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Abstract: One of the most significant limitation of the productivity of machining operations
is the regenerative machine tool vibration, also called machine tool chatter, which is a self-
excited vibration between the tool and the workpiece induced by the chip formation mechanism.
Extension of the chatter-free parameters is possible by active chatter control techniques. The
design of the controller requires the identification of the dynamic properties of the system.
Uncertainties in the system parameters may result in an inappropriate control performance.
Robust control design is therefore a necessary step during the optimization of machining
operations. In this paper, a fast and efficient method is presented to determine the region
of control gains in the presence of uncertainties in the measured frequency response functions.
The method is based on the concept of structured singular values.
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1. INTRODUCTION

Stability of machining operations is a key problem in
efficiency oriented industrial applications. Machine tool
vibration, also called machine tool chatter, sets strong
limitation to the optimization of material removal rate,
therefore reduces the productivity and increases machining
costs. Techniques to suppress machine tool chatter is
therefore an important task in machining engineering.

The first mathematical models describing machine tool
chatter were published in the works of Tobias (1965),
Tlusty and Spacek (1954). Since then, the so-called re-
generative effect has become the most widely accepted ex-
planation for machine tool vibration. As the tool vibrates,
its motion is copied onto the surface of the material and
affects the removable chip thickness one revolution later.
The mathematical model of the phenomenon involves a
delayed feedback mechanism via the dependence of the
cutting force on the variation of the chip thickness. From
the dynamic system’s point of view, chatter is associated
with the loss of stability of the stationary (chatter-free)
machining process followed by a large amplitude self-
excited vibration between the tool and the workpiece.

Stability properties of machining processes are depicted
by the so-called stability lobe diagrams, which plot stable
domains in the plane of machining parameters, usually the
spindle speed and the depth of cut. This provides a guide
to the machinists to avoid chatter by selecting optimal

technological parameters. The calculation of conventional
stability lobe diagrams include the properties of the work-
piece material, such as cutting force characteristics, and
the dynamical properties of the tool, which are usually
measured via impact tests. Identification of system pa-
rameters, however, are always affected by noise and uncer-
tainties, therefore stability predictions often do not match
experimental validations. Uncertainty and robust analysis
therefore plays an important role in stability predictions
in order to guarantee stable operation.

There are several studies related to robust stability anal-
ysis of machine tool chatter. The edge theorem combined
with the zero exclusion method is presented by Park
and Qin (2007), while Totis (2009) has introduced the
RCPM method for robust stability predictions in milling
processes. Both techniques, similarly to many others, re-
quire the uncertainty bound of the system parameters
and limited to low number of uncertain parameters due
to extensive calculation time. With the use of local and
global sensitivity methods, the probability of stability can
be approximated based on the moments of the probability
distribution functions. Studies related to this field are
presented by Huang et al. (2016a) for turning operations
and by Huang et al. (2016b) for milling operations. A
different approximate solution is given by Löser and Groß-
mann (2016), which provides confidence levels of stability
boundaries for high number of perturbed parameters. A
completely frequency-domain-based solution is proposed
by Hajdu et al. (2016) for turning operations, which re-



quires no fitted modal parameters, only the uncertainty of
the measured frequency response functions.

In order to extend the domain of stable parameters and
suppress machine tool chatter, several engineering appli-
cations have been presented. For instance, a vibration
absorber is presented by Sims (2007), an impedance mod-
ulation technique by Segalman and Butcher (2000) and a
self-tuning dynamic vibration absorber by Aguirre et al.
(2013). An adaptive chatter suppression technique is pro-
posed by van Dijk et al. (2008), which is based on a
real-time chatter detection and automatic spindle speed
adjustment. A Pyragas-type feedback control is presented
by van de Wouw et al. (2015) to mitigate chatter in high-
speed milling. A chatter control is also introduced by van
Dijk et al. (2010) based on the structured singular values,
where the spindle speed and depth of cut are treated as
uncertain parameters in order to enlarge the domain of
stable machining parameters. A PD controller based chat-
ter suppression method for turning operations is presented
by Lehotzky and Insperger (2012), where actuation and
measurement are utilized theoretically at the tool tip.

One of the most typical drawback of each robust stability
analysis techniques is that the computation time increases
with the number of uncertain parameters. The calculation
of the robust stability boundaries based on the structured
singular values (µ-values) has been found an efficient tool
in many engineering applications. Still the accurate ap-
proximation of the µ-values is often time-consuming and
leads to a badly scaled mathematical problem. In this
paper, based on the results of Karow et al. (2006), a fast
and efficient method is presented in order to overcome the
problem of high computation time. The mechanical model
under analysis describes a turning operation subjected to
a PD control with feedback delay. It is assumed that the
control force is acting near the tool tip. The dynamical
properties of the tool are given by a frequency response
function matrix, which is measured between the tool tip
and the actuation point (see Fig. 1). Then the robust
stability boundaries based on the structured singular val-
ues are calculated with respect to the uncertainty of the
dynamics. The results are presented in a case study with
real measured frequency response functions.

2. MODEL OF TURNING OPERATIONS WITH
CONTROL

The dynamical model of turning operations including
feedback control is presented in Fig. 1. The cutting force
f1(t) acting at the tool tip (associated with coordinate
q1(t)) is determined by the formula

f1(t) = Kcwh(t), (1)

where Kc is the cutting-force coefficient, w is the depth
of cut and h(t) is the instantaneous chip thickness (see
Altintas (2012)). Due to the vibrations of the tool, the
chip thickness is determined not only by the feed motion,
but also by the current and previous positions of the
tool one revolution before. For constant spindle speeds,
the regenerative time delay can be given explicitly as
τ1 = 60/Ω, where Ω is the workpiece revolution given
in rpm. Then the modified chip thickness is given by the
relation

f1(t) = Kcw
(
vfτ1 + q1(t− τ1)− q1(t)

)
, (2)
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Fig. 1. Dynamical model of turning operations with stabi-
lizing controller.

where vf is the feed velocity.

When the position and velocity are measured at the
actuation point (associated with coordinate q2(t)), the
actuator force can be given by the feedback law

f2(t) = −kpq2(t− τ2)− kdq̇2(t− τ2), (3)

where kp and kd are the proportional and the derivative
control gains and τ2 is the inherent feedback delay in the
control loop. In order to simplify derivations, the following
notation is used

f(t) =

(
f1(t)
f2(t)

)
and q(t) =

(
q1(t)
q2(t)

)
. (4)

The transfer function matrix H(ω) between the forcing
F(ω) = F(f(t)) and displacement Q(ω) = F(q(t)) is
defined as

H(ω)F(ω) = Q(ω), (5)

which in this case can be written as(
H11(ω) H12(ω)
H21(ω) H22(ω)

)(
F1(ω)
F2(ω)

)
=

(
Q1(ω)
Q2(ω)

)
. (6)

Here, F denotes the Fourier transformation.

During the stability analysis, the static parts of the forcing
can be separated, and only the perturbed motion has to
be considered. Assuming that the position vector can be
written as q(t) = qs + x(t), where qs is the static defor-
mation and x(t) is perturbation about the equilibrium, the
forcing can be written as

f(t) = fs + fd(t), (7)

where

fs =

(
Kcwvfτ1
−kpqs2

)
(8)

and

fd(t) =

(
Kcw

(
x1(t− τ1)− x1(t)

)
−kpx2(t− τ2)− kdẋ2(t− τ2)

)
. (9)

Taking the Fourier transform of both sides and algebraic
manipulations give



Fd(ω) =

(
Kcw(e−iωτ1 − 1) 0

0 − (kp + kdiω) e−iωτ2

)
︸ ︷︷ ︸

=: K(ω)

X(ω),

(10)

where Fd(ω) = F(fd(t)) and X(ω) = F(x(t)).

Substitution of (10) into (5) and simplification with the
static terms gives

H(ω)K(ω)X(ω) = X(ω), (11)(
I−H(ω)K (ω)

)
X(ω) = 0. (12)

The existence of a periodic solution about the static
equilibrium implies that

G(ω;w,Ω) := det
(
I−H(ω)K (ω)

)
= 0. (13)

In order to construct stability lobe diagram in the plane
(Ω, w), (13) can be considered as a co-dimension one
problem, where the real and imaginary parts of G(ω;w,Ω)
give two scalar equations and a one-dimensional curve is
sought in the parameter space of Ω, w and ω. The multi-
dimensional bisection method developed by Bachrathy and
Stepan (2012) is an efficient and fast numerical tool for
this task. Note, that the bifurcation curves calculated from
the condition (13) separates the space of the machining
parameters, where the number of unstable characteristic
exponents is constant, but does not identify the stable
regions. Identification of stable domains require the appli-
cation the Nyquist criterion according to Bachrathy and
Stepan (2013).

3. ROBUST STABILITY ANALYSIS

3.1 Introduction to µ-analysis

The basic concept of structured singular values was intro-
duced by Doyle (1982) and used to analyze the effect of
block-diagonal perturbations of matrices. Since its appear-
ance, it has found many fields of applications, especially in
robust control theory with uncertain dynamical properties,
see, e.g., Karow et al. (2006).

Let us consider a general matrix M ∈ Cm×n, a pertur-
bation set ∆s ∈ Cn×m and a given norm ‖ · ‖. Then the
µ-value of M is defined as

µ(M) =

(
inf

{
‖∆‖, ∆ ∈∆s, det (I−∆M) = 0

})−1
,

(14)
for details see the work of Doyle (1982) and Karow et al.
(2006). There exist many numerical techniques to obtain
µ, however, due to the complexity of the solutions, the
calculation time can get significantly high. Formulas for
the calculation of µ in case of complex perturbations are
presented by Hinrichsen and Pritchard (2005); Packard
and Doyle (1993), and for real cases by Hinrichsen and
Pritchard (2005) and Qiu et al. (1995), just to mention a
few.

In order to provide a simple formula for the character-
ization of the robustness of turning operations including
delayed feedback control, the results of Karow et al. (2006)
are applied.

Let us introduce a weight matrix R = [Rjk], Rjk ≥
0, ∀ j, k (non-negative matrix) and a weighted maximum
norm defined as

‖∆‖ := max
j,k

R−1jk |∆jk|. (15)

In this case the following equivalence holds for ∆

‖∆‖ ≤ 1 ⇔ |∆jk| ≤ Rjk, ∀ j, k. (16)

Then an upper bound of µ-values can be given by the
relations

µ(M) = max
‖∆‖

ρ (∆M) ≤ ρ
(
RM̃

)
= ρ

(
M̃R

)
, (17)

where ρ denotes the spectral radius, and M̃ is a non-
negative matrix with M̃jk = |Mjk| (see Karow et al.
(2006)).

Detailed derivations, theorems and proofs related to the
topic can be found in Karow et al. (2006). An important
note is that the inequality in (17) is actually an equality
if M is a diagonal matrix.

A similar application of structured singular values for
machining operations was presented by van Dijk et al.
(2010), where the spindle speed and depth of cut were
assumed to be uncertain and a robust controller was
designed. In the current paper the machining parameters
are fixed, and only the dynamical behavior is assumed to
be uncertain. Moreover, in contrast with van Dijk et al.
(2010) the µ-values are approximated by (17) and no D-K
iteration is required (see Doyle (1982)).

3.2 Analysis of turning with delayed feedback

Linear dynamical properties of mechanical systems are
often determined from impact or shaking tests. In case
of machining operations, this requires the accurate excita-
tion of the tool at different points, while the response is
measured simultaneously. The measurements are always
loaded by noise, which modifies the output, moreover, im-
perfect excitation can also significantly affect the measured
signals. Case studies are presented by Kim and Schmitz
(2007), where the uncertainties of the measured frequency
response functions are analyzed.

In the uncertain model, it is assumed that the frequency
response function matrix is perturbed, where uncertainty
of H(ω) is modeled by ∆(ω), ie.

H(ω)→ H(ω) + ∆(ω). (18)

Modification of the transfer function matrix can be sub-
stituted into (12), which directly yields(

I−
(
H(ω) + ∆(ω)

)
K (ω)

)
X(ω) = 0. (19)

Bringing the uncertain term to the right-hand-side, one
obtains(

I−H(ω)K (ω)
)
X(ω) = ∆(ω)K (ω) X(ω), (20)

where rearrangement gives

X(ω) =
(
I−H(ω)K (ω)

)−1
∆(ω)K(ω)X(ω). (21)

If (13) does not hold, then the inverse of (I−H(ω)K (ω))
exists. However, if the determinant is zero, then the
parameter point lies on a bifurcation curve, where the
system is not robustly stable since an infinitely small
perturbation may already destabilize the system.



In order to obtain a standard form, let us introduce the
new variable Z(ω), such that

Z(ω) = K(ω)X(ω). (22)

Then some algebraic manipulation, similarly to (13), gives
the condition for a bifurcation curve including perturba-
tion

det

(
I−K(ω)

(
I−H(ω)K (ω)

)−1︸ ︷︷ ︸
=: M(ω)

∆(ω)

)
= 0 (23)

This is the standard formula for the M∆ structure, thus,
the method presented in the previous subsection can be
applied. Note that the order of the multiplication of
matrices M(ω) and ∆(ω) in (23) can be changed since
it does not change the determinant.

According to (17), an upper bound can be given on the
structured singular values as a function of the frequency
as

µ
(
M(ω)

)
< ρ

(
M̃(ω)R(ω)

)
, (24)

where

M̃jk(ω) = |K(ω)
(
I−H(ω)K (ω)

)−1|jk, (25)

Rjk(ω) = max
(
|∆jk(ω)|

)
. (26)

Indeed, R(ω) is the matrix of the absolute values of the
perturbation bounds.

The so-called stability radius can be introduced as a
measure to define the distance from instability (see Karow
et al. (2006)) as

rC =

(
sup
ω≥0

µ
(
M(ω)

))−1
. (27)

Note that, based on the definition of µ, it can be shown
that rC = 0 at any bifurcation curve and rC = 1 at the
robust stability boundary. Also note, that robustness is
defined in the unstable region, too, where the number of
unstable characteristic exponents are nonzero, but their
number does not change under perturbation. In order to
find the robust boundary in the stable domain, first the
stable regions must be identified.

Since the structured singular values are approximated,
definition (27) can be reformulated as

rC > r :=

(
sup
ω≥0

ρ
(
M̃(ω)R(ω)

))−1
. (28)

Here, r refers to lower estimation of the stability radius rC,
meaning that the estimation is conservative. By evaluating
r = r(Ω, w, kp, kd) at some fixed parameter values, it can
be determined if the parameter point is robust (r < 1) or
not (r > 1). Similarly, by sweeping a parameter between
given bounds, the robust stability boundaries can be found
by the level curve r = 1.

4. CASE STUDY

In practical applications, the frequency response function
measurements are performed multiple times and their
average is used during the stability calculations. In this
case study, a turning tool was measured 25 times at
the tool tip and half way between the tip and the tool
holder. The measured frequency response functions and
their average is presented in Fig. 2, where the individual
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Fig. 2. Measured frequency response functions.

FRFs are plotted by gray solid lines and black solid line
indicates their average. The uncertainty is approximated
with the standard deviations of the measurements, ie.

Rjk(ω) = σ
(
Hjk(ω)

)
, (29)

where 0 ≤ Rjk(ω) ∈ R.

Stability lobe diagrams were calculated using the following
parameters. The cutting-force coefficient of the workpiece
material is Kc = 363 MPa and the theoretical chip
thickness is h0 = vfτ1 = 0.1 mm. The delay of the
controller is assumed to be τ2 = 1 ms.

The stability diagrams of the coupled system can be
plotted in the four-dimensional space of the parameters
Ω, w, kp and kd. In order to illustrate the effect of
the different parameters, either the machining parameters
or the control gains are fixed, while the other two are
varied on a fixed interval. These stability diagrams can
be considered as two-dimensional projections of the four-
dimensional parameter space.

In Fig. 3 (a1-a2), the control gains are set to zero, i.e.
the stability lobe diagram of the uncontrolled system is
calculated. By evaluating condition (28), the robust sta-
bility boundaries can be found. The conventional stability
lobe diagram is plotted by solid thin line, while the robust
boundary is indicated by solid thick black line. Here, the
parameter point P (Ω = 3400 rpm, w = 1 mm) results
an unstable machining operation. In order to stabilize the
machining process at this point, the control gains should
be adjusted according to Fig. 3 (a2), where the stability
diagram of the controller associated with point P is pre-
sented in the plane of the control parameters (in panel
(a2) ’s’ stands for ’stable’, ’u’ stands for ’unstable’ and
’rs’ stands for robustly stable). Similarly to the stability
lobe diagrams, the robust control parameters can also be
found by evaluating condition (28). The conventional (not
necessarily robust) stable domain is indicated by light gray
shading, while the robust stable region is indicated by dark
gray shading and solid thick black line.

The approximation of the µ-values gives an upper esti-
mation of the robust stability boundaries, while the sin-
gle standard deviation of the measured transfer functions
gives a lower estimation of the uncertainties. The interplay
of these two counteractive approximations may result ei-
ther in underestimation or in overestimation of the robust
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Fig. 3. Robust stability diagram without control (kp = 0 N/m, kd = 0 Ns/m).
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Fig. 4. Robust stability diagram with stable control (kp = 106 N/m, kd = 150 Ns/m).
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Fig. 5. Robust stability diagram with robust stable control (kp = 1.4× 106 N/m, kd = −100 Ns/m).

stability boundaries. In order to validate the calculations,
stability boundaries associated with thirty different ran-
dom combinations of different measured FRFs are pre-
sented in Fig. 3 panel (b1). The boundaries corresponding
to the individual FRFs are shown by gray solid lines,
while the robust boundary is indicated by solid thick black
line. The sensitivity of the stability lobe diagrams is not
significant, both the predicted robust boundary and the
validated boundary based on random FRF combinations
provide a similar solution.

If the designed control parameters give a stable but not
robustly stable system, then the machining operation
may lose stability under perturbations of the frequency
response functions because the uncertainty of the transfer
function matrix affects the stability of the closed loop
system. In Fig. 4 (a1-a2) the stability lobe diagrams and
the control parameters are plotted corresponding to the
parameter point P (projections of the four-dimensional
parameter space). The designed controller with gains kp =

106 N/m and kd = 150 Ns/m results in a stable but
not robustly stable system. It can be seen in panel (a1)
that the uncertain region (light gray shading) significantly
increases. Here, dashed line indicates the robust stability
boundary of the uncontrolled system, while solid thick
black line indicates the robust stability boundary of the
closed loop system with the stable controller. It can also
be seen that the robust stable domain does not increase
significantly.

Similarly to the uncontrolled case, the robust stability
lobe diagram can be validated by random FRF combi-
nations, see Fig.4 (b1-b2). As it can be seen, none of the
perturbed bifurcation curve crosses the robust boundary,
which means that the estimation is still conservative. Also
note that the envelopes of the averaged FRFs are cal-
culated from the standard deviations, therefore some of
the perturbed stability boundaries may still intersect the
predicted robust stability boundary. However, the proba-
bility of the worst-case scenarios is significantly smaller,



therefore taking only the single standard deviations was
found to be a sufficient approximation in this case study.

The stability lobe diagrams associated with a controller
assuring robust stability is shown in Fig. 5 panel (a1-a2).
The robust control gains are kp = 1.4 × 106 N/m and
kd = −100 Ns/m. Note, that in this case the robust stable
region (dark gray shading) gets larger while the uncertain
region (light gray shading) slightly shrinks. Parameter
point P here lies in the robust stable region. The validation
is presented in Fig. 5 (b1).

5. CONCLUSION

Prediction of machine tool chatter involves several un-
certain factors, such as the force model or dynamical
parameters. Dynamic behavior of the machine tool is
characterized by a series of measured frequency response
functions, which involves measurement noise, incorrect
excitation and variation in the modal parameters. In
this paper an active controller-based solution is analyzed,
where the control gains are designed in frequency domain
based on stability lobe diagrams. Since uncertainty can
significantly affect the design of the control parameters, a
robust stability analysis method is proposed based on the
structured singular values (µ-values). During the calcula-
tion, only the measured frequency response functions and
their uncertainty are needed. The efficiency and industrial
competitiveness of the method are validated in a real case
study. It was shown that the standard deviation of the
complex frequency response functions can be used as the
radius of uncertainty for the robust calculations.
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