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Abstract 

Digital effects (quantization, sampling and delay) can lead to 

small amplitude chaotic oscillations, called micro-chaos [1, 2]. 

Often, these vibrations are neglected due to their small 

amplitude or replaced by random noise, but doing so one might 

be unable to capture some important behavior of the digitally 

controlled system.  

One notable example is the PD-controlled inverted pendulum 

with quantization at the calculated control effort. Taking digital 

effects into account leads to separated chaotic attractors in the 

state space. While the amplitude of the chaotic oscillations is 

indeed small, these attractors are situated rather far from the 

desired position, introducing considerable control error. 

Micro-chaos is undoubtedly present in ideal models of 

computer-controlled mechanical systems, however an 

important question is still open: does it persist if a more 

complex model of reality is used? For instance, does it survive 

in the presence of dry friction?  

This paper answers the latter question analyzing the micro-

chaos in a system with Coulomb friction. We introduce the so-

called hybrid micro-chaos map that describes the behavior of a 

digitally controlled system with dry friction. Then, the 

theoretical analysis of this map is presented and numerical 

results are provided that were acquired using a new 

mathematical tool, the Clustered Simple Cell Mapping method. 

Lastly, we conclude, that the phenomena of micro-chaos can 

withstand the presence of Coulomb friction and chaotic 

attractors can coexist with sticking zones in the state space. 

Keywords 

micro-chaos, Coulomb friction, quantization, rounding 

 
1Department of Applied Mechanics, 
Faculty of Mechanical Engineering, 

Budapest University of Technology and Economics, 

H-1111 Budapest, Műegyetem  rkp 3., Hungary (e­mail: 

gyebro@mm.bme.hu) 
2MTA-BME Research Group on Dynamics of Machines and Vehicles, 

H-1111 Budapest, Műegyetem  rkp 3., Hungary (e­mail: 

csernak@mm.bme.hu) 
* Corresponding author, e-mail: gyebro@mm.bme.hu 

1 Introduction 

In our past works, we have analyzed various digitally 

controlled systems exhibiting micro-chaos: small amplitude 

chaotic oscillations. In case of quantization at the control effort 

(output of the controller), separated chaotic attractors are 

present in the state-space [3]. However, if the measured states 

(input of the controller) are quantized, usually a periodic orbit 

appears with superimposed chaotic oscillation [4]. 

Micro-chaos also appears in other research areas beyond 

digital control. One notable example is the field of human 

postural balance, where sensory dead zones, sampled and time-

delayed feedback of the neural control results in micro-chaotic 

oscillations [5, 6]. The model of inverted pendulum has a great 

significance in this area, as well, during the analysis of stick-

balancing [6] which can provide important results to 

understand the control strategy implemented by the human 

brain when compared with measurements. As it was presented 

in [7], quantization can contribute to the stabilization of 

unstable dynamical systems in the presence of feedback delay 

in neural control. 

The present paper is mainly based on the results of [8], 

where the dynamics of a digitally controlled inverted 

pendulum was analyzed without dry friction. As it was proved, 

sampling and quantization leads to chaotic behavior and the 

appearance of coexisting chaotic attractors and repellors in the 

phase-space of the considered system. The finer structure of 

these strange objects was discussed in [9], where an estimate 

was given for the maximal quantization-related control error. 

While sampling and delay are commonly considered in 

control problems, rounding is usually neglected, or replaced by 

quantization noise [10]. Even though we have shown that 

properly taking quantization into account results in different 

behavior compared to the neglection or replacement by 

random-noise approach, we have not addressed an important 

question yet: Does micro-chaos persist if friction is present? 

This paper introduces the hybrid micro-chaos map, where 

the term hybrid refers to the two types of switching in the 
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system: the map-like switching of the control effort that 

happens only at sampling time instants and the flow-like, 

continuous switching of the friction force at the sign changes 

of the velocity. We present simple analytical formulas to 

determine if chaotic attractors are affected by the sticking 

introduced by the friction or not. Finally, we present numerical 

results obtained using Clustered Simple Cell Mapping [11] to 

support our theoretical results. 

 

2 PD-controlled inverted pendulum with dry friction 

Consider an inverted pendulum controlled according to a 

proportional-derivative (PD) scheme with sampling and zero- 

order hold (i.e., the control effort is kept constant between two 

successive sampling instants) as shown in Fig. 1. Dry friction, 

symbolized by µ in the figure, is temporarily omitted. 

Fig. 1 Digitally controlled inverted pendulum realizing zero-order hold and the 

control torque M with respect to time. Blue dashed envelope curve indicates a 

reference control torque corresponding to a continuous, non-sampled case. 

 

The equation of motion of the frictionless system is 

( ) ( )( ) ( )       sin            i iJ t mgh t k t p d    = − − −  (1) 

 ( ) ), 1 ,t i i  +  

where m and J are the mass and mass moment of inertia of 

the pendulum, h is the distance between the center of mass and 

the axis of rotation, p and d are control gains and k is the linear 

damping coefficient. Gravitational acceleration is denoted by 

g, τ is the sampling time, while ( )i i  =  and ( )i i  =  are 

sampled values of the angular position and angular velocity, 

respectively (at the beginning of the ith time interval). 

Rearranging and linearizing Eq. (1) yields 

( ) ( ) ( )2   2         ,i it t t P D      + − = − −    (2) 

  

where 2  = mgh/J, 2    = k/J, P = p/J, D = d/J. 

As we have shown in [8], if the control torque can assume 

only quantized values, this system exhibits small amplitude 

chaotic vibrations. However, as it was pointed out in [12], 

Coulomb friction has a major role in the damping of such 

systems. Therefore, our present goal is to analyze the effect of 

dry friction on the previously found, so-called micro-chaotic 

solutions. Before formulating the equations for the quantized 

case, we add a new term to Eq. (2) that corresponds to 

Coulomb friction (see Fig. 2): 

( ) ( ) ( ) ( )( )2

0   2         sgn  i it t t P D t        + − = − − −  

  (3) 

. 

Note, that this equation is non-linear due to the sgn function 

that may assume any value between -1 and 1 at zero angular 

velocity. The actual value of the friction force at ( ) 0t =  is 

determined by the other forces and torques acting on the 

pendulum. As a consequence, the upper equilibrium point 

turns to an interval of possible equilibrium positions. Thus, Eq. 

(3) cannot be linearized at the 0,  0 = =  state in the 

conventional manner. To linearize the equation in a 

mathematically correct way, one could apply the theory of 

differential inclusions [13] or introduce a regularized, smooth 

approximation to the sgn function. This latter approach was 

followed in [12]. 

However, as it will be shown in this section, quantization is 

another non-smooth effect that introduces non-linearity in the 

system. Thus, instead of focusing on the linearization process, 

we opted for using non-smooth models describing the effects 

of friction and quantization. It is usual in textbooks and papers 

dealing with dry friction (see e.g., [14] and [15]) that a friction 

force-related term Ffriction = −sgn(v) FN is added to otherwise 

linear(ized) equations, and the resulting piecewise linear 

system is analyzed. Even in case of time-delayed systems, 

piecewise smooth control input is considered similarly, [16]. 

Since this method led to qualitatively correct findings, it is 

often applied in the industry, too [17]. Following this 

approach, we continue the analysis of Eq. (3) without further 

linearization. 

Equation (3) can be rewritten as a system of first order 

differential equations: 
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( ) ( ) ( ) ( )( )

( ) ( ) ( ) )

2

02     ,

,                , 1 ,

i it t t P D sgn t

t t t i i

        

   

= − − − −

=  +

(4) 

with initial conditions ( ) ii  =  and ( ) ii  = .  

If the sign of the angular velocity does not change, Eq. (4) 

can be easily solved for a sampling interval. Introducing the 

notations ̂ = , 
2Γ 1 = + , 

2P̂ P= , D̂ D= , 

( )2

out/x r = , ( )out/v r = , ( )2 2

0 out/ˆ r   = , 

dimensionless time /T t =  and outr  as the resolution of the 

actuated control effort, the solution formulates a dimensionless 

2D map: 

( ) ( ) ( )

( ) ( ) ( ) ( )( )  )  0   0 ,       0,1  ,

T

T x T v T

T T F T

 =  

= + 

y

U y b y
 (5) 

  

where F is composed of the control effort and friction force 

( )( ) ( ) ( ) ( )( )  0   0ˆ  sgnˆ ˆ F T P x Dv v T = + +y   (6) 

and the following are the solution operators of the ODE: 

 

( )

( ) ( ) ( )

( ) ( ) ( )

ˆ

Γ

 ch ˆ ˆ ˆ ˆ

ˆ ˆ

 sh sh
,

 sh  ch  sˆ ˆh

Te
T

T T T

T T T

 

    

    

−  

= 

  +   
 

   −  

U

 

and 

 ( )
( ) ( )( )

( )

ˆ

ˆ

αδT

2

ˆ ˆΓ Γ ch αΓ δ sh αΓ1
.

α Γ  ˆ shˆ ˆ  ΓT

e T T
T

e T 

−

−

 − +
=  

−  

b  

The arguments of U and b refer to the length of the solution 

segment, while the argument of y refers to a specific 

dimensionless time instant. 

 

Fig. 2 Bearing friction with respect to angular velocity of the pendulum. The 

coefficients of kinetic and static friction are considered to be equal. 

 

3 The hybrid micro-chaos map 

The calculated control force does not change within the 

sampling interval, due to the zero-order hold. Consequently, 

Eq. (5) can be used as a map between states at the ith and 

(i + 1)st sampling instants, if the sign of the velocity v does not 

change either in the interval T ∈ [i, i + 1): 

( ) ( ) ( ) ( ) ( )( )  )    ,       0,1  .i T T i T F i T+ = + y U y b y  (7) 

Introducing the notation ( ) ( )i x i v i=   y
T

, the state 

vector at the next sampling instant can be expressed by 

substituting T = 1 in Eq. (7). Thus, the following map is 

obtained: 

( ) ( )1   Int     sgn   .ˆ ˆ ˆ

i
i

i i i i i

m

P x Dv v



+

 
 

= + + +
 
 
 

y U y b   (8) 

Here im  is the control effort, i  is the friction force and 

Int(·) denotes the integer part function representing the 

quantization of the control effort. This quantization is a map-

like switching in the system: the controller updates the control 

effort at sampling instants, only. At ˆ 0 = , there is no other 

discontinuity in the system, so Eq. (7) – that can be referred to 

as micro-chaos map in this case [8] – fully describes the 

evolution of the solutions.  

The signum function corresponding to the friction, however, 

is a flow-like switching, because the sign of the friction force 

changes at any time instant when the velocity changes sign – 

regardless of the sampling. To handle the case when the 

velocity changes sign within the ith sampling interval, we need 

to calculate the dimensionless time T0,i when the solution 

reaches the switching line of the friction force Σf : y | v = 0, 

i.e., when the velocity is zero. Expressing the velocity using 

Eq. (7), one arrives at 

( )

( ) ( )

0,

:

2

0,

:

 Γ  cosh α Γ 

α δ  sinh α Γ  0.

ˆ ˆ

ˆ ˆ ˆ

i

i

i i

C

i i i i i

S

v T

v x m T



 

=

=

+

−  − + + =
  (9) 

From Eq. (9), the dimensionless time corresponding to zero 

velocity can be obtained: 

0,

1
log ,

 ˆ Γ

i i

i

i i

S C
T

S C

 −
=   + 

    (10) 

where iS  and iC  are the coefficients of ( )0,sinh α   ˆ Γ iT  and 

( )0,cosh α   ˆ Γ iT , respectively in Eq. (9). Both iS  and iC  

depend on the state of the system (i.e., ix , iv  or i ) at the 

beginning of the sampling interval. Thus, the state vector iy  

must be supplemented with the friction state i : 

 
T

i i i ix v =y . 

The condition of crossing the switching line of the friction 

force (Σf) within the actual sampling interval is 

0,0 1.iT      (11) 

If 0, 1,iT   one can use Eq. (7). Otherwise, the mapping 

between successive sampling instants must be divided into 

three steps:  

1) time evolution until the velocity becomes zero,  

2) change of the sign of friction force (or sticking), and  

3) time evolution until the next sampling interval. 

 

Combining these steps, we can formulate the so-called 

hybrid micro-chaos map: 
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( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

0, 0, 0,

0, 0,

1 0, 0, 0, 0,

,

,

1 1 ,

i i i i i

i i

i i i i i

T T T F

T T

T T T F T

+

+ +

+

= +

=

= − + −

y U y b y

y Qy

y U y b y

    (12) 

where 

( )
( )

( )
( )

0

       and     .0
0

0 0 1

T T
T T

 
  

= =   
   

U b
U b   (13) 

The discontinuity map related to the change of sign of the 

friction force is 

1 0 0

0 0 0 if sticking occurs,

0 0 0

1 0 0

0 1 0 otherwise,

0 0 1

  
  
  
    

= 
 
 
 
 − 

Q   (14) 

where the condition of sticking is: 

( ) ( )( )2

0,abs Int  ˆ ˆ ˆ ˆ  .i i iP x Dv x i T + − +   (15) 

In the first case of Eq. (14), when Eq. (15) is satisfied, the 

solution sticks and will stay at Σf. Otherwise, the solution 

crosses the switching line and the sign of the friction force is 

changed. ( )0,iTy  is the state when the solution reaches Σf and 

( )0,iT
+

y  is the state immediately after crossing Σf.  

It should be noted, that the initial state for map Eq. (12) 

should contain a friction force ( )0 0sgn  ˆv = , compatible 

with the initial velocity. 

 

4 Topological patterns, sticking zones 

The equation of control effort switching lines is 

( )  
ˆ  

Int             ,      ˆ \ 0 .  ˆ  
 ˆ

 
m P x

P x Dv m v m
D

−
+ =  = Z (16) 

The unstable fixed points 0m

m ux =  F
T

 of the micro-

chaos map lie on the x-axis, at zero velocity. If we omit the 

friction force, 

( ) 2

2
Int         ,     ˆ

ˆ
 ˆ   .m m m

u u u

m
P x x x m


=  = Z     (17) 

This formula is valid only if 
m

ux  resides between the mth and 

(m+1)st switching lines – since this is required to have 

( )Int  ˆ m

uP x m= . Based on Eqs. (16)-(17), unstable fixed points 

and switching lines occur alternately on the x − v phase-space 

(see Fig. 3). 

If unstable fixed points exist on both sides of a switching 

line, they push the trajectories towards each other. Therefore, 

chaotic attractors are expected to be at the intersections of the 

switching lines and the x axis (see Fig. 3): 

 attr ,       \ 0 .   
ˆ

 
m

x m
P

= Z   (18) 

Fig. 3 The state space of the micro-chaos map, when 𝜇Ƹ = 0. Black lines are control effort switching lines, Σf is denoted with a green line, unstable fixed 

points are denoted with black dots and their manifolds are the blue dashed lines. Three example trajectories corresponding different initial velocities are 

shown, ending in different chaotic attractors. Here lmax = 3 and after the 3rd attractor, the alternating pattern of attractors and fixed points breaks. The 

upcoming, virtual fixed point is shown with a red dot. 
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Restricting the control parameters to the stable domain  

( 2ˆ ˆP  ), the index of the outermost attractor can be 

expressed as 

max 2
Int  

ˆ
.

ˆ
   

ˆ
 

P
l

P 

 
=   − 

  (19) 

At maxm l , the alternating pattern of attractors and fixed 

points breaks because the maxm l=  control effort band does not 

have a fixed point inside. This particular fixed point is virtual 

and is situated in the next control effort band, see Fig. 3. While 

there can exist an attractor between a real and a virtual fixed 

point [8], there cannot be attractors at switching lines if 

maxm l . Thus, one can expect to have several attractors when 

the difference between the control gain P̂  and 2̂  is relatively 

small. At certain parameter combinations (see [9]), the 

neighboring attractors merge and form a larger attractor.  

An upper estimate for the control error – the distance of the 

outermost attractor from the origin – can be given for that 

frictionless case, when the eigenvalues of U are positive and 

real [9]: 

err,max 2ˆ ˆ

1
.    x

P 
=

−
  (20) 

As friction is introduced in the system, the fixed points 

extend to larger intervals along the x axis, where the friction 

force can be in equilibrium with the other forces acting on the 

system. If such an equilibrium interval collides with an 

attractor, a crisis phenomenon occurs and the attractor turns to 

a repellor, exhibiting finite time transient chaotic behavior. 

As it was shown in [9], there is only one fixed point in the 

phase space – at the origin – if large control gain 
2ˆ ˆ2P   is 

chosen from the domain of stability. The corresponding large 

attractor immediately disappears if friction is present. 

However, at relatively small values of P̂  – when it is only 

slightly larger than 2̂  –, several small attractors coexist and 

some of them may be quite far from the neighboring fixed 

points. Thus, such attractors can persist even if friction is taken 

into account. 

If we consider the condition of sticking Eq. (15) and 

substitute the control effort value m, we arrive at 

 ( )2abs .ˆ ˆm x −   

Resolving the absolute value yields 

sticking2 2
 

ˆ
.

ˆ

ˆ ˆ

m m
x

 

 

− +
     (21) 

One can recognize here the term corresponding to the 

unstable fixed points (Eq. (17)), that is, the mth sticking zone 

will appear around the mth unstable fixed point: 

sticking , ,2 2
,

ˆ ˆ
 

ˆ ˆ
   .u m u mx x x

 

 

 
 − + 
 

 (22) 

Using Eq. (18) and Eq. (22), one can express the condition 

corresponding to the overlap of attractor m and one of its 

neighboring sticking zones. 

2 2

1
     or   

ˆˆ
.

ˆ

ˆ
 

ˆ

ˆ

m m m m

P P

 

 

− + −
= =   (23) 

Fig. 4 C-SCM results for 𝛼ො = 6.53 × 10−3, δ = 0, 𝑃෠ = 5.5 × 10−5, 𝐷෡ = 2.5 × 10−3, Top: 𝜇Ƹ  = 0, Bottom: 𝜇Ƹ  = 0.095. Chaotic attractors are indicated with black 

dots, their basins of attractions are colored regions and fixed points’ manifolds are shown as white dashed lines. Gray regions indicate the basins of 

attractions of sticking zones, the bottom subfigure shows the case, when the outermost chaotic attractors are absorbed by sticking zones. 
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Lastly, one can also express the critical friction parameter 

when all sticking zones merge with their neighbors, that is the 

whole x-axis behaves as a sticking zone: 

crit

crit2 2

1
          

ˆ

ˆ ˆ
.ˆ 1




 
=  =   (24) 

Since the collision of chaotic attractors and sticking zones 

also depends on the size of the attractors, providing an exact 

formula for the absorption of a certain chaotic attractor can be 

challenging. Therefore, we have used cell mapping to examine 

the effect of increasing the friction parameter ̂ . 

 

5 Cell mapping results 

Cell mapping methods are suitable for the global 

investigation of the long term behavior of nonlinear dynamical 

systems [18]. Using cell mapping methods, fixed points, 

periodic orbits and their basin of attraction can be quickly 

found. Chaotic attractors are usually covered with one or more 

high-period orbits. We have applied Clustered Simple Cell 

Mapping (C-SCM) [11] to Eq. (12) to determine whether the 

chaotic attractors disappear due to the dry friction or not. 

Clustered Simple Cell Mapping is an extended variant of the 

Simple Cell Mapping (SCM) method. It works by solving 

separated SCM problems on adjacent state space regions and 

joining them to form a cluster of solutions. This way, adaptive 

expansion of the state space (by following trajectories leaving 

the state space domain covered by the cluster), and parallel 

execution are possible.  

Consider Fig. 4, showing chaotic attractors (black dots), 

their basins of attraction (colored bands), switching lines 

(white), and manifolds of fixed points (dashed white lines). 

Results with ˆ 0 =  and 
' 0. 5 ˆ 09 = are shown, where the latter 

corresponds to the collision of the sticking zone and the 4th 

attractor: 
' 21 / /ˆ m P − + =  , with 4m = . Since domains of 

attraction are provided by cell mapping, one can clearly see 

which initial states lead to sticking zones (gray regions).  

In order to explore the effect of varying ̂ , we have carried 

out a parameter scan on ˆ   ∈ [0, 0.5]. Attractor and fixed point 

positions (mean of x coordinates) are shown in Fig. 5, with 

colored and gray dots, respectively. As the sticking zones 

around fixed points grow, they absorb chaotic attractors one 

after the other. In this particular case, all chaotic attractors are 

absorbed at ̂  ≈ 0.45.  

 

6 Conclusion 

We have extended the notion of micro-chaos with the 

possibility to incorporate flow-like switching into a digitally 

controlled system. We introduced the hybrid micro-chaos map, 

and analyzed the behavior of a PD-controlled inverted 

pendulum with sampling and dry friction. Without friction, this 

system can have multiple separated chaotic attractors in its 

state space. Using the corresponding hybrid micro chaos map, 

the effect of friction was analyzed, and conditions for the 

collision of sticking zones and chaotic attractors could be 

given.  

We have shown, that there is a wide range of parameters, 

where chaotic attractors coexist with sticking zones originating 

from dry friction. Using the methodology introduced in this 

paper, one can explore the practically relevant ranges of 

system parameters by cell mapping and select parameters 

corresponding to a favorable state space configuration.  

With a similar approach, other spontaneous switching 

phenomena, e.g., impact, could be taken into account, as well. 
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