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Abstract
The history of the linear time-delayed and time-periodic oscillator demonstrates how stability theory has developed from the damped oscillator

to the delayed Mathieu equation. Based on these results, it is a natural idea to apply time-periodic control gains when large time delay in the

feedback loop tends to destabilize the system. By formulating the act-and-wait control concept as a special case of periodic controllers, a time

delayed version of the Brockett problem is posed. Examples demonstrate the efficiency of the kind of time periodic control where the feedback is

switched off for a waiting interval longer than the delay.
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1. Introduction

The stabilization of dynamical systems with large time delay

is still a challenging task. The first engineering applications

where time delay played a key role were the shimmying wheels

with elastic tyres (von Schlippe and Dietrich, 1941), the famous

ship stabilization problem (Minorsky, 1942), and the material

forming processes (Tlusty, Polacek, Danek, & Spacek, 1962;

Tobias, 1965). The development of the corresponding

mathematical theory of time delayed systems started in the

early 1950’s only (Bellman & Cooke, 1963; Diekmann, van

Gils, Lunel, & Walther, 1995; Halanay, 1961; Hale & Lunel,

1993; Myshkis, 1949). The first algorithms for stability

analyses appeared somewhat later in the work of Bhatt and

Hsu (1966); Kolmanovskii and Nosov (1986); Stépán (1989);

Niculescu (2000) and Hu and Wang (2002).

The mathematical description of parametric excitation goes

back to the mid 19th century, when Mathieu (1868) derived his

famous scalar second-order time-periodic differential equation

to study the vibrations of elliptic membranes. Although the

theoretical basis for stability analysis in periodic systems was

provided by the Floquet Theory in the 19th century (Floquet,
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1883), the first stability results appeared in the literature only

decades later, like the stabilization of the inverted pendulum by

vibrating its pivot point vertically at a specific frequency

(Stephenson, 1908), or the stability chart of the Mathieu

equation (Ince, 1956; van der Pol & Strutt, 1928). The

explanation of how the children’s favourite toy, the swing

works, came also quite late for the same reason (Levi & Broer,

1995).

Stability of periodic systems are characterized by the

Floquet transition matrix and by its eigenvalues, the

characteristic multipliers (often referred to as poles of the

system). If all of the characteristic multipliers lies in the open

unit disc of the complex plane then the system is asymptotically

stable (see, e.g., Farkas, 1994).

Nowadays, as both autonomous delayed systems and

parametrically excited systems are quite well understood,

those engineering models show up and come into focus, where

the two effects may exist together. In this respect, one of the

most apparent engineering problems is high-speed milling,

where the time delay is caused by the regeneration of the wavy

surface cut by the compliant tool, and parametric excitation

arises due to the rotation of the tool (Budak & Altintas, 1998;

Insperger, Mann, Stépán, & Bayly, 2003a). In the milling

processes, both the time delay and the principal period are equal

to the tooth passing period. Another area of engineering where

the combination of time delay and parametric excitation shows

up is the control of dynamical systems (Butcher, Ma, Bueler,
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Averina, & Szabó, 2004; Elbeyly & Sun, 2004; Insperger &

Stépán, 2000).

Time delay often arises in feedback control systems due to

the acquisition of response and excitation data, information

transmission, on-line data processing, computation and

application of control forces. In spite of the efforts to minimize

time delays, they cannot be eliminated totally even with today’s

advanced technology, due to physical limits. The information

delay is often negligible but, for some cases, it may still be

crucial, for example in space applications (Kim & Bejczy,

1993; Vertut, Charles, Coiffet, & Petit, 1976), in systems

controlled through the internet (Munir & Book, 2003) or in

robotic applications with time-consuming control force

computation (Kovács, Insperger, & Stépán, 2004).

Caused by the delay of control feedback, the governing

equation is a delay-differential equation (DDE). DDE’s usually

have infinite dimensional phase spaces (Hale & Lunel, 1993),

therefore the linear stability conditions for the system

parameters are complicated and often do not have an analytical

form. However, there exist several methods to analyze control

systems with delayed feedback (see, e.g., Breda, Maset, &

Vermiglio, 2004; Butcher et al., 2004; Insperger & Stépán,

2002a; Michiels, Engelborghs, Vansevenant, & Roose, 2002;

Olgac & Sipahi, 2002).

Stability of time-periodic DDEs are described by the so-

called monodromy operator that corresponds to an infinite

dimensional Floquet transition matrix with infinite number of

eigenvalues (characteristic multipliers or poles). The system is

asymptotically stable if all the characteristic multipliers are in

modulus less than one (Hale & Lunel, 1993).

Although time-invariant state feedback is a wide-spread and

easily applicable technique for control systems, it does not

provide a stabilizing controller for all systems. In these cases,

the use of time-periodic feedback gains may improve stability

properties. The idea of stabilizing by parametric excitation is

motivated by the classical example of Stephenson’s inverted

pendulum (Stephenson, 1908).

The problem of stabilization by means of time-periodic

feedback gains has been presented by Brockett (1998) as one of

the challenging open problems in control theory. With the

exception of some papers on discrete-time systems (Aeyels &

Willems, 1992; Leonov, 2002a; Weiss, 2005), the problem has

received little attention and only partial results for special

classes of systems have been derived. Moreau and Aeyels

(1999, 2000) investigated the effect of sinusoidal feedback gain

for second and third order systems. Leonov (2002b) and

Allwright, Astolfi, and Wong (2005) used piecewise constant

control gains for general n-dimensional systems.

Stabilization is a weak version of pole placing. Stabilization

of autonomous systems via time-invariant feedback control is

the placement of the system’s characteristic roots (called also

characteristic exponents or poles) to the left half of the complex

plane. If time-periodic gains are used in the control, then

stabilization means the placement of the characteristic multi-

pliers of the system inside the unit circle of the complex plane

in accordance with the Floquet theory (see, e.g., Farkas, 1994).

Details will be given in Section 3.
Stabilization of time delayed systems is complicated, since

an infinite number of poles should be controlled using a finite

number of control parameters. The act-and-wait control method

is an effective technique to reduce the number of poles for

systems with large feedback delay, which makes the pole

placement problem easier. It is a special case of periodic

controllers: the controller is switched on and off periodically

with a switch off period larger than the time delay. The method

was introduced for discrete-time systems in Insperger and

Stépán (2004, 2006), where it was shown that for certain

conditions, deadbeat control can also be achieved. The act-and-

wait concept was adopted for continuous-time systems in

Insperger (2006).

In this paper, we summarize the analytical results known for

second-order systems, from the autonomous non-delayed

system to the periodic delayed one including the delayed

Mathieu equation. Then, inspired by these results, we introduce

the act-and-wait control concept in a general form for

continuous-time systems. Finally, the efficiency of the method

is demonstrated by case studies.

2. Motivating example: the delayed Mathieu equation

The delayed Mathieu equation is a paradigm for periodic

time delayed systems. It is one of the simplest equations that

incorporates both delayed feedback effect and parametric

excitation and still has practical relevance. Here, we consider

the delayed Mathieu equation with slight damping in the scalar

form:

ẍðtÞ þ kẋðtÞ þ ðdþ e cos tÞxðtÞ ¼ bxðt � 2pÞ: (1)

In this example, the time delay is normalized to 2p with an

appropriate time scale transformation, and it is just equal to the

time period of the stiffness parameter in the same way as in case

of milling processes (see, e.g., Insperger et al., 2003). The

scalar parameter k is the (small) damping coefficient in the

system, the parameters d and e are the mean and the amplitude

of the harmonic stiffness variation, and the parameter b is the

gain of the delayed feedback.

When the stiffness amplitude and the gain are zero, the

classical damped oscillator is described by

e ¼ 0; b ¼ 0 ) ẍðtÞ þ kẋðtÞ þ dxðtÞ ¼ 0: (2)

According to the basic theory of linear autonomous ordinary

differential equations (ODEs) (proposed by Maxwell in

1865), the zeros of the characteristic polynomial determine

the stability properties of (2): if and only if all the char-

acteristic roots have negative real parts then the system is

asymptotically stable. The famous Routh–Hurwitz criterion

provides an algorithm to check this condition in character-

istic polynomials (see Hurwitz, 1895; Routh, 1877). Accord-

ingly, (2) has asymptotically stable trivial solutions if and

only if k> 0 and d> 0. The corresponding stability chart

has the trivial structure given in Fig. 1; this is the first of a

series of charts leading to that of the delayed Mathieu

equation.



Fig. 1. Stability boundaries for the damped oscillator (2). Fig. 3. Stability boundaries for the delayed oscillator (4).
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In the uncontrolled case, we obtain the damped Mathieu

equation (Mathieu, 1868):

b ¼ 0 ) ẍðtÞ þ kẋðtÞ þ ðdþ e cos tÞxðtÞ ¼ 0: (3)

Although the so-called Hill’s infinite determinant method was

available in the literature (Hill, 1886; Rayleigh, 1887), van der

Pol and Strutt (1928) published the corresponding stability

chart (often referred to as Strutt–Ince chart) in analytical form

only much later. The chart is shown in Fig. 2 for different

damping parameters. As it is seen, the system can be stable even

for negative values of d, a situation that corresponds to the

inverted pendulum stabilized by parametric excitation (Ste-

phenson, 1908).

In the case of an oscillator subjected to delayed feedback

without parametric excitation, we have the so-called delayed

oscillator equation:

e ¼ 0 ) ẍðtÞ þ kẋðtÞ þ dxðtÞ ¼ bxðt � tÞ: (4)

With the help of the D-subdivision method (Neimark, 1949),

one can prove that for the undamped case (k ¼ 0), the stability

boundaries are straight lines in the parameter plane ðd; bÞ. To

select the stable domains among them, Bhatt and Hsu (1966)

applied the method of Pontryagin (1942). Since then, more

general stability criteria have appeared in the literature, like

those of Stépán (1989) or Olgac and Sipahi (2002). The

corresponding chart is presented in Fig. 3.

The early paper of Halanay (1961), started the development

of the infinite dimensional version of the Floquet Theory for
Fig. 2. Stability boundaries for the Mathieu Eq. (3).
delayed systems, but it gave only a theoretical possibility for the

stability analysis of the most general case of the delayed

Mathieu Eq. (1). After several attempts to work out an

algorithm for the stability analysis of time-periodic time-

delayed systems, it was the straight generalization of the

classical Hill’s infinite determinant method that provided an

analytical solution to the problem (see Insperger and Stépán,

2002b).

In the undamped case, the delayed oscillator subjected to

harmonic parametric excitation assumes the form:

k ¼ 0 ) ẍðtÞ þ ðdþ e cos tÞxðtÞ ¼ bxðt � tÞ: (5)

In Insperger and Stépán (2002b), it was proven that the stability

boundaries remain straight lines in the parameter plane ðd; bÞ
for any fixed value of e, and these lines are passing along the

k ¼ 0 boundary curves of the Strutt–Ince diagram of Fig. 2 for

varying parametric excitation amplitude e> 0, as it is shown in

Fig. 4. The stability boundaries in the parameter plane ðd; eÞ are

shown in Fig. 5, where continuous lines denote stability

boundaries for b� 0 and dashed lines denote stability bound-

aries for b< 0. The three-dimensional representation of the

stability chart is shown in Fig. 6.

With a further generalization of the above methods and

results, the straight-line boundaries were also found and

proven in the most general case of the delayed Mathieu

Eq. (1). The non-zero damping merges the triangle shaped

stable domains of the delayed oscillator, but the parametric

excitation cuts these regions by some separating lines at fixed

values e> 0 of the excitation amplitude (see Insperger and

Stépán (2003)). A typical stability chart of (1) is presented in

Fig. 7 for e ¼ 2.

It rarely happens, of course, that the above charts can

directly be transformed to the parameter space of realistic
Fig. 4. Stability boundaries for the undamped delayed Mathieu Eq. (5) in the

plane ðd; bÞ.



Fig. 5. Stability boundaries for the undamped delayed Mathieu Eq. (5) in the

plane ðd; eÞ.

Fig. 6. Three-dimensional stability chart for the undamped delayed Mathieu

Eq. (5).
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physical problems, but they serve as unique and reliable

reference examples to test numerical methods, and they also

provide an overall picture, helping to understand the peculiar

stability behaviour of these time-periodic and also time-delayed

second order systems.

It is an obvious extension of the above results to consider the

periodicity at the gain parameters:

ẍðtÞ þ kẋðtÞ þ dxðtÞ ¼ ðbþ e cos tÞxðt � tÞ: (6)

The study of this system with different time-periodic gains

leads to the idea of the act-and-wait control concept that is

introduced and discussed in the next section.
Fig. 7. Stability boundaries of the damped and delayed Mathieu Eq. (1) for

e ¼ 2.
3. Act-and-wait control concept

Consider the control system:

ẋðtÞ ¼ AxðtÞ þ BuðtÞ; xðtÞ 2Rn; uðtÞ 2Rm; (7)

yðtÞ ¼ CxðtÞ; yðtÞ 2Rl (8)

with the delayed feedback controller:

uðtÞ ¼ Dyðt � tÞ; (9)

where t is the time delay of the feedback loop. We assume that

the delay is a fixed parameter of the feedback and cannot be

eliminated or tuned during the control design.

System (7) and (8) with controller (9) implies the DDE:

ẋðtÞ ¼ AxðtÞ þ BDCxðt � tÞ: (10)

Stabilization of this system by tuning the control parameters in

D in an optimal way is a difficult task since the corresponding

characteristic equation:

detðlI� A� BDC e�tlÞ ¼ 0 (11)

has infinitely many roots, which all should be placed in the left

half of the complex plane in order to obtain asymptotic stability.

Arbitrary pole placement for (10) is not possible, since

infinitely many poles should be placed using a finite number of

control parameters (i.e., the elements of D). If the pair ðA;BÞ is

controllable then direct placement of n different eigenvalues is

always possible. However, by placing n eigenvalues, the control

over the position of all the others is lost, and these may cause

instability (see, e.g., Michiels et al., 2002).

An effective technique to reduce the number of poles for

delayed systems is the act-and-wait method (Insperger, 2006;

Insperger & Stépán, 2004; Insperger & Stépán, 2006). The

essence of the method is that the controller is switched on and

off periodically with a switch-off interval longer than the time

delay. This way, the memory effect of the feedback is

eliminated, and a finite dimensional system is obtained instead

of the infinite dimensional one.

The act-and-wait controller for system (7) and (8) can be

defined as

uðtÞ ¼ GðtÞyðt � tÞ; (12)

where GðtÞ is the T-periodic act-and-wait matrix function

satisfying:

GðtÞ ¼ 0 if 0 � t< tw

GðtÞ if tw � t< tw þ ta ¼ T

�
(13)

and Gðt þ kTÞ ¼ GðtÞ, k2Z. Function GðtÞ : ½tw; T �!Rm�l is

an integrable matrix function. Using controller (12) instead of

(9), the delayed feedback term is switched off for an interval of

length tw (wait), and it is switched on for an interval of length ta

(act). This is a special case of periodic controllers. Note that in

Insperger (2006), the function GðtÞ was switched between zero

and constant that corresponds to GðtÞ�D.



Fig. 8. Stability chart for (18)
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Now, system (7) and (8) with controller (12) implies the

time-periodic delay-differential equation (DDE):

ẋðtÞ ¼ AxðtÞ þ BGðtÞCxðt � tÞ: (14)

In the case tw < t, (14) has an infinite number of

characteristic multipliers, therefore stabilization is still rather

complicated (if possible at all), similarly to the time-

independent case (10). However, if tw� t then the monodromy

operator of (14) becomes finite dimensional and can be

represented by an n� n matrix as it is shown below.

Without loss of generality, we derive the solution map for

t2 ½0; T � instead of t2 ½kT ; ðk þ 1ÞT �, k2Z. First, assume that

tw� t and 0< ta � t. In this case, (14) can be considered as an

ordinary differential equation (ODE) in ½0; twÞ and as a DDE in

½tw; TÞ. If t2 ½0; twÞ then GðtÞ ¼ 0 (the delayed term is switched

off), and the solution of (14) associated with the initial state

xð0Þ can be given as

xðtÞ ¼ eAtxð0Þ; t2 ½0; twÞ: (15)

If t2 ½tw; TÞ then GðtÞ ¼ GðtÞ (the delayed term is switched

on). Since ta � t, and the solution over the interval ½0; twÞ is

already given by (15), system (14) can be written in the form:

ẋðtÞ ¼ AxðtÞ þ BGðtÞC eAðt�tÞxð0Þ; t2 ½tw; TÞ: (16)

Solving (16) as a non-homogeneous ODE over ½tw; TÞ with

xðtwÞ ¼ eAtw xð0Þ as initial condition we obtain:

xðTÞ ¼
�

eAT þ
Z T

tw

eAðT�sÞBGðtÞC eAðs�tÞ ds

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F

xð0Þ: (17)

This way, we constructed an n� n discrete map over the period

T for the initial state xð0Þ using the piecewise solutions of (14).

This means that the monodromy operator of (14) has n nonzero

eigenvalues that are equal to the eigenvalues of the transition

matrix F. All the other (infinitely many) eigenvalues of

the monodromy operator are zero. Consequently, system

(14) has n characteristic multipliers that are equal to the

eigenvalues of matrix F that is actually the monodromy matrix

of the system.

Consider now the case when the period of acting cannot be

smaller than the time delay due to any reason (e.g. physical

limitations of the controller), that is, tw� t and ta > t. In this

case, the monodromy matrix can be determined by stepwise

integration over subsequent intervals. First, the solution over

½0; twÞ should be determined similarly to (15). Then, the

solutions can be determined over the intervals ½tw; tw þ tÞ,
½tw þ t; tw þ 2tÞ, etc., step by step substituting the solution of

the previous interval into the delayed term. If

ht< ta � ðhþ 1Þt, h2Z, then xðTÞ is obtained after hþ 2

succeeding integrations.

The point is that the act-and-wait method results in an n� n
monodromy matrix, and only n poles should be considered

during stabilization instead of the infinitely many poles of the

original autonomous DDE (10). The control parameters are the

elements of the matrix GðtÞ. In this sense, the resulting problem
is similar to the one posed by Brockett (1998) for ODEs. Here,

it is formulated as:

Problem 1. For given matrices A, B, C and for given time

delay t, under what circumstances does there exist a time-

varying matrix GðtÞ such that system (14) is asymptotically

stable, i.e., all the eigenvalues of the monodromy matrix F lie

in the open unit disc of the complex plane?

This problem is more complex than that of Brockett since

matrix F depends nonlinearly on the system matrix A through

the time delay t. This problem has not been solved generally,

but some case studies are given to demonstrate that an

appropriate choice of GðtÞ can stabilize unstable systems.

4. Case studies

In this section, two examples will be presented to

demonstrate the efficiency of the act-and-wait control concept:

a first-order system, then the delayed oscillator as a second-

order system.

4.1. First-order system

Consider the scalar DDE:

ẋðtÞ ¼ axðtÞ þ bxðt � 1Þ; (18)

where a is the system parameter and b is the control gain. This

equation corresponds to system (7)–(9) with the matrices:

A ¼ a; B ¼ 1; C ¼ 1; D ¼ b (19)

and with the delay t ¼ 1. (Note that n ¼ m ¼ l ¼ 1 in this

case.)

The stability chart of (18) was first presented in Hayes

(1950) (see in Fig. 8). This equation is often considered as one

of the simplest basic examples for a delayed system (see, e.g.,

Michiels et al., 2002 or Stépán, 1989). Its stability properties



Fig. 9. Stability chart for (22) with (23)

Fig. 10. Time histories for (18)(A1, B1) and for (22) with (23)(A2, B2).
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can be determined by the analysis of the characteristic

equation:

l� a� b e�l ¼ 0: (20)

Substitution of l ¼ g � iv into (20) provides the g-contour

curves:

a ¼ g þ v cos v

sin v
; b ¼ �v eg

sin v
(21)

for v> 0 and the lines b ¼ ðg � aÞeg for v ¼ 0. In Fig. 8,

some of these g-contours are also presented. Obviously, the

stability boundary corresponds to g ¼ 0 that is denoted by thick

lines.

For a given system parameter a, the optimal control gain that

results in minimal g is given by b ¼ �ea�1 associated with

g ¼ a� 1. This curve is presented by a dotted line in Fig. 8. It

can be seen that if a> 1 then the system is unstable for all b.

For further analysis, we introduce the decay ratio r ¼ eg ,

which is a measure of the average error decay over a unit period,

since jxðt þ 1Þj � rjxðtÞj.
Here, we will investigate two cases:

a ¼ 1=2: the corresponding optimal decay ratio is r ¼
e�1=2 ¼ 0:6065< 1 (stable case) that can be achieved at

b ¼ �e�1=2 ¼ �0:6065. This case is denoted by point A1 in

Fig. 8.

a ¼ 3=2: the corresponding optimal decay ratio is r ¼ e1=2 ¼
1:6487> 1 (unstable case) that can be achieved at b ¼
�e1=2 ¼ �1:6487. This case is denoted by point B1 in Fig. 8.

Now, apply the act and wait concept with GðtÞ� b, tw ¼ 1,

ta ¼ 1, T ¼ 2 in (13). The governing DDE can be given in the

form:

ẋðtÞ ¼ axðtÞ þ GðtÞxðt � 1Þ; (22)

where GðtÞ is a piecewise constant periodic function satisfying:

GðtÞ ¼ 0 if 0 � t< 1

b if 1 � t< 2

�
(23)

and GðtÞ ¼ Gðt þ 2kÞ, k2Z. In this case, the control is per-

iodically switched on and off that corresponds to the case

investigated in Insperger (2006).

The state at t ¼ T ¼ 2 can be expressed according to (17):

xð2Þ ¼
�

e2a þ
Z 2

1

eað2�sÞb eaðs�1Þds

�
xð0Þ

¼ e2að1þ b e�aÞxð0Þ: (24)

Since (22) is a scalar equation, the coefficient of xð0Þ is also the

characteristic multiplier: m ¼ e2að1þ b e�aÞ. For periodic sys-

tems, the decay ratio can be defined as r ¼ jmj1=T
that is equal

to
ffiffiffiffiffiffi
jmj

p
in this case. The decay ratio can be used to compare

act-and-wait control systems with different periods T to the

autonomous system. The contour curves of r are presented in

Fig. 9. The stability boundary corresponds to r ¼ 1 that is

denoted by thick lines.
It can be seen that if b ¼ �ea then m ¼ 0 for any a. This

means that deadbeat control can be attained for all system

parameter a, even if the original autonomous system was

unstable (a> 1). The optimal deadbeat control parameters for

the cases a ¼ 1=2 and 3=2 are denoted by A2 and B2.

Fig. 10 shows the time histories for the autonomous system

(18) at points A1, B1 and for the act-and-wait systems (22) with

(23) at points A2 and B2. The simulation was performed using

the semi-discretization method (Insperger and Stépán, 2002a).

In the process of semi-discretization of time-periodic DDEs,

the delayed terms are discretized while the undelayed terms are

unchanged and the periodic coefficients are approximated by

piecewise constant ones. The merit of the method is that it can

effectively be used for constructing approximate Floquet

transition matrix for periodic DDEs. In Fig. 10, thick lines

denote the periods where the controller is on and thin lines



Fig. 11. Stability chart for (25).
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denote the period where the controller is off. Panel A1 shows

the stable autonomous system with the optimal control gain b

resulting in a decay ratio r ¼ 0:6065. Panel A2 shows the

optimal (deadbeat) case for the act-and-wait control concept. It

can clearly be seen that the system actually converges to zero

within one period T ¼ 2.

If a ¼ 3=2, then the autonomous system is always unstable

and it cannot be stabilized by any control gain b. The optimal

case given by point B1 results in r ¼ 1:6487, which

corresponds to an unstable system. Using the act-and-wait

control concept, the unstable plant can be stabilized,

furthermore, in the optimal case, deadbeat control can be

attained (see panel B2 in Fig. 10).

4.2. Second-order system

Consider the delayed oscillator equation:

ẍðtÞ þ dxðtÞ ¼ bxðt � 2pÞ: (25)

This equation corresponds to systems (7)–(9) with the matrices:

A ¼ 0 1

�d 0

� �
; B ¼ 1; C ¼ 1

0

� �T

; D ¼ b:

(26)

The stability chart of (25)(see in Fig. (3)) is well known (see,

e.g., Bhatt & Hsu, 1966; Stépán, 1989). Here, we will con-

centrate on the first triangle of this stability chart shown in

Fig. 11.

Substitution of l ¼ g � iv into the characteristic equation

l2 þ d� b e�2pl ¼ 0 (27)

provides the g-contour curves:

d ¼ v2 � g2 þ 2gv cos ð2pvÞ
sin ð2pvÞ ; b ¼ �2gv e2pg

sin ð2pvÞ ; (28)
for v> 0 and the lines b ¼ ðg2 þ dÞe2pg for v ¼ 0. The stabi-

lity boundary corresponding to g ¼ 0 is denoted by thick lines

in Fig. 11.

Two values of the parameter d are considered:

d ¼ 0:02: the optimal control gain is b ¼ 0:01596, which

results in a stable system with g ¼ �0:08615 and

r ¼ eg ¼ 0:9175. This case is denoted by point C1 in

Fig. 11.

d ¼ �0:02: the optimal control gain is b ¼ �0:02399,

which still results in an unstable system with g ¼ 0:05375

and r ¼ 1:0552. This case is denoted by point D1 in Fig. 11.
Now, consider the act-and-wait control system:

ẍðtÞ þ dxðtÞ ¼ GðtÞxðt � 2pÞ: (29)

where GðtÞ is a piecewise constant periodic function satisfying:

GðtÞ ¼

0 if 0 � t< 2p

b1 if 2p � t<
5

2
p

b2 if
5

2
p � t< 3p

8>>><
>>>:

(30)

and GðtÞ ¼ Gðt þ 3pkÞ, k2Z. Here, tw ¼ t ¼ 2p, ta ¼ p,

T ¼ 3p. The parameters b1 and b2 are the control parameters.

The 2� 2 monodromy matrix of the system can be

determined according to (17), and the stability chart can be

constructed by calculating the characteristic multipliers. In

Fig. 12, the contour curves of the decay ratio are shown as the

function of the control parameters b1 and b2 for the cases

d ¼ 0:02 and �0:02. The stability boundaries corresponding to

r ¼ 1 are denoted by thick lines.

It can be seen that for both cases, the optimal control

parameters denoted by points C2 and D2 result in deadbeat

control with r ¼ 0. If d ¼ 0:02 then the optimal deadbeat

parameters are b1 ¼ �0:6129 and b2 ¼ 0:5141 (point C2). If

d ¼ �0:02 then the system cannot be stabilized using an

autonomous controller, but it can be stabilized using the act-and-

wait concept, furthermore, the optimal parameters b1 ¼ 0:9391,

b2 ¼ �1:7345 (point D2) result in deadbeat control. Although

deadbeat control can clearly be attained, it should be mentioned

that the corresponding parameter range is very narrow.

Fig. 13 shows the time histories for the autonomous system

(25) at points C1, D1 and for the act-and-wait system (30) with

(29) at points C2, D2. Thick lines denote the periods where the

controller is on and thin lines denote the periods where the

controller is off. Panel C1 shows the stable autonomous system

with the optimal control gain b resulting in a decay ratio

r ¼ 0:9175. Panel C2 shows the optimal (deadbeat) case for the

act-and-wait control concept. It can clearly be seen that the

system actually converges to zero within the interval 2T ¼ 6p.

If d ¼ �0:02, then the autonomous system is always

unstable and it cannot be stabilized by any control gain b.

The optimal case given by point D1 results in r ¼ 1:0552,

which corresponds to an unstable system (see panel D1 in

Fig. 13). Panel D2 shows that the system can still be stabilized

by using the act-and-wait control concept, and in the optimal

case, deadbeat control can be attained.



Fig. 13. Time histories for (25)(C1, D1) and for (29) with (30)(C2, D2).

Fig. 12. Stability charts for (29) with (30).
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5. Conclusion

Time delayed and time-periodic systems has not been

considered often in engineering applications, since the

corresponding analysis is rather complicated, and the available

mathematical tools are not fully adopted in engineering. A

unique analytical result for parametrically excited delayed

systems is the stability chart of the delayed Mathieu equation.
This chart serves as a reliable reference example to test

numerical methods developed for time-periodic and also time-

delayed systems. The study of these systems gives rise to new

methods for stabilizing systems with feedback delay.

Time delay often arises in the feedback loop of control

systems. The pole placement of such systems requires the

control of infinitely many poles by a finite number of control

parameters. To manage this problem, an effective way is the

act-and-wait control method that is a special version of periodic

controllers. The essence of the method is that the control gains

are set to zero for an interval that is just larger than the time

delay. Then the stabilization problem is reduced to a problem

similar to the one posed by Brockett (1998) for ODEs. Two case

studies are presented in order to demonstrate the efficiency of

the method.

The main message is that the act-and-wait concept provides

an alternative for control systems with feedback delays. The

traditional approach is the continuous use of constant control

gains according to the autonomous controller (9), when a

cautious, slow feedback is applied with small gains resulting in

slow convergence (if such controller can stabilize the system at

all). The proposed alternative way is the act-and-wait control

concept, when time-varying control gains are used in the acting

phase and zero gains are used in the waiting intervals.

Several (actually, infinitely many) periodic functions could

be chosen as time-periodic controllers. The main idea behind

choosing the one that involves waiting intervals just longer than

the feedback delay is that this kills the memory effect by

waiting for the system’s response induced by the previous



G. Stépán, T. Insperger / Annual Reviews in Control 30 (2006) 159–168 167
action. Although it might seem unnatural not to actuate during

the wait interval, act-and-wait concept is still a natural control

logic for time-delayed systems. This is the way, for example,

how one would adjust the shower temperature considering

the delay between the controller (tap) and the sensed output

(skin).
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Mathieu, E. (1868). Mémoire sur le mouvement vibratoire d’une membrane de

forme elliptique. Journal De Mathematiques Pures Et Appliquees, 13, 137–

203.

Michiels, W., Engelborghs, K., Vansevenant, P., & Roose, D. (2002). Contin-

uous pole placement for delay equations. Automatica, 38(5), 747–761.

Minorsky, N. (1942). Self-excited oscillations in dynamical systems possessing

retarded actions. ASME Journal of Applied Mechanics, 9, 65–72.

Moreau, L., & Aeyels, D. (1999). Stabilization by means of periodic output

feedback. In Proceedings of the 37th IEEE conference on decision & control

(pp. 108–109).

Moreau, L., & Aeyels, D. (2000). A note on periodic output feedback for third-

order systems. In Proceedings of the 14th international symposium of

mathematical theory of networks and systems (MTNS 2000).

Munir, S., & Book, W. J. (2003). Control techniques and programming issues

for time delayed internet based teleoperation, Journal of Dynamic Systems.

Measurements and Control, 125(2), 205–214.

Myshkis, A. D. (1949). General theory of differential equations with delay.

Uspekhi Matematicheskikh Nauk, 4, 99–141 (Engl. Transl. (1951). AMS 55,

1–62).

Neimark, J. I. (1949). D-subdivision and spaces of quasi-polynomials. Prik-

ladnaja Mathematika i Mechanika, 13, 349–380.

Niculescu, S. I. (2000). Delay effects on stability: A robust control approach.

New York: Springer.

Olgac, N., & Sipahi, R. (2002). An exact method for the stability analysis of

time-delayed linear time-invariant (LTI) systems. IEEE Transactions on

Automatic Control, 47(5), 793–977.

Pontryagin, L. S. (1942). On the zeros of some elementary transcendental

functions. Izvestiya Akademiya Nauk SSSR, Ser. Math., 6(3), 115–134 (in

Russian).



G. Stépán, T. Insperger / Annual Reviews in Control 30 (2006) 159–168168
Rayleigh, J. W. (1887). On the maintenance of vibrations by forces of double

frequency, and on the propagation of waves through a medium endowed

with a periodic structure. Philosophical Magazine and Journal of Science,

24, 145–159.

Routh, E.J. (1877). A treatise on the stability of a given state of motion, London.

von Schlippe, B., & Dietrich, R. (1941). Lilienthalgesellschaft für Luftfahrt-

forschung, Bericht. Shimmying of a pneumatic wheel, vol. 140. pp. 125–160

(translated for the AAF in 1947 by Meyer & Company) .

Stépán, G. (1989). Retarded dynamical systems. Longman, Harlow.

Stephenson, A. (1908). On a new type of dynamical stability. Memoirs and

Proceedings of the Manchester Literary and Philosophical Society, 52, 1–

10.

Tlusty, J., Polacek, A., Danek, C., & Spacek, J. (1962). Selbsterregte Schwin-

gungen an Werkzeugmaschinen.. Berlin: VEB Verlag Technik.

Tobias, S. A. (1965). Machine tool vibration.. London: Blackie.

van der Pol, F., & Strutt, M. J. O. (1928). On the stability of the solutions of

Mathieu’s equation. Philosophical Magazine and Journal of Science, 5, 18–

38.

Vertut, J., Charles, J., Coiffet, P., & Petit, M. (1976). Advance of the new MA23

force reflecting manipulator system. In Proceedings of the second sympo-

sium on theory and practice of robots and manipulators (pp. 50–57).

Weiss, G. (2005). Memoryless output feedback nullification and canonical

forms, for time varying systems. International Journal of Control, 78(15),

1174–1181.
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