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Digital stabilization of unstable equilibria of linear systems may lead to small amplitude
stochastic-like oscillations. We show that these vibrations can be related to a deterministic
chaotic dynamics induced by sampling and quantization. A detailed analytical proof of chaos is
presented for the case of a PD controlled oscillator: it is shown that there exists a finite attract-
ing domain in the phase-space, the largest Lyapunov exponent is positive and the existence of
a Smale horseshoe is also pointed out. The corresponding two-dimensional micro-chaos map is
a multi-baker map, i.e. it consists of a finite series of baker’s maps.
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1. Introduction

Digital control systems often exhibit strange,
stochastic-like behavior [Kuo, 1977; Chen & Dong,
1998; Delchamps, 1990]. The occurring small ampli-
tude vibrations are usually considered as noise in
practice [Widrow & Kollár, 2008], however, their
source may be deterministic chaotic dynamics. Due
to the digital effects, i.e. the sampling and the
round-off (or quantization), the behavior of full-
state feedback controlled linear systems can be
described by piecewise-linear maps, so-called micro-
chaos maps. It is easy to show in the general case
that there exists a finite size absorbing sphere —
global attractor — in the phase-space of these maps.
Moreover, if an unstable equilibrium is to be stabi-
lized by the control, the largest Lyapunov exponent
is positive. However, the proof of topological tran-
sitivity and the existence of an infinity of unsta-
ble periodic orbits was rather difficult in the special

cases, considered so far. It was proved in the mid-
nineties [Haller & Stépán, 1996] that the differen-
tial (D) control of the motion of a block sliding on
a surface characterized by Stribeck friction leads to
small amplitude chaotic vibrations. The motion of
the block was described by a one-dimensional micro-
chaos map. By adding dry friction to the system,
the permanently chaotic vibrations turn to tran-
sient chaotic ones. We developed a method for the
exact calculation of the mean lifetime of chaotic
transients in this case [Csernák & Stépán, 2005].
If one takes into account a processing delay that is
just equal to the sampling period, the micro-chaos
map becomes two-dimensional, but the attractors
become one-dimensional. The proof of chaos was
presented for this map and the lifetime estimation
algorithm was generalized in [Csernák & Stépán,
2010, 2007]. A similar 2D map was introduced
in [Garay et al., 2008] as a model of hysteresis.
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It was shown that the considered 2D map can
be transformed to a 1D map. This property was
exploited for the determination of various proper-
ties of the system.

In the present paper, a detailed proof of chaos
is given for the case of a PD controlled linear oscil-
lator. The corresponding two-dimensional micro-
chaos map is a multi-baker map, i.e. it consists of
a finite series of baker’s maps. As a consequence of
this property, several disconnected strange attrac-
tors may coexist far from the desired state of the
system. Besides the proof of the existence of an
attractor and the sensitive dependence on initial
conditions, the existence of a Smale horseshoe is
also pointed out analytically.

We believe that certain concepts, presented in
this paper, can be extended to other areas of sci-
ence. For example, similar hybrid models were intro-
duced in population dynamics [Milton & Bélair,
1990] and neurology [Cabrera & Milton, 2004].

2. Mathematical Model

Consider a linear oscillator with negative stiff-
ness, e.g. an inverted pendulum, whose equation of
motion is linearized about the unstable equilibrium.
The equation of motion of the controlled system
assumes the following form:

Mẍ(t) + cẋ(t) − kx(t) = u, (1)

where x is the general coordinate, M denotes
(generalized) mass, c ≥ 0 is the damping coeffi-
cient, k > 0 is the (generalized) stiffness, while u
denotes the control force. PD control is applied on
the system — i.e. a virtual spring and a virtual
dashpot — in order to stabilize the upright posi-
tion (x = 0, ẋ = 0), according to the output of a
digital control system.

2.1. Effect of sampling

During sampling, the position and velocity are mea-
sured periodically, with period τ . The sampled val-
ues are used to calculate the control force. We
assume that the control force u is kept constant
between two successive sampling instants tj ≡ jτ
and tj+1 ≡ (j + 1)τ , see Fig. 1. Although a certain
amount of time is necessary for the calculation of
the control force, we assume that this processing
delay is negligible.

Thus, if quantization is not considered, the
equation of motion of the controlled system

t

ttj-1 tj tj+1 tj+2

j-1 tj tj+1 tj+2

x

or
v

tj+3

tj+3

τ τ

t

Fig. 1. Sample and hold control scheme with negligible pro-
cessing delay and quantized control force u.

becomes piecewise-linear on the intervals t ∈ [jτ,
(j + 1)τ):

ẍ(t) +
c

M
ẋ(t) − k

M
x(t) = − P̃ xj + D̃ẋj

M
, (2)

where ẋj = ẋ(jτ), j ∈ N, while P̃ and D̃ denote
the proportional and differential gains, respectively.
Thus, the control force can be given as uj =
−(P̃ xj + D̃ẋj), t ∈ [jτ, (j + 1)τ).

Let us introduce a dimensionless displacement
coordinate y = x/h̃, where h̃ is a reference dis-
tance — to be defined later, and a nondimensional
time T = t/τ , where τ is the sampling time and t
is the physical time. With this new time variable,
�̇ ≡ d

dt� = 1
τ

d
dT � ≡ 1

τ �′, thus, denoting the differ-
entiation with respect to T by prime, one obtains
the following equation of motion for T ∈ [j, (j +1)):

1
τ2

h̃y′′(T ) +
ch̃

Mτ
y′(T ) − kh̃

M
y(T )

= − P̃ h̃τyj + D̃h̃y′j
Mτ

. (3)

After rearranging terms, the equation assumes the
following dimensionless form:

y′′ + 2βy′ − α2y = −(Pyj + Dy′j), (4)
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where

β =
cτ

2M
, α = τ

√
k

M
,

P =
P̃ τ2

M
, D =

D̃τ

M
.

(5)

As it can be seen, the reference distance h̃ does
not influence the form of the equation of motion
and the dimensionless variables. It is worth noting
that parameter α is the ratio of the sampling time
and the characteristic time constant of the oscilla-
tor. Introducing the notation γ =

√
α2 + β2, the

general solution of Eq. (4) assumes the following
form in T ∈ [j, (j + 1)):

y(T ) = C1e
(γ−β)T + C2e

(−γ−β)T

+
Pyj + Dy′j

α2
. (6)

According to the matching conditions y(j) = yj

and y′(j) = y′j, the coefficients — and consequently,
yj+1 and y′j+1 — can be expressed by yj and y′j .
Thus, one can construct a linear map

yj+1 = Syj, (7)

where

S =
1
eγ




(α2 − P )(βs + γc) + Peγ

α2

α2s − (βs + γc − eγ)D
α2

(α2 − P )s γc − (β + D)s


, (8)

while yj = col[yj y′j ], s ≡ sinh(γ), c ≡ cosh(γ), and
e ≡ exp(β).

For the asymptotic stability of the origin, the
roots of the characteristic equation

µ2 +
(sD − 2γc)α2 − P (γ(e − c) − βs)

eγα2
µ

+
γα2 − Desα2 − P (eβs − eγc + γ)

e2γα2
= 0

have to reside inside the unit circle on the complex
plane. To check this condition using the Routh–
Hurwicz criteria, we applied a Möbius transforma-
tion, i.e. introduced a new variable η as µ = (η +
1)/(η − 1). After substitution, we obtained another
characteristic equation (Re(η) < 0 ⇔ |µ| < 1) in
the form

b2η
2 + b1η + b0 = 0, (9)

where

b2 = (P − α2)γ(2ce − 1 − e2),

b1 = −α2(−2sDe + 2γ(1 − e2))

− 2P (ecγ − esβ − γ),

b0 = α2(γ(e2 + 1 + 2ce) − 2sDe)

− P (2esβ + γ(1 − e2)).

(10)

The origin is stable if these coefficients are greater
than zero. Note, that since exp(β) > 0 and γ > 0,
2ce − 1 − e2 > 0 is fulfilled and the condition

b2 > 0 corresponds to P > α2 independently of the
damping as in [Csernák & Stépán, 2011], where the
undamped case was examined.

The domain of stability is shown in Fig. 2 for
α = 0.8 and β = 0.3. If the stable domain disap-
pears during the continuous variation of parame-
ters, the three border lines must have a common
intersection point. This situation would arise only
at β → −∞. According to the formulae, the domain
of stability would disappear at α = 0, too. How-
ever, solution (6) and the stability calculation are
not valid if α = 0. For the treatment of this case, see
[Csernák & Stépán, 2010, 2012]. Thus, if parameter
α is strictly positive and β is finite, the equilibrium

Fig. 2. The domain of asymptotic stability of the system
without processing delay and quantization (shaded) at α =
0.8 and β = 0.3.
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can be asymptotically stabilized at every positive
value of the sampling time τ — with properly cho-
sen gains P and D. It is worth noting here that
the equation of motion of a real inverted pendu-
lum is nonlinear. Thus, if one wants to keep the
pendulum in the vicinity of the upright position in
order to apply the linearized equations, parameter
α — and consequently, the sampling time τ — must
be rather small. At b2 = 0 one of the characteris-
tic multipliers becomes 1 (saddle-node bifurcation
in the nonlinear system). At b0 = 0, one of them
becomes −1 (period doubling), while at b1 = 0
the characteristic roots become complex with unit
modulus (Neimark–Sacker bifurcation).

We focus on those parameters at which the
eigenvalues of S are less than one in modulus. In
this case, the origin of the sampled system is asymp-
totically stable if the round-off is not taken into
account.

2.2. Quantization — Round-off
at the output

In a real control system, the signals of the measured
quantities y and y′ are sent to an analog-digital
(AD) converter before being processed by the com-
puter. Due to the finite resolution of the AD con-
verter, some information is lost about the state of
the system. Similarly, also the output of the control
system can assume only discrete values.

Both aforementioned quantization types can
be significant depending on the implementation of
the control system [Csernák & Stépán, 2013]. In
the present paper, we neglect the effects of round-
ing during the measurement of position and veloc-
ity compared to the rounding of the output. This
assumption corresponds to control systems with
Pulse Width Modulation (PWM)-driven actuator
and analog distance measurement. For example, an
Arduino Mega microcontroller has 8-bit PWM res-
olution while 12-bit analog-to-digital resolution is
achievable by oversampling.

In this case, the rounded control force must be
an integer multiple of a certain resolution ∆F (cf.
Fig. 1):

ẍ(t) +
c

M
ẋ(t) − k

M
x(t)

= −∆F

M
Int

(
P̃ xj + D̃ẋj

∆F

)
, t ∈ [jτ, (j + 1)τ).

(11)

The odd function Int() rounds towards the ori-
gin. Introducing the new dimensionless variables
T = t/τ and y = M/(∆Fτ2)x [i.e. the appropriate
choice of the reference distance is h̃ = ∆Fτ2/M , cf.
Eq. (3)], one arrives at the equation

y′′(T ) + 2βy′(T ) − α2y(T ) = −Int(Pyj + Dy′j),
(12)

where T ∈ [j, (j + 1)) and the parameters are
the same as in (5). Thus, only the integer part
of the previously calculated control force is taken
into account. Note, that the variation of ∆F leads
merely to the scaling of the phase-space. Conse-
quently, the solutions can be given by the following
mapping:

f(yi) ≡ yj+1 = Uyj + b Int(Pyj + Dy′j)

≡ Uyj + bm, (13)

where m = Int(Pyj + Dy′j) and yj = col[yj y′j].
Matrix U is the coefficient matrix of the uncon-
trolled system with unstable origin:

U =
1
eγ

[
γc + βs s

α2s γc − βs

]
, (14)

while vector b is given as

b =




e − c

eα2
− βs

eγα2

− s

eγ


, (15)

such that S = U+b ◦ [P D]T . Here ◦ denotes the
dyadic (Kronecker) product.

The local stability properties of the mapping
are determined by the matrix U with eigenvalues
λU

1,2 = exp(−β ± γ). Since γ > β, the origin is
locally unstable and all the existing fixed points are
saddle points. The eigenvectors showing the direc-
tions of the stable and unstable manifolds of fixed
points, respectively are

es =

[
1

−γ − β

]
and eu =

[
1

γ − β

]
. (16)

The evolution of the state of the system can be
described by another map, as well:

yj+1 = Syj − bχj , (17)

where S is given by (8) and −1 < χj < 1 is the
fractional part of the control force. If the system’s
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state is far from the origin, the effect of round-off
is negligible. Thus, the origin is practically stable
[Lakshmikantham et al., 1990], since matrix S gov-
erns the system’s large-scale behavior.

As it will be shown in Sec. 4, the local insta-
bility of fixed points and the practical stability of
the origin implies that the coefficients χj vary irreg-
ularly during the evolution of map (17) leading
to chaotic vibrations. This argumentation can be
extended to more refined control systems, as well:
all the fixed points and periodic orbits must be
locally unstable in the domains of constant control
effort, even if the desired state is practically stable.

3. Topology of the Phase-Space

The domain of definition of (13) can be divided into
discrete bands, according to the value of the number
m [see Eq. (13)]. The computer sends out the same
output signal within such a band, due to the round-
off. The bands are separated by the lines

SWm : y′ =
m − Py

D
, |m| = 1, 2, 3, . . . , (18)

thus, these switching lines cross the y′ = 0 line at
y = m/P .

Figure 3 shows two such switching lines that
separate bands m = 4, m = 5 and m = 6. Two
numerically generated strange attractors are also
presented close to these lines, that were obtained
using different initial conditions.

Fig. 3. Two numerically obtained disconnected attractors at
the switching lines SW5 and SW6 (thick solid lines) and the
manifolds of the neighboring fixed points (dashed thin lines)
at α = 0.8, β = 0.3, P = 0.7 and D = 0.6. The attractors
can be encapsulated in parallelograms Q5 and Q6, defined by
the manifolds.

Due to the dissipative nature of the map (since
β > 0), the phase-space volumes are contracting,
tending to a structure of zero measure. Since the
unstable manifolds of the fixed points lead to the
attractors, each chaotic attractor can be considered
as the closure of one of the branches of the unstable
manifolds. Thus, the attractor becomes the direct
product of threads along the unstable manifold and
a Cantor set-like structure along the stable mani-
fold [Farmer et al., 1983]. Consequently, the fractal
dimension of the attractors must be between one
and two (see Sec. 4.2).

The disconnected attractors that are nested by
the stable and unstable manifolds of the neigh-
boring fixed points are found at the crossings of
the switching lines and the y′ = 0 line, i.e. at
(ym y′m)T = (m/P 0)T . Thus, these attractors can
also be indexed by the corresponding integer m.

The fixed points of map (13) can be given by
straightforward calculation:

Fm ≡ (I − U)−1bm =
[m

α2
0
]T

, (19)

where I denotes the unit matrix. Note, that the
velocity y′ is necessarily zero at the fixed points.
The fixed point Fm must be in band m, thus

|m|
P

≤ |m|
α2

<
|m| + 1

P
(20)

must be fulfilled to have a real fixed point in
the mth band. If the fixed point Fm crosses the
switching line at |m|/α2 = (|m| + 1)/P , a border
collision bifurcation occurs and the fixed point
becomes virtual. It can be seen that the dimension-
less parameters (5) depend on the sampling time τ
such that its variation does not change the structure
of fixed points. However, the increase of parameter
τ means that the average distance of subsequent
points during the iteration of the micro-chaos map
also increases. Thus, the size of the strange attrac-
tors increases as well, which may lead to the merg-
ing of these structures.

For the detailed examination of the topology
of the phase-space, we searched for Smale horse-
shoe structures. As initial domains, we chose the
parallelograms Qr, r ∈ N\{0} defined by the sta-
ble and unstable manifolds W S

L, WU
L , WS

R and W U
R

of neighboring fixed points Fl and Fr (cf. Fig. 3).
Here r denotes the index of the switching line SWr

between the two fixed points. l and r are the inte-
ger numbers corresponding to the integer part of the
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Fig. 4. The schematic picture of the horseshoe-structure in
the parallelogram Qr = L ∪ R. The figure was generated at
parameters r = 4, α = 0.8, β = 0.3, P = 0.7 and D = 0.6.

control force in the bands next to the switching line
SWr. Each parallelogram is divided into two trape-
zoids (denoted by R on the right and L on the left,
see the crosshatched regions in Fig. 4) by a switch-
ing line. The vertices of the trapezoid L are the fixed
point Fl, the intersection point PRULS of the mani-
folds WU

R and W S
L, the intersection point PRUSW of

WU
R and the switching line, and the crossing point

PLUSW of manifold W U
L and the switching line, see

Fig. 4. The vertices of the right trapezoid can be
given similarly by straightforward analytical calcu-
lation. The images of trapezoids L and R can be
calculated by restricting the dynamics to the cor-
responding band, i.e. to the case m = l or m = r.
Thus, we can introduce the restricted versions of
the micro-chaos map: fl = f |m=l and fr = f |m=r.
The images of the quadrangles fr(R) and fl(L) are
stretched along the unstable manifolds, while the
preimages f−1

r (R), f−1
l (L), f−1

l (R) and f−1
r (L) are

stretched along the stable manifolds. One must be

careful during the determination of preimages, since
e.g. f−1

r (L) = f̃−1
r (L) ∩ R, where

f̃−1
r (L) = {ỹ | ỹ = U−1(y − br),y ∈ L}. (21)

Thus, it may happen that some parts of the cal-
culated preimage set f̃−1

r (L) are cut away by the
switching line SWr.

It is easy to see in Fig. 4 that fl(L)\Qr 
= ∅,
i.e. fl(L) is stretched out from the initial paral-
lelogram. Thus, a chaotic repeller with transient
chaotic motion exists in this domain. Several differ-
ent attractors and repellers may coexist at certain
parameters. For instance, Fig. 5 shows four strange
objects next to each other. Two of them (at m = 4
and m = 7) are repellers, while the images of paral-
lelograms do not stretch out from the initial domain
at m = 5, 6, thus, two separated attractors exist
here — these were already shown in Fig. 3.

4. Proof of Chaos

The attractors shown in Fig. 3 are apparently
strange, but we cannot state that the solutions
are chaotic until this property is mathematically
proved. First we will prove that the solutions must
stay in the vicinity of the origin, i.e. there is an
absorbing sphere which attracts all the trajectories
that are far from the origin. This property is impor-
tant from a practical point of view, since the size of
the absorbing sphere provides an estimation of the
maximal possible control error.

We adopt the following definition of chaos: the
dynamical system (13) is chaotic if the solutions of
the map exhibit sensitive dependence on initial con-
ditions, the map is topologically transitive (mixing),
and the periodic points are dense in a properly cho-
sen set. These conditions are checked in the present
section.

Fig. 5. The horseshoe-structures at the switching lines m = 4, 5, 6, 7 at α = 0.8, β = 0.3, P = 0.7 and D = 0.6. Two
trajectories are also shown, leading to the disconnected attractors whose points were presented in Fig. 3.
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4.1. Existence of an absorbing
sphere

Since the origin is practically stable if the gains are
chosen from the domain of stability, there must exist
a so-called absorbing sphere — a finite attracting
domain in the neighborhood of the origin. In the
present section the size of this domain is estimated.

The micro-chaos map (17) can be rewritten in
the following form:

yj+1 = Sjy0 −
j−1∑
k=0

Skbχk. (22)

Unfortunately, matrix S is typically a so-called
non-normal matrix, i.e. its Euclidean norm (the
greatest singular value) can be larger than one. Still,
since S is chosen such that its eigenvalues are inside
the unit circle,

lim
j→∞

‖Sj‖ = 0 (23)

is fulfilled with any kind of norm [Csernák &
Stépán, 2010]. It means that the information about
the initial state vanishes and all solutions tend
towards the absorbing sphere.

Since the numbers χk vary during the appli-
cation of the micro-chaos map, the series (22) is
divergent for almost all initial conditions. The only
exceptions are the fixed points of the map. How-
ever, one can define a sequence χ̃ ≡ χ̃0, χ̃1, . . . such
that (22) becomes convergent and tends to the point
y∞ of the attractor which is farthest from the origin
in a chosen metric:

‖y∞‖ ≡ max
χ̃

∥∥∥∥∥− lim
j→∞

j∑
k=0

Skbχ̃k

∥∥∥∥∥. (24)

If we can give a finite upper estimate for the norm
of y∞, the existence of the finite absorbing sphere
is proven. The details of the application of this con-
cept depend on the properties of matrix S and vec-
tor b.

(a) In most of the cases, S can be expressed as a
diagonal matrix Ŝ in the basis of eigenvectors.
Let T denote the (in general complex-valued)
matrix that is composed of the eigenvectors of
S. With this notation, one obtains:

T−1y∞ =
∞∑

k=0

T−1SkTT−1bχ̃k. (25)

In the basis of the eigenvectors of S,

T−1b = [b̃1 b̃2]T . (26)

Thus,

T−1y∞ =




∞∑
k=0

λk
1 b̃1χ̃k

∞∑
k=0

λk
2 b̃2χ̃k



. (27)

If the eigenvalues λ1,2 are complex or negative
real numbers, the choice χ̃k = 1, ∀ k does not
lead to the maximal norm of y∞. This problem
can be overcome if the norms of the eigenvalues
and the elements of T−1b and T are considered:

‖y∞‖ <

2∑
i=1

∥∥∥∥∥∥
2∑

j=1

‖Tij‖ ‖b̃j‖
1 − ‖λj‖

∥∥∥∥∥∥. (28)

(b) In the rare case, when S is not diagonalizable,
further results can be used from the theory
of non-normal matrices [Trefethen & Embree,
2005]. Unfortunately the upper estimates that
are based on the general theory usually pro-
vide unrealistically large numbers. These large
numbers cannot be used for the prediction of
the behavior of the real control system.

In summary, ‖y∞‖ is necessarily finite if the eigen-
values of S are inside the unit circle, thus, there
exists an absorbing sphere.

4.2. Sensitivity to initial conditions

The eigenvalues of U are λU
1,2 = exp(−β ± γ).

Since γ > β, the origin is locally unstable and all
the existing fixed points are saddle points. Conse-
quently, λ1,2 = −β±γ are the Lyapunov exponents
of the system. γ−β > 0 implies that the distance of
two solutions with neighboring initial points taken
from the same band increases exponentially. Since
the unstable manifolds are transversal to the border
lines between the bands, we can assume without loss
of generality that after n iterations, the two solu-
tions arrive at different bands. Once the points are
separated in this manner, their orbits can no longer
be considered close, since they behave essentially
independently.
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Fig. 6. Topological entropy (h0) versus parameter P and index of switching line m at α = 0.77, β = 0.02 and D = 0.83.

Since the Lyapunov exponents are known and
their sum is always −2β < 0, the Kaplan–Yorke
dimension [Farmer et al., 1983] can be calculated
as:

DKY = 1 +
γ − β

|−γ − β| . (29)

DKY provides an estimate for the fractal dimen-
sion of the attractor, thus, we expect to have rather
dense attractors at zero damping (β = 0).

4.3. Topological transitivity and
mixing

To get better insight to the complexity of the exam-
ined system, we numerically determined the topo-
logical entropy h0 at various values of parameter
P by the algorithm given in [Chen et al., 1991].
Although certain numerically obtained attractors
may seem to stretch over several bands of con-
stant control effort, they can be considered as struc-
tures formed by merging of neighboring repellers.
Thus, we measured the topological entropy of such
local repellers at several switching lines. The initial
regions were chosen to be the parallelograms Qm,
defined in the previous section, at several values of
the index m. If the invariant set (or the condition-
ally invariant set in the case of transient chaos) is
larger than Qm, the results provide a lower estimate
for the topological entropy. According to the algo-
rithm, the preimages of line sections on the y-axis
were determined and the number of subsections sur-
viving 1, . . . , n backward iteration steps before leav-
ing the initial domain was detected. The number of
backward iterations was allowed to increase from 8

to 24 if the relative error — compared to the previ-
ous stage of the calculation — was larger than 0.5%.
Each line section was divided into 2500–20 000 sub-
sections, depending also on the relative error. The
results are depicted in Fig. 6. The devil’s staircase
structure of the curves is apparent. This property is
the consequence of the structural stability of hyper-
bolic sets. Figure 7 shows the topological entropy
at the switching line m = 3, with the approximate
value of h0 at certain levels.

The images and preimages of the parallelogram
Qm can be calculated analytically. We determined
the second preimages and the third images of the
trapezoids on either side of the switching line SW3

at the parameters given in the caption of Fig. 7.
Parameter P was chosen at three different plateaus
of the topological entropy curve. The results are
depicted in Fig. 8.

Fig. 7. Topological entropy (h0) versus parameter P at m =
3, α = 0.77, β = 0.02 and D = 0.83.
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(a) (b) (c)

Fig. 8. Second preimages and third images of the trapezoids left (red) and right (blue) of the switching line m = 3, α = 0.77,
β = 0.02 and D = 0.83. (a) P = 0.655, (b) P = 0.67 and (c) P = 0.71, corresponding to Fig. 7.

In Fig. 8(c) the images and preimages fully
intersect, forming a Smale horseshoe structure. The
numerically obtained topological entropy is very
close to h0 = log(2) at this parameter. Indeed, a
binary symbolic dynamics can be introduced with
symbols denoting the bands on the left and right
of the switching line. Thus, the examined dynami-
cal system is conjugate to a full binary shift. This
property implies sensitivity on initial conditions,
the map is topologically transitive and there exists
a countable infinity of periodic orbits, an uncount-
able infinity of nonperiodic orbits and a dense
orbit. Thus, map (13) is chaotic in a finite param-
eter domain in the neighborhood of the examined
parameters.

Fig. 9. Parameter domains where the dynamics can be
described by a full binary shift at parameters α = 0.77 and
β = 0.02 at the switching lines m = 2, 3, 4 and 5. Lines with
the same color correspond to the four escape conditions eval-
uated at the same value of m.

To have a subsystem in the neighborhood of
a certain switching line that is conjugate with a
binary shift, the images of the trapezoids L and
R (see Fig. 4) must stretch out from the initial
parallelogram. That is, fl(PLUSW ) and fl(PRUSW )
must be to the right of the manifold W S

R, while
fr(PLUSW ) and fr(PRUSW ) must be to the left
of the manifold WS

L. The fulfillment of these four
escape conditions also ensures that the calcu-
lated preimages are in the appropriate bands, i.e.
f̃−1

l (R) ∩ R = ∅ and f̃−1
r (L) ∩ L = ∅ [cf. Eq. (21)].

Certainly, one must also ensure that the fixed points
exist on both sides of the switching line, i.e. condi-
tions (20) are fulfilled.

The parameter domains where the aforemen-
tioned conditions are fulfilled, are shown in Fig. 9.

5. Conclusions

Our results show that the small-amplitude stochas-
tic-like vibrations of digitally controlled systems
may be related to a deterministic chaotic dynam-
ics described by a simple piecewise-linear map, the
micro-chaos map. The phase-space of the exam-
ined PD controlled system contains a finite chain of
baker’s map structures that can be either open or
closed, i.e. solutions may escape from these struc-
tures towards the origin or away from the origin.
Since the neighborhood of the origin — the absorb-
ing sphere — is practically stable, the solutions
eventually arrive at a chaotic attractor that is either
a single baker’s attractor or a larger structure that
is merged from several repellers. It is worth noting
at this point that the size of the absorbing sphere
can be important for applications since this value

1650023-9
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Fig. 10. Cell mapping results showing the domains of attraction (colored domains) of 12 tiny disconnected attractors (covered
by the black points) at realistic parameters α = 6.8511 · 10−3 , β = 0, P = 5.4997 · 10−5 , and D = 2.5665 · 10−3 . The switching
lines (solid, white) and the stable and unstable manifolds (dashed, white) are also shown. These parameters correspond to an
inverted pendulum with mass moment of inertia M = 0.042 kgm2 and length l = 0.5m. The parameters of digital control are
τ = 0.001 sec and ∆F = 0.024 Nm. The maximal control error is about 0.08 rad ≈ 4◦.

corresponds to the expected error of the control
system.

In a real control system the sampling times are
significantly shorter than the characteristic times of
the mechanical system. Consequently, the realistic
values of α, β, P and D — and the sizes of the
attractors — are rather small and the effect of one
iteration step of map (13) on the trapezoids L and
R is hard to visualize. However, the topology of the
phase-space is similar to the one shown in Fig. 5.
The results of a simple cell mapping technique [Hsu,
1987] are depicted in Fig. 10 at parameters of a
real experimental device — an inverted pendulum
[Enikov & Stépán, 1998]. The colors in the fig-
ure characterize the number of steps necessary to
reach an attractor. The triangular red regions in
the upper right and lower left corners correspond
to points that leave the computational domain in a
couple of steps.

The number and size of the individual attrac-
tors inside the absorbing sphere vary remarkably
as the parameters are changed. The exploration of
these phenomena is under progress.
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