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Machine Tool Chatter and Surface
Location Error in Milling
Processes
A two degree of freedom model of the milling process is investigated. The governing
equation of motion is decomposed into two parts: an ordinary differential equation de-
scribing the periodic chatter-free motion of the tool and a delay-differential equation
describing chatter. The stability chart is derived by using the semi-discretization method
for the delay-differential equation corresponding to the chatter motion. The periodic
chatter-free motion of the tool and the associated surface location error (SLE) are ob-
tained by a conventional solution technique of ordinary differential equations. It is shown
that the SLE is large at the spindle speeds where the ratio of the dominant frequency of
the tool and the tooth passing frequency is an integer. This phenomenon is explained by
the large amplitude of the periodic chatter-free motion of the tool at these resonant
spindle speeds. It is shown that large stable depths of cut with a small SLE can still be
attained close to the resonant spindle speeds by using the SLE diagrams associated with
stability charts. The results are confirmed experimentally on a high-speed milling
center. �DOI: 10.1115/1.2280634�
Introduction
The rapid development of machining technology during the

ast decade and the commercialization of reliable high-speed ma-
hining systems have driven the need for thorough dynamical in-
estigations of high-speed cutting processes. One important phe-
omenon that limits the productivity of machining is the
evelopment of self-excited vibrations, also known as machine
ool chatter. The work of Tlustý et al. �1� and Tobias �2� led to the
evelopment of the “stability lobe diagram” that plots the bound-
ry between stable and unstable cuts as a function of spindle
peed and depth of cut.

The accurate modeling of the regenerative effect in cutting pro-
esses leads to a delay-differential equation �DDE� with a corre-
ponding infinite dimensional state space �3�. In milling processes,
arametric excitation also arises due to the repeated entering and
xiting teeth of the rotating tool, therefore, the governing equation
or milling is a DDE with time periodic coefficients. Closed form
tability conditions cannot be given for the general milling case.
sually, numerical simulations �4–9� and, in the last decade, dif-

erent analytical techniques �10–19� are used to derive stability
harts.
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Vibrations arise due to the flexible parts in the system, such as
the tool, spindle, workpiece, etc. For some simple cases, when a
well defined first mode is dominant, like milling a thin walled
workpiece with a stiff mill, the assumption of a single degree of
freedom �DOF� model is satisfactory. In this case, the stability
chart consists of an infinite series of stability lobes that are asso-
ciated with either secondary Hopf or period doubling �flip� bifur-
cations. The analysis of the vibration frequencies �20� and the
chatter signal �21� resulted in a thorough understanding of the 1
DOF case.

Usually, there is no single well defined dominant mode of the
tool-workpiece system, and the process must be modeled as a
multi-DOF one �see, e.g, Refs. �6,22��. One example is when the
tool is the most flexible part, and it is modeled as a cantilever
beam �23�. In this case, a 2 DOF model is considered with the
symmetric parameters in the x and y directions and diagonal
modal matrices arise in the equation of motion.

If further modes also play an important role in the system’s
dynamics, then the stability charts are even more complicated. For
these cases, the estimation of the modal parameters requires a
sophisticated modal analysis of the combined structure—the tool,
the tool holder, and the workpiece �24,25�.

The positional accuracy of the milled surface is influenced by
the process dynamics. Due to the relative vibrations between the
tool and the workpiece, the location of finished surface differs

from the desired one left by a perfectly rigid tool on a perfectly
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igid workpiece. In the literature, the difference between the de-
ired surface and the actual surface due to the tool and the work-
iece compliances is called the surface location error �SLE�
26–32�. Note that other error sources, such as geometric errors in
he machine axis or thermal errors, also play an important role in
he accuracy of the machining process but are separate from the
otion of surface location error.

Having a small SLE is especially important in finishing opera-
ions with small radial immersion, since it determines the accu-
acy of the workpiece’s final dimension. Usually, small depths of
ut are used to avoid undesired vibrations and inaccuracies of the
nal product. Therefore, finishing operations usually takes a con-
iderable part of the duration of the whole machining process. An
ncrease of material removal rate in finishing operations would
ignificantly decrease the machining time. This needs a thorough
ptimization of the technological parameters with respect to ma-
erial removal rate �axial depth of cut� and the SLE.

SLE diagrams accompanied by stability charts can effectively
elp in the design of the machining process. As a first investiga-
ion in this direction, simultaneous stability and SLE prediction
ere performed using the time finite element method by Mann

t al. �31,32�.
In this paper, a 2 DOF model of the milling process is investi-

ated. The governing equation of motion is decomposed into two
arts: an ordinary differential equation describing the periodic
hatter-free motion of the tool and a delay-differential equation
escribing chatter. Stability charts are derived by using the semi-
iscretization method �33,34� for the delay-differential equation
orresponding to the chatter motion. The periodic chatter-free mo-
ion of the tool and the associated SLE are obtained by a conven-
ional solution technique of ordinary differential equations. It is
hown that the SLE is large at the spindle speeds where the ratio
f the dominant frequency of the tool and the tooth passing fre-
uency is integer. This phenomenon is explained by the large
mplitude of the periodic chatter-free motion of the tool at these
esonant spindle speeds. It is shown that large stable depths of cut
ith a small SLE can still be attained close to the resonant spindle

peeds by using SLE diagrams accompanied by stability charts.
he results are confirmed experimentally on a high-speed milling
enter.

Mechanical Model
The standard 2 DOF mechanical model of end milling is shown

n Fig. 1. The tool is assumed to be flexible relative to the rigid
orkpiece. The 2 DOF oscillator is excited by the cutting force
�t�. The governing equation has the form

Mẍ�t� + Cẋ�t� + Kx�t� = F�t� �1�

Fig. 1 Schematic mechanical model of the milling process
here
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x�t� = �x�t�
y�t� �, F�t� = �Fx�t�

Fy�t�
�

and M, C, and K are the modal mass, damping, and stiffness
matrices, respectively. If the tool is modeled as a symmetric beam,
its modal matrices are diagonal with the same diagonal values. In
practice, however, the tool is not perfectly symmetric due to the
helical flutes, and the modal matrices are not diagonal. In this
case, an accurate modeling results in time periodic modal matrices
due to the rotation of the flexible tool. However, the tool can
usually be considered almost symmetric and the cross terms in the
modal matrices can be neglected.

The tangential and the normal forces acting on jth tooth are

Fjt�t� = g�� j�t��Ktaph�t� �2�

Fjn�t� = g�� j�t��Knaph�t� �3�

where Kt and Kn are the linear tangential and the linear normal
cutting coefficients, respectively, ap is the axial depth of cut, and
h�t� is the instantaneous chip thickness. For a tool with N evenly
spaced teeth, the angular position of the jth cutting edge is

� j�t� =
2��

60
t +

2��j − 1�
N

�4�

where � is the spindle speed in revolutions per minute �rpm�. The
function g�� j�t�� is a screen function, it is equal to 1 or 0 if the jth
tooth is cutting or not

g�� j�t�� = �1 if �e � � j�t� � �a

0 otherwise
�5�

where �e and �a are the angles where the jth tooth enters and exits
the cut, respectively. For down-milling operation, �a=�, for up-
milling, �e=0 �see Fig. 2�. Note that the entry and exit angles may
vary due to heavy vibrations of the tool. This effect is neglected
here, and the angles �e and �a are approximated by constant val-
ues as it is usually done in the literature.

The x and y components of the cutting force are given as �see
Fig. 3�

Fig. 2 Schematic of down-milling „a… and up-milling „b…
Fig. 3 Cutting force model
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Fjx�t� = Fjt�t�cos � j�t� + Fjn�t�sin � j�t� �6�

Fjy�t� = − Fjt�t�sin � j�t� + Fjn�t�cos � j�t� �7�

Let the feed per tooth be denoted by fz=vf�, where vf is the
eed speed and �=60/ �N�� is the tooth passing period. If fz�R,
here R is the radius of the tool, then the instantaneous chip

hickness can be expressed according to Fig. 4 as

h�t� � A sin � j�t� + B cos � j�t� = �fz + x�t − �� − x�t��sin � j�t�

+ �y�t − �� − y�t��cos � j�t� �8�
n Fig. 4, the ideal tooth pass is associated with the motion of the
eeth of an ideally rigid tool, while the actual tooth pass is asso-
iated with the motion of the teeth of the real flexible tool.

The resultant cutting forces are the sum of the forces acting on
he teeth

Fx�t� = 	
j=1

N

Fjx�t� = 	
j=1

N

g�� j�t���Kt cos � j�t� + Kn sin � j�t��aph�t�

�9�

Fy�t� = 	
j=1

N

Fjy�t� = 	
j=1

N

g�� j�t���− Kt sin � j�t� + Kn cos � j�t��aph�t�

�10�
sing Eqs. �8�–�10�, the equation of motion �1� can be written in

he form

Mẍ�t� + Cẋ�t� + Kx�t� = apH�t��x�t − �� − x�t�� + G�t� �11�
here the elements of the so-called specific cutting force variation
atrix H�t� are

Hxx�t� = 	
j=1

N

g�� j�t���Kt cos � j�t� + Kn sin � j�t��sin � j�t� �12�

Hxy�t� = 	
j=1

N

g�� j�t���Kt cos � j�t� + Kn sin � j�t��cos � j�t�

�13�

Hyx�t� = 	
j=1

N

g�� j�t���− Kt sin � j�t� + Kn cos � j�t��sin � j�t�

�14�

Hyy�t� = 	
j=1

N

g�� j�t���− Kt sin � j�t� + Kn cos � j�t��cos � j�t�

�15�
s it was also shown by Altintas and Budak �10�, and the elements

Fig. 4 Chip thickness model
f the stationary cutting force vector G�t� are

ournal of Manufacturing Science and Engineering
Gx�t� = apfzHxx�t� �16�

Gy�t� = apfzHyx�t� �17�

Note, that H�t� and G�t� are � periodic.

3 Forced and Self-Excited Motions of the Tool
The motion of the workpiece is decomposed in the form

x�t� = xp�t� + ��t� = �xp�t�
yp�t� � + � ��t�

��t� � �18�

where xp�t+��=xp�t� is the forced periodic chatter free motion of
the tool, and ��t� is a perturbation corresponding to the self-
excited vibrations �chatter� of the tool. Substitution of Eq. �18�
into Eq. �11� results in

M�̈�t� + C�̇�t� + K��t� + Mẍp�t� + Cẋp�t� + Kxp�t�

= apH�t����t − �� − ��t�� + G�t� �19�

For the ideal case, when no chatter arises, i.e., ��t�
0, and the
motion is described by x�t�=xp�t�, the corresponding equation of
motion is the ordinary differential equation

Mẍp�t� + Cẋp�t� + Kxp�t� = G�t� �20�
The assumption in Eq. �18� is appropriate, if Eq. �20� has a
�-periodic solution. Since the excitation G�t� is � periodic, the
stationary �particular� solution of Eq. �20� is also � periodic. This
validates assumption �18�.

For linear stability analysis, the variational system of Eq. �11� is
determined around the periodic chatter-free motion xp�t�. Equa-
tions �19� and �20� imply the equation

M�̈�t� + C�̇�t� + K��t� = apH�t����t − �� − ��t�� �21�

If the cutting process is stable, the component ��t� correspond-
ing to the chatter signal decays, and the tool moves according to
the periodic chatter-free motion described by xp�t�. If the process
is unstable, ��t� increases exponentially, and the resultant motion
x�t�=xp�t�+��t� will also obtain exponential growth. For unstable
machining, the nonlinear phenomena also play an important role
in the system’s dynamics. Due to its large vibrations, the tool
leaves the cut, and the cutting force instantly drops to zero. This
nonlinearity actually stops the exponential amplitude growth so
that, in practice, the tool vibrations during unstable machining still
have a finite amplitude �35�. From manufacturing point of view,
these large amplitude motions of the tool are not desired since
they affect both the surface quality �36,37� and the SLE �26–32�.
The aim is to obtain a chatter-free cutting process corresponding
to the motion xp�t� with the smallest possible vibration amplitude
and SLE. Therefore, in the present study, the linear Eqs. �20� and
�21� and the corresponding motions, xp�t� and ��t� are investi-
gated, and nonlinear phenomena are not considered.

The periodic component xp�t� is determined by the stationary
solution of the forced linear ordinary differential equation �20�.
This solution can be constructed by Fourier approximation of the
forcing vector G�t� �see, e.g., Refs. �38–40�� and by using the
standard harmonic balance method.

The linear stability of the milling process is described by Eq.
�21�. The stability analysis of this time periodic DDE can be de-
termined by the semi-discretization method �33,34�. The point of
the method is that the delayed terms and the time periodic coef-
ficients of the governing time periodic DDE are discretized, while
the actual time domain terms and their derivatives are left in the
original form. This approximation provides a series of ordinary
differential equations that can be solved in each semi-
discretization step. Solution of these equations with matching ini-
tial conditions results in a finite dimensional Floquet transition

matrix. If the eigenvalues of this matrix are in modulo less than 1,

NOVEMBER 2006, Vol. 128 / 915
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hen the process is stable, otherwise, it is unstable and chatter
rises. In milling processes, two types of instabilities can be
bserved �20�

1. The eigenvalue is complex, and its magnitude is larger
than 1. This case corresponds to secondary Hopf bifurca-
tion and quasi-periodic chatter arises.

2. The eigenvalue is real, and it is smaller than −1. This
case corresponds to period doubling or flip bifurcation,
and periodic chatter arises.

Stability charts can be created by computing the critical eigen-
alues for a set of fixed spindle speeds and depths of cut. The
etailed method with the computation code for constructing sta-
ility charts for a 2 DOF milling process can be found in Ref.
34�.

Surface Location Error
SLE is the positional difference between the desired surface left

y a perfectly rigid tool and the actual surface left by a compliant
ool as shown in Fig. 5.

For the ideal case, when the tool is rigid and no vibrations arise,
he path of the jth tooth is described by the combination of the
ool rotation and the feed motion vft

xid,j�t� = � xid,j�t�
yid, j�t� � = �− R sin� �j − 1�2�

N
+

2��

60
t�

− R cos� �j − 1�2�

N
+

2��

60
t� � + 
vft

0
�

�22�

here R is the radius of the tool. Due to the flexibility of the tool,
he actual paths of the teeth are affected by the vibrations of the
ool. If the cutting process is stable �i.e., ��t�=0�, then the actual
ath of the jth tooth is

x j�t� = �xj�t�
yj�t�

� = xid,j�t� + xp�t� = �xid,j�t�
yid,j�t�

� + �xp�t�
yp�t� � �23�

SLE is the signed difference between the desired surface and
he actual surface

SLE = q�max
t

�yid,j�t�� − max
t

�yj�t��� �24�

here, for down-milling operations, q=1, for up-milling, q=−1
see Fig. 6�. If the tool cuts deeper than commanded, then the SLE
s negative, if the tool cuts shallower than commanded, then the
LE is positive. Negative SLE might sound strange since one
ould think that the deflections of the tool points always away

rom the workpiece. However, the tool’s deflection should be con-
idered in time, and it can be seen that for some spindle speed
omains, heavy vibrations of the tool may result in a negative
LE. In the case of a positive SLE, the accuracy of the workpiece
an be improved by additional material removal operations, while

ig. 5 Surface location error defined by the desired and the
ctual milled surfaces
n the case of a negative SLE, the error cannot be corrected this

16 / Vol. 128, NOVEMBER 2006
way. In this sense, a negative SLE is more unfavorable than a
positive SLE.

An example for the actual and the desired tooth pass and the
associated SLE is shown in Fig. 6. It can be seen that the periodic
chatter-free motion of the tool superimposes on the ideal tooth
pass that causes error in the surface location.

Note, that expression �24� is valid only for stable cutting pro-
cesses. For an unstable process, the chatter motion ��t� should
also be incorporated. However, since unstable cutting process is
not a desired way of manufacturing, here, only the stable machin-
ing case is investigated.

5 Stability Chart and SLE Diagrams
Theoretical and experimental stability charts and surface loca-

tion errors for 10% immersion down-milling can be seen in Fig. 7.
Theoretical stability chart was determined using the semi-
discretization technique according to Ref. �34�. The experimental
chart was obtained by cutting tests conducted at a series of spindle
speeds and cutting depths. Tool deflections were measured during
cutting in the x and y directions simultaneously by a couple of
laser optical displacement sensors mounted on the spindle hous-
ing. Stability of the cutting tests was assessed based on the re-
corded tool deflections, sound emitted during cutting, and rough-
ness of the machined surface. The tests were performed on a high
speed milling center using an 8 mm diameter end mill with a
single cutting edge �N=1�. Originally, the cutter had two teeth but
one tooth was ground off in order to avoid disturbances due to the
runout. The feed per tooth was fz=0.16 mm. The workpiece was a
square block made of AlMgSi0.5 aluminum alloy, for which the
cutting force coefficients were determined mechanistically �41�:
Kt=644	106 N/m2, Kn=237	106 N/m2. During the experi-
ments, minimal amount of coolant was used.

The modal parameters were determined by standard impact test
procedure �42�. The modal matrices are

M = 
0.0199 0

0 0.0201
�kg

C = 
1.603 0 �Ns/m

Fig. 6 Tooth path for 10% immersion down-milling „a… and
10% immersion up-milling „b…. Dotted lines denote the desired
tooth pass, continuous lines denote the actual tooth pass.
Thick lines denote contact of the tool and the workpiece, thin
lines denote free oscillation of the tool.
0 1.557

Transactions of the ASME
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K = 
409000 0

0 413000
�N/m

ore details on the experiments and on the identification of the
ystem parameters can be found in Refs. �41,42�.

In spite of some small quantitative discrepancies, experimental
nd theoretical charts agree well especially for spindle speeds 12–
6 krpm. There might be several possible reasons for the small
ifferences. At small depths of cut, any contact between the tool
nd the workpiece may cause differences. The entry and exit
ngles may vary due to the tool vibrations and they are not con-
tant as it is assumed in Eq. �5�. The traditional chip thickness
odel in Eq. �8� looses accuracy for low radial immersion �see,

.g., Refs. �43,44��. The values of the cutting force coefficients
ay also vary for different spindle speeds �the values used here
ere determined at constant spindle speed 4000 rpm�. Experi-
ents have also showed that the dominant frequency of the tool

ecreases as spindle speed is increased �see Ref. �42��. However,
n spite of the approximations in the model, it should be empha-
ized that the experimental and theoretical results agree well in the
resented parameter domains.

Introduce the frequency ratio 
= f t / f tpe, where f t� fx� fy
722 Hz is the natural frequency of the tool and f tpe=N� /60 is

he tooth pass excitation frequency. Note that frequency ratio is
he inverse of the normalized spindle speed that is usually used in
he machine tool vibration literature. If 
 is close to an integer,
hen the forced system �20� is close to resonance, i.e. the first or

Fig. 7 „a… Theoretical and experimental stability chart for 10%
boundary, circles denote stable cutting, crosses denote quas
„c… Theoretical and experimental surface location errors for a
retical SLE for unstable cutting, continuous lines denote the t
tal SLE.
he higher harmonics of the cutting force variation excite the first

ournal of Manufacturing Science and Engineering
mode of the tool. The dashed vertical lines at 10.8, 14.4, and
21.7 krpm in Fig. 7 denote these resonant spindle speeds corre-
sponding to 
=2, 3, and 4, respectively. As it can be seen, large
depth of cut values can be achieved without chatter around these
resonant spindle speeds.

Theoretical surface location error was determined using Eqs.
�22�–�24� for two depths of cut: ap=0.4 and 0.8 mm. These depth
of cut values are also shown in the stability chart in panel �a� of
Fig. 7: the parameters corresponding to stable and unstable ma-
chining are denoted by continuous and dotted horizontal lines,
respectively. Experimental SLE was computed from the measured
tool deflection data. This cannot be considered as a pure experi-
mental result, but this gives a good estimation of the real experi-
mental SLE as it was shown in Refs. �31,32�.

In panels �b� and �c� of Fig. 7, the theoretically predicted SLE
correlates well with the experimental one. As it can be seen, the
SLE is especially large at the resonant spindle speeds, where 
 is
close to integer. This phenomenon can be explained by the peri-
odic component xp of the tool motion. If 
 is close to integer, then
the forced system �20� is close to resonance, and the amplitude of
the periodic component xp is large. This affects the position of
cutting edges during cutting, and, consequently, influences the
SLE.

Figure 8 shows theoretical trajectory of the tool at spindle
speeds 14–21 krpm with axial depth of cut ap=0.4 mm. This se-
ries of plots can be associated with panel �b� in Fig. 7. It can be

mersion down-milling. Thick lines denote theoretical stability
riodic chatter, diamonds denote period doubling chatter. „b…,

0.4 mm „b… and ap=0.8 mm „c…. Dotted lines denote the theo-
retical SLE for stable cutting, crosses denote the experimen-
im
i-pe
p=
heo
seen that the vibration amplitudes are large at 14 and 21 krpm that

NOVEMBER 2006, Vol. 128 / 917
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re close to the resonant spindle speeds with 
=3 and 2, respec-
ively, while the vibration amplitudes are smaller at the spindle
peeds between 14 and 21 krpm. The origin of the plane �xp ,yp�
orresponds to zero SLE produced by the ideally rigid tool, while
he real surface is modulated according to the path of the compli-
nt tool. Consequently, SLE is approximately equal to the maxi-
al deflection of the tool in the y direction during cutting �see

ase 14 krpm in Fig. 8�. This series of plots gives a clear expla-
ation for a large SLE close to the resonant spindle speeds.

Another interesting feature of the tool trajectories are the num-
er of cycles in the plane �x ,y� completed by the tool during a
ooth pass. At spindle speed 14 krpm, f tpe=233.3 Hz, the fre-
uency ratio is 
= f t / f tpe=3.09�3, and the tool oscillates about
hree cycles during a tooth pass. For spindle speeds 15–20 krpm,

decreases from 2.89 to 2.17, and one of the cycles gets smaller
nd smaller and slowly disappears. At 21 krpm, 
=2.07 and the
ool clearly makes two cycles during a tooth pass. This shows that
he frequency ratio approximately characterizes the number of
ycles completed by the tool in the plane �x ,y� during a tooth
ass. For example, at 17 krpm, 
=2.55, and the tool makes two
arge cycles of about the same amplitude corresponding to free
scillation of the tool �thin line� and a smaller cycle corresponding
o contact between the tool and the workpiece �thick line�, so the
umber of cycles can be said to be about 2 1/2.

Figure 9 shows the theoretical and the experimental tool trajec-
ory corresponding to the resonant spindle speeds 14 and 21 krpm.
he noise-free experimental trajectories were obtained by a non-

inear filtering technique suitable for periodically forced processes
21�. The experimental plots clearly show that at spindle speeds
4 and 21 krpm, the tool completes two and three cycles, indeed.

Selection of Optimal Spindle Speed
During the selection of spindle speeds, both the stability chart

nd the SLE diagram should be considered. Optimal spindle
peeds allow large depth of cut with stable machining and result in
small SLE at the same time. Since the SLE is large at the lines
=integer, spindle speed should be chosen carefully either to the

eft or to the right to these lines but still within the stable domain.
ote that the stable domains to the left to this resonant lines are
ider than the ones to the right. For example, consider the case

Fig. 8 Theoretical periodic chatter-free tool trajectories for 10
speeds. Thick lines denote contact of the tool and the workp
�2 and ap=0.8 mm in Fig. 7. In this case, the stable spindle

18 / Vol. 128, NOVEMBER 2006
speeds are between 18.1 and 23.0 krpm and the resonant spindle
speed is 21.7 krpm. The width of stable spindle speed range to the
left to the line 
=2 is 21.7−18.1=3.6 krpm, while to the right, it
is 23.0−21.7=1.3 krpm. The wider the suitable parameter range,
the more robust the system against disturbances. In the given case,
the optimal spindle speed is suggested to be chosen in the domain
18.1–21.7 krpm.

In panels �b� and �c� in Fig. 7, gray color denotes the optimal

mmersion down-milling with ap=0.4 mm and different spindle
, thin lines denote free oscillation of the tool.

Fig. 9 Theoretical and experimental tool trajectories for 10%
immersion down-milling with ap=0.4 mm. Thick lines denote
contact of the tool and the workpiece, thin lines denote free
% i
iece
oscillation of the tool.

Transactions of the ASME



s
s
w

t
l
t
a
n
c
l
r
s

s
c
w
s
1
�
w
o

d
t
=
l
i
t
r
t
s
s
b
w
l
l
s
i
fi
l
e
t
b
F

F
d
l

J

pindle speed domains that result in a SLE less than 0.05 mm with
table machining. It can be seen that the optimal domains are
ider to the left to the resonant lines than the ones to the right.
Another aspect in the selection of spindle speed is the sign of

he resulted SLE. As it was mentioned earlier, a positive SLE is
ess unfavorable than a negative SLE, since in the case of a posi-
ive SLE, the accuracy of the workpiece can be improved by
dditional material removal operations, while in the case of a
egative SLE, the error cannot be corrected this way. In Fig. 7, it
an be seen that the spindle speeds to the right to the resonant
ines may result in a negative SLE, while the domains to the left
esult in a positive SLE. This point also support the choice of
pindle speeds to the left to the resonant lines.

A general structural feature of milling stability charts is that
table areas are usually wider at higher resonant spindle speeds. It
an also be seen in Fig. 7 that stable spindle speed regions are
ider for smaller 
. For example, the width of stable spindle

peed domains at ap=0.8 mm are 11.2−9.8=1.4 krpm at 
�4,
5.0−12.7=2.3 krpm at 
�3, and 23.0−18.1=4.9 krpm at 

2. This shows that it is easier to find an optimal spindle speed
ith a small SLE in the high-speed domain than in the low-speed
ne.

Figure 10 shows the stability chart and the corresponding SLE
iagram for spindle speeds close to the natural frequency of the
ool and above. The spindle speeds associated with 
=1 and 

1/2 �43.3 and 86.6 krpm, respectively� are denoted by dashed

ines and grey color denotes the optimal spindle speeds that result
n a SLE less than 0.05 mm. Note that the stability lobe between
he lines 
=1 and 
=1/2 is the first Hopf lobe, and the lobe to the
ight to the line 
=1/2 is the first period doubling �flip� lobe, i.e.,
here are no more additional stability boundaries for spindle
peeds larger than 110 krpm. The location of the optimal spindle
peeds around the line 
=1 is similar to those of at 
=2, 3, and 4,
ut the regions are wider: the one to the left to the line 
=1 is of
idth 39.4−30.3=9.1 krpm. If the system is operated close to the

ine 
=1/2, then two optimal domains are obtained. The one be-
ow the line 
=1/2 is of width 86.8−80.9=5.9 krpm, the other
tarts at about 94 krpm and goes theoretically to infinity. This
mplies that operating the system at higher speeds than twice the
rst resonant spindle speed results in both stable machining with a

arge depth of cut and a small SLE. Note, however, that at these
xtremely high spindle speeds, the higher modes of the machine-
ool-workpiece structure that were neglected in this approach may
ecome important and may destroy this clear structure shown in

ig. 10 „a… Theoretical stability chart for 10% immersion
own-milling in the high-speed domain. „b… Theoretical surface

ocation error for ap=0.8 mm.
ig. 10.
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7 Conclusions
Stability, tool motion, and surface location error were investi-

gated for a 2 DOF milling process. A mechanical model including
both the regenerative and the tooth pass excitation effect was used
to derive the equation of motion. The vibration of the tool was
decomposed into a periodic chatter-free motion and the chatter
motion. The periodic chatter-free motion is described by an ordi-
nary differential equation, while the chatter motion is described by
a time periodic delay-differential equation. For unstable machin-
ing, the unstable chatter motion is superimposed on the chatter-
free periodic motion. Stability diagrams were obtained by using
the numerical semi-discretization method for the DDE of chatter.
The periodic chatter-free motion corresponding to stable machin-
ing was determined by solving the governing ordinary differential
equation with excitation. By considering the tool rotation and the
feed motion, the position of the cutting edges and, consequently,
the location of the resulted surface on the workpiece can be com-
puted. The surface location error �the difference between the com-
manded surface and the machined surface� was determined and
accompanied by the stability chart. It was pointed out that the sign
of the SLE might also be important, since a positive SLE can be
corrected by additional operations, while a negative SLE cannot.

The ratio of the natural frequency of the tool and the tooth pass
excitation frequency �
= f t / f tpe� was used to characterize different
spindle speed cases. It was shown that a SLE is relatively large at
the resonant spindle speeds where 
 is integer due to the reso-
nance between the cutting force variation and the tool. It was also
shown that frequency ratio 
 characterizes the number of cycles
completed by the tool during a tooth pass. The theoretical results
were supported by experimental tests.

Two main observations help the selection of optimal spindle
speeds. First, in order to achieve large depth of cut with stable
machining and with a small positive SLE, the stable spindle speed
regions to the left to the resonant spindle speeds should be used.
Second, in the high-speed domain, the stable spindle speeds are
wider, which makes the selection of optimal spindle speed easier.
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