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Chapter 1
Introduction

Systems governed by delay-differential equations often come up in different fields of
science and engineering. One of the most important mechanical application is the
cutting process dynamics. After the extensive work of Tlusty et al. (1962), Tobias
(1965) and Kudinov (1955, 1967), the so-called regenerative effect has become the most
commonly accepted explanation for machine tool chatter (see Stépéan, 1989, Moon,
1998). This effect is related to the cutting force variation due to the wavy workpiece
surface cut one revolution ago. The corresponding mathematical models are delay-
differential equations.

Delayed equations also arise in robotics applications, telemanipulation with infor-
mation delay can be mentioned (see Whitney 1977, Stépan and Steven, 1990, Kim and
Bejczy, 1993, Miiller and Stépan, 1994, Stépan and Haller, 1995, Insperger and Stépén,
2000d). Time delay also arises in neural network models, where the interactions of the
neurons are delayed (see Campbell, 1999, Campbell et al., 1999).

In the case of systems with parametric excitation, some characteristic properties
of the system change periodically in time. The governing equations are consequently
time periodic equations.

The qualitative investigation of these mechanical systems always includes stability
analysis. For engineers, this work can effectively be supported by the so-called stability
charts. These charts show those parameter values for which the system is stable or
unstable.

Some properties of linear functional differential equations are reviewed in Chapter 2.
The basic mathematical background for stability analysis is presented for autonomous
and periodic systems, and demonstrated by examples.

In Chapter 3, a special periodic linear functional differential equation, the delayed
Mathieu equation is considered as a basic problem. Stability analysis is carried out
using Hill’s infinite matrix method, and an almost closed form stability chart is con-

structed. This stability chart makes connection between the Strutt—Ince chart of the
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Mathieu equation and the Hsu-Bhatt—Vyshnegradskii chart of the second order delay-
differential equation (also called delayed oscillator). The combined chart describes the
intriguing stability properties of a class of delayed oscillatory systems subjected to
parametric excitation.

In Chapter 4, a special approximation method is introduced for the stability analysis
of linear delayed equations. The method is based on the special properties of the so-
called Fargue-type delay equations, where the time delay is distributed along the past
according to a special weight function. These equations are transformed into a system
of ordinary differential equations, for which, the stability properties can be determined
by conventional methods. In the approach presented in Chapter 4, these equations are
used for approximating delayed equations with discrete time delay.

Chapter 5 presents an efficient numerical method, the so-called semi-discretization,
for the stability analysis of periodic linear delayed systems. The method is based on
a special kind of discretization technique with respect to the past effect only. The
resulting approximate system is delayed and also time periodic, but still, it can be
transformed analytically into a high dimensional linear discrete system. The method
is applied to determine the stability charts of the Mathieu equation with distributed
time delay.

In Chapter 6, the milling process is modeled including the tooth pass excitation
effect. The relating time periodic delay-differential equation is analyzed by the semi-
discretization method, and stability charts are constructed in the plane of technological
parameters. New stability properties are recognized for high speed milling.

In Chapter 7, turning with varying spindle speed is considered. Here, the parametric
excitation occurs in the time delay. Consequently, the governing equation is a delay-
differential equation with time varying delay. Stability charts are constructed by the

semi-discretization method, and new bifurcation phenomena are observed.



Chapter 2
Mathematical background

Hereditary systems are described by functional differential equations (FDEs). Accord-
ing to Myshkis (1955), FDEs are equations involving the function z(¢) of one scalar
argument ¢ (called time) and its derivatives for several values of argument ¢. It was
Mhyskis (1949), who formulated the initial value problem of delay-differential equa-
tions in the mathematically correct form of FDEs for the first time. In this chapter,

some special FDEs are reviewed and the main stability properties are summarized.

2.1 Linear autonomous ordinary differential equations

Linear autonomous ordinary differential equations (ODEs) have the general form

y(t) = Ay(t), (2.1)
where y € R”, A is an n X n matrix, and

ooy 4y dyn
y dt dt dt ~ dt )

For a given initial value y(0) = yyo, the solutions of equation (2.1) can be written in

the form
y(t) = exp(At)yo, (2.2)

where the exp(At) is the exponential of matrix At, defined by the Taylor series of
the exponential function (see e.g. the book of Hirsch and Smale, 1974, or the book of
Perko, 1996).

The stability of the solution y(¢f) = 0 is determined by the eigenvalues \;, j =
1,2,...,n of the coefficient matrix A. These are called characteristic roots of equation
(2.1). If all the characteristic roots have negative real parts, i.e. Re \; < 0 for all

j=1,2,...,n, then the trivial solution of system (2.1) is exponentially asymptotically
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Figure 2.1: Critical characteristic roots for autonomous systems: Hopf bifurcation (a)
and saddle-node bifurcation (b)

stable. In a general case, the characteristic roots can be determined by solving the

characteristic equation
det (\I— A) =0. (2.3)

Development of equation (2.3) results in an n'® degree polynomial of \, and many
numerical methods can be used to determine the roots. However, the stability analysis
can be done without determining the characteristic roots. The famous Routh-Hurwitz
criterion provides an algorithm to check the stability condition by the coefficients of
the characteristic polynomial (see Routh, 1877 and Hurwitz, 1895).

According to the location of the critical characteristic roots, there are two basic

ways for loss of stability of linear autonomous systems (see Guckenheimer and Holmes,
1983).

1. The critical characteristic roots are complex pair moving from the left-hand side
of the complex plane to the right-hand side crossing the imaginary axis, as it
is shown by case (a) in Figure 2.1. This case is called Hopf, or Andronov—Hopf
or Poincaré-Andronov-Hopf (PAH) bifurcation of a corresponding nonlinear sys-
tem. The systematic study of the conditions and the proof of the corresponding
bifurcation theorem was done by Andronov and Leontovich (1937) in the two di-
mensional case, and by Hopf (1942) in the n dimensional case. According to the
theory of nonlinear systems, either stable or unstable periodic motion may exist
around the equilibrium of the corresponding nonlinear system, called supercritical

and subcritical bifurcation, respectively.

2. The critical characteristic root is a real one moving from the left-hand side of the
complex plane to the right-hand side crossing the origin, as it is shown by case
(b) in Figure 2.1. This case is called saddle-node bifurcation of a corresponding

nonlinear system.



CHAPTER 2. MATHEMATICAL BACKGROUND 5

Example
A simple example for linear autonomous ODEs is the damped oscillator
Z(t) + boi(t) + cox(t) = 0. (2.4)

Using the so-called Cauchy transformation, this system can be given in the form of

equation (2.1), where

(=) [0 1
y(t) = (ﬁ(t)> and A = (—Co —b0> : (2.5)

The characteristic equation of system (2.4) reads
)\2 +b0)\+00 =0. (26)

This equation can also be obtained by substituting the trial solution x(t) = K exp(\t)

into equation (2.4). The characteristic roots are

Mg = : (2.7)

It can easily be seen, that the condition of asymptotic stability is ¢y > 0 and by > 0,
since in this case Re A1 o < 0. Hopf bifurcation arises at by = 0, ¢o > 0, saddle node

bifurcation occurs at by > 0, ¢y = 0.

2.2 Linear periodic ordinary differential equations

The general form of a linear periodic ODE reads
y(t)=A@)y(t), A)=A(t+T). (2.8)

Here, the coefficient matrix is time periodic in contrast to the constant coefficient
matrix of the autonomous system (2.1). The main theorems on general periodic systems
are summarized in the book of Farkas (1994).

For periodic ODEs, stability condition is provided by the Floquet Theory. The
solution of system (2.8) with the initial condition y(0) = yy is given by y(t) = ®(¢)yo,
where ®(t) is a fundamental matrix of system (2.8). Floquet (1883) showed that the
fundamental matrix has the form ®(¢) = P(¢) exp(Bt), where P(t) = P(t+T) is a
periodic matrix with initial value P(0) = I, and B is a constant matrix. The matrix
®(T) = exp(BT) is the so-called principal or monodromy or Floquet transition matrix
of system (2.8), and it gives the connection between the initial state and the state one
principal period later: y(7') = ®(T")y(0). The stability conditions for system (2.8) are

determined by the eigenvalues of the Floquet transition matrix.
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The eigenvalues of ®(T) are the characteristic multipliers (p;, j = 1,2,...,n)

calculated from

det(pI — ®(T)) =0. (2.9)

The eigenvalues of matrix B are the characteristic exponents (A;, j =1,2,...,n) given
by

det(A\I-B) =0. (2.10)

Obviously, if i is a characteristic multiplier, then there is a characteristic exponent A,
such that p = exp(AT), and vice versa.

The trivial solution y(t) = 0 of system (2.8) is asymptotically stable, if and only if
all the characteristic multipliers are in modulus less than one, that is, all the charac-
teristic exponents have negative real parts.

Similarly to autonomous systems, the basic types of stability losses can be classified
according to the location of the critical characteristic multipliers (see Guckenheimer

and Holmes, 1983). For periodic systems, there are three typical ways.

1. The critical characteristic multipliers are a complex pair moving out of the unit
circle, i.e. |u| = 1 and |z| = 1 in the critical case, as it is shown by case (a) in
Figure 2.2. This case is topologically equivalent to the Hopf bifurcation of au-
tonomous systems and called as secondary Hopf or Neimark-Sacker bifurcation.
According to the theory of nonlinear systems, either stable (supercritical case) or
unstable (subcritical case) quasi-periodic motions exist around the equilibrium

of the corresponding nonlinear system.

2. The critical characteristic multiplier is real and moves outside the unit circle at
+1, as it is shown by case (b) in Figure 2.2. The arising bifurcation is topologically
equivalent to the saddle-node bifurcation of autonomous systems and called as

period one bifurcation of the corresponding nonlinear system.

3. The critical characteristic multiplier is real and moves outside the unit circle at
—1, as it is shown by case (c¢) in Figure 2.2. There is no topologically equivalent
type of bifurcation for autonomous systems. This case is called period two or

period doubling or flip bifurcation of a corresponding nonlinear system.

Generally, it is hard to apply Floquet’s theory for stability calculations, since there
is no closed form representation for the principal matrix. For practical applications,
approximate methods are used.

Hill (1886) worked out a method like this (sometimes called Hill’s Infinite Deter-
minant Method) for the undamped, parametrically forced oscillatory system. Rayleigh
(1887) showed, that Hill’s method can be applied for more general cases, too. The most
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Figure 2.2: Critical characteristic multipliers for periodic systems: secondary Hopf

bifurcation (a), period one bifurcation (b) and period two bifurcation (c)

straightforward and less accurate method is the piecewise constant approximation of
the coefficient matrix (see, e.g., D’Agelo, 1970 or Insperger and Horvath, 2000). There
are other methods described in the book of Nayfeh and Mook (1979): the Lindstedt—
Poincare Technique and the Method of Multiple Scales. A novel approach was de-
veloped by Sinha and Wu (1991) and improved by Sinha and Butcher (1997). They
expanded the state vector and the periodic matrix in terms of Chebyshev polynomials
and applied the Floquet Theory to approximate the transition matrix. Their method
was used by Szabo and Lorant (2000) for the analysis of a parametrically excited rail-
way wheelset. The Chebyshev polynomials’ approach was also used by Szabd (2001)
for the stability analysis of pipes conveying flowing fluids. Bauchau and Nikishkov
(2001) worked out a numerical algorithm for extracting the dominant characteristic
multipliers without the explicit computation of the transition matrix. They applied
their method for rotorcraft stability evaluation.

These examples also show, that the stability analysis of parametrically excited sys-
tems is required in many practical applications. Periodic ODEs describe the vibrations
of rotating shafts with non-symmetric cross-section (see Ludvig, 1973), the dynamic
behaviour of gears (see Marialigeti, 1995, 1997, or Karsai, 1996), or vibrations in belt
drives of machine tools (see Patko and Kollanyi, 1999), just to mention a few.

One of the first basic problems of time periodic ODEs was the parametrically ex-
cited pendulum and the corresponding Mathieu equation. It was shown by Stephenson
(1908), that it is possible to stabilize the upper position of a rigid pendulum by vibrat-
ing its pivot point vertically at a specific high frequency. There are many generalizations
of this problem. Broer et al. (1998) considered the inverted pendulum with periodic
forcing as a bifurcation problem. Butcher and Sinha (1998a, 1998b) investigated lin-
ear and nonlinear behaviour of the parametrically excited simple pendulum and the
double inverted pendulum subjected to periodic follower force. A parametrically ex-

cited flexible rod was analyzed by Champneys and Fraser (2000) as an explanation of
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the “Indian rope trick”. Other generalizations of the Mathieu equation, like nonlinear
quasi-periodic or nonlinear noisy Mathieu equation are also in focus of interest (see
Namachchivaya et al., 2001, Zounes and Rand, 2001, Ramani et al., 2001).

Example

A simple example for linear periodic ODEs is the parametrically excited damped os-
cillator
E(t) + box(t) + co(t)x(t) =0, co(t) = cos + o= cos(t) . (2.11)

This equation is called (damped) Mathieu equation. Similarly to equation (2.4),
Cauchy transformation can be applied for equation (2.11), but here, the resulted coef-

ficient matrix is time periodic:

0 1
A(t) = (_Co(t) _bo> . (2.12)

As mentioned before, the stability conditions cannot be given in closed form even for
this simple example.

This time, the stability chart will be determined by the piecewise constant approx-
imation method. Divide the principal period 27 into k time intervals [¢;_1, ¢;] of length
At;, 1 =1,2,...,k, so that Zle At; = 2m. The piecewise constant approximation of

function c¢y(t) results
COZ'2005+COECOS(ti—Ati/2), i:1,2,...,k, (213)

and the piecewise constant approximation of the coefficient matrix reads

0 1
Ai:< ) i=1,2,... k. (2.14)

—coi —bo

By coupling the solutions, an approximated Floquet transition matrix can be given in
the form
®(27) = exp(ArAtg) exp(Ag 1AL 1) - --exp(A;Aty) . (2.15)

The boundary curves separating the stable parameter domains from the unstable
ones are determined by the eigenvalues p; and ps of the Floquet transition matrix. For
some by values, the boundary curves of equation (2.11) can be seen in Figure 2.3. The
stable domains are denoted by S, the unstable by Uy;. By increasing the “damping
coefficient” by, the stable domains get larger. In the literature, this chart is called
Strutt—Ince diagram (van der Pol and Strutt, 1928).

It can easily be shown, that only period one or period two bifurcations can exist

for the damped Mathieu equation (2.11). Secondary Hopf bifurcation arises if the
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Figure 2.3: Boundary curves for equation (2.11)

characteristic multipliers ©; and ps are complex pair in modulus equal to 1 and they
cross the unit circle with nonzero velocity as the system parameters (cogs, ¢o. and by)
change. This last condition requires that p; and uo are in modulus greater than 1 for
some parameters ¢y, Co., bp.

Liouville’s formula (see Farkas, 1994) can be used for equation (2.11) as follows

2T 2T
pipiy = det ®(27) = exp/ TrA(t)dt = exp/ —bodt = exp(—27by).  (2.16)
0 0

If by < 0, then puypus > 1, i.e., at least one of the characteristic multipliers is in
modulus greater than 1. Consequently, the Mathieu equation (2.11) with negative
damping is always unstable.

If by > 0, then s < 1. In this case, there is no secondary Hopf bifurcation, since
i1 and ps are in modulus not greater than 1 for any parameters ¢y, o, bp.

Consequently, only period one or period two bifurcations occur in the damped
Mathieu equation (2.11). These curves in Figure 2.3 are the boundaries of the unstable

domains denoted by U,; and U_y, respectively.
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2.3 Linear autonomous retarded functional differen-

tial equations

It has been known for a long time, that several problems can be described by models
including past effects. One of the classical examples is the predator-prey model of
Volterra (1928), where the growth rate of predators depends not only on the present
quality of food (say, prey), but also on the past quantities (in the period of gestation,
say). The first delay models in engineering appeared for wheel shimmy (von Schlippe
and Dietrich, 1941), and for ship stabilization (Minorsky, 1942). The system, where
the rate of change of state is determined by the present and also by the past states
of the system, are described by retarded functional differential equations (RFDEs).
The initial-value problem of general RFDEs was first correctly formulated by Myshkis
(1949). Since then, several books appeared summarizing the most important theorems,
see the books of Myshkis (1955), Bellman and Cooke (1963), Halanay (1966), Hale
(1977), Kolmanovskii and Nosov (1986), Stépan (1989), Hale and Lunel (1993) and
Diekmann et al. (1995).

Linear autonomous RFDEs have the general form

y(t) = L(y), (2.17)

where L : C' — R" is a continuous linear functional (C'is the Banach space of continuous
functions). According to the Riesz Representation Theorem (see Hale, 1977), this linear

functional L can be represented in the matrix form

L(y,) = / dn(0)y(t +9). (2.18)

(o

where 1 : [—0,0] = R is a matrix function of bounded variation, and the integral
is a Stieltjes one, i.e. it contains discrete and continuous time delays as well. The

continuous function y; is defined by the shift
vi() =yt +9), oe€l-00]. (2.19)

The characteristic function of system (2.17) reads

det ()\I— /0 emdn(ﬁ)> =0. (2.20)

o
Opposite to the characteristic polynomial of autonomous ODEs, this characteristic
function has, in general, infinite number of zeros in the complex plane, consequently, the
corresponding phase space is also infinite dimensional. From this point of view, RFDEs
are similar to partial differential equations (PDEs) due to their infinite dimensional

nature.
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Those RFDESs, where only discrete values of the past have influence on the present
rate of change of state, are often called retarded differential-difference equations

(RDDEs). A general form for linear autonomous RDDEs reads
y(t) = Ay(t) + > Biy(t—m), (2.21)
7j=1

where A and B;’s are n X n matrices, 7; > 0 for all j and r € Z*.

RFDE and RDDE are mathematical terminologies. In the engineering literature,
both RFDEs and RDDEs are usually called delay-differential equations and abbreviated
as DDEs.

The necessary and sufficient condition for the asymptotic stability of RFDE (2.17)
is that all the infinite number of characteristic roots have negative real parts, and the

condition .
/ e |dnk(9)] < o0, jk=1,2,...,n, v>0 (2.22)

is satisfied, where 7;,() are the elements of n(¢). Condition (2.22) means that the
past effect decays exponentially in the past. Obviously, this condition holds, if the
lower limit o of the integral in equation (2.18) is finite.

Although, there are infinite number of characteristic roots, it is not necessary to
compute all of them. There are methods to extract just the critical ones. Moreover,
only the signs of the real parts of the critical roots are needed for stability analysis.

The first attempts for determining stability criteria for second order RFDEs was
made by Bellmann and Cooke (1963) and by Bhatt and Hsu (1966). They used the
D-subdivision method (see Neimark, 1949) combined with a theorem of Pontryagin
(1942). The book of Kolmanovskii and Nosov (1986) summarizes the main theorems
on stability of RFDESs, and it contains several examples as well. A sophisticated method
was developed by Stépan (1989) (generalized also by Hassard, 1997) applicable even

for the combination of several discrete and continuous time delays.

Example

An example for linear autonomous RFDEs is

0
E(t) + box(t) + cox(t) = cl/ w(W)z(t +9)dy, oeR, (2.23)
where w(¥) is a weight function. In this case, the Stieltjes integral in equation (2.18)

defines a distributed time delay on interval [—a, 0].
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By the Cauchy transformation, system (2.23) can be given in the form of equation
(2.17), where

(0 1 yi(t) 0
L(Yt) N <—CU —b0> (yg(t)> * (Cl ngW(ﬁ)yl(t—Fﬁ)dﬁ) (224)

t t
vty = (“0) = (") (2.25)
y2(t) (1)
Consider the weight function w(d) = fs(9 + 7) with 0 < 7 < o, where f; is the

Dirac distribution. In this case, the time delay is a discrete one, since the Stieltjes

and

integral (2.18) gives

/0 500 + Pt + 9)dv = 2(t —7), (2.26)
and the resulting equation_iz a RDDE of the form

E(t) + boi(t) + cox(t) = cra(t — 7). (2.27)

This equation (often called as delayed oscillator) has great importance in applications,
since this is the basic governing equation of the regenerative model of machine tool
chatter. The Cauchy transformation of system (2.27) results the form of equation
(2.21) with r =1, 7y = 7 and

0 1 0 0
A= , B, = . (2.28)
—Cp —b() C1 0

Similarly to linear autonomous ODEs, the characteristic equation can be obtained
by substituting the trial solution x(¢) = K exp(At). The characteristic equations of

systems (2.23) and (2.27) read
0

M 4 b + ¢ = 01/ w(v) eMdy, (2.29)

—0

A 4o+ g = e, (2.30)

respectively. These are transcendent equations with infinitely many complex charac-
teristic roots, as mentioned at the general formula (2.20). Stability conditions can be
given by analyzing the roots of equations (2.29) and (2.30).

Now, the stability boundary curves (or D-curves) for equation (2.27) with 7 = 27
will be determined through the investigation of its characteristic equation (2.30). At the
boundary curves, the critical characteristic root is pure complex or zero. Consequently,
the substitution of A = iw into the equation (2.30), and the separation of the real and

the imaginary parts result the implicit form of the boundary curves as
co — w? — ¢y cos(2mw) =0, (2.31)
bow + ¢ sin(27w) = 0. (2.32)
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Figure 2.4: Boundary curves for equation (2.27) with 7 = 27

When by = 0, then equations (2.31) and (2.32) are equivalent to

ci =0 with ¢ >0 (2.33)
and

e = (—1)Fey— (=1)Fk?*/4, k=0,1,... (here,w =k/2). (2.34)

That is, for by = 0, the boundary curves are lines with slope 0 and =+1.
When by # 0, then equations (2.31) and (2.32) are equivalent to

bgw
= 2.35
“ sin(2mw) ’ (2.35)
bow
2 0
=w ' —— 2.36
= tan(27w) ’ (2.36)

where w is a parameter now, and w # k/2, k =0,1,....

The boundary curves for some values of by can be seen in Figure 2.4. These curves
separate the stable parameter domains from the unstable ones. Further analysis shows,
that for the case by = 0, the stable domains are inside the triangles, for the cases
bp = 0.1 and by = 0.2, the stable domains are those developing from the triangles of
the case by = 0 (see Hsu and Bhatt, 1966, or Stépan, 1989).

2.4 Linear periodic retarded functional differential equa-

tions

Linear periodic RFDEs have the general form

yv(t)=L(t,y;), L({t+T,y:) =L(ty:), (2.37)
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where L : R x ' — R" is continuous and linear in y; € C. According to the Riesz

Representation Theorem, the functional L can be written in the Stieltjes integral form

0
Lit.yi) = [ donlt0)y(e+9), (2.39)
where 7 : R x [—0,0] — R* is a matrix function of bounded variation in 9 € [—o,0].
The continuous function y, is defined by the equation (2.19).

Similarly to the autonomous case, linear periodic RDDEs can be defined as

y(t) = A)y(t) + Z B;()y(t —7), (2.39)

where A(t) and B;(¢)’s are n x n matrices, 7; > 0 for all j and r € Z.

The Floquet Theory can be extended for RFDEs as it was shown by Halanay (1961),
but infinite dimensional linear operators are used instead of the finite dimensional
tensors in (2.9) or (2.10). Such a linear operator can be defined by y; = U(t)y,. While
the operator U(¢) plays the role of the fundamental matrix, the role of the principal
matrix is taken by the so-called monodromy operator U(T"). The nonzero elements of
the spectrum of U(T') are called the characteristic multipliers of system (2.37), also
defined by

Ker(uI - U(T)) #0, p#0 (2.40)

instead of (2.9). If p is a characteristic multiplier, and p = exp(AT'), then A is called
characteristic exponent.

The necessary and sufficient condition for the asymptotic stability of the periodic
RFDE (2.37) is that all the characteristic multipliers are in modulus less than one (that

is, all the characteristic exponents have negative real parts), and the condition

/0 e |dgne(9,1)| < 00, g k=1,2,....n, v>0, teR, (2.41)
—0
is satisfied, where ;. (1, t) are the elements of n(¢,¢) . Similarly to autonomous RFDEs,
condition (2.41) trivially holds if o < oc.

For periodic RFDEs, the difficulty is that the operator U(T) has no closed form,
so no closed form stability conditions can be expected. For practical calculations, only
approximations can be applied. Most of the methods were developed with the aim of
constructing stability charts for milling processes.

Stability investigations of periodic RFDEs describing milling process are often car-
ried out by numerical simulations (see, e.g., Balachandran, 2001). An alternative of

Hill’s Infinite Matrix Method combined with a numerical algorithm was developed by
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Minis and Yanushevsky (1993), and generalized by Altintas and Budak (1995) and by
Seagalman and Butcher (1999). Also, Hill’s method was used by Insperger and Stépan
(2002a) to determine the closed form stability chart of the delayed Mathieu equation
(see Chapter 3). In other works, Insperger and Stépan (2000a, 2001a) approximated
the discrete time delay by special continuous ones according to Fargue (1973), and
transformed the infinite dimensional eigenvalue problem into an approximate finite di-
mensional one (see Chapter 4). Temporal finite element method was used by Bayly
et al. (2001a, 2002) to analyze intermittent cutting and milling operations. A gen-
eral method, the so-called semi-discretization was developed by Insperger and Stépan
(2001b, 2002b) for general periodic RFDEs (see Chapter 5).

Example

A simple example for linear periodic RFDEs can be given via substituting the constant
coefficients by, ¢y or ¢; in equations (2.23) or (2.27), by time periodic ones.
As a practical example, consider the governing equation of regenerative vibrations

in milling processes (see Chapter 6)
E(t) + b (t) + co(t)a(t) = cr(t)x(t —7), (2.42)

where ¢o(t +7) = ¢y(t), c1(t +7) = ¢1(t) and 7 > 0. Since the time delay is discrete,
this equation is an example for periodic RDDE.

Another example is the governing equation of turning with variable spindle speed
(see Chapter 7). In this case, the time delay itself changes periodically in time, conse-

quently, the equation is a periodic RFDE
E(t) + boi(t) + cox(t) = cra(t — 7(t)), (2.43)

where 7(t +T) = 7(t) and 7(t) > 0, t € R.

2.5 Other types of linear functional differential equa-

tions

There are other types of FDEs than the ones listed in the previous sections. If the rate of
change of state depends on its own past values as well, than the corresponding equation
is called neutral functional differential equation (NFDE). According to Kolmanovskii
and Nosov (1986), linear NFDEs have the general form

Y(t) = L(ta Y, Yt) ) (244)
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where L : R x C' x C' — R" is continuous and linear in y, € C' and in y; € C, and can

be represented as

0 0

Lityey) = [ damtoy+0)+ [ dmeoseso). @)
where 1, , : Rx[~0,0] — R" are matrix functions of bounded variation in ¥ € [~ 0].

Similarly to the previous sections, if L(t + T, y:,y:) = L(t,y:,¥:), then (2.44) is
called linear periodic NFDE. If L(t,y:,y:) = L(y: ¥:), then (2.44) is a linear au-

tonomous NFDE. Examples for a linear autonomous NFDEs are

i(t) = /0 wo(D)z(t + 0)dv + /0 w ()it +9)d0, oeRF,  (2.46)

#(t) = et — 1) + bia(t — 7). (2.47)

The main theorems on the stability of NFDEs are summarized by Kolmanovskii and
Nosov (1986). Similarly to RFDEs, the general stability conditions are determined by
infinite number of characteristic roots or characteristic multipliers. Several papers deal
with sharp stability criteria for some special NFDEs (see, e.g., Li, 1988, Khusainov and
Yun’kova, 1988, Stroinski, 1994, Hu and Hu, 1996, Arino and Nosov, 1998, Park and
Won, 2000, ).

If the rate of change of state depends on the past values of higher derivatives,
than the corresponding equation is called advanced functional differential equation
(AFDE). The reason for the phrase “advanced” can be demonstrated in the following
simple example. Consider the ADFE

() =it — 7). (2.48)

By a 7-shift transformation, and by using the new variable z = &, this equation can be
written in the form
2(t)=z2(t+71). (2.49)

Here, the rate of change of state is determined by the future values of state, i.e. an
advanced state determines the present state. Another example for AFDE is equation
(2.43) with alternating negative and positive time delays, i.e., when 7(¢) < 0 is also
allowed. Although, AFDEs are always unstable and have little physical relevance at
the moment, several papers deal with the properties of these systems (see, e.g., Filho,
1997, Zhang and Li, 1998, Kordonis and Philos, 1998, Fiagbedzi, 2001, Listyn and
Stavroulakis, 2001).

Mathematicians investigate even more complex cases, like nonautonomous (and

even non-periodic) FDEs (see Gyori and Pituk, 1997), or systems with time- and state-
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dependent delays (see Gyori et al., 1995, Péics, 2000). For some of these systems, even
the existence and uniqueness of the solutions are not clarified.
NFDEs and AFDEs are mostly in the focus of mathematicians’ interest, but they

may show up in some practical problems (see Chapter 7).



Chapter 3
Delayed Mathieu equation

In this chapter, the delayed Mathieu equation defined as
Z(t) + (8 +ecost)z(t) = bx(t — 2m)

is investigated. This is a linear periodic RFDE with a corresponding infinite dimen-
sional phase space, given as the combination of the Mathieu equation and a second
order scalar RFDE (the delayed oscillator). A closed form stability condition is given
in the form of a three-dimensional stability chart in the parameter space ¢, b and ¢.
This chart describes the intriguing stability properties of a class of delayed oscillatory
systems subjected to parametric excitation and also serves as a basic reference for other

numerical methods.

3.1 Special cases

In this section we consider the Mathieu equation and the delayed oscillator as the two
special limit cases of the delayed Mathieu equation.

The Mathieu equation has the form
E(t) + (0 +ecost)z(t) =0. (3.1)

This equation was first discussed by Mathieu (1868) in connection with the problem
of vibrations of an elliptic membrane. The stability chart, the so called Strutt—Ince
diagram was first published by van der Pol and Strutt (1928). This chart shows the
stable and unstable domains (denoted by S and U,y respectively in Figure 3.1) in the
parameter plane (J, ).

Without damping, the system cannot be asymptotically stable. The system is
stable in Ljapunov sense, if and only if all the characteristic multipliers are in modulus

less than or equal to one, and those with modulus one are simple in the minimal

18
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Figure 3.1: The Strutt-Ince stability chart of equation (3.1)

polynomial of the principal matrix. In the stable domains of the Strutt-Ince diagram,
this condition holds. Since the system is two dimensional, there are two characteristic
multipliers p; and po. From Liouville’s formula ( 2.16), it follows that puius = 1 (see

also Farkas, 1994). The characteristic multipliers are located in three ways:

1. The characteristic multipliers are a complex pair placed on the unit circle of the
complex plane. This case holds for the stable (in Ljapunov sense) domains of the

Strutt—Ince diagram.

2. Both characteristic multipliers are real, and pu; > 1, 0 < py < 1. This case
holds for the unstable domains denoted by U, in Figure 3.1. At the boundaries,

1 = pe = 1, and there exists a periodic solution with period 2.

3. Both characteristic multipliers are real, gy < —1 and —1 < py < 0. This case
holds for the unstable domains denoted by U_; in Figure 3.1. At the boundaries,

1 = e = —1, and there exists a periodic solution with period 4.

The undamped delayed oscillators are described by the scalar REDE
E(t) + 0x(t) = bx(t — 2m). (3.2)

Although, the stability chart in the parameter plane (§, b) has a very clear structure
(see Figure 3.2), it was first published correctly only in 1966 by Hsu and Bhatt. Accord-
ing to Kolmanovskii and Nosov (1986), this chart was also published in the literature in
Russian in 1967, often referred there as Vyshnegradskii diagram. The stability bound-
aries are lines with slope +1 and —1. The numbers denote the numbers of characteristic
roots with positive real parts. This will be called the number of instabilities. If this
number is 0, then the corresponding domain refers to an asymptotically stable system.
This will be called the domain of stability, bounded by thick lines in Figure 3.2. The
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Figure 3.2: The Hsu-Bhatt—Vyshnegradskii stability chart of equation (3.2)

only domains of stability are the triangles attached to the b = 0 axis for 6 > 0. Along
the boundaries where the number of instabilities changes from 0 to 2, Hopf bifurcations
occur.

Equations (3.1) and (3.2) are special cases of equations (2.11) and (2.27) with zero
damping (by = 0) already investigated as examples in Chapter 2.

3.2 The delayed Mathieu equation

The equation in question is the delayed Mathieu equation defined as
Z(t) + (0 + ecost)x(t) = bx(t — 2m) . (3.3)

The time delay is equal to the principal period 27. We are looking for the stability
chart in the space of parameters 9, b, €. The stability charts for the two special cases
e = 0 and b = 0 are presented in the previous section. The stability charts in the
plane (4, b) will be determined for various values of the parameter £. Geometrically,
this means that we follow how the stable triangles of Figure 3.2 vary for € > 0.

Let us define the stability boundary curves as the set of points in the plane (4, b),
where there is at least one characteristic multiplier in modulus equal to one. The
domains bounded by these curves are invariant for the number of instabilities due to
the continuous dependence on the parameters.

Our investigation is based on the following two theorems concerning time periodic
RFDEs of the form (2.37) (see Farkas, 1994).

Theorem 1 The trivial solution of system (2.37) is asymptotically stable, if and only
if all the (infinite number of ) characteristic multipliers are in modulus less than one,

that s all the characteristic exponents have negative real parts.
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AT

Theorem 2 p = e is a characteristic multiplier of system (2.37), if and only if,

there exists a nontrivial solution in the form y(t) = p(t) e*, where p(t) = p(t + T).

Use the trial solution
x(t) = p(t) e +p(t) e, (3.4)

for the delayed Mathieu equation (3.3) according to Theorem 2, where p(t) = p(t+ 2)
is a periodic function. Note, that A is characteristic exponent, that is, if Re A < 0,
then z(t) = 0 is asymptotically stable, as it follows from Theorem 1.

According to Hahn (1961), equation (3.3) may have solutions of the form t*p(t) e,
k € Z" in critical cases. Consequently, if |u| = 1, i.e. Re A = 0, then the solution
p(t) e% is stable in Ljapunov sense, but the solutions t*p(t) e are unstable. This case
has no importance here, since it may only arise at certain special points of the stability
boundaries, while in the present investigation, the domains of asymptotic stability are
determined.

Now, expand the periodic function p(¢) in (3.4) into Fourier series

x(t) = (Z Ak eikt + By eikt) eAt + <Z Ak efikt_kBk eikt) e;\t‘ (3.5)
k=0

k=0

Using trigonometrical transformations, expression (3.5) can be transformed into

l‘(t) = Z Ck e(’\+ik)t + C_'k e(’_\_ik)t . (36)
k=—00

(A+ik)t

The substitution into the system (3.3), and the balancing of the harmonics e and

(A—ik)

e ¢ yield two systems of equations for the coefficients C}, and C}, respectively:
%Ck,l +¢.Cr + %C’kﬂ =0, k=-00,...,00, (3.7a)
%ék,l + 50y + %é,m —0, k=—00,...,00, (3.7b)
where
ck =0+ (AN+ik)?—pe 2mOHE, (3.8)

A direct consequence of Theorem 2 is that equations (3.7a) and (3.7b) are satisfied if
and only if A is a characteristic exponent. Equations (3.7a) and (3.7b) are equivalent,
so it is enough to analyze (3.7a). There is a nontrivial solution of system (3.7a), if the

number zero is an eigenvalue of the so-called Hill’s infinite matrix

.og/2 eq g/2 0
H()\J 57 b? 6) = 0 6/2 Co 8/2 0 : (39)
0 /2 ¢ ¢g/2
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This matrix represents an unbounded linear operator H : [Z — [Z. Here, [Z is the
Hilbert space of the complex sequences (..., z_1, 20, 21,...) with >°7 _ |z,]? < co. As
it is the case for (unbounded) linear operators with compact resolvents, the spectrum
of H consist of a countable number of eigenvalues. All of these eigenvalues are of finite

multiplicity. The number zero is an eigenvalue of H if and only if
KerH(\, 6,b,2) £ 0. (3.10)

Formula (3.10) can be treated as the characteristic equation of (3.3), since its roots are
the characteristic exponents. This is a reformulation of (2.40) with p = exp(27]).

In order to carry out calculations, only the truncated system of equations with
k= —N,...,N is considered. This reduces the infinite eigenvalue problem of operator

H to the calculation of a finite determinant

c.n £/2

e/2 c_ni1 €/2
D(\, 0,b,e) = det K ) =0. (3.11)
e/2 cen_1 €/2

e/2 ¢n

Although, this truncation seems to be a rough approximation, it still has a sound
mathematical basis (see Mennicken, 1968, or Denk, 1995). This approximation is
just the same as the one applied during the construction of the Strutt-Ince diagram.
The operator H is often called Hill’s infinite matrix, and the terminology “infinite
determinant” is also used, although, in fact, it is not a determinant of a matrix. In
the following, we will construct the boundary curves, then determine the domains of
stability for N — oo.

3.2.1 Stability boundaries

According to the D-subdivision method, the substitution A = iw into (3.11) gives an
implicit form for the approximate boundary curves of (3.3) in the parameter space

(0, b, €) with the frequency parameter w. In this case, the diagonal elements in (3.11)

read
ch=0—(w+k)?—be '™ k=-N,... N. (3.12)
Note, that the imaginary part of ¢, is not dependent on &
Im ¢ = bsin(27w), k=-N,...,N. (3.13)

Disregard the case b = 0, which gives the classical Mathieu equation. Then we can

state, that Im ¢, = 0, if and only if w = j/2, where j =0, 1,.... Examine two cases.
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Case w # j/2, j=0,1,...

In this case, Im ¢, # 0 for any k as it follows from equation (3.13). The Gauss algorithm
can be applied for the tridiagonal matrix in equation (3.11) to transform it to an upper
triangular matrix having elements dj in the main diagonal. Clearly, d y = ¢y # 0.

In the (N +k)’th step of the Gauss elimination process, Hill’s matrix assumes the form
d,N 8/2 0

0 dp1 /2 0

0 d, ¢/2 0 - : (3.14)

0 €/2 ¢ €/2 0
0 €/2 cpe /2 0

Let us suppose that sgn(Im dy) = sgn(Im ¢;) for some k. Since Im ¢, # 0, this
means that Im dy # 0, i.e. |dg| # 0. Thus, the subsequent elimination of £/2 in front

of ¢4 leads to

g2 ( £ Re dk> ( £2Im dk>
dpi1 =Chy1 — — = |Recpy1 ————— | +i|({Imcpyps + —— | . 3.15
k+1 fet+-1 1d, k1T |dk|2 bt T |dk|2 (3.15)
Consequently,
N
sgn(Im dy11) = sgn <Im Ck+1 + (M) Im dk) (3.16)

= sgn(Im dy) = sgn(Im¢y) # 0.

Since Im d_x = Im c_y = bsin(27w) # 0, we have Im dj, # 0, that is, |di| # 0 is true
by induction.
The determinant of Hill’s matrix can be calculated as the product of the diagonal

elements of the upper triangular matrix. Hence

N
D(iw,8,b,e) = [] de #0, (3.17)
k=—N

condition (3.11) cannot be satisfied.
This means, that there is no nontrivial solution of system (3.7a), and there are no
boundary curves in this case.
Case w=3/2, j=0,1,...
In this case, the diagonal elements in (3.11) are real:

cr=06—(k+7/2)? —b(—1)7. (3.18)
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Figure 3.3: Domains of stability of equation (3.3) for ¢ = 1 (denoted by 0’s)

If j is even, that is j = 2h, h =0,1,..., then A =ih and the corresponding character-
istic multiplier is
po= e = 2™ — 1 (3.19)

In this case, ¢, = §—b—(k+h)?, and equation (3.11) gives the relation f,;(6—b,¢) =0
for the boundary curves. For the case b = 0, the relation f1(d,e) = 0 serves the
1 = +1 stability boundary curves of the classical Mathieu equation defined in the form
d = g11(e) as shown first by van der Pol and Strutt (1928). This means, that the
boundary curves exist for the b # 0 case, too, in the form § —b = g,1(¢). In the
plane (4, b), these are lines with slope +1 (represented by continuous lines in Figure
3.3). Along these boundary curves, there exists a characteristic multiplier p = +1,
and equation (3.3) has a periodic solution of period 27. This case corresponds to the
period one bifurcation.

If jisodd, thatis j = 2h+1, h = 0,1,..., then A = i(h+1/2) and the corresponding

characteristic multiplier is
o= ei(h+1/2)27r — ei7r - 1. (320)

In this case, ¢y = 0 +b— (k+h+1/2)?, and equation (3.11) implies the boundary curve
relation f_1(0 + b,e) = 0. For the same reason as above, the boundary curves exist
again in the form § —b = g_;(¢), where 6 = g_;(¢) gives the u = —1 stability boundary
curves of the classical Mathieu equation. The boundary curves are lines with slope —1
in the parameter plane (4, b) (represented by dashed lines in Figure 3.3). Along these
boundary curves, there exists a characteristic multiplier u = —1, and equation (3.3)
has nontrivial periodic solution of period 47. This case corresponds to the period two
(or flip) bifurcation.

Thus, the boundary curves are lines in the plane (¢, b). For varying parameter &,

these lines pass along the boundary curves of the Strutt-Ince diagram. As mentioned
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before, these charts are approximate to the same extent as the Strutt-Ince diagram
(N=20 in the figures), and they converge to the exact result for the N — oo limit case.
This means, that the appearance of the delay in the Mathieu equation does not require
any more approximation in the stability analysis, just the same already used in the
classical Mathieu equation. The point is, that the parametric excitation in the delayed

oscillator does not alter the linearity of the stability boundaries.

3.2.2 Domains of stability

Since the characteristic multipliers and exponents depend continuously on the system
parameters, the number of instabilities is constant in each domain separated by the
boundary curves. The special case ¢ = 0 can be treated as a reference regarding the
number of instabilities. The domains attached to these triangles of stability in the
Hsu-Bhatt—Vyshnegradskii chart (see Figure 3.2) also have zero instability number.
Similarly, some domains of instability can also be identified this way, and also the
number of instabilities can be given based on the case ¢ = 0. But there may also be
some new domains, which are not connected directly to any domain of the Hsu-Bhatt—
Vyshnegradskii chart. To decide the stability of these domains, the sign of Re A will
be investigated near to the boundary curves. The derivative of A with respect to the
parameter b will be determined for A =1ij/2, j =0,1,....

A recursive form for the calculation of the tridiagonal upper left sub-determinants

in equation (3.11) can be given as

D_N = C_N, (321)
62
D_N_|_1 = C_NC_N+1 — Z, (322)
2
Dy =Dy — —Dpy, k=—-N+2,... . N. (3.23)

4
Let us denote the partial derivative w.r.t. b by comma (OO0’ = 00/0b) and the
substitution of A =i;/2 by hat (0 = Ol5=i/2)- According to this notation, the partial
derivatives of expressions (3.8), (3.21) and (3.22) yield

=2\ + lk)X TOHRRT 4 pom ) em AR,
i +2k)> N = (—1y,

(3.24)
( (3.25)
(27rb Y T_n+i0 )X (—1YT_y, (3.26)
( (3.27)

—N+ 27Tb P N+1+IQ N—I—l))\ —(— ) F_N+1,
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where the coefficients

P_N:]_,
Q y=j—2N,

I Nyi=¢ n+¢ N1,
Q v =65 2N +2)+¢é na(j —2N)

are real numbers since ¢, is real for all K = —N, ..., N. The same differentiation of

equation (3.23) yields the recursion
R A R 2 .
D= &Dir+aDjy — T Djye k=—-N+2...,N. (3.28)

We prove by induction, that equation (3.28) can be expressed in the same form as

equations (3.26) and (3.27). For some £, let us suppose that
Dipy = (276 (<1) T + 194 2) N = (-1 T, (3.29)
Diyy = (27 (<1) Ty + 1901 ) N = (=1 Ty, (3.30)

where T'y o, T'r 1, Q 2, Q1 are real numbers. Then, by using equation (3.25),

equation (3.28) reads
D, = (27rb (—1)' Ty +iQk> N = (=1)'Ty, k=-N+2,...,N, (3.31)

where the coefficients

2
. R €

I'y =Dp1 + T 16 — Zrkﬂ )
. N g2

Qk = (] + 2]47)Dk_1 + Qk—lék — ZQk_Q

are real numbers, again. Together with equations (3.26) and (3.27), this completes the
induction.

The final round of recursion is given by the £ = NN case. The implicit differentiation
of the characteristic exponent in D?V = 0 provides the expression of Re \ after a

straightforward algebraic calculation from equation (3.31):
2713,

Re \ = . 5
(27rb(—1)9 FN) 0%

b. (3.32)

Since the coefficient of b is positive, sgn(Re \') = sgn(b) on the boundary curves.
That is, moving away from the b = 0 axis, each boundary line represents at least
one characteristic exponent becoming unstable (i.e. crossing the imaginary axis of the

complex plane from the left to the right). So the only domains of stability are the
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triangles born from the stable triangles of the ¢ = 0 case. Since the case ¢ = 0 is
already known (see Figure 3.2), the number of instabilities can be determined for all
the domains by equation (3.32) and by topological considerations (see the numbers in
the chart of Figure 3.3). The domains of stability are bounded by thick lines. The
frame-view of the 3 dimensional stability chart in the space (4, b, ) is shown in Figure
3.4.

Figure 3.4: Stability chart of the delayed Mathieu equation

3.3 The damped delayed Mathieu equation

In this section, it will be shown that the period one and the period two stability

boundaries for the damped delayed Mathieu equation
E(t) + ki(t) + (§ +ecost)z(t) = bx(t — 2m) (3.33)

are still lines in the (9,b) parameter plane for any fixed ¢ and k. The investigation is
similar to the investigation of the undamped delayed Mathieu equation.

The stability chart of the damped delayed Mathieu equation is a combination of
the charts in Figures 2.3 and 2.4. For the classical damped Mathieu equation, there is
no secondary Hopf type stability boundary. Similarly to the undamped case, there are
either period one or period two stability boundaries, (see the example in Section 2.2
and Figure 2.3).

The substitution of the trial solution (3.4), the use of trigonometrical transforma-

tions and the balance of the harmonics result in the system of equations having form
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of (3.7a) and (3.7b). Hill’s determinant can be defined again as

6_]\7 8/2
6/2 5,N+1 6/2
D(),6,b,e) = det g . =0. (3.34)
6/2 5]\7,1 6/2
8/2 6]\[
but here, the diagonal elements have the form
=0+ (\+ik)2+r(\+1ik) — be 2rOHE) (3.35)

instead of ¢, defined in equation (3.8).

After the substitution of A = iw into (3.35), the imaginary part of ¢ reads
Im é; = k(w + k) + bsin(27w) . (3.36)

From this point, the proof of the undamped delayed Mathieu equation cannot be
continued, since Im ¢ = 0 does not fulfill in the cases w = j/2, j = 0,1,.... This
means, that boundary curves may exist even for the case w # j/2, 7 =0,1,..., and the
critical characteristic multipliers can also be complex pairs of modulus 1. Consequently,
secondary Hopf bifurcations may occur in this case, we cannot give the corresponding
stability boundaries in closed form, though. However, assume the case when w = j/2,
j=0,1,.... Then

&r=0—(k+35/2)? —b(—1) +i(k+7/2)x, (3.37)

and the same classification can be done as in the undamped case.
If j is even, that is j = 2h, h = 0,1,..., then A\ = ih and the corresponding
characteristic multiplier is
p= el = 2" =1, (3.38)

In this case, ¢, = § — b — (k + h)?> +i(k + h)k, and equation (3.34) gives the re-
lation f+1(5 —b,e,k) =0 for the boundary curves. For the case b = 0, the relation
f+1(6,6, k) = 0 serves the y = +1 stability boundary curves of the classical damped
Mathieu equation defined in the form 6 = g,1(¢, k). This means, that the linear bound-
ary curves exist for the b # 0 case, too, in the form 6 — b = g41(¢, k). In the plane
(0, b), these are lines with slope +1 (see Figure 3.5). Along these boundary curves,
there exists a characteristic multiplier 4 = 41, and equation (3.33) has a periodic
solution of period 2. This case corresponds to the period one bifurcation.

If jisodd, thatis j = 2h+1, h = 0,1,..., then A = i(h+1/2) and the corresponding

characteristic multiplier is

o= ei(h+1/2)27r — ei7r - 1. (339)
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Figure 3.5: Period one and period two boundary lines for equation (3.33) with e =1,
k=0.1

In this case, ¢z =0 +b— (k+h+1/2)>+i(k+ h+1/2)k, and equation (3.34) implies
the boundary curve relation f,l(é + b,e,k) = 0. For the same reason as above, the
boundary curves exist again in the form § —b = g_1(¢, k), where § = g_;(¢, k) gives
the ;. = —1 stability boundary curves of the classical damped Mathieu equation. The
boundary curves are lines with slope —1 in the parameter plane (J, b) (see Figure 3.5).
Along these boundary curves, there exists a characteristic multiplier p = —1, and
equation (3.33) has nontrivial periodic solution of period 47. This case corresponds to
the period two bifurcation.

This investigation showed that all the period one and period two boundary curves
are lines in the (0, b) plane with slope +1 or —1, respectively (see Figure 3.5). However,
in addition to these linear boundaries, secondary Hopf type boundary curves may also

exist, since A and consequently p can also be complex at the loss of stability.
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3.4 New results

Thesis 1 The closed form & dimensional stability chart for the delayed Mathieu equa-
tion
Z(t) + (8 +ecost)z(t) = bx(t — 2m)

was constructed and proved. It was shown analytically, that the boundary curves in the
plane (8, b) are lines for any €. The number of instabilities was also determined in
the domains separated by these lines. At the boundaries with slope +1, a characteristic
multiplier crosses the unit circle at +1, presenting a 2w periodic motion. At the bound-
aries with slope —1, a characteristic multiplier crosses the unit circle at —1, presenting
a 41 periodic motion.

It was also proved, that the damped delayed Mathieu equation also have linear bound-
ary curves in the plane (0, b) for the period one and period two bifurcations, but sec-

ondary Hopf bifurcations may also exist along some non-linear stability boundaries.



Chapter 4
Fargue-type approximation

In this chapter, a special approximation method is introduced for the stability analysis
of linear periodic RFDEs. The method is based on the special properties of RFDEs
with a Fargue-type delay distribution defined as ffoo w(9)x(t+19)dd, where the weight
function is a product of a polynomial and an exponential expression: w() = C 9" e“2?,
Ci2 € R, n € N. It was shown by Fargue (1973), that these REFDEs are equivalent to
finite dimensional system of ODEs.

This type of weight function is often used for modeling distributed time delay effects.
For example, in population dynamics, delay effects (gestation, digestion) are not so well
defined, the delays have some deviations around an average value (see Farkas, 1994,
Farkas and Stépan, 1992).

In this section, RFDEs with a Fargue-type delay distribution are used for approxi-
mating RFDEs with discrete time delays (i.e. approximating RDDES).

4.1 Transformation of Fargue-type RFDEs to ODEs

Consider the second order linear periodic RDDE
E(t) + bk (t) + co(t)x(t) = cr()x(t —7), coa(t+T)=coal(t). (4.1)

With T" = 7, this gives the governing equation of regenerative vibrations in milling
processes (see Chapter 6, later). In this chapter, an approximate stability chart for
equation (4.1) will be constructed.

The main step of the method is the approximation of the discrete time delay with

a distributed one as follows

x(t—T)%/_O wn ()t + 9)do, (4.2)

o0

31
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Figure 4.1: The Fargue-type weight function for 7 =1

where w, (1) is a special weight function series coming from the product of a polynomial
and an exponential expression

n+1

wy(9) = (—1)" g eI (4.3)

Tntip!

The function w, () satisfies the following properties

/0 wy(9)dY =1, nlggo wy (V) = fs(9 4+ 1), (4.4)

where fsis the Dirac distribution. Figure 4.1 shows the weight functions for parameters
n = 2,10,50,100 and 7 = 1. It can be seen, that the greater n is, the more correct the
approximation is. Fargue (1973) proved that equation (4.2) converges to z(t —7) as n
tends to infinity, i.e.
0
lim wy (Nt +9)dY =x(t — 7). (4.5)

n—oo [_ o

Consequently, n can be called as approximation parameter.
Application of approximation (4.2) with a fixed finite n in equation (4.1) results
the periodic RFDE

E(t) + b (t) + co(t)x(t) = &1 (t)/ wp(Nz(t+9)dd, co1(t+T) =coa(t). (4.6)

Now, introduce the new variables vy, ys, . .., ¥, 13 in several steps in the following way:
n(t) = x(t), (4.7)
ya(t) = (1), (4.8)
0
ys(t) = /)umwn@+ﬁMﬁmx@—ﬂ. (4.9)
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Since

d d .
o+ 0) = a(t+0) = @(t+9), (4.10)

the derivative of y3(t) with respect to the time ¢ can be calculated via integration by

parts as follows

0 nn-i—l
ww:/)@wl 9" /7 (1 4 9)d

o Tntln!
nn+1 9 0
= [(—1)"m19” et + 19)] N
0 d nn—i—l 9
. e 1\ n nd/T
/_oox(t+19)d19 <( 1) T”*ln!ﬁ e )dﬁ

(4.11)

n ‘ nnn+1 n ,nd/T
_ —;/;x@+®@4)ﬂﬂmﬁeﬂ“w

. ° 1\ n"t! n—1 nd/T
z(t+9)(-1) 9t e™TdY

~ 1 (n —1)!

n+1

n ’ n n n—1 nd/T
= _;yB(t) - (—1) mﬁ e Tx(t 4 9)dd .

—0o0

This time, the second term in equation (4.11) is defined as the subsequent new variable

0 nntl Ry

[o¢]
Similar calculation results

: n ’ n n"t! n—2 nd/T

—0o0

where the second term defines a new variable, again,

0 nntl PRy

o0

After the introduction of all the new variables in the same way, and calculating their
time derivatives via integration by parts, the degree of ¥ decreases each time by 1. The

(n 4+ 2)nd new variable and its derivative read

0 nn-i—l

dnia(t) = / (—1) g et + ) (4.15)
o aana il

- n ° nnn-'_1 nd/rT

) = )= [ (U Ealee o, (@10

where the last new variable is defined as

0 nn+1
%Hﬂﬂ::/)(—D";;Tﬂwﬂdt+ﬁMﬁ. (4.17)

o0
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The derivative of v, 3(t) reads

) n 0 nn-i—l 9
insa(t) = ~"aia) = [ (0 (e )0
T o0 T (4.18)
n nnn—i—l
= ~Lynialt) = (1" S (t).

Equations (4.11)-(4.17) define the recursion

. n .

while equation (4.18) forms a connection with y; (t) = x(¢). Together with the equations
(4.6)-(4.9), a finite (n + 3) dimensional system of ODEs with a 7-periodic coefficient

matrix can be defined:

y(t) = A(t)y (), (4.20)
where y =col(y; 42 ... Yni3) and
0 1 0 0
—co(t) —by ci(t) O
0 0 —n/T -1 R 0
A(t) = : : : . N : : (4.21)
0 0 0 e —TL/T -1
- (~n/0)"™" 0 0 - 0 —n/r

As it was shown by Fargue (1973), equation (4.6) is equivalent to equation (4.20). Thus,
the stability of equation (4.20) gives the stability of equation (4.6), i.e. if equation (4.6)
is stable, then equation (4.20) is stable too, and vice versa.

System (4.20) is asymptotically stable, if and only if all the characteristic multipliers
denoted by i, 7 = 1,2, ...,n+3, are in modulus less than one. As mentioned in Section
2.2, there are no general methods to calculate the characteristic multipliers of system
(4.20) in an algebraic form, but there are various types of approximation methods.
Here, we will use the piecewise constant approximation of the coefficient matrix A(%).

Construct the time intervals [t; 1,t;] of length At;, ¢ = 1,2,...,k, so that the
principal period can be expressed as T = Y% | At;. The functions cy(t) and ¢, (t) are

approximated with constant (say average) values

1 [

- / o)At & co(ti — ALJ2), i=1,2,... k, (4.22)
Ati ti—1
1 [t

C1; = AL / Cl(t)dtﬁcl(tl—Atl/Q), i:1,2,...,k (423)
i St
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in each time interval. Correspondingly, the piecewise constant approximation of the

coefficient matrix is

0 1 0 0
—Coi —by i 0
0 0 —n/r -1 - 0
A= . . . . . . ) (4'24)
0 0 0 - —njr -1
(=1)" (=n/7)"* 0 o .- 0 —n/T

fort € [ti,hti], 1=1,2,.. .,k.
The Floquet transition matrix of the system can be given by coupling the solutions

for each interval:
®(T) = exp(ArAty) exp(Ag_1Atg_1) - - -exp(A 1 Aly) . (4.25)

This matrix is a finite dimensional approximation of the monodromy operator U(T") of
system (4.1). At this point, several numerical methods can be used to determine the

critical eigenvalue, that is the greatest in modulus.

4.2 Time scale transformation

A numerical problem arises in the Fargue-type approximation. The bottom left element
of the piecewise constant matrix (4.24) increases in modulus exponentially with the
approximation parameter. It means, that for large n, the matrix (4.24) is not well
conditioned, and the computation of the matrix exponential in equation (4.25) needs
high CPU capacity and may still result numerical errors.

For example, if n = 20 and 7 = 1, then (=1)" (—n/7)""" ~ 2.0972 x 10%, i.e. the
norm of the matrix is at least 2.0972 x 10?". Thus, the norm of the exponential matrix
is about 10919810 " Thig order of magnitude of numbers leads to numerical difficulties
during the evaluation of the Floquet transition matrix ®(7).

A solution for this problem is to introduce the new dimensionless time = (n/7)t.

The derivatives w.r.t. ¢ are denoted by comma, and defined by

d nd

— =—-— 4.26

dt  7dt (4.26)
For this time scale, the equation (4.1) has the form

x’ (ﬂ + (%) by’ (ﬂ + (%)200 (ﬂ x (ﬂ = (1)201 (ﬂ x (t~— n) , (4.27)

n

o1 (f—i— (2) T) =co1 (ﬂ .
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The point is, that in equation (4.27), the time delay is just equal to the approxima-
tion parameter, and the approximated coefficient matrix resulted by the Fargue-type

approximation is well conditioned now:

0 1 0
(D)0 =D (5 e 0
0 0 ~1 =1 - 0
A= . . . S I (4.28)
0 0 0 .- -1 -1
(=1)m 0 0 - 0 -1

The norm of this matrix is about 2 (it also depends on the parameters by, co;, ¢14, 1, T,
of course), and the numerical problems mentioned before do not arise. Approximation
parameter n = 100 can be used with a reasonable CPU capacity to determine the
Floquet transition matrix

P (QT> = exp (Ak ;Atk) exp <Ak_1 gAtk_l) Ceeexp <A1 gAh) ) (4.29)

-

The comparison of the CPU times for evaluating characteristic multipliers of Flo-
quet transition matrices with and without time scale transformation can be seen in
Figure 4.2. The figure shows the CPU time for evaluating eigenvalues of matrices
(4.25) and (4.29), respectively, for various approximation parameters n and for inter-
val number £ = 10. It can be seen, that the CPU time is higher for computations
without time scale transformation. For higher approximation parameter, the differ-
ence between the two method increases exponentially. Furthermore, for n > 25, the
accumulated numerical errors become too large during the calculation without time
scale transformation. That is, without time scale transformation, the method can only
be used for n < 25. With time scale transformation, the method can be used for higher

approximation parameters as well.

4.3 Example: the damped delayed Mathieu equation

The special case of equation (4.1)
Z(t) + boz(t) + co(t)x(t) = crz(t — 1), co(t) = cos + coe cos(2mt/T) . (4.30)

is investigated. The case ¢; = 0 with 7 = 27 and the case ¢y = 0 give the equations
(2.11) and (2.27), respectively. The boundary curves for these cases were determined
in Chapter 2 (see Figures 2.3 and 2.4). The case by = 0, T = 7 = 27 gives the delayed
Mathieu equation (3.3), for which, the closed form stability chart was constructed in
Chapter 3.
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0.25 ‘ ‘ ‘
—8— with time scale tranformation
|| - O without time scale tranformation
0.2 o
@ o
() - - p
= 0.15 . accumulated
= ) numerical
2 0.1f » errors become -
O o too large
0.05+
0
0

Figure 4.2: Comparison of Fargue-type approximations with and without time scale

transformation

Equation (4.30) is approximated by the RFDE

E(t) + bk (t) + co(t)z(t) = &1 /0 wy (V) x(t + 9)dd, (4.31)

— 00

co(t) = co5 + coe cos(2mt/T)

with the weight function w,, () defined by (4.3). The approximated stability charts for
the general cases (by # 0, ¢; # 0 and ¢y # 0) will be constructed here.

For the undamped autonomous case (by = 0 and ¢y = 0), the stability charts for
various approximation parameters (n = 2,5, 10, 20,50, 100) are shown in Figure 4.3.
Grey colored parameter domains refer to asymptotically stable systems. It can be
followed, how the stability charts converge to the exact chart of equation (2.27) that
is shown by dotted lines on the n = 100 chart. In the 0 < ¢p5 < 1, —0.5 < ¢; < 0.5
parameter domain, n = 100 gives a satisfactory approximation with errors less than
1%. This means a 103 dimensional approximation of the infinite dimensional state
space of equation (4.30).

Although, the n — oo limit case gives the Dirac distribution and results a discrete
time delay in the equation, this type of weight function can effectively be used for
approximating systems including distributed delays. The charts in Figure 4.3 also
show, that for lower approximation parameter, i.e., for more distributed time delay,
the stable domains are more extended, especially for large ¢y parameter. This means,
that the distribution of the time delay has a kind of stabilizing effect.

Figure 4.4 shows the stability charts for equation (4.31) with 7 = 7" = 27 and
n = 100, that is, the approximated stability charts for equation (4.30) with 7 = T = 27.
For the special case ¢o. = 0, the boundary curves were determined in Section 2.3 (see
Figure 2.3). For the case by = 0, the closed form stability chart was constructed in

Chapter 3. For these limit cases, the accurate boundary curves are shown by dotted
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2 2
n=2 n=5
1 1
0" 0 0
-1 -1 j
-2 -2
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5

-2 -2
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
2 2
n=50
1 1
o.—c 0 o W/\ ‘

Figure 4.3: Stability charts for equation (4.31) with by = 0 and ¢y. =0

lines again in Figure 4.4. This helps to estimate the accuracy of the approximation.

It was shown in Chapter 3, that the period one and period two boundary curves are
linear also in the case by # 0. In the charts [co. =1, by = 0.1], [co. = 2, by = 0.1] and
[coe = 2, by = 0.2], these linear boundaries occur. In the chart [¢y. = 1, by = 0.2], this
extra boundary curve is not a straight line. This is due to the fact, that equation (4.31)
is only an approximation of equation (4.30). For higher approximation parameter, this
boundary curves converge to two parallel lines.

The stability charts for equation (4.31) with n =100, 7 = 2x, T =7 and T = 4~
can be seen in Figures 4.5 and 4.6, respectively. For the case T = m, the linear
boundaries are still present and the stability charts have a clear structure. For the case
T = 4m, the structures of the charts are not so clear, and also disjunct stable parameter
domains arise.

In Chapter 5, the stability charts shown in the Figures 4.4, 4.5 and 4.6 are also
determined by the semi-discretization method. Thus, the two numerical methods will

also be compared later.



CHAPTER 4. FARGUE-TYPE APPROXIMATION

2 2
. C, .0 | . ¢, =0
bO:O.l bO:O.Z . -
or &K .. 0
-1 -1
-2 -2
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
2 2
. c0£=1 . cOs-l
b0=0.1 b0=0.2
0 VA 0
-1 -1
-2 -2 -2
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5 -1 0 1 2 3 4
2 2 2
cOE—Z cO£=2 005_2
1 bO:O | 1 b0=0.1 1rip =0.2
UH 0 . A . AN 0 < « 0 v
-1 ' -1 -1
-2 -2 -2
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5 -1 0 1 2 3 4 5
03 Cos Cos

2 2 2
. cOE—l . C05=1 . cOE—l
b0=0 b0=0.1 b0=0.2
OO0 Ay o & of <7
-1 -1 -1
-2 -2 -2
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5 -1 0 1 2 3 4
2 2 2
. c0£—2 . 00822 . COE_Z
b,=0 Z b,=0.1 b,=0.2
o0} & of of &«
-1 -1 -1
-2 -2 -2
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5 -1 0 1 2 3 4
s %s s

Figure 4.5: Stability charts for equation (4.31) with n =100, 7 =27 and T' =7
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2 2 2
b,=0 | . N b,=0.1 b,=0.2

Figure 4.6: Stability charts for equation (4.31) with n =100, 7 = 27 and T = 4«

4.4 New results

Thesis 2 Farque’s theorem (1973) was applied to transform the linear periodic RFDE

0
(1) + bod (t) + co(Da(t) = 1 (1) / wn (D)t + )9, cor(t+T) = coa(t)
with the weight function
n nn+1 n n T
wn(ﬁ) = (_1) 7ty e o

into the (n + 3) dimensional ODE of the form

The Floquet transition matriz was determined by piecewise constant approximation of
the coefficient matriz A(t). The method was used for approximating RDDEs with
finite dimensional ODFEs. A time scale transformation was introduced, that make the
approximation numerically more effective.

Approzimate stability charts for the periodic RDDE (the damped delayed Mathieu

equation)
T(t) + box(t) + co(t)x(t) = crz(t — 1), co(t) = cos + coe cos(2mt/T)

were constructed.



Chapter 5
Semi-discretization

Discretization techniques are important for differential equations for which the solution
cannot be given in closed forms. Approximation with discrete systems has become
more important by the development of computer technology. Nowadays, the numerical
dynamics is a very active and rapidly evolving field of research. Since any discretization
is a parameterized family of small perturbations (with the stepsize as parameter), the
classical theory of perturbations can be adapted to discretizations, see, e.g., Arnold
(1978), Stuart and Humphries (1996), Garay (1996, 1998), Garay and Hilger (2001).
Generally, one may say that, for a sufficiently small stepsize, the solutions of the original
differential equations persist under discretization.

The semi-discretization method presented in this chapter is an efficient numerical
method for the stability analysis of linear delayed systems. The method is based on a
special kind of discretization technique with respect to the past effect only. Mathemati-
cally, this discretization corresponds to a delay perturbation (see Gyéri and Turi, 1991,
Cooke et al., 1991 and Gy6ri et al., 1995, 1996). The resulting approximate system is
delayed and also time periodic, but still, it can be transformed analytically into a high
dimensional linear discrete system. The method is applied to determine the stability

charts of the Mathieu equation also with distributed time delay.

5.1 Preliminaries

In this Section, the basic idea of semi-discretization is shown for a simple case. Let
us consider the one dimensional, second order autonomous RFDE with a discrete time

delay (the undamped delayed oscillator)
E(t) + cox(t) = cra(t — 7). (5.1)

Equation (5.1) was already investigated in Section 2.3, and its stability chart was also

constructed (see Figures 2.4 or 3.2). Here, the semi-discretization method will be

41
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T T m=2 T m=4 T m — oo

m=1
24t / / Wy sy SAt
At = 2At . 4At LS —

—_—
0 At t 0 At t 0 At ! 0 t
Figure 5.1: Time dependent delay
introduced first for equation (5.1).
5.1.1 Basic idea of semi-discretization
Consider the intervals [t;,t;,1) where t;;1 —t; = At, i =0,1,..., and the RFDE
E(t) + cox(t) = crx(tim), t € [ti,tiv1), meZ, i=0,1,.... (5.2)

This equation for the case m = 1 often comes up in control problems modeling the
sampling effect (see, for example, Stépan, 1991, 2001a, or Kovacs and Stépéan, 2002).
In opposite to equation (5.1), the time delay in equation (5.2) is not constant, it is
a piecewise linear periodic function with period At, as it is shown in Figure 5.1. As
the parameter m tends to infinity, the time delay tends to the constant value 7 if
At = 7/(m + 1/2), and equation (5.2) approximates equation (5.1).

Although equation (5.2) is a non-autonomous RFDE with infinite dimensional phase
space, its Poincaré map has a simple finite dimensional representation since it can be
solved in each time interval as an ODE (details will be explained in Section 5.2).
The stability chart defined for various values of m can be seen in Figure 5.2 (stable
parameter domains are denoted by grey color). It shows, how the stability chart of
equation (5.2) approximates the chart of equation (5.1) for increasing parameter m.
For m = 10, the stability chart approximates the chart in Figure 3.2 with errors less
than 1%. For the charts in Figure 5.2, 7 = 27, consequently, At = 27 /(m + 1/2).

For the case m = 1, the necessary and sufficient criteria for asymptotic stability

can be given after a lengthy algebraic work (see Appendix A) as

c1 < ¢, C();é— k=0,1,... (53)

and

1+ 2cos (\/%At) 1+ 2cos (\/%At)
1 — cos (\/%At) 1 — cos (\/%At)

where At = 47 /3. The formulae are more and more complicated for m > 2.

0<e <

cg or 0>¢ >

Co , (54)

The point of the semi-discretization method is that, while the actual time domain

terms are left in the original form, the delayed terms are approximated by piecewise
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Figure 5.2: Stability charts for equation (5.2) with 7 = 27

constant values, and are treated as constant excitations in ODEs. In Section 5.2,
the generalization of the above introduced method will be shown. Before that, the

full-discretization is compared to the semi-discretization.

5.1.2 Full discretization

The following question arises naturally: why do not we discretize all the actual time
domain terms? The use of the interval division shown in Section 5.1.1 leads to the

approximated derivatives of x(¢)

. Tiv1 — T4

i(t) ~ ﬁ, (5.5)
N Tit2 — 2Tip1 + T4

i(t) ~ = At; : (5.6)

where x; = x(¢;). Substitution into equation (5.2) yields the recursive formula

Tiyy = Q1Tip1 + QT + Q3T (5.7)
where a; = 2, ap = —1 — ¢pAt? and a3 = ¢;At?. This connection is described by the
discrete map

yit1 = By, (5.8)

where the m + 2 dimensional state vector is

yvi=col(zip1 & i1 ... Tim), (5.9)
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Figure 5.3: Stability boundaries for equation (5.1) constructed by full discretization

and the coefficient matrix has the form

a1 Q9 0 ... 0 Q3
1 0 0
0 1 0 ... 0 0
B=|., . .. . .| (5-10)
0
0 1

The stability chart constructed by full discretization can be seen in Figure 5.3 for
various approximation parameter values. Comparison of the charts in Figure 5.2 and

in Figure 5.3 shows, that the semi-discretization method is much more effective.

5.2 Semi-discretization method

The so-called semi-discretization is a well known technique used for example, in the
finite element analysis of solid bodies, or in computational fluid mechanics. The basic
idea is, that the corresponding partial differential equation (PDE) is discretized along
the spatial coordinates only, while the time coordinates are unchanged. From a dy-
namical systems viewpoint, the PDE has an infinite dimensional state space, which is
approximated by the finite dimensional state space of a high dimensional ODE.

The same idea can be used for any RFDE, but its implementation is not trivial.
The infinite dimensional nature of the RFDE is due to the presence of past effects,
described by functions embedded also in the time domain, above the past interval
[t — 0,t], where o denotes the length of the delay effect.

In this section, we will investigate the n dimensional RFDE

x(t) = /0 dgn(0, )x(t +9), 0, t+T)=n,t), (5.11)

(o
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where the lower limit ¢ can also be infinity and the condition (2.41) holds.
The integral in equation (5.11) is a Stieltes one, i.e. it may contain discrete and

continuous time delays like

/0 dyn (9, t)x(t + ) = iRj(t)x(t — ;) + /0 W (9, 1)x(t + 9)dd, (5.12)

o =1

where the number r of discrete time delays can also be infinity. Nevertheless, the

discrete time delay can also be defined as
0
x@—qﬁi/1WWk@+ﬁMﬁ, (5.13)

where the weight function is the Dirac distribution at —7; :
w;(9) = f5(9 +15), (5.14)

and 7; < 0. This makes it possible to consider the discrete time delay as a special case

of the continuous one. Thus, we will investigate the RFDE of the form

x(t) = A(t)x(t) + /0 W (¥, t)x(t + 9)dd, (5.15)
A(t+T)=A(t), WW,t+T)=W(,t),

where W (9, t) is now a weight distribution including such breaks like Dirac distribution,
and the dependence on the present state of x(t) is determined by the matrix A(%).
According to equation (2.41), the condition for W (1, t) reads

0
/‘e”NWM&ﬂMﬁ<m,j$:Lanm y>0, teR.  (5.16)

o0

Because of this condition, in approximations, the value of ¢ in equation (5.15) can be

considered as any large, but still finite value.

5.2.1 Structure of semi-discretization

One of the main steps of semi-discretization is the construction of the time intervals
[tiytir1) of length At, i = 0,1,..., so that the principal period can be expressed as
T=kAt, ke Z.

There are three steps of approximations of the distribution matrix W (4, ¢) in equa-
tion (5.15).

1. Consider equation (5.15) in the time intervals ¢t € [t;,t;11), 7 = 0,1,.... The
time dependent matrices A(t) and W (1),¢) can be approximated with constant
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matrices
1 tit1
A, = — A(t)dt, 5.17
i) AW (5.17)
1 tit1
W, () = A W (9, t)dt (5.18)

for each discretization interval, that is A; and W;(¢J) are not time dependent
any more. This step is equivalent to the piecewise autonomous approximation of

non-autonomous systems.

2. The continuous distribution matrix W;(«J) can be approximated as a sum of
shifted Dirac distributions

=D F0+ ([ - PAYWiy, (5.19)

where the weights of the terms are

(1-j)At
—jAt
and m can also be infinity, similarly to o. This step leads to a kind of piecewise

constant approximation of the delayed term.

3. Finally, VNVZ(19) can be approximated with a time dependent distribution for ¢ €
[tis tis1)

W, (0, 1) = W,(0 — LAt + 1) :Z (0 + (j — 1)At + )W, (5.21)

This is a generalization of the approximation of discrete time delays shown in

Figure 5.1.

The geometrical visualization of the approximation process can be seen in Figure 5.4.

The application of these approximations in equation (5.15) results in a non-autono-
mous RFDE which seems to be more complicated than the original REDE. However,
the integral expression in equation (5.15) can be approximated by a summation as

follows

/ W0, 1)x (t+19d19N/ WL Ox(t - 0)d0 =3 Woxisn, (522

j=1

where
Xi—jt1 =x(t; — (j —1DAt), i=0,1,..., j=0,1,...,m. (5.23)
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W,
W (9) W Wi(9) W (9.1)
\
KK‘HM -2At
| 1] A7 | -At 0
ﬁ | | |
| 1l o | 9
o=mAt  |-At O 9 P ssnas Y,
2A¢ -mAl (1-m)A T=t+k At
(12-m)At &

Figure 5.4: Approximation of the weight function

In spite of the fact, that the approximated system is a non-autonomous RFDE, it can be
defined as a series of autonomous ODEs with constant excitations in each discretization
interval .
X(t) = Ax(t)+ Y WXy, tE€[titin), i=01,.... (5.24)
j=1
In other words, equation (5.15) is approximated now with a series of piecewise au-
tonomous ODEs.
Let us assume, that the matrix A; is invertible for all 7. Then, the solution of

equation (5.24) assumes the form

X(t) = exp (Az(t — tz)) Kz — Z A;IWi,jxi_jH s (525)

i=1

where the constant vector K; depends on the initial value x(¢;) = x; :

m
Ki=%+ Y AW, X ;. (5.26)
j=1
If the matrix A; is not invertible, then the solution can still be expressed in a more
complicated form, and the semi-discretization method can also be applied.
Substitution of equation (5.26) into equation (5.25) and t = t;,, yield

m—1

Xit1 = Mi,OXi —+ Z Mi’in,j 5 (527)
j=1
where the coefficient matrices are
M, o = exp(A;At) + (exp(A;At) —I) A;IWZ-,I , (5.28)
Mi,j = (exp(AZAt) — I) A;lwi’j+1 . (529)

Equation (5.27) gives the connection between the states of the system at time instants

t; and t;,1. This connection can be presented as a discrete map

yi+1 = Biyi, (5.30)
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where the mn dimensional state vector is

yYi = COl(Xi Xi—1 ... Xi—m—l—l) 5 (531)

and the coefficient matrix is a hypermatrix of the form

Mi,O Mi,l Mi,Z s Mi,mf2 Mi,mfl
I 0 o ... 0 0
0 I o ... 0 0
Bi=| . S . . : (5.32)
0 0 o ... 0 0
0 0 o ... I 0

The next step is to determine the transition matrix ® over the principal period
T = kAt . This serves a finite dimensional approximation of the monodromy operator
in the infinite dimensional version of the Floquet Theory. The transition matrix gives

the connection between y, and yj in the form

yi = ®yo, (5.33)

where @ is given by coupling the solutions
@ - Bk*lkaQ e BIBU . (534)

This transition matrix is a finite dimensional approximation of the monodromy operator
U(T) of system (5.15). Here, the notation ® is used instead of ®(7T') in order to
emphasize that it is a transition matrix for the discrete system (5.30), and not for a
continuous one.

Now, the stability investigation of equation (5.24) is reduced to the problem, whether
the eigenvalues of @ are in modulus less than 1 (see Lakshmikantham and Trigiante,

1988). Any standard or advanced numerical algorithm can be used for this last step.

5.2.2 Convergence of semi-discretization

The convergence of the method can be seen by refining the interval division, e.g. by
decreasing At and increasing m . The approximation defined by equation (5.22) satisfies

0 m

- 0
lim [ WL Ox(t+ 0)dd = im S Wik 0= / W (0, )x(t + 9)d, (5.35)

At=0 ), t—0 <
]:

since it is a rectangular sum approximation of integral expressions according to the

classical definition of the Riemann integral.
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Re

Figure 5.5: Eigenvalue localization

Let us denote the characteristic multipliers of the original equation (5.15) by u;,
j=1,2,..., and the characteristic multipliers of the approximating equation (5.33) by
i, =1,2,...,mn.

For any small € > 0, there exists an integer M(g), so that for every m > M(e),

the set Tj Sp; e contains exactly mn number of characteristic multipliers j1; of equation
(5.11), ]anld all the other characteristic multipliers of equation (5.11) are in modulus
less than ¢.

Thus, if all the characteristic multipliers of equation (5.33) are in modulus less
than 1, then choosing ¢ = 3 (1 — max;|/;|), the finite approximation number M (e)
exists, and if m > M(e) fulfils, then the discretized and the original system has the
same stability properties (see Figure 5.5 with nm = 3). A rigorous proof of the above
statement can be constructed with the methods presented by Farkas and Stépan (1992)
which use the continuous dependence of the eigenvalues on the system parameters.

Clearly, the semi-discretization does not preserve the solutions of the original sys-
tem. It preserves, however, their exponential stability if the semi-discretization is fine

enough in the sense presented above.



CHAPTER 5. SEMI-DISCRETIZATION 20

5.3 Example: the damped delayed Mathieu equation

One dimensional, higher order systems can be investigated by transforming the system
into the form of equation (5.15) according to the Cauchy transformation, and then
using the semi-discretization method. In some special cases of higher order systems,
the direct semi-discretization leads to a lower dimensional approximation than the
semi-discretization of the Cauchy-transformed systems. This is the case, for example,

when the damped delayed Mathieu equation
Z(t) + boz(t) + co(t)x(t) = crz(t — 1), co(t) = cos + coe cos(2mt/T) . (5.36)

is investigated.
Let the time interval division be defined as in Section 5.2.1. In the interval ¢t €

[tiytir1) of length At, i =0,1,..., equation (5.36) can be approximated as

l‘(t) + b().'L’(t) + CgifL’(t) =C1Ti—m (537)
where
1 tit1
Co; = —/ Cg(t)dt ~ Co(ti + At/2) , (538)
At ),

and 7 = (m + 1/2)At as it was shown in Section 5.1.1.
For the initial conditions z(t;) = z;, ©(t;) = 4;, the solution and its derivative at

each time instant ¢;,1 can be determined:

Tiy1 = x(tiH) = Qpox; + Qg 1i‘i + b() mLi—m (539)
.ft'zqu = i‘(ti+1) = a19x; + ay l.ft'i + bl mLi—m s (540)
where
apo = K190 exp()\lAt) + Koo exp()\gAt) y
ap1 = K11 exp()\lAt) + Ko91 exp()\gAt) y
arg = K1 0)\1 exp()\lAt) + Ko 0)\2 exp()\QAt) s
a1 = K1 1)\1 exp()\lAt) + Ko 1)\2 exp()\QAt) s
bgm =01 exp()\lAt) + 09 exp()\gAt) + CI/COi y
blm = 0'1)\1 exp()\lAt) + 0'2)\2 eXp()\QAt) s
and
)\IZZ—boi 63—4001,
’ 2
)\2 —1 —)\2 C1
K K11 = g1 = —_—
H Az — At H Az — At ' A2 — A1 Co;
—)\1 1 )\1 &1
K Ko1 = 09 = —.
20 A2 — A 2t Ay — A\ ? Ay — A1 co;
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Equations (5.39) and (5.40) define the discrete map
yir1 = Biyi, (5.41)
where the m + 2 dimensional state vector is
yi=col(®; x; i1 ... Ti_m), (5.42)

and the coefficient matrix has the form

a1 Qo 0 ... Oblm
ap1 QApo 0 ... Obom
0 1 0 ... 0 O
B=|. . . . .| (5.43)
0O 0 0 ... 0
0O 0 0 ... 1

Consider the case 7 = T'. For this case, there are no integers k, m that satisfies both
equations 7 = (m + 1/2)At and T' = kAt. This problem can be handled by increasing
the approximation parameter m, but this may result high computation time. A more
efficient solution is that we consider the double principal period 27T = 2kAt. With
2k = 2m + 1, both 2k and 2m + 1 are integers. Now, the transition matrix over the
double principal period, that is, the square of the transition matrix over the principal

period, can be determined as
&> = By;_1By_s...By. (5.44)

The eigenvalues of & are the square of the eigenvalues of ®. Since |u| < 1 if and only
if || < 1, the stability can be determined according the eigenvalues of &, too.

Stability analysis of equation (5.36) is done by using the semi-discretization method
with approximation parameter m = 20. The stability charts for equation (5.36) with
time delay 7 = 27 and principal period T' = 27, T' = m and T = 47 can be seen in
Figures 5.6, 5.7 and 5.8, respectively. These charts can be compared with the charts
shown in Figures 4.4, 4.5 and 4.6.

With the semi-discretization method, the approximation errors are less than 1% in
the presented parameter domain (—1 < ¢y5 < 5 and —2 < ¢; < 2). Also, the linear
boundary curves of the damped delayed Mathieu equation (see Chapter 3) show up
without error. These stability charts were determined by a 22 x 22 sized discrete map
model opposite to the 103 x 103 sized Fargue-type approximation. This shows, that
the semi-discretization method is more effective than the Fargue-type approximation.

Similarly to the charts given by the Fargue-type approximation, the cases 7' = 7
and T" = 27 show linear stability boundaries, while the case T" = 47 gives the intriguing

stability charts with disjunct stable domains.
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Figure 5.7: Stability charts for equation (5.36) with 7 =27 and T ==



CHAPTER 5. SEMI-DISCRETIZATION 93

b0=0 . b0=0.1 b0=0.2
ot o : mgi::i 0 . 0 -/
-1 -1 -1
-2 -2 -2
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5 -1 0 1 2 3 4 5
2 2 2
. c05=2 . cO£=2 . c05=2
by=0 b,=0.1 b,=0.2
1 N
o" 0 “0 0 0 Y
-1 () -1 -1
-2 -2 -2
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5 -1 0 1 2 3 4 5
03 s 05

Figure 5.8: Stability charts for equation (5.36) with 7 = 27 and T = 4~

5.4 Example: the delayed oscillator with distributed

time delay

Consider now the damped Mathieu equation with distributed time delay of maximum

length 1
0

E(t)+bo(t) +co(t)x(t) = cl/ w(Nz(t+9)dY, c¢o(t) = cos+co-cos(2mt/T) . (5.45)

-1
Such equations can still arise in machine tool vibration models (see Stépan, 1998).
Define the time interval division as in Section 5.2.1. In the interval ¢ € [t;,t;1) of

length At, i =0,1,..., equation (5.45) can be approximated as

B(t) + bok () + cow(t) = 1 Y wymijir (5.46)
j=1
where
1 tit1
i = o / eo(B)dt & ot + At/2), (5.47)
t;
(1-j)At
w; = / w(@)d ~ Atw((1/2 — j)AL) . (5.48)
—jAt

The initial conditions z(t;) = x;, @(t;) = 4; defines the solution and its derivative at

time t;,1 in the form

m—1

Tiy1 = l‘(ti—l—l) = Qpo¥; + Qg li‘i + Z bghl‘i_h 5 (549)
h=1
m—1

i‘i-i-l = ‘it’(ti+1) = a1097T; + aq 1i‘i + Z b1 hLi—p 5 (550)

h=1
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where

apo = K10 exp(AAL) + Ko exp(AAt) + crwy /cos

ag1 = K11 exp(AAL) + Kp1 exp(AAt),

a0 = KoM exp(AAL) + KopAg exp(AAt),

aj1 = K111 exp(AAL) + Ko Ay exp(AAt),

bon = 01nexp(AAL) + 09 exp(A2AL) + crwpi1 /o, h=1,2,....m—1,

04

blh = Ulh)\l exp()\lAt) + O'Qh)\g exp()\gAt), h = 1, 2, e, — 1 y
and
—bo + b% - 4001
)\1,2 = 9 )
Xo(1 — ; —1 —NoCiWj41 /Co;
Kio = 2( Clwl/co ) ) K11 = ) 015 = 261w]+1/60
)\2—)\1 )\2_)\1 )\2_)\1
_—)\1(1 — clwl/cm—) . 1 _)\lcle+1/00i
Koo = Ny — A ) /4321—)\2_)\1, 025 = N — A
Equations (5.49) and (5.50) define the discrete map
yir1 = Biyi, (5.51)
where the m + 1 dimensional state vector is
yYi = COl(i‘i Ty Tj—1 ... Ii—m—l—l) 5 (552)
and the coefficient matrix has the form
a1 aro b bia ... bim—2 bim—
ap1 aoo bor boz ... bom-2 bom-1
0 1 0 0o ... 0 0

B.=[0o o 1 0o ... 0 0o |. (5.53)

Now, the transition matrix can be given according to equation (5.34), and the stability

can be determined by simple eigenvalue analysis.

Three types of weight functions are considered, all of them are taken from the book
of Stépan (1989). The stability charts are shown in Figures 5.9, 5.10 and 5.11 for
principal period T = 1/2 and coefficients by = 0 , ¢o. = 0, 20, 40, 60. The charts for

the autonomous case, when ¢y, = 0, were constructed in closed form in the book of

Stépan (1989). These cases can be used for checking the accuracy of the method. The
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Figure 5.9: Stability charts for equation (5.45) with w(J) =1, by =0and T = 1/2
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Figure 5.10: Stability charts for equation (5.45) with w(J) = —g sin(md), by = 0 and
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Figure 5.11: Stability charts for equation (5.45) with w(¥) = g sin(m) 4+ —= 7 sin(279),

7
bo=0and T =1/2

approximation number m = 20, that is a 21 dimensional discrete map approximation
of the infinite dimensional equation (5.45) results stability boundaries with errors less
than 1% in the parameter domain considered here.

As an even more complex problem, study the equation
T(t) + (6 + coe cos(2mt/T))x(t) = x(t — 71) + 2(t — 72) . (5.54)

This is a special case of equation (5.45) with by = 0, ¢g5 = 6, ¢; = 1 and w(J) =
fs(0+ 1) + f5(0 + 72), where f; is the Dirac distribution. Although the two discrete
time delays seem to be an extreme case, these types of systems arise in several practical
application, like in the modeling of grinding processes (Thopmson, 1986a, 1986b), or in
the modeling of turning operation with a tool head of two multiple-tool rows (Gouskov
et al., 2001).

The analysis of the case ¢g. = 0 can also be found in Stépan’s book (1989). For
this autonomous two-delay system, the stability chart in the plane of the two delay
parameters 7; and 7, can be seen in Figure 5.12.

For the cases ¢y. = 6 and T =1, 2, 5, 10, the stability charts in the plane (7, )

can be seen in Figure 5.13.
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Figure 5.13: Stability charts for equation (5.54) with ¢o. = 6
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5.5 New results

Thesis 3 An efficient new method was introduced for the stability investigation of gen-

eral linear periodic delay-differential equations of the form

x(t):/ dyn(9,)x(t+9), (0t +T) = n(,1).

a

The efficiency of this so-called semi-discretization method was compared to that of full
discretization in the time domain. The main steps of the method were listed, an algo-
rithm was presented and also a proof for the convergence was given. The method was
applied for the delayed Mathieu equation with various distributed and discrete delays.
A range of intriguing stability charts were plotted for parametrically excited delayed
oscillators. It was shown by examples, that the semi-discretization method is also more

effective than the Fargue-type approximation.



Chapter 6
Chatter analysis in milling processes

In this chapter, the stability of the milling process and the relating time periodic delay-
differential equation is investigated by the semi-discretization method introduced in
Chapter 5.

6.1 Literature review on machine tool dynamics

The history of machine tool chatter goes back to almost 100 years in the past, when
Taylor (1907) described machine tool chatter as the “most obscure and delicate of all
problems facing the machinist”. After the extensive work of Tlusty et al. (1962),
Tobias (1965) and Kudinov (1955, 1967), the so-called regenerative effect has become
the most commonly accepted explanation for machine tool chatter (see, e.g., Moon,
1998, Tlusty, 2000). This effect is related to the cutting force variation due to the wavy
workpiece surface cut one revolution ago. The corresponding mathematical models are
delay-differential equations (DDEs). Stability properties can be predicted through the
investigation of these DDEs (see Stépan, 1989, 1998).

For several decades, machine tool chatter research has had only very limited influ-
ence on manufacturing industry, it often had an academic nature. Vibration monitoring
systems or adaptive control on machine tools were predicted to have much more indus-
trial success. This was partly caused by the complexity of the models involved in the
description of chatter, partly by the unreliable parameter identification of the machine
tool structure and the cutting force itself. The improved experimental modal testing,
the more sophisticated mechanical models, the latest mathematical results in nonlinear
dynamics, and the use of computer algebra have made the latest research efforts more
accessible for industrial applications during the last decade. This is true for industrial
applications from the conventional turning (see Kondo et al., 1992), to the advanced
high-speed milling (see Halley et al., 1999, Esterling et al., 2002).

29
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The identification of the arising vibrations can effectively be supported by frequency
analysis of the chatter signal (Gradisek et al., 1998a, 1998b, Schmitz et al., 2001, Sitz et
al., 2001). The stability charts published in the specialist literature are almost always
accompanied by frequency diagrams that represent the chatter frequencies at the loss of
stability. The reason of this custom is that these frequencies can precisely be identified

experimentally and so this is a direct way to verify theoretical models and predictions.

6.1.1 Turning

For the simplest model of turning, the governing equation of motion is an autonomous
DDE with a corresponding infinite dimensional state space. This fact results infinite
number of characteristic roots, most of them having negative real parts referring to
damped components of the vibration signals. There may be some finite number of
characteristic roots that have positive real parts. Each of those roots which are just pure
imaginary correspond to a single well defined vibration frequency. For turning, these
critical chatter frequencies are usually about 0-15% above the first natural frequency
of the tool (see Stépan, 1989) .

The theory of nonlinear regenerative cutting processes was developed by Hanna
and Tobias (1974). The study of nonlinear phenomena in the cutting process showed
that the chatter frequencies are related to unstable periodic motions about the sta-
ble stationary cutting, i.e. a so-called subcritical Hopf bifurcation occurs, as it was
proved experimentally by Shi and Tobias (1984) and later analytically by Stépan and
Kalmar-Nagy (1997). As a consequence, the vibrations usually increase till the tool
starts leaving the material of the workpiece. In these cases, the system has sudden
switches between the infinite dimensional dynamics of regenerative cutting and the fi-
nite dimensional one of a damped oscillator as the tool enters and leaves the workpiece
(see Stépan, 2001b). These vibrations lead to a different kind of system often called
as interrupted cutting. The resulting vibrations can be calculated by simulation (see
Kalmar-Nagy et al., 1999) but there also exist analytical methods to estimate their
amplitude as shown by Metallidis and Natsiavas (2000). Based on different nonlinear
models, other types of bifurcation were analyzed by Nayfeh et al. (1997) and by Fofana
and Bukkapatnam (2001). The main sources of nonlinearities in the cutting process
are also summarized by Wiercigroch and Budak (2001).

Prevention of chatter is a primary problem for the machinist. The idea that para-
metric excitation effects may suppress vibrations during the cutting process comes from
the famous problem of stabilizing inverted pendulums by parametric excitation (see,
for example, Insperger and Horvath, 2000). The governing equation of motion of the

turning process with parametric excitation is a time periodic DDE (see Section 2.4).
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In the seventies, it was in the focus of researchers’ work, that continuous variation
of the spindle speed can be used for suppressing chatter (see Inamura and Sata, 1974,
Takemura et al., 1974, Hosho et al., 1977, Sexton et al., 1977, Sexton and Stone, 1978).
The corresponding mathematical model is a DDE with time varying delay. Inamura
and Sata, (1974) and Sexton et al. (1977) approximated the quasi-periodic solutions
of the time periodic DDE by periodic ones and applied the harmonic balance method
to derive stability boundaries. They predicted improvements in stability properties
by a factor of 10 for properly chosen parameter values. In spite of some reports on
successful experiments, the stability investigations of cutting with time varying spindle
speeds were not reliable enough to present a breakthrough in this field.

With their novel approach, Jayaram et al. (2000) created stability charts for turning
with varying spindle speed. They used quasi-periodic trial solutions for the periodic
DDE, and combined the Fourier expansion with an expansion with respect to Bessel
function series, and determined stability boundaries by harmonic balance method.

As it is shown in Chapter 7, the semi-discretization method introduced in Chapter
5 can also be used to predict stability charts for operations with varying spindle speed
(see Insperger et al., 2001).

Another method for chatter suppression has been recently suggested by Seagalmann
and Butcher (2000). They investigated the turning process where the system stiffness
was varied periodically. The frequency of the modulation was half of the spindle fre-
quency. They investigated the resulted periodic DDE by the harmonic balance method,
and found some improvements in the stability properties.

A tool head with two multiple-tool rows was considered by Gouskov et al. (2001) as
another possible way of chatter suppression. They analyzed the mathematical model
with two delays with respect to the possible cutting discontinuities and showed the

influence of technological parameters on the stability.

6.1.2 Milling

The modeling of the milling process is more difficult than that of the turning process,
since the tooth pass excitation effect results a parametric excitation in the system.
Accordingly, the governing equation of motion is a time periodic DDE. These systems
can be investigated by the extended Floquet Theory of DDEs (see Section 2.4). Most
of the infinite number of characteristic multipliers are located within the open unit
disc of the complex plane referring to damped oscillation components, and only a finite
number of multipliers can have a magnitude greater than 1. The critical multipliers
are located on the unit circle and each of them refers to an infinite series of vibration

frequencies (see Insperger et al., 2002).
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However, the resultant cutting force varies with the number of active teeth. If this
number is great, this may show only a small periodic component. For these cases, the
conventional time-averaging was used in the classical literature (see Tobias, 1965) and
so the stability results were similar to those of turning. From mathematical viewpoint,
this averaging can hardly be justified since significant errors (even qualitative ones)
can occur due to the time-dependent parameters in the model.

For smaller tooth number, the tooth pass excitation effect becomes more and more
dominant, and the time-averaging methods cannot be used even as approximations. For
a single tooth miller, the process may look like an interrupted cutting. The milling of
thin-walled structures is a limit case, since the ratio of time spent cutting to not cutting
becomes infinitesimal. Here, the moment of cutting can be considered as an impact,
and the process can be modeled by a discrete system (see Davies and Balachandran,
2000). For analytical investigation of highly interrupted cutting, Davies et al. (2001)
developed a special discrete map model as opposed to the conventional DDE approach.
Interrupted cutting can also be a desired way of machining as shown by Batzer et al.
(1999) for vibratory drilling.

The modeling of the milling process is somewhere between the two extreme models:
the autonomous DDE for turning and the discrete map model of highly interrupted
cutting. For a precise mathematical analysis, the parametric excitation effect cannot
be neglected in the modeling.

As mentioned in Section 2.4, no closed form stability criteria can be given for
periodic DDEs. However, there exist several approximation methods. The harmonic
balance method was used by Minis and Yanushevsky (1993). They used the first
harmonics of the time-periodic parameters and showed slight deviations in the stability
of milling relative to the results with the time-averaging method. Altintas and Budak
(1995) used 3rd order harmonic balance in the milling problem. They also generalized
their method (Budak and Altintas, 1998a, 1998b), and applied for different operations
like helical end milling (Altintas and Lee, 1996), ball end milling (Altintas and Lee,
1998, Altintas et al., 1999b) and variable pitch cutters (Altintas et al., 1999a). The
harmonic balance method with some new numerical techniques was used by Corpus
and Endres (2000) and by Tian and Hutton (2001).

The Fargue-type approximation introduced in Chapter 4 was used by Insperger
and Stépan (2000b). With this method, they constructed stability charts for the high-
speed parameter domain. The application of semi-discretization method introduced in
Chapter 5 results reliable stability charts even for low spindle speeds (see Insperger et
al., 2001, Insperger and Stépan, 2001c).

The finite element analysis (FEA) in time was developed by Bayly et al., (2001a).

This is a kind of generalization of the discrete map model of highly interrupted cut-
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ting, but this method can also be used for general milling processes (see Bayly et al.,
2002). The point of the FEA method in time is that the solution of the periodic DDE
is assumed as a combination of some trial functions, and after substitution into the
governing equation, the weighted residual method is applied. The resulted system is a
finite dimensional discrete map, for that the stability investigation can be done with
appropriate numerical methods.

Sophisticated milling models can be built up via the extended analysis of the cutting
process. These result complex mathematical models, that are generally analyzed by
numerical simulation (see, e.g. Smith and Tlusty, 1991, 1993, Balachandran and Zhao,
2000, Balachandran, 2001, Zhao and Balachandran, 2001).

In the past decade, essential developments have been done in the field of manu-
facturing that resulted the rapid commercialization of reliable high-speed machining
systems (see, e.g., Davies et al., 1999). The main components that have enabled this
development include: spindles capable of speeds exceeding 40,000 rpm while delivering
30 kW of power to the cutting zone, low-mass machine tool structures and high-speed
sideways with speed 1 m/s and acceleration 10 m/s?>. The spread of high-speed tech-
nology is also due to the decreasing number of parts and joints of products, and the
consequent economical benefits. These changes require the thorough analysis of the
high-speed machining dynamics (see Tlusty, 1986). Generally, high-speed machine
tools are long slender end millers with relatively low natural frequency, that rise up
the possibilities of undesired vibrations (see Tlusty et al., 1996, or Davies et al., 1998).

The extended investigation of the milling process and the corresponding periodic
DDE lead to the realization of a new bifurcation phenomena. In addition to Hopf
bifurcation, period doubling bifurcation is also a typical way of stability loss in milling
processes, as it was shown analytically by Davies et al. (2002), Insperger and Stépan
(2000c), Corpus and Endres (2000), Bayly et al. (2001a), experimentally by Davies
et al. (2002), Bayly et al. (2001a) and via numerical simulation by Zhao and Bal-
achandran (2001). The nonlinear analysis of Stépan and Szalai (2001) showed that

this period doubling bifurcation is subcritical.

6.1.3 Other cutting operations

Regenerative effects also arise in other types of operations. The dynamics of drilling
operation is similar to the dynamics of the milling process. In drilling processes, one
of the basic problems is the formation of lobed holes caused by the bending vibration
of the tool (Bayly et al., 2001b, Whitehead et al., 2001). Although reaming is often
performed to increase the precision and roundness of drilled holes, these bending vi-

brations may also arise in the finishing reaming operations (Bayly et al., 2001d). In
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contrast to chatter observed in milling and turning, chatter in drilling often involves
large-amplitude torsional vibration (Bayly et al., 2001c).

Chatter arising in grinding operations can also be explained by the regenerative
effect. Although, the wear of the wheel is necessary to expose new abrasive grits, it
is also a source of the regenerative instabilities. General grinding operations involve
a driven motion of both the tool and the workpiece. The modeling of the dynamic
variation in the shape of both the workpiece and the grinding wheel results two time
delay in the equation of motion of the system. Since most of the practical grinding
processes are unstable, dynamic investigations should be extended after the onset of
instability. Thopmson (1986a, 1986b) developed a linear model to describe the double
regenerative effect, and derived stability charts. These charts have similar structure as
the one in Figure 5.12, but they show the exponential growth rate of chatter instead
of pure stability or instability. This growth rate characterizes dynamic behavior of
the grinding process and determines how often the grinding wheel must be dressed
during machining. More sophisticated models of the tool-workpiece system lead to the
thorough understanding of the grinding process dynamics (Thompson, 1992, Davies,
1998).

6.2 Stability analysis of the turning process

The mechanical model of the turning process in case of orthogonal cutting can be
seen in Figure 6.1. The mass m of the tool, the damping coefficient ¢, and the spring
stiffness k£ can be determined via modal analysis of the machine tool that has a well-
separated first (lowest) natural frequency. The structure is assumed to be flexible in
the x direction only. This reduces the model to 1 degree of freedom. Assume the
prescribed feed motion to be uniform with a constant speed v of the tool. The angular
speed of the workpiece is denoted by (2. According to Newton’s law, the equation of
motion reads

mi(t) = —F, + k(vt — z(t)) + c(v — &(t)) . (6.1)

The cutting force F), reads
F, = Kwf*r. (6.2)

where K is the cutting coefficient, w is the depth of cut, f is the feed and the exponent
zp is a small constant, zz = 0.8 or 3/4 are typical values for this parameter (Tlusty,
2000). The feed is equal to the difference of the present and the delayed position of
the tool, i.e., f = x(t) — x(t — 7), where 7 = 60/(2 [s] is the rotation period if {2 is

given in rpm. Obviously, in the ideal case, f = v7. Now, the equation of motion is the
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Figure 6.1: Mechanical model of turning processes

following DDE
mi(t) + ci(t) + kx(t) = —Kw(x(t) — x(t — 7))"F + kvt + cv. (6.3)
Assume the tool motion in the form
z(t) = vt +xp + (1), (6.4)

where vt is the linear feed motion, z, is a particular part related to the static com-
pression of the spring, and £(t) is the perturbation (see Figure 6.1). Substitution of
equation (6.4) into equation (6.3) yields

ki, + mé(t) + cE(t) + kE(t) = —Kw (vr + £(8) — £(t — 7))"F . (6.5)

The ideal case £(t) = 0 associated with the tool motion z(t) = vt+x, gives an equation

for the static spring compression ), :

Kw(vr)™r

. (6.6)

kr,=—-Kw{r)™ = x,=—

For linear stability analysis, we determine the variational system of equation (6.3)
about the linear motion x, + vt. Expand the nonlinear term in equation (6.5) into

Taylor series with respect to £ and neglect the higher order terms:
kxy +mé(t) + c(t) + kE(t) = —Kw(vr)™ — Kwrp(or)™ ™ (E() = £(t = 7)) . (6.7)

Then, with equations (6.7) and (6.6), a linear autonomous DDE is obtained for £

mé(t) + c£(t) + kE(t) = —wh (§(t) — £(t— 7)) , (6.8)
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where h = Kzp(vr)*r~! is the specific cutting force variation.

Using the modal parameters, equation (6.8) reads

E(1) + 20wn(1) + WD) =~ (€(t) — £(t — 7)) (69
where w, = /k/m is the natural angular frequency and ¢ = ¢/(2mw,) is the relative
damping factor of the tool. Machine tools usually have low damping, generally, ¢ =
0.005 — 0.02. Equation (6.9) is the standard linear DDE model of the turning process.

Equation (6.9) can be even further simplified. Introduce the dimensionless time
t by t = tw,, and by abuse of notation, drop the tilde immediately. This gives the

dimensionless equation of motion

E) + 20E(0) + (1) = —0

(€(t) = £t —wnT)) - (6.10)

2
mwy

The stability chart of turning process gives those technological parameters where
no chatter arises. Usually, these parameters are the spindle speed 2 [rpm]| and the
depth of cut w [mm]|. The stability analysis of equation (6.9) can be carried out in
the way as it was shown for equation (2.27) in Chapter 2. The stability boundaries
obtained by the D-subdivision method read

30w )
= A j=12..., (6.11)
T at n
jJm — atan ( o )
2 2\2 2,,2, 2
— 4
" m (w* —w;)” +4Cww | (6.12)

" 2h w? — w?

where the parameter w is the frequency of the arising vibrations. In the literature,
these boundary curves are called stability lobes. In Figure 6.2, these lobes are plotted
in the plane of the dimensionless spindle speed £2/(60f,) and dimensionless depth of
cut w = (wh)/(mw?). Here, f, = w,/27 [Hz| is the natural frequency of the tool, and
the spindle speed {2 is given in rpm. The only parameter is the relative damping ¢ of
the tool, it is chosen for 0.02. This stability chart is a kind of transformation of the
chart of equation (2.27) in Figure 2.4 (see Stépan, 1989). The numbers in some domains
denote the number of characteristic roots with positive real parts. Since, for turning
process, only Hopf bifurcation occurs, these numbers change by 2 on the stability
boundaries corresponding to the complex conjugate characteristic roots crossing the
imaginary axis. The number 0 refers to asymptotic stability. In Figure 6.2, only the
j =1,2,...,10 lobes are shown. For each number j, there is a pair of lobes, one in
the w > 0 domain, the other in the @ < 0 domain. The first pair of lobes (j = 1)
has vertical asymptote at £2/(60f,) = 1, the second (j = 2) has an asymptote at
2/(60f,) = 1/2, etc. For the lobes in the domain @ > 0, the frequency parameter w
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Figure 6.2: Stability boundaries for equation (6.9) with ¢ = 0.02
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Figure 6.3: Stability chart and chatter frequencies for turning processes with ¢ = 0.02

is greater than the angular natural frequency w, of the tool, while for the lobes in the
domain w < 0, w is between 0 and w,. The parameters w < 0 result boundary curves
in the negative spindle speed domain.

In a turning process, of course, there are only positive depth of cuts. In Figure 6.3,
the stability chart and the frequency diagram are given for this positive domain. The
frequency diagram shows the frequency ratio w/w, = f/f, of the arising vibrations
and the natural frequency of the tool. Here, f = w/27 [Hz| is the chatter frequency.
As it was mentioned in the introductory part of the chapter, these chatter frequencies

are somewhat above the natural frequency f, of the tool. The vertical asymptotes
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at 2/(60f,) = 1,1/2,1/3,... have important role, since the lobe numbers can be
identified by them. The first lobe (j = 1) is in the domain 2/(60f,) > 1, the second
lobe (j = 2) is about in the domain 1/2 < 2/(60f,) < 1, the third (j = 3) in
1/3 < 02/(60f,) < 1/2, ete.

The domain of the first few lobes is called high-speed domain, since here, the spindle
speed is commensurable to the natural frequency of the tool.

Although, the negative depth of cut has no physical meaning in turning processes,
the lobes in the domain w < 0 can play important role in milling processes, where the
direction of the resultant cutting force is changing, and its x component may be also
negative, for example in the case of down-milling. Similar phenomenon may occur in
case of drilling (Bayly et al., 2001¢), where the chatter frequency is usually below the

natural frequency.

6.3 Mechanical model of the milling process

Figure 6.4 shows the 1 degree of freedom mechanical model of the milling process with
parameters: mass m of the tool, damping coefficient ¢, spring stiffness k, feed speed v,
and spindle speed (2 of the tool.

According to Newton’s law, the equation of motion reads
mi(t) = —F,(t) + k(vt — z(t)) + c(v — (1)) . (6.13)

To determine the x component F,(t) of the the cutting force, further analysis of the
cutting process is needed. Let the number of the teeth be z, and each tooth be indexed

by j =1,...,2z The angular position of the tooth j can be given in the form

0i(t) = (272/60)t + j 27/ % (6.14)

workpiece X 0

Figure 6.4: Mechanical model of milling processes
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Figure 6.5: Cutting force components in milling processes

where (2 is the spindle speed of the tool given in rpm. The tangential component of

the cutting force acting on the active tooth j can be determined according to
F;(t) = Kw(fsin @;())°F, (6.15)

where K is the cutting coefficient, w is the depth of cut, f is the feed per tooth and the
exponent is a constant, generally, ; = 0.8 or 3/4. According to the literature (Balint,
1967, Bali, 1988, Tlusty, 2000), the normal component of the cutting force is usually
estimated as

Fin(t) = 0.3 Fj(1) . (6.16)
The x component of the cutting force depends on the angular position of the tool as it

can be seen in Figure 6.5:

Fyo(t) = g;(8) (Fj(t) cos ;(t) + Fjn(t) sin g;(t)) - (6.17)
Here, g;(t) is a screen function (see Laczik, 1986), it is equal to 1, if the jth tooth is
active and 0 if it is not working. This screen function is determined by the disposition

of the tool-workpiece system. The tooth j works only if its angular position fulfil the
condition

ps < pi(t) <oy, (6.18)
where the angles ¢, and ¢; are the locations of entering and leaving the workpiece,

respectively, defined as

B+2 B -2
Jlr) 6, cos s = — e, (6.19)

and B is the width of the workpiece, e is the distance between the center lines of the
tool and the workpiece, and D is the diameter of the tool (see Figure 6.6). Then, the

COS s =

screen function reads

gi(t) = % (14 sgn (sin (¢, () — ) —p)) = {

1 if oy < @;(t) < ¢y

) (6.20)
0 otherwise



CHAPTER 6. CHATTER ANALYSIS IN MILLING PROCESSES 70

Figure 6.6: Tool-workpiece disposition in milling processes

where the constants ¢ and p are defined as

tan 1) = Sps TSPy : p =sin(ps — Y). (6.21)
COS (s — COS P

The feed is just equal to the difference of the present and the delayed position of
the tool, i.e., f = x(t) — x(t — 7). If the spindle speed (2 of the tool is given in [rpm],
than the time delay is 7 = 60/(2£2) [s]. The = component of the cutting force acting
on the tool is given by the sum of Fj,(t) (see equation (6.17)) for all j. Introducing

the 7-periodic function ¢(t), the excitation force in equation (6.13) reads
Fi(t) = wq(t) ((t) — x(t — 7)™, (6.22)
where
(Z g;(t) sin™ ;(t) (cos p;(t) + 0.3sin ¢; (t))) : (6.23)
Thus, the equation of motion is the following nonautonomous nonlinear DDE
mi(t) + ci(t) + kx(t) = —wq(t) (x(t) — x(t — 7)) + kvt + cv. (6.24)

Note that the time period of ¢(t) is equal to the time delay 7.

As a base for the linarization of equation (6.24), assume the tool motion in the form
o(t) = vt + (1) + £(1), (6.25)

where vt is the linear feed motion, the particular part x,(t) = z,(t + 7) is a 7-periodic
motion that can also be considered as the unperturbed, or ideal tool motion when no
self-excited vibrations arise, and &(t) is the perturbation (see Figure 6.4). Substitute

equation (6.25) into equation (6.24):

mi,(t) + ciy(t) + kxy(t) +mé(t) + c£(t) + kE(t)
= —wq(t) (v +£(t) — £t — 1)) . (6.26)
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In the ideal case, £(t) = 0 and the tool moves according to x(t) = vt + x,(t). This case

gives an ordinary differential equation for z,
mi,(t) + ciy(t) + kxy(t) = —w(vr)"Fq(t). (6.27)

Since this is a linear differential equation with 7-periodic excitation, it has a 7 peri-
odic solution, namely, the particular one. This proves the existence of the 7-periodic
function x,(t) and verifies equation (6.25). Furthermore, we can state that x,(¢) has
the same harmonics as the excitation ¢(t). In general, this means that all the higher
harmonics of the basic frequency 27 /7 appear in z,(1).

For linear stability analysis, we determine the variational system of equation (6.24)
about the combined linear and periodic motion vt + z,(¢). Expand the nonlinear term
in equation (6.26) into Taylor series with respect to & and neglect the higher order

terms:

mi, (t) + ci,(t) + kx,(t) + mE(t) + c€(t) + kE(t)
= —w(vr)""q(t) — wap(vr)"" q(t) (E(t) —E(—7)) . (6.28)

Using equations (6.27) and (6.28), a linear time periodic DDE is obtained for £

mé(t) + &(t) + KE(t) = —wh(t) (€(t) — &(t = 7)) , (6.29)
where h(t) = zp(v7)*F1q(t) is now a time dependent specific force variation.
Similarly to the equation of motion of the turning process, equation (6.29) can also

be given in the modal form

£1) + 26n(t) + w2e(t) =~ (e(r) et - 7)) (6.30)
or in the dimensionless modal form
o . wh(t)
() + 206(0) +£00) = ~ =L (€(0) — €t — war) | (6:31)

where w, = \/k/m is the natural angular frequency, ¢ = c/(2mw,) is the relative
damping of the tool. Equation (6.30) is considered as a standard linear DDE model of
the milling process. Note, that equation (6.9) of the turning process is the special case
of equation (6.30) with h(t) = h.

The relation of feed and tool rotation directions defines two types of partial immer-
sion milling operation: the up-milling and the down-milling (see Figure 6.7). Concern-
ing the end product, both types of operations give the same result, but the dynamics
and, consequently, the stability properties alter from each other. Partial immersion
milling operations are characterized by the number 2 of teeth and the radial immersion
ratio a/D, where a is the radial depth of cut, D is the diameter of the tool. In the

subsequent section, the stability charts for different milling processes are determined.
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Figure 6.7: Up-milling (a) and down-milling (b) operations

6.4 Stability charts for high-speed milling processes

The stability analysis of equation (6.30) is carried out in the same way as it was done
for equation (5.36) in Section 5.3. Since, the time delay is equal to the principal period,
H? (the transition matrix over the double principal period) is calculated instead of ®.

Stability charts are plotted in the dimensionless parameter plane as in Figure 6.3,
but the dimensionless spindle speed is given in the form z(2/(60f,), so that the milling
operations with different tooth numbers can be compared. The turning process can be
considered as the special case when h(t) = h with z = 1.

Here, only the high-speed domain of the first and the second lobes is investigated
(0.5 < 2£2/(60f,) < 3). The number z of teeth, the radial immersion ratio a/D, and
the cases of either up- or down-milling are presented besides the charts. The only
parameter is the relative damping ¢ which is chosen for 0.01 for all the charts.

The transition between the autonomous model for turning and the discrete map
model of highly interrupted cutting is shown in Figure 6.8. The intermediate cases
are partial immersion up-milling processes. Each chart is accompanied by the graph
of function h(t), so that it can be followed, how the h(t) = h case of turning changes
into the highly interrupted, low immersion milling.

As it can be seen, a new series of extra stability lobes arise in addition to the Hopf
lobes of turning. The numerical calculation of the relevant characteristic multipliers
shows a new kind of bifurcation phenomena: these extra lobes are related to period
two or flip bifurcation (see the chart (d) in Figure 6.8). A schematic picture of the
framed part of chart (c) in Figure 6.8 and the wandering of the relevant characteristic
multipliers can be seen in Figure 6.9. Through the parameter points 1—2—3, the critical
pair of characteristic multipliers moves into the unit circle presenting a Hopf bifurcation
at point 2. Through points 3 — 4 — 5, the complex pair of characteristic multipliers
becomes real, then through 5 — 6 — 7, one of them moves out of the unit circle at —1

presenting a flip bifurcation at point 6. Through 7—8—9, the relevant real characteristic
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multiplier moves back into the unit circle presenting another flip bifurcation at point
8. Through 9 — 10 — 11, the two relevant real characteristic multipliers become a
pair of complex conjugate roots again, and they decrease in modulus, while through
11 — 12 — 13, another complex pair of characteristic multipliers moves out of the unit
circle in the positive half of the complex plane presenting another Hopf bifurcation at
point 12.

The dashed curve in the chart of Figure 6.9 presents the parameters where real
characteristic multiplier occurs with multiplicity 2. This curve crosses the intersection
of the two kinds of stability limits at 2" presenting a degenerate (co-dimension 2) flip-
Hopf bifurcation (see points 1" — 2" — 3'), and proceeds in the unstable domain (see
points 1”7 — 2" — 3" — 4" — 5").

In Figure 6.10, stability charts are presented for both up- and down-milling cases
with various a/D ratio and also for full immersion milling. For all charts, the number
of teeth is z = 2. For various radial immersion ratio, the stability charts are different.
While for some fixed parameter pairs (2§2/(60f,), W), the up-milling operation is un-
stable, the down-milling operation might be stable and vice-versa. This may have a
great importance in industrial applications, since unstable processes can be stabilized
by changing the direction of tool rotation. In practice, it means the application of a
mirror workpiece/tool configuration, while the sense of the tool rotation is the same.
The reason for this is the backward cutting effect of down-milling. The transition from
up-milling to down-milling is detailed in Figure 6.11. The numbers denote the number
of unstable characteristic roots. The number 0 refers to asymptotically stable systems.
On the boundary curves, where this number changes by 2, there is secondary Hopf bi-
furcation, where it changes by 1, there is flip bifurcation and where it is not changing,
there are double real characteristic multipliers just becoming a complex pair. As the
ratio a/D increases for up-milling cases, a new Hopf lobe emerges, and sinks slowly,
while the original boundary curve rises. The intersections of these lobes creates the
intriguing stability chart of the full immersion milling. As the ratio a/D decreases for
down-milling cases, the original boundary curve lifts up, and the new lobe takes over
its role.

The new Hopf lobe can be associated to the lobes belonging to negative depth of
cut in Figure 6.2, since for these milling operations, the x component of the resultant
cutting force may also be negative, as it is shown by the function h(t) at the charts.
It can also be seen, that the negative part of the function h(t) becomes more and
more dominant as we come along from charts (a) to (f). This effect is often called as
backward cutting effect.

Experimental verification of the differences between up- and down-milling can be

seen in Figure 6.13. The measurments were carried out in the Laboratory of the De-
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Figure 6.12: Scheme of the experiment

partment of Mechanical Engineering at Washington University in St. Louis, Missouri,
USA, in collaboration with Dr. Philip V. Bayly, Brian P. Mann (Department of Me-
chanical Engineering, Washington University, St. Louis, Missouri, USA) and Jeremiah
E. Halley (The Boeing Company, St. Louis, Missouri, USA).

Milling tests were performed with an experimental flexure designed to mimic the
1-DOF system described above (Mann, 2001, Bayly et al., 2002). A monolithic, uni-
directional flexure was machined from aluminum and instrumented with a single non-
contact, eddy current displacement transducer as shown in Figure 6.12. A radial im-
mersion of 4.515 mm was used to up-mill and down-mill aluminum (7075-T6) test
samples of width 1/4 inch (6.35 mm) over a specified range of spindle speeds {2 and
axial depths of cut w. A 0.750-inch (19.05 mm) diameter carbide end mill with a single
flute (z = 1) was used, the second flute was ground off to remove any effects due to
asymmetry or runout. Consequently, the radial immersion ratio was a/D = 0.237.
Feed was held constant: v7 = 0.004 in = 0.1016 mm.

The stiffness of the flexure to deflections in the x-direction was measured to be
k = 2.18 x 10° N/m. The natural frequency was experimentally determined to be
fn = 146.5 Hz, and the damping ratio was ¢ = 0.0032, which corresponds to very light
damping. In comparison, the values of stiffness in the perpendicular y- and z-directions
were more than 20 times greater, than that in the x-direction.

The displacement transducer output was anti-alias filtered and sampled (16-bit
precision, 12800 samples/sec) with SigLab 20-22a data acquisition hardware connected

to a Toshiba Tecra 520 laptop computer. A periodic 1/rev pulse was obtained with the
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Figure 6.13: Theoretical boundary curves and experimental data (stable cutting: o,

boundary: 4+, unstable cutting: X)

use of a laser tachometer to sense a black-white transition on the rotating tool holder.

The theoretical boundary curves were determined through the investigation of the
characteristic multipliers calculated by the semi-discretization method. For the calcu-
lations, the following experimentally identified parameters were used: m = 2.573 kg,
¢ = 0.0032, w, = 920.5 rad/s. Based on the experimental results of Halley (1999), the
cutting coefficient was chosen to the reasonable value K = 1 x 10® N/m'™¥  where
rr = 0.8.

The presented lobes in Figure 6.12 are of number 3, since f,/3 < 2£2/60 < f,/2.
The experimental data correlate well with the theoretical predictions. The flip lobes

lean to the right for up-milling, and to the left for down-milling.
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6.5 Vibration frequencies during milling operation

Opposite to the turning process, the identification of the chatter frequencies in milling
processes is not a trivial task either experimentally or theoretically. The power spec-
trum of the signals show several peaks of complicated structure. Some of them refer to
the tooth pass excitation effect, others refer to the regenerative effect, and the natural
frequency of the tool also appears. In this section, a clear picture is given about these
frequencies arising in the chatter during the milling process.

Chatter arises if the linear equation (6.30) loses stability. As explained in the
Section 2.4 about the extended Floquet Theory of DDEs, the stability properties are
determined by the (infinite number) of characteristic multipliers. If y = e is a

characteristic multiplier of equation (6.30), then there exists a solution in the form

&(t) = p(t) e + p(t) e (6.32)

where p(t) = p(t + 1) is a 7-periodic function, A is the characteristic exponent and bar
denotes complex conjugates. Equation (6.30) is asymptotically stable, if and only if,
all the characteristic multipliers are in modulus less than one, in other words, all char-
acteristic exponents have negative real part. The semi-discretization method provides
a finite number of approximate multipliers. The vibration frequencies corresponding
to the relevant characteristic multiplier can be determined in the following way.

If equation (6.30) is at the border of stability, then there is at least one characteristic
multiplier (either one real, or one complex conjugate pair) in modulus just equal to
one. All the other infinite number of characteristic multipliers are in modulus less than
one, so they are not important for chatter frequency analysis.

The critical characteristic multipliers can be located in three typical ways as intro-
duced in Section 2.2. The corresponding bifurcations are secondary Hopf (Im p # 0
and |u| = 1), period one (u = 1) and period two (u = —1) bifurcations.

It can easily be seen that the ;1 = 1 case cannot arise in equation (6.30). To prove
this, assume the characteristic multiplier ;1 = 1. Since (¢t + 7) = p&(¢) in the critical
subspace, the substitution of {(t—7) = £(t) into the equation (6.30) results the damped

oscillator

E() + 2Cwn€(t) + w2E(t) = 0. (6.33)

Since the damping is positive, equation (6.33) is asymptotically stable. This prove that
the period one bifurcation is excluded for equation (6.30).

For a given |u| = 1, A = iw is pure imaginary, where w = Im (Inu)/7. Essen-
tially, the chatter angular frequencies are denoted by w. Since the complex exponential

function is periodic, the logarithmic function is not unique in the plane of complex
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numbers. This raises the possibility of multiple chatter frequencies. To give a clear
view of the resulting frequencies, equation (6.32) must be analyzed.

For secondary Hopf case, the relevant characteristic exponents form complex pairs.
Substitute A = iw into equation (6.32), expand p(t) into Fourier series and use trigono-

metrical transformations. Then equation (6.32) can be written in the form

g(t) — Z (Cn ei (w+n2m/T)t + C_vn ei(—w+n27r/7)t) : (634)
where C),’s are complex coefficients. This shows that the arising frequencies in the

signal £(t) are

fH:{iw—i—nQ?Tr} [rad/s]:{j:%wLng} [Hz], n=...,—-1,0,1,..., (6.35)

where 7 is given in s, {2 in rpm. The index of fg refers to the secondary Hopf bi-
furcation. There are infinite number of frequencies with amplitudes corresponding to
the coefficients C),’s. This is in accordance with the periodic property of the complex
exponential function mentioned before. Of course, only the positive values of fy have
physical meaning.

For the period doubling case (i = —1), the characteristic exponent is A = (In(—1)) /7

and the frequencies can be written in the simple form of

s 27 202 202

fpp = {; +n?} [rad/s] = {% +n%} Hz], n=...,-1,0,1,..., (6.36)
where the index of fpp refers to the period doubling bifurcation.

Either the frequency set fg or fpp shows up during chatter. If equation (6.29) is
stable, then these frequencies do not arise.

The arising frequencies during the milling operation are related to all components of
z(t) defined by equation (6.25). The term vt is the linear feed motion, and it does not

contain any periodicity, but the periodic motion z,(t) contains the following frequencies

prE:{%} [Hz], n=1,2,..., (6.37)
as it was shown by equation (6.27). The index of frpp refers to the tooth pass excitation
effect.

Since the damping of machine tools is small, the transient phenomena ease slowly.
This results another peak in the spectrum at the damped natural frequency f; =
wa/1 — (2/(27) of the tool.

The frequencies frpgr and f; are present in the vibration signal both for stable and

unstable cutting.
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Figure 6.14: The specific force variation

For experimental verification, aluminum (7075-T6) test samples of width 1/4 inch
(6.35 mm) were centrally milled by a 3/4 inch (19.05 mm) diameter carbide end mill
with a single flute (Mann, 2001, Insperger et al., 2002). The scheme of the experiment
is shown in Figure 6.12. The stiffness of the flexure was measured to be k = 2.18 x 10°
N/m. The natural frequency was experimentally determined to be f, = 146.8 Hz,
and the damping ratio was ¢ = 0.0038. Feed was held constant: v = 0.004 in =
0.1016 mm.

Theoretical stability charts and the chatter frequencies were determined through
the investigation of the characteristic multipliers calculated by the semi-discretization
method. For the calculations, the following experimentally identified parameters were
used: m = 2.586 kg, ¢ = 0.0038, w, = 922.4 rad/s in accordance with the above
measured values. The cutting coefficient was chosen to the reasonable value K =
1.5 x 108 N/m!'™F  with zp = 0.8. The damped natural frequency of the flexure was
fi=+/1—Cf, ~ 146.8 Hz.

The relative position of the tool and the workpiece defines the specific force variation
h(t) shown in Figure 6.14.

The theoretical stability chart and the corresponding chatter frequencies can be
seen in Figure 6.15. Solid lines denote the chatter frequencies fg and fpp. Dashed
lines refer to the frequencies frpp caused by the tooth pass excitation effect, and a
dotted line denotes the damped natural frequency f; of the flexure.

Experiments were made at a constant depth of cut w = 2 mm and three different
spindle speeds 2 = 3300, 3500 and 3590 rpm denoted by A, B and C in Figure 6.16,
respectively. As the stability chart shows, point A is in an unstable parameter domain
of Hopf type, point B is in a stable domain, and point C is in an unstable domain of
period doubling type.

The vertical lines raised from the corresponding parameter points of the chart in-
tersect the frequency lines in the frequency diagram above the chart and assign the

frequency sets belonging to the corresponding vibration signal of the machine tool.
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Figure 6.15: Theoretical stability chart and vibration frequencies

The symbols o, A, 0 and e refer to the four different classes of frequency sets fy,
fpp, frpe and f4, respectively. The same symbols also show up in Figure 6.18. The
three power spectra are calculated from the three vibration signals presented in Figure
6.17 in three different forms, each: time history, sampled time history, and Poincaré
(or stroboscopic) map. In the power spectra of Figure 6.18, the dashed lines denote
the theoretical tooth pass excitation frequency and its higher harmonics. The symbols
mentioned above help to identify all the various frequency sets.

For parameter point A, the theory shows that the relevant characteristic multiplier
is a complex pair. The experiment confirms the theoretical expectation: the most
dominant peaks in the power spectrum show up at the frequencies fr, frpr and fy.

Cutting defined by parameter point B is stable, so only frequencies frpg and fy
are expected. This is also confirmed by the measurement result.

Parameter point C defines an unstable, period doubling cutting process. In this
case, the most dominant peaks in the power spectrum are at the frequencies fpp, frre
and f,, and clearly, it is also confirmed by the experiments.

The transition between the secondary Hopf and the period doubling case can be
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Figure 6.17: Continuous time histories, 1/rev sampled signals, and Poincaré sections

for parameter points A, B and C

followed in the chatter frequency plots of Figures 6.15 and 6.16. For a secondary Hopf
type chatter, there are two fp-frequencies in the neighbor of each frpg-frequencies,
one below, and one above of that. As we increase the spindle speed, the fy-frequencies
move away from the frpg-frequencies until they meet the fp-frequencies belonging
to the neighborhood of the other nearby frpg-frequencies, and they meet right at
the middle of two frpg-frequencies. Above this spindle speed, the bifurcation is period
doubling, that is, the fpp-frequencies are located just in the middle between two nearby

frpe-frequencies.
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6.6 New results

Thesis 4 The dynamic behavior of milling process was investigated. A range of sta-
bility charts were constructed that shows the transition between turning and highly in-
terrupted milling through partial immersion milling operations as intermediate levels.
Via localization of the relevant characteristic multipliers, the bifurcation types were
identified. It was shown, that in addition to secondary Hopf bifurcation, period two
bifurcation is also a typical way of stability loss.

The transition between up-milling, full immersion milling and down-milling was in-
vestigated. It was shown, that up-milling operations have different stability properties
than the down-milling operations with the same immersion. The effect of backward
cutting was detected as an explanation for the intriguing stability lobes of the full im-
mersion milling. The results were experimentally verified.

The wvibration frequencies during milling operation were identified. In addition to
the two types of chatter frequencies (the Hopf type frequencies or the period two type
frequencies), the frequencies caused by the tooth pass excitation effect and the natural
frequency of the tool were explained according to the theoretical model and also identified

experimentally in the corresponding vibration signals.



Chapter 7
Turning with varying spindle speed

As it was mentioned in the introductory part of Chapter 6, continuous variation of
the spindle speed can be used for suppressing chatter under certain conditions. In this

chapter, this effect is investigated in turning processes.

7.1 Mathematical model

The mechanical model of the turning process in Figure 6.1 is to be used with mass m,
damping c, stiffness £ and feed speed v. The modeling of turning with varying spindle
speed is more complex than the modeling of conventional turning or milling, in spite of

the fact that the linear mathematical model is a T-periodic DDE of the simple form:

" _w_h

E() + 2¢wn€ (1) + wpb(t) = (@) —¢t—r(), t+T)=7(t), (7.1)

m

where w, = \/k/m is the natural angular frequency, ¢ = c/(2mw,) is the relative
damping of the tool, w is the depth of cut, h is the specific cutting coefficient and the
time delay is a function of time with principal period T'. The time delay variation 7(¢)
is due to the varying spindle speed (2(¢). Their connection can be described in the
implicit form t
/ 2(s)/60ds =1. (7.2)
t—7(t)
This means, that the workpiece makes one revolution in the time interval [t — 7(¢), ]
for any t.
Spindle speed variation means that the spindle speed is modulated around an av-

erage value:

where (2, is the mean value, {2; is the amplitude and the bounded function S : R —

[—1,1] presents the shape of the variation. In practice, the modulation amplitude

88
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Figure 7.1: Spindle speed variations with the corresponding exact (continuous line)
and approximate (dashed line) time delay variations for 2y = 6000 rpm, 2; = 0.1(2,
and T'=1s

cannot be greater than 20% of the mean spindle speed, i.e. 2, < 0.2(2,. In this

chapter, the following three types of spindle speed modulation are investigated (see
Figure 7.1):

the cosine function: S(t) =cos(2nt/T), (7.4)
the increasing saw function: S(t)y=—14+2(tmod T)/T, (7.5)
and the decreasing saw function: S(t)=1—-2(tmod T)/T. (7.6)

Here, t mod T is the residuum after the division of ¢ by 7. Although, the cosine function
is the easiest to realize, the saw functions are also important cases, since they model
piecewise increasing/decreasing spindle speed. These functions with discontinuities in
each period cannot be generated in tool lathes, but they are useful for approximate
calculations.

The exact time delay variation can be determined by solving equation (7.2) for 7(t).
For the cosine type spindle speed modulation, the integration in equation (7.2) yields
the implicit equation

1 T . .
) (QOT(t) + %Ql ( sin(2t/T) — sin (27 (t — T(t))/T))) =1. (7.7)

In this case, the function 7(¢) cannot be given in closed form, it can only be computed
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numerically.
For the saw type spindle speed modulation, the integration in equation (7.2) gives
the second degree equation for 7(t):

20T + 2:(2(¢ d7T) =T T
2y 4 DT REMdT) = T) ) 60T (78)
20 (oA

where the increasing and the decreasing saw cases are given by the cases (2; > 0 and

(21 < 0, respectively. The solution gives the delay variation

- QT + 2, (2(t mod T) — T)

7(t) 20,
2T + (2t mod T) ~T)\~ 60T 79)
20, (P70 '
for increasing saw spindle speed, and
- — 2T + 2, (2(t mod T) — T)
T(t) = 202,
2
—20T + 2, (2(tmod T) =T T
- s 12t mod ) = 1) Mechy (7.10)
20 N

for decreasing saw spindle speed.
As it can be seen at equation (7.7), the time delay variation 7(¢) usually have no
closed form, since no explicit solution of equation (7.2) can be given. Still, if (2; is

small enough, say, (2; < 0.1{2y, then the approximation
T(t) = 19 — 11.5(t) (7.11)

can effectively be used, where 7o = 60/ and 7 /79 = £21/£2. In Figure 7.1, the exact
time delays and the approximate ones are compared for the three types of spindle speed
variation with (2; = 0.1(2;. The maximum error of the approximations shown in Figure
7.1 is 1%, and the integrals of the exact and the approximate delay variation over the
principal period T deviates by 0.5%.

If negative values of 7(t) are also allowed, then equation (7.1) is an advanced func-
tional differential equation (AFDE), as it was mentioned in Section 2.5. In cutting pro-
cesses, the advance effect cannot arise, since even in the extreme case, when (2; > (2,
that is, when the direction of spindle rotation changes, the chip thickness may only
depend on the present and a past position of the tool. This case is not important here,

since the modulation is less than 20% in practice.
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7.2 Stability analysis

The stability charts for turning processes with varying spindle speed can be given by
analyzing the time periodic DDE (7.1).

One possible approach to this problem is to transform this equation to a DDE with
periodic coefficients using a kind of power series of the delayed term. Consider the
time delay in the form 7o — 7.5(¢) with a sufficiently small delay variation amplitude
71 and the T-periodic function S(¢). Then the first order Taylor series approximation

with respect to 7, assumes the form

E(t— 1o +mS(t)) m E(t— 7o) + TS(H)E(t — 7). (7.12)
The substitution of this approximation into equation (7.1) results a DDE with a con-
stant time delay 7y only:

(1) + 20né(1) + 2600 =~ (6 — €t — ) - mSWEE -~ 7)) . (7.13)

m

while the first derivative of the delayed term also appears with a time periodic coef-
ficient. The mathematical justification of this approximation is quite poor, since the
Taylor expansion does not converge uniformly on the set of closed intervals above the
past. Also, using higher order approximation, the higher derivatives of the delayed

term &(t — 7p) also arise:

E(t — 0+ nS(0) = £(t — 1) + SO — o) + 7SO — )

+ %Tfsm)'g(t ), (T14)

and neutral or advanced functional differential equations (NFDEs and AFDEs, respec-
tively) are obtained as approximate equations. As it was mentioned in Section 2.5,
the stability analysis of NFDEs is not trivial, while AFDEs are always unstable for
S(t) = const. This also confirms that the Taylor series approach cannot be used for
accurate approximation.

The semi-discretization method can effectively be used to transform equation (7.1)
into an approximate discrete map, as it was shown in Chapter 5. The approximation
of the time varying delay is shown in Figure 7.2. Construct the intervals [t;,¢;11),
1 =0,1,... of length At so that kAt = T. The delay approximation in the sth interval

et (t) = [round (Ait /t it — %)] At+ (t—1;). (7.15)

This is a kind of update of the semi-discretization from constant delay (see Figure 5.1)

to time varying delay. Alternatively, it can also be considered as a special case of the
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Figure 7.2: Semi-discretization of varying time delay

general method shown in Figure 5.4, since the delayed term in equation (7.1) can also

be written in a Stieltjes integral form:

et~ = [ 50+ (e, (7.16)

where f5 is the Dirac distribution.
Similarly to the equation (5.37), the approximate ordinary differential equation

series reads
- : , wh wh ,
f(t)+2(wn§(t)+ wn—i—ﬁ f(t) = Ef(ti,]‘), t e [ti,ti+1), 1=0,1,..., (717)
where
1 [hn 1
j = round <Kt/tl T(t)dt—§> , 1=0,1,.... (7.18)
For the initial conditions £(t;) = &;, {(tz) = &, the solution and its derivative at
the time instant ¢;,; can be written as
i1 = E(tiy1) = agos + apr& 4+ boj &, (7.19)
(7.20)

Eir1 =&(tipn) = a0 +a1& + 0165,
where the coefficients ago, a1, @10, @11, bp; and by ; can be computed similarly as it

was done in equations (5.39) and (5.40).
Let max;(j) = M, than equations (7.19) and (7.20) defines the discrete map

yir1 = Biyi, (7.21)
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where the M + 2 dimensional vector of state variables is
yi=col(®; x; ;1 ... xiym), (7.22)

and the coefficient matrix has different form for each + = 0,1,... depending on the
magnitude of the corresponding approximate time delay. For example, in the first

interval of Figure 7.2, it is

a1 aig 0 0 byp— 0 O
ap1 QApo 0 ... 0 bgM_Q 0 0
0 1 0 ... 0 0 00
Bi=| . . . . 0 (7.23)
1 0
0 1
since
1 [ 1
J = round <Kt /to 7(t)dt — 5) =M-2. (7.24)
In the second interval,
1 [P 1
J = round <Kt/t1 7(t)dt — 5) =M-1, (7.25)
and the coefficient matrix reads
a1 ajg 0 0 biy—r O
ap1 Qpo 0 ... 0 bgM_l 0
0 1 0 ... 00 0 0
Bo=1| . . . . . ] (7.26)
0
0 1

That is, the elements by; and b, ; related to the z;_; discrete variable are shifted into
the (7 + 2)th column of the coefficient matrix in each interval.

Finally, the transition matrix can be given in the form
4’ == Bk_lBk_Q o Bg , (727)

and stability properties can be determined by eigenvalue investigation.

7.3 Stability charts

The turning process with a reasonable 10% spindle speed modulation is investigated.

The principal period is given as a multiple of the average spindle rotation period.
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Figure 7.3: Approximation of the varying time delay for 2y = 6000 rpm, 7'(2,/60 = 10

Stability charts are constructed for the cases T'(2,/60 = 2,10, 20. The stability charts
are presented in the plane of dimensionless spindle speed 2,/(60f,) and dimensionless
depth of cut w = (wh)/(mw?). The relative damping is ¢ = 0.02.

Stability charts were constructed for approximation parameter M = 56. This value
was chosen so that ) = fOTT(t)dt = 50At. The number of discretization intervals is
k =101, 505, 1010 according to the cases T'{2,/60 = 2,10, 20. The approximation over
the principal period and also an enlarged part of it can be seen in Figure 7.3 for the
case (25 = 6000 rpm, T'(2/60 = 10. The exact time delay was determined by numerical
solution of the implicit equation (7.2), so the approximation (7.11) was not used.

Stability boundaries in the high-speed parameter domain (lobes 1-5) can be seen
in Figures 7.4, 7.5 and 7.6 for T(2/60 = 2, 10 and 20, respectively. The charts
denoted by (a), (b) and (c) in the figures were constructed for turning operations with
cosine, increasing saw and decreasing saw spindle speed modulation, respectively. The
boundary curves of the conventional turning process are also presented by thin lines,
so the effect of spindle speed variation on stability can be followed. As it can be seen,
the stability properties essentially improves for the case T'(2/60 = 2, until just slight
deviations arise for the cases T'(2)/60 = 10 and 20. This shows, that the effect of
the speed modulation is stronger, if T(2,/60 is small. In the opposite case, when the
modulation period is large relative to the spindle rotation period (T£2/60 — o), the
process can be considered quasi-autonomous, and the boundary curves does not deviate
from the ones of the conventional turning process.

In the high-speed domain, no significant difference arises between the cosine, in-

creasing and decreasing saw modulation.
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Figure 7.4: Stability charts for 742,/60 = 2
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Figure 7.5: Stability charts for T'(2,/60 = 10
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Figure 7.6: Stability charts for T'(2,/60 = 20
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Although, the case T'(2,/60 = 2 results the best improvements in stability, it can

hardly be realized in turning lathes, while period ratios 10 and 20 are more accessible.

Also, turning operations are generally used for low spindle speed domains. In Figures

7.7 and 7.8, stability charts in the low speed parameter domain (lobes 5-11) are pre-

sented for T'(2,/60 = 10 and 20, respectively. Here, the stability improvements are

more significant than in the high-speed domain. Still, these improvements are smaller

in the case T'(2,/60 = 20.

In the low speed domain, the differences between the cosine, increasing and decreas-

ing saw modulation are more conspicuous. The best improvements in stability were

obtained for the cosine type modulation.
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Figure 7.7: Stability charts for T(2,/60 = 10
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Figure 7.8: Stability charts for T'(2,/60 = 20
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7.4 Period one bifurcation in turning processes with
varying spindle speed

In turning operation with varying spindle speed, another new bifurcation phenomenon
arises. While, in the conventional turning processes, only Hopf bifurcation can occur,
and secondary Hopf or period two (flip) can arise in conventional milling, period one
bifurcations may also arise for turning with varying spindle speed. The reasoning that
was used for equation (6.33) to prove that no period one bifurcation occurs for milling
processes cannot be used here, since the principal period of equation (7.1) is T, and
the time delayed term cannot be dropped by the substitution of z(t — 7(t + T)) =
px(t — 7(t)).

In milling processes, the additional flip lobes seem to arise in a clear, organized
way. In turning processes with varying spindle speed, however, the new lobes has an
intriguing structure. Numerical investigations of the critical characteristic multipliers
shows, that boundary curves related to period one bifurcations really exist: the Hopf-
type boundary curves are crossed by period one and period two type ones, one after
the other. These period one and two type boundaries are not significant, since they
cut off only small parts from the stable domains. Still, they are of great theoretical
importance, because the arising vibrations can be either quasi-periodic (secondary
Hopf bifurcation) or T-periodic (period one bifurcation) or 2T-periodic (period two
bifurcation).

In Figure 7.9, the framed part of the chart (b) in Figure 7.7 is enlarged. It presents,
how a period one and a period two lobe cross the Hopf-type stability boundary.

014 T T T T T T
secondary
Hopf
0.135f | ]
secondary
0.13¢ Hopf A
secondary P
1= Hopf

0.125} i

0.12¢ | | ]
period two period one

0.115 1 1 1 1 1 1
0.164 0166 0.168 017 0172 0.174 0176 0.178
Q,/(601)

Figure 7.9: Stability boundaries and the relating bifurcation types for T'(2,/60 = 10
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7.5 New results

Thesis 5 The dynamic behavior of turning process with varying spindle speed was in-
vestigated. The connection between spindle speed variation and the resulted time varying
delay in the governing equation was determined. Three types of spindle modulation was
investigated, the cosine, the increasing saw and the decreasing saw.

A range of stability charts were constructed for 10% modulation amplitude. It was
shown, that the stability properties improve for low modulation period, while for high
modulation period, the system can be considered quasi-autonomous, and the charts
converge to the ones of the conventional turning process.

It was shown, that the stability properties improve for low mean spindle speed only,
and the spindle speed variation is not an effective way of chatter suppression for high-
speed cutting.

It was shown, that in addition to secondary Hopf and period two bifurcations, period

one bifurcation is also a typical way of loss of stability.
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Sampling effect

Consider the equation
.’L'(t) + C().’L'(t) = Cll‘(ti_l) 5 t e [tiati-i-l) s ti—l—l - tz = At, 1€ L. (A].)

Use the notation x; = x(t;), ¢; = ©(¢;). The periodic REDE (A.1) can be considered as
a series of ODEs for each interval [t;,¢;,1). The connection between z; and z; defines
a discrete map. Stability conditions for equation (A.1) can be given by analyzing this
discrete map.

The general solution of equation (A.1) in the interval [¢;,t;,1) reads

&

l‘(t) = Kli COS (\/%) (t — tj)) + Kgi sin (\/a (t — tj)) + C—l‘i_l . (A2)
0
The initial values z;, &; determine the coefficients K7; and Ko; :
C1 &1
l‘(tz) = Kli +—x, 1 =2 = Kli =T; — —Tj—1, (A3)
Co Co
1

NG

Substitution of equations (A.3) and (A.4) into equation (A.2), and ¢ = ¢;,; yield
1
Tiy1 = cos (y/co At) x; + —=sin (y/co At) &; + a (1 —cos (y/co At)) iy,  (A.5)
\/5 Co
Ti1 = —\/cosin (y/cg At) z; + cos (/g At) ©; + C—\/i_ sin (y/co At) z; 1 . (A.6)
0

The discrete map mentioned above can be given in the form

Tit1 C =Sy Salya i
Tipn | =S /\/% C (1 - O) 01/00 z; ) (A-7)
Z; 0 1 0 Ti—1

where C' = cos (\/% At) and S = sin (\/a At).

100
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Stability properties are determined by the eigenvalues of the coefficient matrix. The

characteristic equation reads

C—p =Syco Sal/e
D(p)=det | S/\/ig C—p (1-C)erfe

0 1 —p
C1

(€= w-0)- s

Co Co

= 1 (C* = 2uC + i* + 5°) _< ) (A.8)

&1

=—u3+20u2+< (1—0)—1>u+ﬁ(1—(1):0.
C

Co 0
Equation (A.1) is asymptotically stable, if all the solutions of the characteristic equation
(A.8) are in modulus less than one. To check this condition, the so-called Mobius
transformation u = (n+1)/(n—1) is used, that transforms the unit disc of the complex
plane to the left half of the complex plane. Since |u| < 1 if and only if Ren < 0, the
Routh-Hurwitz criteria can be used as the condition of asymptotic stability for 7.
Substitution of p = (n+ 1)/(n — 1) into equation (A.8) and multiplication with

(n — 1)? results
D(n)=—-n+1)+20(n+1)*(n-1)

+(2a-0-1) w0 -1+ 2 -y -1y

Co

=2(C-1) (1—ﬁ>773+2(0—1) <1+2Z—1>n2

Co 0

(A.9)

+ (e n+22a-0))u-2c =0,

According to the Routh-Hurwitz criteria, stability conditions are defined by the coef-
ficients of 1%, n%, n', n°, denoted by as, as, a1, ag, respectively. After the substitution
of C and S defined in equation (A.7), the coefficients read

a3 = (1 — cos (/a5 At)) <1 - ﬂ) : (A.10)

Co

az = (1 — cos (/e At)) <1 +20—1> , (A.11)

Co
a = % (=1 + cos (v/ag At)) + 1 + cos (/e At) | (A.12)
0
ap = 1 + cos (y/cy At) . (A.13)

If the sign of all the coefficients are the same (e.g. positive, in this case), and the
Hurwitz determinant Hy is positive, than equation (A.1) is asymptotically stable. Here,

the Hurwitz determinant H, reads

H2 = a1 — Qpas

= 2% (1 — cos (y/co At)) (co (1 + 2 cos (y/cg At)) — ¢1 (1 — cos (y/cg At))) .

0

(A.14)
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Now, the stability conditions are as follows

(2k)*m?
as >0 : 1—cos(yeoAt) #0 = ¢y # (AfE k=0,1,..., (A.15)
and
1—%>0 = ¢ <c, (A.16)
0
(2k)*7?
az >0 : 1—cos(yeoAt) #0 = ¢y # (A0 k=0,1,..., (A.17)
and
C1 1
142—>0 = ¢ >—=¢), (A.18)
Co 2
a; >0 : %(—1+cos(\/%At))+1+cos(\/%At)>0
0
1+ At 2k)*m?
< COS(\/Q )CU, C()?é( )ﬂ- , kzO,l,..., (Alg)
1 — cos (y/co At) (At)?
2k + 1)%n?
ap >0 : 1+cos (/e At) >0 = 007&%, k=0,1,..., (A.20)
(2k)*7?
Hy, >0 : cos (Voo At) #0 = ¢y # (ArZ k=0,1,..., (A.21)
and
1+2 At
0<c < s (Ve )00, (A.22)
1 — cos (\/QAt)
or
1+2 At
05 0> LH2 (VRAY - (A.23)

1 — cos (\/% At)

While condition (A.22) fulfils for the domains 0 < ¢y < 1/4 or (1 + 3k/2)? < ¢y <

(2 + 3k/2)?%, condition (A.23) is satisfied for (1/2 + 3k/2)? < ¢p < (1 + 3k/2)%
Finally, conditions (A.15)-(A.23) define the stability criteria for equation (A.1) as

k22
c1 < ¢, Co%ﬁ, k=0,1,..., (A24)
and
14 2cos (/coAt 14 2cos (/coAt
0<eg < ( “ )CO or 0>¢ > ( “ )CO . (A25)

1 — cos (ﬁAt) 1 —cos (\/%At)
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