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ABSTRACT
The main question this paper aims to address is whether a

lane-keeping controller can serve as a safety feature in order to
increase handling and stability of car-trailer combinations. The
derivation of a nonholonomic car-trailer model is provided and
its open-loop stability is analyzed. A look-ahead based lane-
keeping controller is applied to the system, and a comparison is
made between the closed-loop stability of an individual car and
a car-trailer setup. The critical speed of the vehicle combination
is shown as a function of various trailer parameters, with and
without the lane-keeping controller enabled. A modified version
of the controller is also tested, utilizing feedback of the trailer
states. Unfortunately, no improvement was found compared to
the open-loop behavior of the car-trailer system.

INTRODUCTION
A recent analysis of accident data showed that a large part

of road accidents could have been prevented or their severity
reduced with the use of certain driver assistance systems [1].
Therefore this paper investigates whether a lane-keeping con-
troller in the towing vehicle can be used as a safety feature to
help stabilize a car-trailer system. Unlike traditional trailer sta-
bilization techniques that rely on individual braking of the trailer
wheels, a lane-keeping controller can only indirectly control the
motion of the trailer through the steering angle of the towing

vehicle. Despite this strong limitation, the lane-keeping con-
troller might still prove useful in stabilizing trailers that are not
equipped with additional safety features. Another important goal
of this paper is to explore how the dynamics of a car with lane-
keeping control change when towing a trailer.

The dynamics of trailers have already been studied exten-
sively in the literature, since as early as the 1930s - see the ref-
erences in [2]. Depending on the use case, lower degree of free-
dom [3, 4], as well as more comprehensive mathematical mod-
els [5,6] have both been developed. A nonlinear analysis of truck
and trailer systems can be found in [7], while notable experimen-
tal studies include [8] and [9].

In terms of stability and handling characteristics, several so-
lutions have been proposed relying on active rear wheel steer-
ing of the towing vehicle [10, 11], active trailer steering or brak-
ing [12, 13], or active braking of both the towing vehicle and the
trailer [14]. A solution that does not require actuators on the
trailer is using the brake system of the towing vehicle to improve
the stability of the vehicle combination [15]. In this paper, active
steering of the front wheels of the towing vehicle is considered,
through the utilization of a lane-keeping controller.

The rest of the paper is organized as follows: first, a de-
tailed derivation of the governing equations of the car and trailer
model is presented. The dynamics of the open-loop system are
then analyzed to check how certain trailer parameters influence
stability as a function of speed. Afterwards, a lane-keeping con-
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troller is introduced in the towing vehicle: it is examined how the
presence of the trailer influences the stability properties of lane
keeping compared to a car only setup. Then it is also checked
how the dynamics of the open-loop car and trailer system change
due to the controller. Finally, the lane-keeping control law is ex-
tended with the feedback of trailer states to see if there is any
benefit in terms of stable parameter combinations.

MECHANICAL MODEL OF THE CAR-TRAILER SYSTEM

FIGURE 1. The single track model of the car and trailer system.

The in-plane motion of the car-trailer system is described
using a simplified single-track model (see Fig. 1). This means
that the tire contact patches are summarized axle-wise in points
F (car front axle), R (car rear axle) and T (trailer axle). The
center of gravity of the car and the trailer is denoted by C1 and
C2, respectively, while J refers to the hitch point. The coordinates
of point R in the global reference frame are denoted by x and y,
and the orientation of the car and the trailer are ψ1 and ψ2. The
steering angle of the car is denoted by δs. The geometrical and
inertial parameters and their notations are listed in Table 1.

The longitudinal velocity of the car is assumed to remain
constant (V ), which can be translated into the following kine-
matic constraint:

ẋcosψ1 + ẏsinψ1 =V . (1)

This makes the system nonholonomic, therefore we use the
Gibbs–Appell-method [16] to derive its equations of motion.
Since the system includes only one kinematic constraint equa-
tion, but the number of state variables is four, three so-called

pseudo velocities need to be defined in order to proceed. These
can be chosen intuitively, but they need to satisfy the constraint
equations. In our case, let us make the first pseudo velocity (σ1)
the lateral velocity component of point R, while the other two
will be the yaw rate of the car (σ2) and the trailer (σ3). The def-
initions of the pseudo velocities along with the kinematic con-
straint (1) can be solved for the derivatives of the states:

ẋ =V cosψ1−σ1 sinψ1 ,

ẏ =V sinψ1 +σ1 cosψ1 ,

ψ̇1 = σ2 ,

ψ̇2 = σ3 .

(2)

The rest of the system dynamics (i.e. how the pseudo-
velocities σi change in time) are determined by the Gibbs–Appell
equations

∂G
∂ σ̇i

= Γi , i = 1, 2, 3 . (3)

The so-called energy of acceleration G in the left-hand side of
Eqn. (3) can be calculated as

G =
1
2

m1a2
C1

+
1
2

J1ψ̈
2
1 +

1
2

m2a2
C2

+
1
2

J2ψ̈
2
2 + . . . (4)

for the in-plane motion of the car and trailer. Equation (4) is not
the complete form of the energy of acceleration, but the remain-
ing terms’ derivatives in Eqn. (3) are zero, therefore they do not
affect our further calculations. The accelerations of the centers
of gravity aC1 and aC2 , as well as the angular accelerations ψ̈1
and ψ̈2 can be expressed as a function of the pseudo-velocities
and their time derivatives. Substituting them in G leads to the
derivatives

∂G
∂ σ̇1

= (m1 +m2)V σ2 +m1(σ̇1 +dσ̇2)+

−m2(hσ
2
3 sin(ψ1−ψ2)− σ̇1 + cσ̇2 +hσ̇3 cos(ψ1−ψ2)) ,

∂G
∂ σ̇2

= (dm1− cm2)V σ2 +dm1σ̇1 +(J1 +d2m1)σ̇2+

+ cm2σ
2
3 (hsin(ψ1−ψ2)− σ̇1 + cσ̇2 +hσ̇3 cos(ψ1−ψ2)) ,

∂G
∂ σ̇3

=−hm2((V cos(ψ1−ψ2)−σ1 sin(ψ1−ψ2))σ2+

+ cσ
2
2 sin(ψ1−ψ2)+(σ̇1− cσ̇2)cos(ψ1−ψ2))+

+(J2 +h2m2)σ̇3 .

(5)
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The terms Γi in the right-hand side of Eqn. (3) are the so-
called pseudo-forces that can be derived from the virtual power
of the active forces. Since active forces emerge only at the tires
in our model, the virtual power is of the form

δP = FFδvF +FRδvR +FTδvT , (6)

where δ indicates the virtual quantities. We consider only the
lateral component of the tire forces in our analysis, therefore the
direction of the force vectors in Eqn. (6) is determined by the
orientation of the wheels:

FF =

FF,x
FF,y

0

=

 F lat
F sin(ψ1 +δs)
−F lat

F cos(ψ1 +δs)
0

 ,

FR =

FR,x
FR,y

0

=

 F lat
R sinψ1
−F lat

R cosψ1
0

 ,

FT =

FT,x
FT,y

0

=

 F lat
T sinψ2
−F lat

T cosψ2
0

 .

(7)

Assuming a linear tire characteristic, the magnitudes F lat
i of the

side forces are proportional to the side slip angles αi:

F lat
i =Ciαi , i ∈ {F, R, T} , (8)

where Ci denotes the cornering stiffness of the respective tires.
The slip angles can be expressed as

αF = arctan
(

ẏ+ f ψ̇1 cosψ1

ẋ− f ψ̇1 sinψ1

)
−ψ1−δs , (9)

αR = arctan
(

ẏ
ẋ

)
−ψ1 , (10)

αT = arctan
(

ẏ− cψ̇1 cosψ1− lψ̇2 cosψ2

ẋ+ cψ̇1 sinψ1 + lψ̇2 sinψ2

)
−ψ2 . (11)

Substituting the force components according to Eqn. (7) as
well as the virtual velocity vectors of the respective points into
Eqn. (6), the virtual power can be written as

δP = δσ1 ((FF,y +FR,y +FT,y)cosψ1− (FF,x +FR,x +FT,x)sinψ1)+

+δσ2 (( f FF,y− cFT,y)cosψ1 +(− f FF,x + cFT,x)sinψ1)+

+δσ3l(−FT,y cosψ2 +FT,x sinψ2) ,

(12)

taking into account that the virtual power of the kinematic con-
straint is zero. The coefficients of δσi from the virtual power
form the pseudo-forces:

Γ1 = (FF,y +FR,y +FT,y)cosψ1− (FF,x +FR,x +FT,x)sinψ1 ,

Γ2 = ( f FF,y− cFT,y)cosψ1 +(− f FF,x + cFT,x)sinψ1 ,

Γ3 = l(FT,x sinψ2−FT,y cosψ2) .

(13)

The remaining equations of motion can be reached by equating
the elements of Eqn. (5) with Eqn. (13), according to Eqn. (3).
These equations can be solved for the time derivatives of the
pseudo-velocities, and the force components can be substituted
according to Eqn. (7) and (8). Coupled with the formulas for the
derivatives of the state variables (Eqn. (2)), these constitute the
governing equations of the car and trailer system in first order
form.

OPEN-LOOP STABILITY
In order to determine the stability of straight-line motion

without control action, the equations of motion are first trans-
formed into second-order form. To do this, we take the linearized
form of the definition of the pseudo-velocities:

σ1 = ẏ−V ψ1 ,

σ2 = ψ̇1 ,

σ3 = ψ̇2 ,

(14)

since we are only interested in the small oscillations around the
straight-line motion of the vehicle. The above are substituted into
the last three governing equations, while the remaining trigono-
metric nonlinearities are linearized around zero, and any second
or higher order term is neglected. This leads to the following set
of linear, second-order differential equations:

(m1 +m2)ÿ+(dm1− cm2)ψ̈1−hm2ψ̈2 =

= FF,y +FR,y +FT,y ,

(dm1− cm2)ÿ+(J1 +d2m1 + c2m2)ψ̈1 + chm2ψ̈2 =

= FF,y f − cFT,y ,

(J2 +h2m2)ψ̈2−hm2(ÿ− cψ̈1) =−lFT,y .

(15)

After taking the similarly linearized form of the tire side force
components (while setting the steering angle δs to zero) the sys-
tem can be transformed into the matrix form

Mq̈+Cq̇+Kq = 0 (16)
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with the corresponding state vector q =
[
y ψ1 ψ2

]T and coeffi-
cient matrices

M =

 m1 +m2 m1d−m2c −m2h
m1d−m2c J1 +m1d2 +m2c2 m2ch
−m2h m2ch J2 +m2h2

 ,

C =
1
V

CF +CR +CT fCF− cCT −lCT
fCF− cCT f 2CF + c2CT clCT
−lCT clCT l2CT

 ,

K =

0 −CF−CR −CT
0 − fCF cCT
0 0 lCT

 .

(17)

The characteristic equation of the open-loop system is therefore

D1(λ ) := det
(
λ

2M+λC+K
)
= 0 , (18)

where λ ∈ C denotes the characteristic exponent. Note that the
above equation has two zero roots corresponding to the position
and orientation of the vehicle in the plane, which has no influence
on the stability of straight-line motion. Therefore it is sufficient
to consider the equation D1(λ )/λ 2 = 0. Stability is ensured if
all λi roots of this equation reside on the left half of the com-
plex plane. This can be verified using e.g. the Routh–Hurwitz
criterion [17].

FIGURE 2. Stability charts of various trailer parameters and speed for
the open-loop car-trailer combination. Dashed lines represent bound-
aries of static loss of stability. The shaded areas show the stable regions
for the trailer mass m2 = 1200kg.

The stability maps in Fig. 2 show the stable domains of
trailer parameters as a function of speed for the nominal param-

TABLE 1. Car and Trailer Parameters Used in Stability Maps (Unless
Noted Otherwise)

Parameter Notation Value

Car wheelbase f 2.7 m
Distance between car rear axle
and center of gravity d 1.35 m

Distance between car rear axle
and hitch point c 0.75 m

Trailer length l 3.5 m
Distance between trailer center
of gravity and hitch point h 3 m

Mass of car m1 1430 kg

Mass of trailer m2 900 kg

Yaw moment of inertia of car J1 2500 kgm2

Yaw moment of inertia of trailer J2 2000 kgm2

Cornering stiffness of car front tire
(without trailer) C0

F 45 kN

Cornering stiffness of car rear tire
(without trailer) C0

R 60 kN

Cornering stiffness of trailer tire CT 45 kN

Longitudinal velocity of car V 20 m/s

Time delay τ 0.5 s

eter values listed in Table 1. It was taken into account that at-
taching a trailer changes the wheel load distribution of the tow-
ing vehicle, thereby affecting the cornering stiffness of its tires.
Thus the nominal values C0

F and C0
R were multiplied by Fi,z/F0

i,z
(i ∈ {F, R}), i.e. the ratio of the corresponding axle load with
and without the trailer.

Figure 2 (a) shows that it is not desirable to place the center
of gravity too far behind the trailer axle (a trailer length of l = 3m
was used in the plot), especially at higher speeds. When increas-
ing h, there exists a physical limit where the rear wheels of the
towing vehicle lose contact with the ground. This limit is repre-
sented by the horizontal lines in the figure, which correspond to
a zero root of the characteristic equation (18) (static loss of sta-
bility). If the effect of wheel load distribution on the cornering
stiffnesses is not taken into account (dark gray lines in the figure),
then this stability limit does not show up. On the other hand, a
different stability boundary does show up at lower h values, lim-
iting the stable values of h to a narrow band at higher speeds (as
reported in e.g. [7] and [18]). A possible explanation as to why
this stability limit cannot be seen when adjusting the value of
CF and CR is that the additional load on the rear axle makes the
vehicle more understeer, which has a stabilizing effect.

Figure 2 (b) shows that longer trailers are generally more
stable, but an additional stability boundary can emerge here as
well, if the cornering stiffness values are kept constant. The hor-
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izontal lines at low values of l show the limit where the wheel
load at the rear axle of the towing vehicle reaches zero (since
the center of gravity position of the trailer is not adjusted when
changing l).

According to panel (c), large moments of inertia of the trailer
can make the system unstable at higher speeds. The value of J2,
however, does not influence the wheel load distribution of the
towing vehicle.

The stability map in panel (d) shows that the cornering stiff-
ness of the trailer tire has a stabilizing effect. It was shown in [19]
that a vertical stability boundary may also occur at sufficiently
high speeds, corresponding to a static loss of stability. This ap-
pears if the additional weight of the trailer makes the towing ve-
hicle more oversteer. Since our original choice of parameters
involves an understeering vehicle and the center of gravity of the
trailer is close to its axle, this effect is shown for a different set
of parameters in Fig. 2 (d) in dark gray.

LANE-KEEPING CONTROL

FIGURE 3. Illustration of the look-ahead control scheme.

So far, only the open-loop dynamics of the car and trailer
system were considered. In this section, the towing vehicle is
equipped with a lane keeping controller that aims to keep the
vehicle at the center of the lane. Without loss of generality, we
consider a straight-line reference path along the x axis. A simple
look-ahead control law is employed, which takes the expected
lateral deviation from the reference path at a distance L ahead
of the car, assuming that the direction of the vehicle will remain
the same (see Fig. 3). The steering angle is generated by feeding
back this expected lateral error value through the proportional
gain Py:

δs(t) =−Py (y(t− τ)+Lsinψ1(t− τ)) , (19)

where the feedback delay τ (including effects such as sensor and
communication delays, computational time and actuator dynam-
ics) is considered explicitly.

Controlling the lateral position of the vehicle means that its
position and orientation in the plane are no longer irrelevant. The
equation of ẋ from Eq. (2), however, can still be decoupled, since
we have chosen the x axis as the reference path. Therefore the
state vector in this case is x =

[
y ψ1 ψ2 σ1 σ2 σ3

]T where the
x = 0 equilibrium represents straight-line motion along the refer-
ence. In order to investigate the stability properties, the equations
of motion are linearized around this equilibrium, leading to the
state space representation

ẋ(t) = Ax(t)+Bu(t− τ) , (20)

where the input u(t) = δs(t) is the steering angle, A is a six-by-
six matrix and B is a six-element column vector. The linearized
form of control law (19) leads to

u(t) =−Pyy(t)−PyLψ1(t) , (21)

which can be written in the following matrix form:

u(t) = K̂x(t) =
[
−Py −PyL 0 0 0 0

]
x(t) . (22)

Using the above notations, the characteristic equation of the time
delay system is

D2(λ ) := det
(

λ I−A−BK̂e−λτ

)
= 0 . (23)

The stability properties of the closed-loop system are analyzed
in the next section.

Comparison of car only and car-trailer setups
The control law (19) is meant to ensure stable path following

of a car, but it is perfectly reasonable to assume that a trailer
might be attached to the car at some point. In this section, it
is examined how towing a trailer influences the stability of the
closed-loop system.

Due to the presence of time delay, the characteristic equation
(23) is transcendental, with infinitely many roots. In the litera-
ture, there exists a wide range of different methods to investigate
the stability of such delay differential equations [20–22]. We
use the D-subdivision method with the help of the multidimen-
sional bisection method [23] to determine the stability bound-
aries (where a characteristic root crosses the imaginary axis) in
different parameter planes. Next, the semi-discretization method
[22] is used to verify which domains correspond to zero unstable
roots.
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FIGURE 4. Boundaries of stable parameter domains of car only (blue) and car-trailer (red) configurations for various amounts of time delay. The
filled area shows the stable domain of the car-trailer combination for τ = 0.5s.

The stable parameter domains in terms of control gains and
vehicle speed are shown in Fig. 4. The configurations of an indi-
vidual car and the same car towing a trailer are both plotted for
comparison. Additionally, the destabilizing effect of increasing
time delay can also be seen. For the governing equations of the
car only setup, the reader is referred to [24].

For a given pair of vehicle speed and time delay, there exists
a minimum value of L, below which the system is unstable. In-
creasing either V or τ both increases this minimum distance. It is
interesting to note that the maximum allowable look-ahead dis-
tance is lower when the trailer is attached, while there is barely
any difference in terms of the minimum of L. The difference
between the car only and the car-trailer configurations is more
pronounced at higher speeds. In general, attaching the trailer
reduces the stable parameter domains, but increasing the delay
value mitigates the difference. In other words, if there is enough

time delay in the system, attaching a trailer causes negligible dif-
ference in terms of stable parameter domains.

Effects on trailer stability
Next, we look at how the presence of the lane-keeping con-

troller changes the open-loop stability of the car-trailer system.
Figure 5 (a) shows the stability map in the V -h plane with the
lane-keeping controller enabled, for various amounts of feed-
back delay. The control gains were selected with the help of
semi-discretization: using a fine enough mesh in the plane of Py
and L, the optimal control gains in terms of damping factor were
determined for the parameter values V = 20m/s and h = 3m,
considering a time delay of τ = 0.5s. The resulting control gains
are Py = 0.0043m−1 and L = 54.075m. It can be seen that even
in the delay-free case, it is not possible to stabilize previously
unstable parameter combinations, and the presence of time de-
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lay further reduces the stable domain. A possible explanation for
this is that specifying the y coordinate leads to a stricter defini-
tion of stability. Earlier, stable straight-line motion regardless of
the direction was enough for the system to be considered stable,
but now it is also required to specifically follow the x axis. Nev-
ertheless, as long as the delay is not too large, the lane-keeping
controller does not change significantly the physically relevant
part of the stability map.

FIGURE 5. Stability boundaries in the V -h plane for the three differ-
ent control laws: (a) original lane keeping controller, Eqn. (19); (b) ad-
ditional feedback of trailer yaw angle, Eqn. (24); (c) additional feedback
of trailer yaw angle and yaw rate, Eqn. (25). The shaded area shows the
stable region for τ = 0.5s.

Since control law (19) uses no information regarding the
trailer states, it might be possible to improve it by taking into
account the orientation of the trailer. Therefore, in the following,
modified version of the controller, the yaw angle of the trailer is
also fed back through the proportional term Pψ2 :

δs(t) =−Py (y(t− τ)+Lsinψ1(t− τ))−Pψ2ψ2(t− τ) . (24)

The optimal control gains were recalculated using the above
mentioned method, leading to Py = 0.004m−1, L = 48.667m
and Pψ2 = 0.026. The stability chart in Fig. 5 (b) shows that
the additional feedback term does not change the stable region
significantly, only at high vehicle speeds or large delay values.
Therefore as a further extension of the original control law, we
also feed back the yaw rate of the trailer ψ̇2 = σ3:

δs(t) =−Py (y(t− τ)+Lsinψ1(t− τ))+

−Pψ2ψ2(t− τ)−Pσ3σ3(t− τ) .
(25)

The reasoning behind this is that the feedback of a velocity re-
lated term might have a dampening effect, which could help
stabilize the system. The corresponding control gains are Py =
0.0047m−1, L = 44.86m, Pψ2 = 0.0367 and Pσ3 = 0.008s, while
the stability chart is shown in Fig. 5 (c). Unfortunately, this con-
trol configuration clearly performs worse than the other two in
terms of stable parameter combinations, especially at larger feed-
back delay values. Note, however, that for the largest delay value,
τ = 0.8s, a small part of the stable domain is outside of the open-
loop stability boundary. Because of the very small size of this
additional stable area, it carries little practical significance due to
robustness issues, but this could be an example of the so-called
stabilizing effect of feedback delay [25].

It should be noted that the control gains were optimized for
V = 20m/s, h = 3m and τ = 0.5s. In order to stabilize the ve-
hicle at increasing speed or time delay values, the gain Py should
be decreased while the look-ahead distance should be increased.
Therefore with proper tuning, it is possible to increase the criti-
cal speed (compared to what is shown in the stability chart) for
a given value of h even for larger delays. However, choosing
smaller Py values means that the response will be slower, while
increasing the look-ahead distance might not be feasible on curvy
roads or due to the limitations of the vision system. A possible
solution could be to adjust L according to the vehicle speed. In
case of a linear relationship, this would technically mean that the
look-ahead point is defined in terms of time (the so-called pre-
view time) instead of distance. Some preliminary results show
that in this case, the preview time must be larger than the feed-
back delay, which is in accordance with Fig. 4, where we showed
that zero look-ahead does not stabilize the system.

Figure 6 shows a comparison of the three controller varia-
tions (for τ = 0.5s) and the open-loop system in terms of vari-
ous trailer parameters. It is interesting to note that in most cases,
the original look-ahead controller provides the best performance,
while the additional feedback terms only reduce the stable areas.
It should still be noted that the shape of the stable domains highly
depends on the tuning of the controller, and the control gains here
were not chosen to maximize the stable area but to provide a good
comparison for a reasonable set of parameters.
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FIGURE 6. Stability charts of various trailer parameters and speed
for the three different control laws: original lane keeping controller
in red, Eqn. (19); additional feedback of trailer yaw angle in green,
Eqn. (24); additional feedback of trailer yaw angle and yaw rate in or-
ange, Eqn. (25). The shaded area shows the stable region for the third
controller, while the open-loop stability boundary is plotted in blue. The
time delay is set to τ = 0.5s.

CONCLUSION
The stability properties of a lane-keeping controller were an-

alyzed in this paper when applied to a car-trailer system. It was
shown that attaching a trailer to the car can reduce the linearly
stable domain of control parameters, especially at higher speeds.
In terms of trailer parameters, the controlled system shows sim-
ilar results to the open-loop behavior of trailers, but feedback
delay in the controller can destabilize originally stable parameter
combinations. In addition, no clear benefit was found when the
trailer states are also utilized in the control law.
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