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Abstract: We investigate a single-degree-of-freedom model of turning with sinusoidal spindle speed modula-
tion and the corresponding delay-differential equation with time-varying delay. The equation is analyzed by
the numerical semidiscretization method. Stability charts and chatter frequencies are constructed. Improve-
ment in the efficiency of machining is found for high modulation frequency and for low spindle speed domain.
Period-one, period-two (flip), and secondary Hopf bifurcations were detected by eigenvalue analysis.
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1. INTRODUCTION

Systems governed by delay-differential equations (DDEs) often appear in different fields of
science and engineering. One of the most important mechanical applications is the cutting
process dynamics. As a result of the extensive work of Tlusty et al. (1962), Tobias (1965),
and Kudinov (1967), the so-called regenerative effect has become the most commonly ac-
cepted explanation for machine tool chatter (Stépan, 1989; Moon, 1998). This effect is
related to the cutting force variation due to the wavy workpiece surface cut in the preced-
ing revolution. The corresponding mathematical models are DDEs associated with infinite-
dimensional state spaces. For the case of turning, the delay is equal to the rotation period
of the workpiece, while for milling it is equal to the tooth passing period. Consequently, if
the spindle speed is constant in time, then the delay is also constant, and the governing equa-
tion is a DDE with constant delay (CDDE). Several techniques exist for analyzing CDDEs
and predicting stability behavior for cutting processes with constant spindle speeds (see, for
example, Altintas et al., 1999; Segalman and Butcher, 2000; Zhao and Balachandran, 2001;
Gouskov et al., 2002; Bayly et al., 2003; Insperger et al., 2003; Szalai and Stépén, 2003).
For cutting processes, the stability properties are presented in the so-called stability charts,
which plot the maximum chatter-free chip width as a function of spindle speed.

The identification of the arising vibrations during machining can effectively be supported
by the frequency analysis of chatter signals (GradiSek et al., 2002; Schmitz et al., 2002).
The stability charts published in the specialist literature are almost always accompanied by
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frequency diagrams that represent the chatter frequencies at the loss of stability (Insperger
et al., 2003). The reason for this custom is that these frequencies can precisely be identified
experimentally and so this is a direct way to verify theoretical models and predictions (Mann
et al., 2003).

Prevention of chatter is a primary problem for machining. The idea that parametric
excitation effects may suppress vibrations during the cutting process comes from the famous
problem of stabilizing inverted pendulums by parametric excitation (Insperger and Horvith,
2000).

Periodically varying stiffness was suggested by Segalman and Butcher (2000) to sup-
press chatter in turning. They investigated the resulting DDE with time periodic coefficients
by the harmonic balance method, and found some stability improvements.

In the 1970s, it was already in the focus of research work that continuous variation of
cutting speed could be used for suppressing chatter (Inamura and Sata, 1974; Takemura et
al., 1974; Hosho et al., 1977; Sexton et al., 1977). The governing equation for cutting with
time-varying spindle speed is a DDE with varying delay (VDDE). The stability analysis of
VDDEs is not as obvious as that of the CDDEs. Sexton et al. (1977) approximated the quasi-
periodic solutions of the VDDE by periodic solutions and applied the harmonic balance
method to derive stability boundaries. They predicted improvements in stability properties
by a factor of 10 for properly chosen parameter values. In spite of some reports on successful
experiments, the stability investigations of cutting with time-varying spindle speeds were not
reliable enough to present a breakthrough in this field.

Pakdemirli and Ulsoy (1997) used angle coordinate as independent variable instead of
time according to Tsao et al. (1993), and obtained a CDDE with periodic coefficients. They
used the perturbation technique called the method of strained parameters for stability analysis.

With their novel approach, Jayaram et al. (2000) created stability charts for turning with
varying spindle speed. They used quasi-periodic trial solutions for the VDDE, combined
the Fourier expansion with an expansion with respect to Bessel functions, and determined
stability boundaries using the harmonic balance method. Namachchivaya and Beddini (2003)
transformed the time dependency from the delay term to the coefficients, and also carried out
some nonlinear analysis using the small perturbation technique.

The full-discretization technique was used by Sastry et al. (2001) for sinusoidal speed
modulation and by Yilmaz et al. (2002) for random spindle speed modulation. The mathe-
matical background for the full discretization of VDDEs (also for systems with state-
dependent delays) was presented by Gy6ri et al. (1993, 1995).

The semidiscretization method was used to obtain stability charts by Insperger et al.
(2001). They showed that contrary to cutting processes with constant spindle speed, where
primary or secondary Hopf and period doubling bifurcations may arise only, period-one
bifurcation is also a possible route for the onset of chatter for machining with varying spindle
speed.

In this paper, the semidiscretization method introduced by Insperger and Stépan (2002)
is applied to VDDEs. The steps of the algorithm are presented in detail for a general lin-
ear VDDE with time periodic delay. As an example, the single-degree-of-freedom (1DOF)
model of turning with varying spindle speed is investigated. Stability charts with correspond-
ing chatter frequencies are constructed. The codes of the algorithm are also attached in the
Appendix.
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2. SEMIDISCRETIZATION OF VDDES

We investigate the n-dimensional linear delay differential equation:

x(@) = A@)x@)+B@)x( — (1)), )
AG+T) = A@), Be+T)=B@), t(t+T)=1().

The first step of semidiscretization is the construction of the time interval discretization
of [#;, ti+1] with length At,i =0, 1,... sothat 7 = kAt, where k is an integer that can be
considered as an approximation parameter regarding the time period.

Let us define the average delay for the discretization interval [#, £;4,] as

1 gl
| = t . 2
g AR @
We introduce the series of integers m; so that
i+ At/2
m; = int (T_+__/_> , 3)
At

where int is the function that rounds positive numbers towards zero (e.g. int(5.13) = 5).
Since the delay is varying periodically in time, integer m; might be different for different
discretization steps. Let us introduce the maximum value of m; as

M= max {m;}. “4)

Note that M can be considered as an approximation parameter regarding the length of the
time delay.

Use the notation x(¢;) = X; for any integer j. In the ith interval, equation (1) can be
approximated as

x(t) = A;x(t) + B x,, )

where
1 ti1 1 iyl B(nd (6)
L= — A@)d:, B;=— t)dt,
A At ® At /, ®

L

and x,, is the following approximation of the delayed term on [t;, ;1]

x(t — (1)) x(t — ;) x(t; + At/2 — 1) X B Xiem; + O Xicmi+1 = Xy @)
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Figure 1. Approximation of the delayed term.

with weights

miAt + At/2 — 1

a; = A7 , (8)
Ti + At/2 —m; At
Bi Y, . ®

The delayed term is approximated as a weighted linear combination of the delayed discrete
values X;_,,, and X;_,,+) as shown in Figure 1.
The solution of equation (5) for the initial condition
x(t) =x; (10)
reads
x(1) = exp (Ai(t — 1)) (x; + A7 B x;,) — A7 Bi xy,. an
This way, x;+; = Xx(#;41) can be expressed as
xi+1 = PiX; + a;RiXip 41 + BiRiXiom,, (12)

where

P; =exp (A; A1),
R,‘ = (exp (A,Af) - I) A;_lB,'

with I denoting the identity matrix.
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Now, according to equation (12), the discrete map
Yie1 = Gyi, (13)
can be defined where the n(M + 1)-dimensional vector is
yi =col(x; Xi_ ... Xj_um), (14)

and the coefficient matrix has the form

P, 0 0 0 «R AR, 0 000
I 0 0 0 0 0 0 ...000
01 0 0 0 0 0 ...00 0
C = : (15)
0 0 0 0 0 0 0 . 000
00 0 0 0 0 0 .. I 00
00 0 0 0 0 0 ..0T10

Here, a;R; and B;R; are the (m;)th and (m; + 1)th submatrices of dimension rn x » in the
first row of matrix C;.

The next step is to determine the transition matrix ® over the principal period T =
kAt. This serves a finite-dimensional approximation of the monodromy operator in the
infinite-dimensional version of the Floquet theory (Hale and Lunel, 1993; Farkas, 1994).
The transition matrix gives the connection between y, and y, in the form

Ve = @y, (16)
where @ is given as
<I)=Ck_|Ck_2...C,C0 (17)

by coupling the solutions for each discretization interval [#;, #;4;]. Note that the integer k
determines the number of matrices to be multiplied in equation (17), and M determines the
size of these matrices.

Now, the stability investigation is reduced to the problem whether the eigenvalues of
®, the so-called characteristic multipliers, are in modulus less than one (Lakshmikantham
and Trigiante, 1988). At the loss of stability, the frequencies of the arising vibration are
determined by the critical (greatest in modulus) characteristic multipliers.
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Figure 2. Mechanical model.

3. 1IDOF MODEL OF TURNING WITH VARYING SPINDLE SPEED

The mechanical model of the turning process in Figure 2 is to be used with mass m, damping
¢, stiffness k, spindle speed ) (), and feed v. The linear mathematical model of chatter in
turning with varying spindle speed is a T-periodic VDDE of the form

£+ 200k (0) + 03x(0) = = () =3 @), TG+ =7@),  (19)

where w, = /k/m is the natural angular frequency, ¢ = ¢/(2mw,) is the relative damping
factor of the tool, w is the depth of cut, K is the specific cutting coefficient, and the time
delay 7 (¢) is a T-periodic function.

If the spindle speed is constant, Q(¢) = o, and is given in rpm, then the time delay
can be expressed as 7o = 60/. In the case of time periodic spindle speed modulation
Q@+T) = Q(1), the time delay is also time periodic with the same period: 7 (t+7) = 7(¢).
In this case, the time delay can only be given in the implicit form

t

Q(5)/60ds = 1. (19)

t—1()

This means that the workpiece makes one revolution in each time interval [t — 7(¢), ¢] for
any ¢.
In this paper, a sinusoidal modulation of the spindle speed is considered

Q@) = Qo + Q, cos(wpt), (20)

where €1, is the mean value, 2, is the amplitude of the spindle speed, and w, = 2z /T is
the angular modulation frequency. In practice, 2, < 0.28.
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Figure 3. Spindle speed modulations with the corresponding exact (solid line) and approximated (dashed
line) delays for 25 = 6000 rpm, T =1 s, 2, = 0.1€) (a, b) and Q; = 0.2Q (c, d).

The exact time delay variation can be determined by solving equation (19) for 7 (¢).
For the cosine type spindle speed modulation defined by equation (20), the integration in
equation (19) yields the implicit equation

1 1

— | Qo () + —Q, (sin(w,t) —sin (v, ¢ — (1)) ) = 1. 21
60 W

In this case, the function 7(¢) cannot be given in closed form; it can only be computed
numerically. Still, if €2, is small enough, then the approximation

T(t) = 19 — 1) cos(wpt) (22)

can effectively be used, where 7o = 60/ and 7,/7¢ = §2,/ Q. In Figure 3, the exact time
delays obtained by the numerical solution of equation (21) and the approximate time delays
determined by equation (22) are compared for 10% and 20% spindle speed modulation.
The maximum deviation between the exact and the approximated delays are 0.9% for 10%
modulation (see Figure 3(b)) and 4% for 20% modulation (see Figure 3(d)). In the analysis
below, equation (22) will be used as an expression for the delay variation.

Introducing the dimensionless time = w,! gives the dimensionless equation of motion

)'c'(f)+2(5c(f)+x(f)=W(x(f~i(f))—x(t~)), (23)

where W = Kw/ (mw?) is considered to be a kind of dimensionless (or normalized) depth
of cut, and 7(f) = 7o — 7, cos (@nf) is the dimensionless time delay. Here, 7o = w470
is the dimensionless mean delay, 7, = w,7, is the dimensionless delay amplitude, and
Oy = W,/ w, is the dimensionless modulation frequency.

In the subsequent analysis, the stability charts will be determined in the plane of the
dimensionless (or normalized) mean spindle speed o = Q/(60f,) and the dimensionless
depth of cut w. Here f, = m,/2x is the natural frequency of the tool and, consequently,
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79 = 27 /€. The dimensionless modulation parameters are the ratio of the modulation

period and the mean time delay
Rp =T /19 =2n /(WnTo) = 27 [(®mT0),
and the modulation amplitude ratio

RA = T[/T():'- f]/fo.

4. DETERMINATION OF STABILITY CHARTS BY
SEMIDISCRETIZATION METHOD

(24)

(25)

As the first step of the semidiscretization of equation (23), the approximation parameter k

should be chosen and the time-step should be defined as

- ~ ~ T Rpf() 27'L'Rp
At =ty —ti=—=——z=—5—.
+1 X X k5o

The integers m; can be determined according to equation (3)

) T, 4+ Af/2 . k(1 —Rac) 1
m,-=mt(—'——A;—) =mt(___k_P_4_‘_+§ i
since
‘E,’ ’.E'()—‘.E'lc,‘ %0 f; ‘l.~'0
— = 0 = 2 1—':-,' =k—= (1 — Rsc;) =
Ai A A ( zoc) 7 (1~ Raci)
where
k (i+1)27 /k o
i =— cos(f)dt. i=0,...,k—1.
2z i2m/k

The maximum integer M is defined now as in equation (4).
Equation (23) is transformed to the form

x(7) = Ax() + Bx(7 — (7)),

where

A 0 1 N x(F)
o =) T o) T i)

k(l - RAC,')

(26)

@7

(28)

29)

(30)

@3hH



STABILITY ANALYSIS OF TURNING 1843

Here, unlike in equation (1), the coefficient matrices A and B are not time-dependent. Con-
sequently, the discretized equation is defined as

x(i') =AX(;)+BX§,-, ;E [ﬁafi-{-l]) (32)
where
Xz, = By Xiem; + 0 Xicm41, (33)

and, using equations (8), (9), and (28), the weights are

_ k(l - RAC,') 1

B = R, T3 M (34)
_ 1 k(l - RAC,')

a; = m; + 2 Rp . (35)

According to equation (12), x;., is defined as
Xit1 = PX; + o ;R 41 + BiRXi (36)

where

- P, P
P = exp(AAf) = (P: P:) s

. Ry O
R = AAT) -1 A'B= .
(exp (ALT) ~T) (Rm 0)

Note that the second column of matrix B is zero and, consequently, the second column of
matrix R is also zero. This is because in equation (23) the derivatives of the delayed terms
such as x(f — 7(f)) do not occur. Consequently, X;..; depends on x;, X;, Xi—m,+1 and Xx;_,,
but it does not depend on ;41 and X;_,. This means that for the discrete map the (M +2)-
dimensional state vector
z; =col(x; X Xi—y ... Xi-m) (37
can be defined instead of the n(M + 1) = 2(M + 1)-dimensional vector
yi =col(X; Xioy ... Xi—m) =col(x; % Xioy Xt ... Xi—m Xi-m) (38)

given by equation (14). This trick makes the size of the resulted discrete map much smaller

241 = Dizi, 39
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where the (M + 2)-dimensional coefficient matrix reads

P“ P12 0 0 0 (1,'R|1 ﬂ,‘Rll 0 0 00
Pz] P22 0 0 0 a;Rgl ﬂiRZI 0 0 00
1 0 0 O 0 0 0 0 0 00
0 o0 1 0 0 0 0 0 0 00
o o 0 o0 ... 0 O 0 0O . 000
o 0 0 0 ... 0 0 0 0 ... 100
o o 0 0 ... 0 O 0 0 ... 010

Here, a; R, and B, R, are the (m; + 1)th and (m; 4 2)th elements in the first row and @; Ry
and B, Ry, are the (m; + 1)th and (m; + 2)th elements in the second row of matrix D;.

The transition matrix ® over the principal period 7 = kAf is determined now by cou-
pling equations (39) fori =0,1,...,k—1I:

® =D;_D;—,...D,Dy. 41

If the eigenvalues u;, i = 1,..., M + 2 of ® are in modulus less than one, then the sys-
tem is stable. Stability charts can be derived by evaluation of the transition matrix and the
corresponding critical eigenvalue for a grid of different spindle speeds and depths of cut.

Based on the above algorithm, a Matlab code is given in the Appendix for the stability
chart construction via the semidiscretization method.

The semidiscretization method can also be used to determine time history; if matrices D;
are known fori = 0, ..., k — 1, then the vibration signal can be computed by the recursive
formula (39) using the first elements of each z;. The initial values (actually, the approximate
initial function for the VDDE) are given by z, for this simulation via semidiscretization.

5. CHATTER FREQUENCIES

The chatter frequencies for unstable cutting processes are also determined by one of the
critical characteristic multipliers s, where || > |g;l,i =2, 3, ..., M + 2. The critical
characteristic multipliers are located in three possible ways (see Figure 4).

1. They are a complex pair (, = ji,) located on the unit circle (| f12| =1). This case
is topologically equivalent to the primary Hopf bifurcation of autonomous systems and
called a secondary Hopf or Neimark-Sacker bifurcation. The corresponding motion is
quasi-periodic.

2. u, = 1. The associated bifurcation is topologically equivalent to the saddle-node bifur-
cation of autonomous systems and is called a period-one bifurcation. The corresponding
motion is T-periodic.
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Figure 4. Critical characteristic multipliers: secondary Hopf (a), period-one (b), and period-two (c)
bifurcations.

3. u = —1. There is no topologically equivalent type of bifurcation for autonomous systems.
This case is called period two, period doubling, or flip bifurcation. The corresponding
motion is 2T -periodic.

At this point, it should be emphasized that different chatter types are distinguished ac-
cording to the principal period. For turning with varying spindle speed, the principal period
is the spindle speed modulation period as opposed to the case of milling with constant spindle
speed, where the principal period is the tooth passing period.

If ; = Im(In x,) denotes the polar angle of the critical characteristic multiplier with the
restriction 7, € [0, 2x), then the arising chatter frequencies are

. (£,+h2
f={——ll-;—7f-}, h=0,1,..., (42)

where the sign = refers to the case when the critical characteristic multiplier is a complex
pair, and the complex conjugate should also be considered. Of course, only the positive
values of these frequencies have physical meaning.

If 4, = 1 (the case of period-one bifurcation), then y; = Im(In(1)) = 0, and the
frequencies are multiples of the modulation frequency:

~ 2
=—, h=0,1,.... 43)
f T
If £, = —1 (the case of period-two bifurcation), then ¥, = Im(In(=1)) = =, and the
frequencies are
- h2
f=fi7_:-i, h=0,1,.... (44)

For turning with constant spindle speed, primary Hopf bifurcation is the only possible
route to lose stability. For milling (with constant spindle speed), secondary Hopf and period-
two (or flip) bifurcations can occur, but the period-one bifurcation is excluded (see Davies
et al., 2002; Insperger et al., 2003). For turning with varying spindle speed, all three cases
(the period-one, period-two, and secondary Hopf bifurcations) arise at different parts of the
stability boundary.
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Figure 5. Stability boundaries for turning with varying spindle speed (solid lines) and with constant
spindle speed (dashed lines). The parameters ¢ = 0.005, R4 = 0.02, and Rp = 0.4 are taken from
Pakdemirli and Ulsoy (1997).

The chatter frequencies are often compared to the modulation frequency and to its har-
monics. The modulation frequency and its harmonics are inversely proportional to the mod-
ulation period, and therefore linearly proportional to the dimensionless spindle speed:

fo= 2B 0y, (45)

Note that in the case of period-one bifurcation (1, = 1), the chatter frequencies are equal
to the modulation frequencies. In the case of period-two bifurcation (#, = —1), the lowest
frequency among the harmonics is half of the basic modulation frequency.

6. COMPARISON WITH PREVIOUS RESULTS

Two examples are chosen to be compared to the stability charts obtained by semidiscretiza-
tion. First, the stability chart obtained by Pakdemirli and Ulsoy (1997) is considered. The
parameters are ¢ = 0.005 and R4 = 0.02. Pakdemirli and Ulsoy (1997) used a fixed mod-
ulation period; the corresponding average modulation period ratio was Rp = 0.375. Since
the modulation amplitude ratio is small, they used a perturbation technique to derive stability
chart. They obtained a slight improvement in stability by using varying spindle speeds.

The stability chart derived by semidiscretization is presented in Figure 5. This result is
practically identical to that of Pakdemirli and Ulsoy (1997). Since the modulation period
ratio is quite small, the differences between the stability boundaries of turning with constant
and varying spindle speed are small. As can be seen, the improvement in stability slightly
increases for lower spindle speeds.
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Figure 6. Stability boundaries for turning with varying spindle speed (solid lines) and with constant
spindle speed (dashed lines). The parameters f, = 100 Hz, ¢ = 0.03, Ry = 0.25, and Rp = 0.4 are
taken from Jayaram et al. (2000).

The other example is the chart obtained by Jayaram et al. (2000) (see Figure 8 in their
paper). They assumed a 1DOF system with natural frequency f, = 100 Hz and damping
ratio ¢ = 0.03. The modulation parameters were R4 = 0.25 and Rp = 0.4. They used
quasi-periodic trial solutions for the VDDE, combined the Fourier expansion with Bessel
functions, and determined stability boundaries by harmonic balance.

The stability chart constructed by semidiscretization for these parameters is presented in
Figure 6. This chart differs substantially from the stability chart of Jayaram et al. (2000).
The explanation of this difference calls attention to a new phenomenon in the stability charts
of time-varying cutting. In conventional turning, there is a unique connection between the
spindle speed and critical depth of cut. For time-varying cutting, the critical depth of cut
is not unique, stable and unstable domains alternate along the depth of cut. Jayaram et al.
(2000) calculated some of the stability limit points correctly, but only one (usually, the min-
imal) critical depth of cut was determined for each spindle speed. Therefore, the continuous
connection of these points in their stability chart was optional and sometimes misleading.
Recently, having known the stability charts of high-speed milling with time-varying cutting
coefficients (Insperger and Stépén, 2000; Mann et al., 2003; Szalai and Stépan, 2003), the
appearance of the slant stability lobes is not surprising here either.

Note that both reference cases used extremely high modulation frequency (more than
double the spindle rotation frequency). These are hardly realizable on conventional industrial
turning lathes. In the next section, we investigate turning with more realistic modulation
parameters.

7. STABILITY CHARTS

Stability charts and the associated chatter frequencies were determined for modulation am-
plitude ratio R, = 0.1 and for modulation period ratios Rp = 2, 5, 10, and 20. The lobes



1848 T. INSPERGER and G. STEPAN

chatter

\/
2
=

%7
9 A
'm’ﬁf"”&
. . 1.

chatter

[¢] (]
0.2 0.4 0.6 0.8 1 1.2 0.2 0.4 0.6 0.8 1 1.2

Figure 7. Stability charts and chatter frequencies for turning with varying spindle speeds (solid lines)
with modulation parameters R, = 0.1 and Rp = 2 (a), Rp = 5 (b), Rp = 10 (c), Rp = 20 (d), and
stability boundaries for turning without speed modulation (dashed lines).

and the frequencies are shown in Figure 7. Note that dimensionless spindle speed and dimen-
sionless depth of cut are used as technological parameters. The damping was set to ¢ = 0.02
for all the charts.

During the computations, the approximation parameter was k = 40Rp. With Ry =
0.1, this resulted in M = 44. For example, if Rp = 10, then k& = 400 pieces of 46 x
46 dimensional matrices should be multiplied to obtain the transition matrix ® according
to equation (41). For these approximation parameters, the difference between the exactly
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Figure 8. Stability charts and chatter frequencies for R, = 0.1 and Rp = 10.

known stability lobes of conventional (constant speed) turning and those obtained by the
semidiscretization method with R4 = 0 was less than 1% in the presented parameter domain
(€ =0.2-1.2 and W = 0-0.8).

First, we check the high-speed domain. As can be seen, the most significant improve-
ment in stability was achieved by modulation period ratio Rp = 2. As this ratio increases,
the system can be considered quasi-autonomous, and the charts converge to those of con-
ventional turning with constant spindle speed. Since the modulation period ratio Rp = 2 is
hardly achievable on turning lathes, especially for the high-speed regime, the stability im-
provement shown by chart (a) in Figure 7 is not likely to be used in practice in the near
future.

For low spindle speed domain, a slight improvement in stability can be observed also for
large Rp values. A zoomed stability chart for R4 = 0.1 and Rp = 10 is shown in Figure 8.
Point A in Figure 8 is associated with dimensionless spindle speed o = 0.22 and dimen-
sionless depth of cut w = 0.07. The simulated time histories obtained via semidiscretization
for turning with constant and varying (R4 = 0.1, Rp = 10) spindle speeds are shown in Fig-
ure 9 for the parameters determined by point A. It can be seen that without speed modulation,
the turning process is unstable (chatter arise), while spindle speed modulation stabilizes the
process.

The arising frequencies are also plotted above the charts. Since the speed modulation
is periodic, a whole set of chatter frequencies occurs, as described by equation (42). It can
be observed in Figure 7 that the larger the modulation period Rp is, the lower the chatter
frequencies are. This is due to the fact that the chatter frequencies are in connection with the
modulation period according to equation (42). The modulation frequency and its harmonics
given by equation (45) are presented by dashed lines in the frequency plots. At the points,
where the chatter frequencies (thick curves) intersect these dashed lines, the transition matrix
® has an eigenvalue equal to 1, i.e. period-one bifurcation occurs. At the points where the
chatter frequency curves intersect each other in the middle between two neighboring dashed
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Figure 9. Time histories for cutting at point A in Figure 8 with constant spindle speed R, = 0 (a) and
with varying spindle speed R, = 0.1 (b).

lines, the transition matrix @ has an eigenvalue equal to —1, i.e. period-two bifurcation
occurs. Note that these bifurcations are not the same as those of conventional (constant
speed) turning and milling processes. The difference is that for turning with spindle speed
variation, the bifurcations are related to the spindle speed modulation period T, while for
conventional turning or milling, they are related to the spindle speed period or to the tooth
pass period, respectively. For turning with spindle speed variation, period-one and period-
two motions mean that the tool vibration is 7- and 2T—penod1c respectively.

Points B, C, and D in Figure 8 are related to period-one, period-two and secondary Hopf
bifurcations, respectively. At point B, Qg = 0.2592, w = 0.1249; at point C, Q= 0.2653,
w = 0.0977; at point D, (g = 0.274, v = 0.0819.

~ The continuous and 1/7-sampled time histories, the Poincaré sections, and the power
spectra are shown in Figure 10. In the power spectra plots, dashed lines denote the mod-
ulation frequency and its harmonics, as given in equation (45). The period-one and the
period-two cases can be distinguished by the 1/ T-sampled black dots. For cutting at B, the
motion is T-periodic, and it is presented as a point in the Poincaré section. For cutting at C,
the 1/T-sampled signal changes sign alternately for each sample (see the black dots). This
corresponds to the period-two motion associated with the characteristic multiplier 4, = —1.
For this case, the motion is presented as two points in the Poincaré section. For cutting at D,
the motion is quasi-periodic associated with a secondary Hopf bifurcation; consequently, the
points of the Poincaré section form a circle.

8. CONCLUSIONS

We have investigated a 1DOF model of turning with varying spindle. The corresponding
VDDE was analyzed by the semidiscretization method. The method was introduced for a
general VDDE and it was applied for the turning process. The code for the stability chart
construction is given in the Appendix.
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Figure 10. Continuous and 1 /T-sampled time histories (a), Poincaré section (b), zoomed time histories

(c), and power spectra for cutting at points B, C, and D in Figure 7.
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We compared the turning process with constant and with varying spindle speeds. The
technological parameters were non-dimensionalized (normalized). Different modulation pe-
riods were analyzed, while the modulation amplitude was set to the reasonable value of
10%. It was found that for certain cases a higher depth of cut values and, consequently,
higher material removal rates are possible if the spindle speed is modulated. The stabiliza-
tion effect was found to be stronger for small modulation periods. Comparing the high- and
low-speed domains, it was found that spindle speed variation with a reasonable modulation
period (Rp > 10) results in no essential changes in the high-speed domain, but it definitely
results in a significant improvement in stability for low speeds.

The most significant improvement in stability was achieved by modulation period ratio
Rp = 2. For turning lathes, this ratio is practically not realizable with the available technical
solutions at the moment, especially for the high-speed regime.

Analysis of the chatter frequencies and the corresponding characteristic multipliers showed
that in addition to secondary Hopf and period-two bifurcations (which are typical for milling
process), period-one bifurcation is also a possible way of losing stability in the case of turn-
ing with varying spindle speed. Continuous and sampled chatter signals, Poincaré sections,
and power spectra were determined numerically for the three cases: the period-one, the
period-two, and the secondary Hopf bifurcations.

APPENDIX A: MATLAB CODE FOR THE DELAYED MATHIEU
EQUATION

clear

% parameters

R_P=10; % modulation period ratio

R_A=0.1; % modulation amplitude ratio
zeta=0.02; % damping

step_0=200; % number of steps for spindle speed 0
step_w=150; % number of steps for depth of cut w
o_start=0.2; % starting value for 9)

o_end=1.2; % final value for )
o_step=(o_end-o_start)/step_o;

w_start=0; % starting value for w

w_end=0.8; % final value for w

w_step=(w_end-w_start)/step_w;
% computational parameters

k=40*R_P; % approximation parameter

syms t

fori=1:k
c_i = k/(2*pi)*quadl(’cos(t)’,(i-1)*2*pi/k,(i)*2*pi/k); % integration of ¢;
m(i)=floor(k/R_P*(1-R_A*c_i)+1/2); % determination of m;
beta(i)=k*(1-R_A*c_i)/R_P +1/2 -m(i); % determination of a;
alpha(i)=m(i)+1/2-k*(1-R_A*c_i)/R_P; % determination of f;

end
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M=max(m) % determination of M
A=zeros(2,2); A(1,2)=1; A(2,2)=-2*zeta;

B=zeros(2,2);

D=zeros(M+2,M+2);

d=ones(M+1,1); d(1:2)=[0 0];

D=D+diag(d,-1); D(3,1)=1;

% start of computation

i=0;
for y=1:step_w+1 % loop for w
w=w_start+(y-1)*w_step;
for x=1:step_o+1 % loop for Q
o=o_start+(x-1)*o_step;
T=2%*pi*R_P/o; % T
dt=T/k; % AF
AR, D=-(1+w); % matrix A
B(2,1)=w; % matrix B
P=expm(A*dt); % matrix P
R=(expm(A*dt)-eye(2))*inv(A)*B; % matrix R
D(1:2,1:2) =P, % matrix D;
Fi = eye(M+2,M+2);
fori=1:k
D(1:2,m(i)+1) = alpha(i)*R(1:2,1:1); % matrix D;
D(1:2,m(1)+2) = beta(i)*R(1:2,1:1); % matrix D;
Fi = D*Fi; % Floquet transition matrix @
D(1:2,m(1)+1) =[00]’; % matrix D;
D(1:2,m(1)+2) =[00]’; % matrix D;
end
ss(X,y)=0; % matrix of spindle speeds
de(x,y)=w; % matrix of depth of cuts
ei(x,y)=max(abs(eig(Fi))); % matrix of eigenvalues
end
step_w+1-y % counter
end
figure

contour(ss,dc,ei,[1, 1],k’)
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