 0 0 395 386 89 484 844 

1,0 0 0,0 0 0 780 791 190 981 1573 

2,0 0 0,0 0 0 1550 1551 418 1969 3316 

4,0 0 0,0 0 0 3234 3225 897 4131 6752 

8,0 0 0,0 0 0 6638 6720 1935 8655 13,389 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Properties and possible extensions 

3.1. Complexity of joining 

It can be seen that the complexity of calculating an SCM solution is O ( n ) where n is the number of cells in its cell state

space [12] . This comes from the fact that every cell needs constant amount of operations for initialization, and their state

changes twice, first to under_processing then to processed ( Algorithm 8 ). 

The complexity of preprocessing ( Algorithm 3 ) is also linear, since the body of loop in line 3 contains constant amount

of operations. For SCM solutions with cells n and m , the complexity of the preprocessing is O (n + m ) . 

The first stage of the joining procedure ( Algorithm 5 ) contains an outer for loop (line 3) and an inner while loop (line

10), however, similarly to the SCM method, every cell is tagged with a new state maximum twice, therefore, the complexity

of the first stage is O ( n ) where n is the number of cells in the sink’s domain of attraction. 

Lastly, it can be seen that the complexity of the second stage ( Algorithm 6 ) is also linear in terms of the number of

total cells in the cell tree lists. This property can be shown with the same approach used in the previous case; every tree

sequence is tagged with a new state maximum twice. 

Introducing n sink ≤ n and m sink ≤ m for the number of cells in the domain of attraction of the sink cell, the complexity

of the joining procedure can be written as O (n sink + m sink ) . The linear nature of the joining procedure can also be seen in

the computation times presented in Table 1 . 

3.2. Simple continuous tiling of the state space 

In Section 2 the procedure of joining two arbitrary SCM solutions was introduced. This section describes a simple al-

gorithm for adaptively selecting an adjacent state space region (of the same shape and size as the original SCM solution)

where most of the trajectories escape to. For convenience, the original cell state space is chosen to be an n -dimensional

rectangular cuboid. 

After selecting the initial state space region for the SCM solution one divides the unbounded outer state space region

into adjacent subregions plus an unbounded non-adjacent region. To do this, the sink cell is divided into 3 n sub-regions.

From these 3 n sub-regions, 3 n − 1 are adjacent and equal size to the initial state space and the remaining region – the rest

of the sink cell – is non-adjacent to the initial state space. These sub-regions are illustrated in Fig. 4 . During the calculation

of the initial SCM solution, the number of cells entering these sub-regions can be counted. 

Let us assume that the number of cells whose image belongs to the i th adjacent sub-region r i is c i , where i =
1 , 2 , . . . , 3 n − 1 . Amongst the adjacent state space regions, the one with the largest number c k is selected. The index of

the selected new adjacent state space region is 

k = σ ( max ({ c i : i = 1 , 2 , . . . , 3 

n − 1 } )) , 
where σ ( c k ) := k is an index function. After solving the new SCM belonging to the newly selected region, a cluster of two

SCM solutions is formed, and the procedure can be continued similarly, leading to a continuous tiling of a state space region.

4. Application and results 

4.1. Analysis of the micro-chaos map 

Although the Clustered SCM method is independent of the system’s dimension, the results can be displayed most con-

veniently for systems with 2D state space. In search for a system that exhibits complex state space topology in 2D, simple

problems of control engineering were considered. As the inverted pendulum is the archetype of stabilization problems in

control theory, we have chosen a single degree of freedom inverted pendulum with a so-called proportional-derivative con-

troller, where the quantized control force is calculated at sampling intervals τ , and kept constant within the interval (zero-

order hold), as shown in Fig. 5 . The aforementioned digital effects – sampling and round-off – lead to the phenomenon of

micro-chaos , i.e., small amplitude chaotic oscillations [13] . 
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Fig. 4. Sub-regions of the sink cell in case of a 2D cell state space. Sub-regions r i . . . r 3 n −1 are adjacent to the initial state space region, sub-region r 3 n is 

non-adjacent. 

Fig. 5. Illustration of sampling and quantization and a digitally controlled inverted pendulum. 

 

 

 

 

The equation of motion of the controlled inverted pendulum is 

ϕ̈ (t) + 2 αδ ˙ ϕ (t) − α2 ϕ(t) = −r O Int 

(
P ϕ(t j ) 

r O 
+ 

D ˙ ϕ (t j ) 

r O 

)
, j = 1 , 2 , . . . , (1)

where α is related to a characteristic time constant, δ is the relative damping, P and D are control parameters and r O is

the resolution of the control torque ( Fig. 5 ). The resolution is taken into account with the Int() function, which denotes

rounding towards the origin. According to the solution of the linearized, dimensionless equation of motion, the following

mapping can be derived between the states at subsequent sampling instants [8] : 

y i +1 = U y i + b F i , (2) 

where F i = Int ( ̂  P x i + 

ˆ D x ′ 
i 
) , y = [ x i x ′ 

i 
] T , and: 

U = 

e − ˆ αδ

�

[
� cosh 

(
ˆ α�

)
+ δ sinh 

(
ˆ α�

)
sinh 

(
ˆ α�

)
/ ̂  α

ˆ α sinh 

(
ˆ α�

)
� cosh 

(
ˆ α�

)
− δ sinh 

(
ˆ α�

)
]
, (3) 

b = 

1 

ˆ α2 �

[
� − e − ˆ αδ

(
� cosh 

(
ˆ α�

)
+ δ sinh 

(
ˆ α�

))
− ˆ αe − ˆ αδ sinh 

(
ˆ α�

) ]
. (4) 
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Fig. 6. The state space of micro chaos map (2) at parameter values ˆ α = 0 . 078 , δ = 0 , ˆ P = 0 . 007 , ˆ D = 0 . 02 . Dashed blue lines are the stable and unstable 

manifolds of saddle points. Three example trajectories leading to chaotic attractors are shown. The subsequent points of the trajectories are connected 

with line sections for better visibility. The green and blue rectangles show the initial and the adaptively chosen state space regions of the first example, 

respectively (see Fig. 7 ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Example 1 – Illustration of initial SCM solutions before the joining procedure. The image on the left shows the initial state space region, the one 

on the right is the adaptively selected region. Both regions contain 3 chaotic attractors lying at the intersections of the x -axis and the switching lines. 

 

 

 

 

 

 

 

 

 

 

Hat symbols denote dimensionless variants of previously introduced quantities, and � = 

√ 

1 + δ2 . 

The quantization according to the Int() function introduces switching lines on the state space for every integer value. By

examining the direction field of Eq. (2) , one can see an alternating pattern of unstable saddle points and switching lines

[14,15] see Fig. 6 . 

The Clustered SCM method is applied to the micro-chaos map, and the resulting cluster of two SCM solutions is illus-

trated by coloured images in Figs. 7–12 . Red colour indicates transient cells leading to the sink, other coloured regions

illustrate the domain of attraction of other periodic groups. The periodic groups residing at the intersections of the x -axis

and the switching lines are denoted by black dots. These PGs correspond to very small chaotic attractors of the micro-chaos

map. White lines indicate the switching lines and dashed white lines denote the stable and unstable manifolds of the saddle

points of the map. The initial state space region is placed on the left and the new subregion is on the right side, since the

right adjacent state space region contains the most escaping trajectories. 

In the first example, no periodic groups reside at the boundary of the two state space regions (see Fig. 7 ). Therefore,

during Stage 1, all cells can be updated, except transient cell sequences of the initial region leading to a member cell of the
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Fig. 8. Example 1 – Illustration of SCM solutions after Stage 1 of the joining procedure. Cell sequences leading to a PG of the other SCM are updated 

(recoloured with the colour of the corresponding periodic group). The initial region contains some transient cell sequences which are stored for further 

processing in Stage 2. (See red bands at the top of the left image.) (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 9. Example 1 – Illustration of SCM solutions after Stage 2 of the joining procedure. Examined cell trees are mapped to already processed cells (corre- 

sponding to the PGs with green and orange domain of attraction). (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

domain of attraction of the new region’s sink cell (see Fig. 8 ). These sequences also lead to an already existing PG, but are

updated in Stage 2 (as shown in Fig. 9 ). The parameters of the micro-chaos map are ˆ α = 0 . 078 , δ = 0 , ˆ P = 0 . 007 , ˆ D = 0 . 02 . 

In order to show the creation of new periodic groups, another state space region is considered, for which a chaotic

attractor of the map is just at the boundary of the region. The joining procedure is illustrated in Figs. 10–12 . The parameters

of the micro-chaos map are ˆ α = 0 . 07 , δ = 0 , ˆ P = 0 . 007 , ˆ D = 0 . 02 . In the second example, a new periodic group and its

domain of attraction are found during Stage 2. 

4.2. Comparison of real computational efforts 

To support the statements in Section 3.1 , computation times for Example 1 are provided using the Clustered SCM and

an SCM solution over the full region is calculated for comparison (see Table 1 and Fig. 13 ). Since the calculation of scm1

and scm2 can be done in parallel, the total processing time is calculated as t total = max (t SCM1 , t SCM1 ) + t joining . (Computations

were carried out using 2 cores of an Intel ®Core TM i7-4700MQ CPU.) 

In real situations it may happen that the two SCM solutions to be joined are of significantly different size. Consider the

case when a 2D state space is displayed on the screen of a computer and the screen area is panned to move in the state

space. Consequently, a separate SCM solution at the (narrow) state space region entering into the computer’s screen must

be calculated and joined to the already existing cluster. We checked the computation times for the case, when the original

state space region is extended by 10% towards an adjacent narrow state space region (see Table 2 ). The total processing time
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Fig. 10. Example 2 – Illustration of initial SCM solutions before the joining procedure. The image on the left shows the initial state space region, the one 

on the right is the adaptively selected region. One chaotic attractor for each region is already detected (see yellow and pink domain of attractions). A third 

chaotic attractor is at the boundary of the two state space regions. (The black dot at the boundary of the state space regions denotes the third attractor’s 

expected location.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Example 2 – Illustration of SCM solutions after Stage 1 of the joining procedure. Cell sequences leading to the PG of the other SCM are updated 

(see yellow and pink cells). Both regions contain cell trees which are stored for further processing in Stage 2. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

is calculated as t total = t SCM2 + t joining . One can see that the use of the Clustered SCM method makes nearly real-time appli-

cation possible. Moreover, further optimizations can be introduced to the method specifically for the panning application,

for example, adjacent state space regions can be joined in advance, to utilize idle CPU states. 

The joining time only depends on the number of cells and state space topology, while the computation time of SCM

solutions also depends on the effort needed to calculate the image cells. For systems, where greater effort is necessary

for the calculation of images (e.g. flows), the computation time of joining is relatively smaller compared to the complete

procedure. 

5. Conclusions 

We have proposed the procedure of joining two SCM solutions – thus creating a cluster of SCMs – and described a simple

way to select an adjacent state space region to be added to the cluster. We have shown, that the computational effort of

the method is linear in terms of the total number of cells. 

The method was applied to the micro-chaos map and two examples were presented to support the understanding of the

stages of the procedure. Clustering has the following remarkable advantages. 
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Fig. 12. Example 2 – Illustration of SCM solutions after Stage 2 of the joining procedure. Examined cell trees are mapped to each other and a new periodic 

group is formed with its domain of attraction in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 13. Comparison of computation times listed in Table 1 . 

Table 2 

Computation times for Example 1 in case of screen panning. Initially the whole computer screen is covered with 

the initial SCM solution ( scm1 ) and during panning a new SCM solution ( scm2 ) over a region with +10% width is 

added to the cluster. For comparison, the computation time of a single SCM solution on the extended state space 

region is included. 

Screen Number of cells CPU time [ms] 

resolution n SCM1 n SCM2 t SCM1 t SCM2 t joining t total scm on extended region 

853 × 480 409,440 40,944 307 32 58 90 339 

1280 × 720 921,600 92,160 661 66 129 195 740 

1920 × 1080 2,073,600 207,360 1581 188 361 549 1649 

2880 × 1620 4,665,600 466,560 3731 434 745 1179 4099 

4320 × 2430 10,497,600 1,049,760 9689 753 1980 2733 11,726 

 

 

 

 

 

 

 

• The method allows the continuation of the SCM solution after human assessment in cases when automatic state space

extension is not used, but human supervision is conducted. Solving an SCM for a new region and incorporating it into

the cluster is cheaper than solving an SCM over the whole extended state space (see Table 1 ). 
• Parallelization is trivial as separate SCM solutions can be generated independently before the joining procedure. Also

Stage 1 of the joining procedure (for each previously calculated SCM solution) can be done in parallel. 
• The method is useful in real-time situations, where the region of interest is changing as a parameter is varied. Clustered

cell mapping handles screen panning well, as a separate SCM solution at the (narrow) state space region entering into

the computer’s screen can be calculated quickly and joined to the already existing cluster (see Table 2 ). 
• The proposed approach helps to overcome memory limitations by dividing large problems into smaller ones. During

the generation of a clustered SCM solution, if all adjacent regions of a cluster are already examined, the SCM solution
corresponding to the inner (fully surrounded) cluster can be written to disk and freed from memory. 
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The open-source C++ implementation of Clustered Cell Mapping method – along with materials in the topic of micro-

chaos – are available at the website: microchaos.com . 
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Appendix A. Complexity of Simple Cell Mapping 

The number of times of execution and cost for some lines are denoted at line endings ( Algorithm 8 ). The for loop is

executed n + 1 times, let t z be the number of times the while loop is executed for that value of z . Let s z be the length of

the sequence accumulated starting with cell z . 

Algorithm 8 Simple Cell Mapping 

Input: Cell State space 

Output: SCM solution Number of execution, cost

1: g ← 0 

2: for z ← 0 , n do n + 1 , 1

3: if state [ z] = untouched then 

4: processing ← T rue 

5: sequence ← ∅ ∪ z 

6: im ← z 

7: while processing do 

∑ n −1 
z=0 t z , 1

8: if state [ im ] = processed then 

9: Tag cells in sequence as processed and transient 
∑ n −1 

z=0 1 , s z
10: processing ← F alse 

11: else if state [ im ] = under_processing then 

12: � New periodic group and possibily some transients found 

∑ n −1 
z=0 1 , s z

13: Examine sequence, starting with im and tag cells as periodic, assign group g and step 0 

14: Tag remaining cells as transient, assign group ← g and calculate step numbers 

15: g ← g + 1 

16: processing ← F alse 

17: else 

18: � state [ im ] = untouched , continue along the image track 
∑ n −1 

z=0 t z , 1

19: state [ im ] ← under_processing 

20: sequence ← sequence ∪ im 

21: im ← image [ im ] 

22: end if 

23: end while 

24: else 

25: � Skip this cell 

26: end if 

27: end for 

By examining the algorithm, one can see, that s z ̃ = ̃ t z , since no branches of the if-else structure append new cell to the

sequence or terminates the while loop at the same time. New cells are only appended to the sequence in line 20, while the

processing of a sequence is either terminated at line 10 (reaching an already determined destination) or at line 16 (finding

a new PG and transient cells). Therefore the cost of the algorithm is 

C SCM 

= n c 1 + 

n −1 ∑ 

z=0 

(2 s z + t z c 2 ) = (2 + c 1 ) n + 

n −1 ∑ 

z=0 

t z c 2 = O (n ) , 

where the sum of the length of sequences 
∑ n −1 

z=0 s z = n, c 1 is the total cost of constant-cost operations in the for loop outside

the while loop, and c 2 is the total cost of constant-cost operations within the while loop. 

References 

[1] Hsu C . Cell-to-cell mapping: a method of global analysis for nonlinear systems. Applied mathematical sciences, 64. Singapore: Springer; 1987 . 
[2] Xiong F-R , Qin Z-C , Xue Y , Schtze O , Ding Q , Sun J-Q . Multi-objective optimal design of feedback controls for dynamical systems with hybrid simple

cell mapping algorithm. Commun Nonlinear Sci Numer Simul 2014;19(5):1465–73 . 
[3] Zou H , Xu J . Improved generalized cell mapping for global analysis of dynamical systems. Sci China Ser E 2009;52(3):787–800 . 

http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0001
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0001
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0002
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0002
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0002
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0002
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0002
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0002
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0002
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0003
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0003
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0003


622 G. Gyebrószki, G. Csernák / Commun Nonlinear Sci Numer Simulat 42 (2017) 607–622 

 

 

 

[4] de Kraker B , van der Spek JAW , van Campen DH . Extensions of cell mapping for discontinuous systems. In: Wiercigroch M, de Kraker B, editors.
Applied nonlinear dynamics and chaos of mechanical systems with discontinuities. World Scientific; 20 0 0. p. 61–102 . 

[5] Klages R . Deterministic diffusion in one-dimensional chaotic dynamical systems. TU Berlin; 1996 . 
[6] Xiong F-R , Schtze O , Ding Q , Sun J-Q . Finding zeros of nonlinear functions using the hybrid parallel cell mapping method. Commun Nonlinear Sci

Numer Simul 2016;34:23–37 . 
[7] Csernák G , Stépán G . Digital control as source of chaotic behavior. Int J Bifurcations Chaos 2010;5(20):1365–78 . 

[8] Csernák G , Gyebrószki G , Stépán G . Multi-baker map as a model of digital PD control. Int J Bifurcations Chaos 2016;26(2):1650023-1–1650023-11 . 

[9] Nusse HE , Yorke JA . Basins of attraction. Science 1996;271:1376–80 . 
[10] Aguirre J , Viana RL , Sanjun MAF . Fractal structures in nonlinear dynamics. Rev Mod Phys 2009;81:333–86 . 

[11] Nusse HE , Yorke JA . Dynamics: numerical explorations. Applied Mathematical Sciences, 101. New York: Springer-Verlag; 1998 . 
[12] van der Spek JAW . Cell mapping methods: modifications and extensions. Eindhoven university of technology, Eindhoven; 1994 . 

[13] Haller G , Stépán G . Micro-chaos in digital control. J Nonlinear Sci 1996;6:415–48 . 
[14] Csernák G , Stépán G . Sampling and round-off, as sources of chaos in PD-controlled systems. Proc 19th Mediterr Conf Control Autom 2011 . 

[15] Gyebrószki G , Csernák G . Methods for the quick analysis of micro-chaos. In: Awrejcewicz J, editor. Applied Non-Linear Dynamical Systems. Springer
International Publishing; 2014. p. 383–95 . 

http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0004
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0004
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0004
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0004
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0005
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0005
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0006
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0006
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0006
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0006
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0006
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0007
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0007
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0007
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0008
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0008
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0008
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0008
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0009
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0009
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0009
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0010
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0010
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0010
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0010
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0011
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0011
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0011
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0012
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0012
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0013
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0013
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0013
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0014
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0014
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0014
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0015
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0015
http://refhub.elsevier.com/S1007-5704(16)30219-2/sbref0015

	Clustered Simple Cell Mapping: An extension to the Simple Cell Mapping method
	1 Introduction
	1.1 Definitions and abbreviations

	2 Joining two SCM solutions
	2.1 Relationship of two SCM solutions
	2.2 Cell tree mapping
	2.3 The algorithm of joining

	3 Properties and possible extensions
	3.1 Complexity of joining
	3.2 Simple continuous tiling of the state space

	4 Application and results
	4.1 Analysis of the micro-chaos map
	4.2 Comparison of real computational efforts

	5 Conclusions
	 Acknowledgements
	Appendix A Complexity of Simple Cell Mapping
	 References


