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1 Introduction

Chaotic vibrations arising due to the digital effects in control are well known for the
last 20 years [5], [3]. Sampling and delay are commonly taken into account in con-
trol problems, however, rounding is usually neglected. It has been shown [5], [4],
that rounding leads to small amplitude chaotic oscillations – referred to as micro-
chaos because of the small amplitude – where several disconnected attractors may
co-exist. In a couple of cases (inverted pendulum stabilized with D-control with-
out delay [5], D-control with delay [1] and PD-control without delay [2]), it has
been rigorously proven, that the vibrations are indeed chaotic. In [2], the coexis-
tence of chaotic attractors were already shown. Since chaotic behaviour is gener-
ally found in theoretical models of digitally controlled systems, in this paper we
are focusing on numerical methods to characterize and examine chaotic behaviour.
Section 2 introduces the digitally controlled inverted pendulum – as the subject of
chaos-investigation – while in Section 3 we give a short overview of methods used
for characterizing chaotic behaviour. Section 4 shows different scenarios to select
the region of interest for numerical methods. Section 5 is devoted to describe the
Simple Cell Mapping (SCM) method and other supporting methods (such as frac-
tal dimension calculation) for investigating chaotic behaviour and shows the SCM
results for various parameters.
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Budapest, Műegyetem rkp 5., e-mail: gyebro@mm.bme.hu
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2 System under examination

The pendulum-on-a-cart is one of the simplest devices used for demonstrating con-
trol problems. Neglecting the cart part of this device leads to a simple inverted pen-
dulum with control. In this section, the equation of motion of the digitally controlled
inverted pendulum is presented and the derivation of the so-called micro-chaos map
is shown. The map corresponding to the inverted pendulum is used to illustrate the
application of numerical methods described in the next section.

2.1 Inverted pendulum with damping and PD control

Consider an inverted pendulum with damping and digitally implemented PD control
with zero order hold (i.e. the control torque is kept constant between two successive
sampling instants) as shown in Fig 1. The actuator (the neglected cart) is considered
to be ideal, i.e. produces the desired control effort immediately. The equation of
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Fig. 1 The digitally controlled inverted pendulum and the control torque with respect to time.

motion of this system is

J ϕ̈(t) = mghsin(ϕ(t))− k ϕ̇(t)− pϕi−d ϕ̇i, t ∈ [iτ,(i+1)τ), (1)

where m is the mass of the pendulum, J is the mass moment of inertia about the
axis of rotation, h is the distance between the centre of mass and the axis of rota-
tion, p and d are control parameters, k is the linear damping coefficient, g is the
gravitational acceleration, τ is the sampling time, while ϕi = ϕ(iτ) and ϕ̇i = ϕ̇(iτ)
are sampled values of the angular position and angular velocity respectively (at the
beginning of the i-th time interval). Rearranging, linearizing and dividing (1) by J
yields

ϕ̈(t)+2βϕ̇(t)−α
2
ϕ(t) =−Pϕi−D ϕ̇i, (2)
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where α2 = mgh
J ,2β = k

J ,P = p
J ,D = d

J .
One can rewrite (2) as a system of first order differential equations:

ω̇(t) = α
2
ϕ(t)−2βϕ̇(t)−Pϕi−Dωi, t ∈ [iτ,(i+1)τ) , (3)

ϕ̇(t) = ω(t),

with initial conditions: ω(iτ) = ωi,ϕ(iτ) = ϕi.
Using the notation yi =

[
ϕ(iτ) ω(iτ)

]T the solution of this equation formulates a
2D map

yi+1 = (A+BK)yi, i ∈ N, (4)

where

A =
e−βτ

γ

[
γ cosh(γτ)+β sinh(γτ) sinh(γτ)

α2 sinh(γτ) γ cosh(γτ)−β sinh(γτ)

]
, (5)

B =
e−βτ

γ

[
β sinh(γτ)+γ(cosh(γτ)−eβτ)

α2

sinh(γτ)

]
, (6)

K = −
[

P D
]
, (7)

where γ =
√

α2 +β 2.
Without considering rounding, one can acquire the dimensionless form of the map,
using the notations α̂ = ατ, β̂ = βτ, p̂ = Pτ2, d̂ = Dτ, x = ϕ/ϕref, v = ω/ωref,

ŷ =
[

x v
]T

ŷi+1 = (Â+ B̂ K̂) ŷi, (8)

where

Â =
e−β̂

γ̂

[
γ̂ cosh(γ̂)+ β̂ sinh(γ̂) sinh(γ̂)

α̂2 sinh(γ̂) γ̂ cosh(γ̂)− β̂ sinh(γ̂)

]
, (9)

B̂ =
e−β̂

γ̂

[
β̂ sinh(γ̂)+γ̂

(
cosh(γ̂)−eβ̂

)
α2

sinh(γ̂)

]
, (10)

K̂ = −
[

p̂ d̂
]
. (11)

Here γ̂ =

√
α̂2 + β̂ 2.

2.2 Rounding at the output

Consider the case when rounding is applied to the calculated control effort (which
is the output of the control system). Introducing the rounding to Equation (8) the
so-called micro-chaos map (or µ-chaos map) is obtained
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ŷi+1 = Â ŷi + B̂ Int(K̂ ŷi). (12)

Here the reference angle in ŷ is ϕref = routτ
2, the reference angular velocity is

ωref = routτ , while rout

[
rad
s2

]
is the resolution of the actuated control effort and Int(n)

denotes rounding towards zero (or truncating or taking the integer part of n).

2.3 Rounding at the input

When rounding is applied to the measured position and velocity the corresponding
form of the micro-chaos map is

ŷi+1 = Â ŷi + B̂ K̂ Int(ŷi), (13)

where the reference angle is ϕref = rin (i.e., the resolution of the position measure-
ment), while the reference angular velocity is ωref = rin/τ since we assume that the
velocity is calculated from measured position. Function Int() calculates the integer
part of every element in the vector, returning a vector of the same dimension.

3 Numerical methods for examining chaotic behaviour

In this section the general overview of numerical methods which are useful for the
quick characterization of control-related chaotic phenomena is presented. Methods
are divided into two groups according to the size of region in which the chaotic
behaviour is examined. The first group shows methods which are useful to charac-
terize a single attractor, while the second group enumerates methods for examining
an arbitrarily large region in the state space.

3.1 Methods for examining local chaotic behaviour

3.1.1 Iteration of the map

One can start repeatedly applying (12) – the micro-chaos map for the case when
rounding is at the output – to a chosen initial state and will eventually find, that the
iteration will not converge to a specific stable equilibrium, but after N iterations it
will arrive at one of the several coexisting chaotic attractors instead. The follow-
ing figures are obtained for a set of realistic parameters (α̂ = 6.85× 10−3, β̂ = 0,
p̂= 5.5×10−5, d̂ = 2.5×10−3) [4]. Since the number of necessary iterations N (i.e.,
duration of transients) is unknown, a criterion is needed to determine, whether the
solution has reached an attractor. Having the exact Lyapunov exponents in hand, an
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Fig. 2 Chaotic attractors when rounding is applied at the output

appropriate condition could be derived based on the time necessary for the synchro-
nization of coupled maps used in the Lyapunov exponent estimation method [7].

3.1.2 Searching for periodic points

One can search for periodic points of the map as shown in [2]. A point ŷ0 is
p-periodic if ŷp = ŷ0. Groups of periodic points (periodic orbits) with high period
usually correspond to the skeleton of a chaotic attractor. Consider the case, when
rounding is applied to the output. Since

ŷ1 ≡ Â ŷ0 + B̂ Int(K̂ ŷ0)︸ ︷︷ ︸
:=m1

, (14)

ŷ2 ≡ Â ŷ1 + B̂ Int(K̂ ŷ1)︸ ︷︷ ︸
:=m2

= Â(Â ŷ0 + B̂m1)+ B̂m2, (15)

ŷp ≡ Âp ŷ0 + B̂
p

∑
i=1

Âp−i mi = ŷ0, (16)

ŷ0 = (I− Âp)−1 B̂
p

∑
i=1

Âp−i mi, (17)

where mi are integers corresponding to constant control effort. For a p-periodic or-
bit, checking all mi integer combinations requires very high computational capacity.
Moreover, prior to searching for periodic points, a global analysis should be per-
formed to find specific locations of interest.
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3.2 Methods for examining global chaotic behaviour

Methods mentioned in the previous subsection generally give information about a
single attractor (corresponding to a specific set of initial states – i.e. the domain of
attraction). However, in the case when several chaotic attractors coexist the explo-
ration and examination of a large region of the state space is necessary.

3.2.1 Systematic iterations

Starting a set of iterations (repeatedly applying the micro-chaos map) from differ-
ent initial states – selected either randomly or systematically in a region within the
state space – one can explore the questioned region and find all attractors within it.
Doing so however requires knowledge about the duration of transients or a criteria
for testing whether the solution has reached an attractor. Moreover executing large
number of simulations requires large computational capacity and no information on
unstable equilibria can be found.

3.2.2 Cell mapping methods

Cell mapping (CM) methods are tools for the global investigation of the long term
behaviour of nonlinear dynamical systems [6]. Using CM methods, periodic and
chaotic solutions of the equations of motion can be found, moreover the basin of
attraction can also be determined.

4 Selecting the region of interest

To obtain a global image of the state space, one needs to estimate the region of
chaotic behaviour. This can be done using the formula for the maximal possible
norm (y∞) presented in [2] or the location of the attractors can be calculated based
on topological assumptions.

4.1 Topological pattern

Consider the case when the rounding is applied to the output. A vector plot of (12)
in case of parameters α̂ = 6.53×10−3, β̂ = 0, p̂ = 5.5×10−5, d̂ = 2.5×10−3 can
be seen on Fig. 3. The location of unstable fixed points can be derived from the
following equation
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Fig. 3 Vector plot with switching lines (black lines), unstable fixed points (intersection of dashed
lines) and some example trajectories leading to different attractors (curves).

[
xu
0

]
= Â

[
xu
0

]
+ B̂ Int

(
K̂
[

xu
0

])
, (18)

0 =
e−β̂ sinh(γ̂)

(
Int(p̂ xu)− α̂2 xu

)
γ̂

. (19)

Since e−β̂ sinh(γ̂) γ̂−1 6= 0,

Int(p̂ xu) = α̂
2 xu→ xu =

k
α̂2 , k ∈ Z. (20)

The equation of switching lines

Int(p̂ x+ d̂ v)→ v =
l− p̂ x

d̂
, l ∈ Z\{0}. (21)

Since dynamics of the system between two switching lines is unstable, the stable
equilibria (i.e. attractors) are expected to be on the switching lines. The intersections
between the switching lines and the x axis are:

xs =
l
p̂
, l ∈ Z\{0}. (22)

Based on topological assumptions, the unstable fixed points and attractors should
occur alternately. Since we restrict control parameters to the stable domain, p̂ > α̂2,
therefore the alternating pattern of unstable fixed points and attractors will end with
a virtual unstable fixed point (at lmax/α̂2), thus
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lmax

p̂
<

lmax +1
p̂

<
lmax

α̂2 . (23)

Here the first term corresponds to the location of the last attractor. See Fig. 4. The
index of the last attractor is therefore:

lmax = Int

(
1

p̂
α̂2 −1

)
+1 = Floor

(
1

p̂
α̂2 −1

)
(24)

So the region of interest along the x axis is x ∈ [−lmax/p̂,+lmax/p̂]. The region
of interest along the y axis were chosen to include the intersection of the stable
manifold of the unstable fixed point in the origin and the neighbouring switching
lines. One can also observe the location of unstable fixed points and stable attractors
by plotting the left and right hand side of Int(p̂ xu)/α̂2 = x, see Fig. 4.
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Fig. 4 Solutions of Int(p̂ xu)/α̂2 = x (in case of parameters α̂ = 6.53× 10−3, p̂ = 5.5× 10−5)
yielding the locations of unstable fixed points (dashed lines) and attractors (thin lines). Here
lmax = 4, the last attractor is at lmax/p̂ and the virtual unstable fixed point is at lmax/α̂2.

5 Cell mapping method and results

5.1 Simple Cell Mapping

In Simple Cell Mapping (SCM) [6], the Euclidian state space RN of a dynamical
system is restricted to a bounded region denoted by Ω , which is divided into M
(generally rectangular) cells, indexed by j ∈ {1, ..,M}. The region RN\Ω is called
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sink-cell (indexed with j = 0). The general idea behind SCM is that the state of the
examined system is no longer described by its state vector, but with the index of
the cell corresponding to that state. For each cell one or more image cells can be
determined, where the dynamics of the system leads to. In SCM only one image
cell is determined for each cell using the center point of the cell (i.e. for flows the
set of ODEs describing the system are integrated for a fixed time period or for maps
the map is applied to the state corresponding to the center of the cell). The image
cell corresponding to cell z is denoted by C(z). The mapping z(n+ 1) = C(z(n))
C : N→ N is called a SCM and generally means, that the next state of the system is
completely described by its current state (and explicitly independent of the mapping
step n). In SCM, two kinds of cells are distinguished

• periodic cells: for which z = Cm(z) is true, for m ∈ N. In this case z is an
m-periodic cell. If a cell z is m-periodic, cells C(z),C2(z), . . . ,Cm−1(z) are also
m-periodic cells, and such a group of periodic cells is called an m-periodic group.
By definition the sink-cell is a 1-periodic cell (once the system enters into it, it
stays there forever).

• transient cells: which are not periodic cells. Transient cells are mapped to a pe-
riodic cell (or the sink-cell) in finite number of steps, thus representing the basin
of attraction of periodic groups.

The main procedure of the SCM method is determining the type and properties of
every cell. This is done by generating the sequence C(z),C2(z), . . . (while marking
cells as visited) for every cell z until the sequence returns to a previously visited
cell. If that cell is the part of the current sequence, a new periodic group and pos-
sibly some transient cells leading to that group is found. If the cell is a previously
found transient cell, the current sequence contains only transient cells leading to
the same periodic group. Similarly in case the sequence leads to a previously found
periodic group, all cells in the sequence are marked as transient cells leading to that
group. (See the SCM algorithm in [6].) It is clear, that in the context of SCM only
periodic motions occur, yet cell mapping methods are applicable for chaotic systems
by taking the following assumptions stated in [6].

• Chaotic behaviour is represented by periodic groups with relatively high period.
• A chaotic attractor is represented by a set of periodic cells covering a part of the

attractor in the state space.

5.2 SCM results

Some modifications were made to the SCM algorithm [6] to suit the micro-chaos
map. Adjacent periodic groups are considered to be the part of the same attractor,
therefore after the main procedure of SCM periodic groups close to each other were
joined. Moreover in order to increase the precision of the method around unstable
fixed points, the image cells were determined using multiple steps of the micro-
chaos map (i.e. if the image cell of a cell was itself, the map was applied once again
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– until a fixed number of repetitions – to find the image cells of cells, where the
dynamics of the system is slow). This way false 1-periodic cells were eliminated.

5.2.1 Rounding at the output

When rounding is applied at the output (Section 2.2), the SCM method shows the
expected topological pattern. The chaotic attractors are indeed found on the switch-
ing lines and all unstable fixed points are discovered as a set of 1-periodic cells. The
area of the basin of attraction of an attractor is larger, the larger the distance of the
closest neighbouring unstable fixed point is (i.e. the attractor featuring the largest
basin of attraction is the one equally far away from the two neighbouring unstable
fixed points). See Fig. 5. One can observe gateways on switching lines, which are
leading to a specific chaotic attractor (See also Fig. 4.)

Fig. 5 SCM results with switching lines (white), stable and unstable manifolds of unstable fixed
points (white, dashed) and chaotic attractors (black dots) for parameters α̂ = 6.8× 10−3, β̂ = 0,
p̂ = 5.5× 10−5, d̂ = 2.5× 10−3. Here lmax = 6, and the 3rd attractor has the largest basin of
attractions.

5.2.2 Effect of damping

If the damping ratio is non-zero, the eigenvectors of (9) are rotating in clockwise
direction, therefore the previously mentioned gateways are moving and stretching
in the direction of the y-axis.

5.2.3 Rounding at the input

In case of realistic parameters rounding at the input leads to a solution, where small
amplitude chaotic motion is superposed on a periodic orbit.
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Fig. 6 SCM results for α̂ = 6.8×10−3, β̂ = 4.0×10−3, p̂ = 5.5×10−5, d̂ = 2.5×10−3

Fig. 7 SCM results for α̂ = 5.0×10−3, β̂ = 0, p̂ = 5.5×10−5, d̂ = 2.5×10−3

5.2.4 Fractal dimension calculation with SCM

Since SCM utilizes rectangular cells, it could be suitable to determine the fractal
dimension (box counting or Minkowski dimension) of chaotic attractors. SCM’s
with different cell sizes (ε) were applied to the close bounding region of chaotic
attractors, while the total number of periodic cells N(ε) were stored. Then, the box
counting dimension by definition is

Dbox = lim
ε→0

logN(ε)

log1/ε
. (25)

The box counting dimension was calculated by using least squares linear regression
to fit a line on (log1/ε, logN(ε)) points. The slope of the fitted line is Dbox. How-
ever, SCM provides greatly different images even when the cell size varies a little
(Fig. 8.). Because of this phenomenon, the calculated box counting dimension will
be inaccurate.
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Fig. 8 SCM images of the same chaotic attractor using different cell sizes. (From left to right 940,
1100, and 1220 cells along each axis.) α̂ = 6.85×10−3, β̂ = 0, p̂ = 5.5×10−5, d̂ = 2.5×10−3.

6 Conclusion

It has been shown, that Simple Cell Mapping (SCM) is a suitable tool to examine
systems with complex chaotic behaviour, while it is inaccurate for box counting di-
mension calculation. For the case, when rounding is applied to the output (Section
2.2), the expected topological pattern was obtained by SCM and further examina-
tion of gateways on switching lines (defined by the stable and unstable manifolds of
unstable fixed points) could help reveal unknown properties of the 2D micro-chaos
map. On the other hand, rounding at the input (Section 2.3) shows completely dif-
ferent behaviour, where chaotic motion is superposed on a periodic orbit. In both
cases, further investigation with more advanced CM methods is planned.
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