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Abstract

The lateral position control of the vehicle is analyzed in the presence of time delay. To compensate the negative effects of
dead time, the predictor control approach called finite spectrum assignment is applied. This controller includes a linear
model of the plant and uses the solution of this model over the delay interval to predict the current system states. The focus
of the article is whether to include tire dynamics in the predictive model of the controller. Although the more detailed
model should improve control performance, the additional parameters (e.g., tire stiffnesses and yaw moment of inertia) are
difficult to determine accurately. The effects of parameter mismatches are analyzed in detail, and recommendations are
given to ensure safe control of the vehicle. It is shown that the inclusion of tire dynamics in the predictive model vastly
improves control performance even in the presence of large parameter errors, but in certain cases, the inaccuracies may

lead to instability.
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I. Introduction

According to a recent study by Olofsson and Nielsen
(2020), a large percentage of severe lane departure road
accidents could have been prevented or their severity
greatly reduced with the help of autonomous driving
functions. However, because of the increasing complexity
of sensor systems, localization, and object detection sol-
utions required for safe autonomous driving, time delay has
become a serious bottleneck in this field. Our article aims
to highlight the potential benefits of applying predictor
feedback in vehicle motion control, directly increasing the
safety and efficiency of the related driver assistance and
autonomous driving functions.

Many effective control approaches have been proposed
over the years for reliable and safe execution of planned
trajectories of autonomous vehicles (Amer et al., 2017;
Paden et al., 2016). The most widely used controllers in-
clude simple kinematic models, such as pure pursuit
(Elbanhawi et al., 2018) or the Stanley controller
(Hoffmann et al., 2007). For applications where basic
geometric/kinematic considerations might not be sufficient,
the dynamic properties of the vehicle can also be included
in the controller (Fierro and Lewis, 1997). Advances in
computational power have also made the real-time use of
model predictive control (MPC) (Beal and Gerdes, 2012)

feasible in autonomous vehicles. The easy implementation
of higher fidelity models makes MPC also suitable for
emergency maneuvers. For a more detailed overview of
path following techniques for autonomous vehicles, the
reader is referred to Paden et al. (2016) and Amer et al.
(2017), and the references therein.

An important aspect of vehicle motion control, which is
rarely treated explicitly, is the negative effects of time delay
on these control techniques. Several components of the
feedback loop contribute to the overall time delay in the
system, which adds up to be rather significant (Heredia and
Ollero, 2007; Kyrychko and Hogan, 2010). The main sources
of time delay include sensor and communication delays,
signal processing, filtering, and actuator dynamics. Algo-
rithms related to perception and localization may also induce
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significant amounts of delay, especially if vision-based
solutions are used (Pendleton et al., 2017). Although bet-
ter hardware and more efficient algorithms are introduced
day by day, most commercial solutions are still not capable of
processing the large amounts of sensor data at a high fre-
quency, and it is difficult to find a balance between accuracy,
processing time, and hardware costs (Liu et al., 2018; 2017).

In the following, a few representative examples of nu-
merical time delay values are listed from the literature, to
give the reader a general sense of what orders of magnitude
to expect. In Jalali et al. (2017), a sensor delay of 0.2 s is
considered for yaw rate control. The low level steering
angle controller in Mobus and Zomotor (2005) had a time
constant of 0.3 s, whereas Hoffmann et al. (2007) con-
sidered 0.4 s as steering delay. According to Petrovskaya
and Thrun (2009), reliable object detection requires three
frames, which adds up to 0.1 s with a frame rate of 30 Hz. In
Oliveira et al. (2016), an efficient deep learning based al-
gorithm is presented for road surface detection, with a
processing time of 0.05 s. As the delays from various
sources start to add up, their negative effects become in-
creasingly difficult to handle.

A possible solution for compensating time delay in the
control loop is the use of predictor feedback. Traditionally,
predictor control was most commonly used for the control
of slower processes with larger time constants, such as in
chemical plants. However, because of the increase in
available processing power, it is becoming a viable alter-
native for the automotive industry as well. Based on
a mathematical model of the plant, these controllers cal-
culate a prediction of the current system states and use these
predictions as feedback instead of the actual, delayed sig-
nals. In this article, the predictor control method called finite
spectrum assignment (FSA) is considered (Manitius and
Olbrot, 1979; Molnar and Insperger, 2016; Wang et al.,
1999). In the ideal case, when the predictive model is
perfectly accurate, there are no implementation issues and
measurement noise in the system; then, the predicted states
of the FSA controller are equal to the actual system states
and the time delay is canceled out.

The performance of the FSA controller was already
demonstrated in Vords and Varszegi (2018), where a sim-
ple, kinematic vehicle model was used both for the pre-
dictive model in the controller and for the controlled system.
In Voros et al. (2019), the model of the controlled vehicle
was extended with tire dynamics, but the internal model
remained the same. In the present article, tire dynamics are
included in the predictive model as well. On the one hand,
the more precise model should help increase control per-
formance. On the other hand, the additional parameters
(cornering stiffnesses, vehicle inertia, etc.) are hard to de-
termine accurately. Therefore, it is possible that because of
parameter mismatches, the more detailed system model
might actually perform worse than the simple model with
accurate parameters. It will be shown that the presence of

parameter mismatches greatly affects the linear stability of
the lateral motion, which could even lead to dangerous
situations in extreme cases.

The article is organized as follows: in the first section,
two versions of the single-track vehicle model are introduced,
with and without considering tire dynamics. Next, the sta-
bility analysis of delayed state feedback without predictor
control is performed as the reference. In the following
section, two versions of the FSA control law are derived,
using the two different vehicle models for prediction. The
controllers are then compared based on stability charts. The
effects of vehicle cornering characteristics, implementation
issues in the control law, and robustness against parameter
estimation errors are also considered. The results are verified
by numerical simulations in the final section.

2. Vehicle models
2.1. Kinematic vehicle model

Two vehicle models are considered in this article: a ki-
nematic and a dynamic version of the single-track vehicle
model. In the kinematic model (Figure 1(a)), point contacts
are assumed between the tires and the ground, that is, no
side slip occurs. This can be expressed using kinematic
constraints describing the direction of the velocity vectors
at the front and rear wheels (points F and R). As a third
kinematic constraint, the longitudinal speed of the vehicle
is fixed at a constant value V. The position of the vehicle is
given by the positional coordinates x and y of point R and
by the yaw angle y. The steering angle is denoted by J.
The governing equations of the model can be directly
expressed from the three constraint equations (see Voros
and Varszegi (2018) for more details), leading to the
system equations

X(t) =Veosy(t), y(t)=Vsiny(t), w(t) = ;tanﬁs(t)

(M

where f denotes the vehicle wheelbase.

2.2. Dynamic vehicle model

In the dynamic vehicle model (Figure 1(b)), tire side forces
are also considered: the lateral forces are assumed to be
proportional to the slip angles «; through the cornering
stiffnesses C;

F* = Ca;, i€{F, R} )

where the indices F and R stand for the front and rear axles,
respectively. The slip angles are calculated as follows

y'+fv'/cosw) s

aF = arctan( — (3)
X —fysiny
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Figure |. Kinematic vehicle model (a) assuming point contact at the wheels and the dynamic model (b) including tire side forces.

o = arctan @ —y @)

whereas the tire side forces in the global (ground fixed)
coordinate system are defined as

[ Fr. Fisin(y + J)
Fr= |Fr, | = | —Ffcos(y + ) |»
0 0
) ) &)
r Fy'sin
FR,x R S l//
Fr=|Fry | = | -F¥cosy
L 0 0

As nonzero side slip angles mean that the direction of the
velocity vectors are no longer constrained at the wheels, only
one kinematic constraint remains, which keeps the longi-
tudinal velocity constant. Because the difference between the
number of generalized coordinates (three: x, y, and y) and the
number of kinematic constraints (one) is two, the velocity
state of the model can be described by two variables. When
deriving the equations of motion by means of the Gibbs—
Appell approach (Greenwood, 2006), two so-called pseu-
dovelocities are defined to realize this description. The
pseudovelocities can be chosen intuitively, but they need to
satisfy the kinematic constraints. We use the lateral speed at
point R, denoted by o, and the yaw rate o,. The equation of
the kinematic constraint along with the definitions of the two
pseudovelocities can be solved for the state derivatives

X=Vcosy —oysiny, y=Vsiny+ocosy, w=o

(6)

The remaining two governing equations can be derived
from the Gibbs—Appell equations, resulting in

J. +md?

m(6,+Vo,)=— 7

((FF,X + FR,x)Sin v — (FF,y

+Fry)cosy) —&-def (Fr.csiny — Fp,cosy)
(7

J.62 = (Frx(d — f) 4+ Fr.d)siny

— (Fry(d — f) + Fryd)cos y ®

where the tire force components can be substituted ac-
cording to (5). The additional vehicle parameters appearing
in the dynamical model are the vehicle mass m, yaw mo-
ment of inertia J, (with respect to the center of gravity), and
the distance d between the rear axle and the center of
gravity. For the full, detailed derivation of the equations of
motion using the Gibbs—Appell method, please refer to
Voros et al. (2019).

3. Delayed state feedback

Position control of the dynamic vehicle model in the lateral
direction is going to be performed by the proportional
feedback of the vehicle’s lateral position y and its yaw angle
w. In our study, the steering angle J; is directly generated by
the feedback control. Moreover, for the sake of simplicity,
we are only considering a straight-line reference trajectory
along the x-axis, which corresponds to y = 0 and y = 0.
Consequently, the control input can be defined as follows

o(t) = — yy(t - 1) _Pu/‘//<t —7) )

where the control gains are denoted by P, and P, The delay
term 7 represents the total time delay in the system, in-
cluding sensor delay, communication delays, processing
time for all the required algorithms (image processing,
position estimation, control, etc.), actuator delay, and the
dynamics of the steering mechanism. A commonly used,
alternative way to consider the time delay in the model is to
use a first-order lag term with time constant 7, as in for
example, Della Rossa and Mastinu (2018). That way, the
corresponding delay differential equation is replaced by an
ordinary differential equation, which is easier to handle
mathematically.

After linearizing the dynamic vehicle model with control
law (9) around the equilibrium state of rectilinear motion
along the x-axis, the following state-space representation
can be applied
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X(1) = Ax(¢) + Bu(t — 1) (10)

where the single control input is the steering angle: u(f) =
—Py(t) — P,y(1). Because the longitudinal position of the
vehicle does not influence stability, the corresponding
equation can be decoupled. Therefore, in the rest of the
article, we are only going to consider the reduced state
vector x=[y w o, 03] The corresponding system
and input matrices are

oV 1 0 0
0O 0 O 1 0
A= 0 0 Az A |’ B = B; an
0 0 Ay Ay B,
with elements
B3 CR(JZ + mdz)
Ay =— ———F—7,
V mVJ,
Ay = —Bs—=—V
34 7 > a2
B, Crd
A43 i )
Vo VI,
Ay = —34%
and
g Celtmdld =) G —d)
mJZ Jz

Using direct state feedback, the steering angle can be
written as u(t — 7) = Kx(t — 7), where K=[—- P, — P, 0 0]
includes the control gains. This leads to the characteristic
equation

D(2) = det(Al — A — BKe ™) =0 (14)

where A € C is the characteristic exponent and I denotes the
identity matrix.

The stability analysis of the system with feedback delay
can be performed using the D-subdivision method. When 1 =
0, the system loses its stability without oscillations (static loss
of stability), which translates into the stability boundary P, =
0. Furthermore, at the boundaries of dynamic loss of stability,
the characteristic exponent has no real part, that is, 1 = iw.
Substituting this into (14), then separating the real and
imaginary parts of the equation, P, and P,, can be expressed
as a function of @ (w represents the angular frequency of the
arising oscillations). These parametric expressions can be used
to plot the so-called D-curves that separate domains of the (P,
and P,,) plane according to the number of unstable characteristic
exponents. Control gains from the region where the number of
unstable characteristic roots is zero are going to lead to stable
system behavior. To determine this number at a given point of
the stability map, Stepan’s formulae (Stépan, 1989) can be used.

The stability chart is plotted in Figure 2(a) for different
time delays. When there is no delay in the system, the stable
domain is unbounded, otherwise it rapidly shrinks with
increasing time delay. The stability analysis of the dynamic
vehicle model using control law (9) is presented in more
detail in Voros et al. (2019).

4. Finite spectrum assignment

Similar to the classical Smith predictor, FSA compensates
time delay by predicting the actual, delay-free system states
by solving a mathematical model of the plant (Manitius and
Olbrot, 1979; Wang et al., 1999). This solution is then used
as feedback, instead of the delayed measurement or ob-
server signals. First, a summary of the theoretical back-
ground of the FSA controller is going to be presented; then,
we are going to apply it to the dynamic vehicle model.

4.1. Theoretical background

To predict the current state of system (10), the FSA con-
troller uses an internal model

(@) (b)

theo.
stable

Vid.
| stable

f

N \ rob.

. \ stable
\

0.5 4// unstable rob. stable’ N \'\,\.\\“ Pe——
Y01 0 0.1 -0.1 0 0.1 -0.1 0 0.1
P, [1/m] P, [1/m] P, [1/m]

Figure 2. Stability charts of the three investigated controllers: (a) delayed state feedback (the shaded region corresponds to 7 = 0.1 s),
(b) FSA using the kinematic vehicle model, and (c) FSA using the dynamic vehicle model. The time delay considered in the FSA controller is
7 = 0.5 s. Vehicle parameters are listed in Table |. Zoomed out versions of panel (b) and (c) can be seen in Figure 3. Note: FSA: finite

spectrum assignment.
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X(¢) = Ax(¢) + Bu(t — 7) (15)

where tildes are used to differentiate the model parameters
used within the controller from their real values. The
predictor solves (15) over the assumed delay interval 7 by
taking the latest available measurement as initial condition.
This results in the predicted state

0

(¢ +7) = eAx(1) + / ¢ MBu(r + 5)ds (16)

-7

which is then used as feedback in the control law
- o
u(f) = Ke¥x(1) + K / MBu(r45)ds  (17)

If the internal model perfectly matches the real system
(A=A,B=Band7=r1), then control law (17) leads to the
closed-loop dynamics x(#) = (A + BK)x(¢), which is the
same as simple delay-free state feedback. Thus, the FSA
controller is capable of removing the effects of time delay
from the feedback loop, reducing the infinite dimensional
spectrum of the original problem to a finite number of poles.
If the pair A and B is controllable, then the remaining poles
can be freely assigned through the feedback matrix K,
achieving stability for arbitrarily large values of 7.

However, this ideal implementation of FSA is only
possible in theory. On the one hand, there is always some
degree of uncertainty in the model parameters A, B, and 7,
as well as unmodeled dynamics, nonlinearities, and noise
that are not considered in the system model. Therefore, the
predictive model will always differ from the real system and
the delayed terms cannot be canceled out. As a result, the
system’s spectrum will remain infinite dimensional and the
poles cannot be assigned freely.

On the other hand, the implementation of the integral
part of (17) is not trivial. Approximating it with numerical
quadrature leads to

u(t) = Ke*x() + K Z A Bu (t

Jj=0

B er)h

5 (18)
where H/ €10,7], h - € R and the integer 7 € Z™ determines
the accuracy of the approx1mat10n as 7 — oo the summation
tends to the exact value of the integral. This approximation,
however, qualitatively changes the nature of the system,
resulting in a set of neutral functional differential equations

x(1) = Ax(¢) + Bu(t — 1),

u(t) = Ke*Ax(t) + Ke*Bu(r — 7) 19

+> KeMoBi r

=0

- ij)h

I

It can be shown that the replacement of (17) with (18)
leads to the appearance of a set of additional characteristic
exponents called the essential spectrum (Mondié et al.,
2002; Michiels and Niculescu, 2007; Michiels et al.,
2003). As 7— oo, the imaginary parts of these roots
move off to infinity, but their real parts may have a finite,
positive limit, leading to stability issues, regardless of the
accuracy of the approximation. To guarantee stability of
the closed-loop system with control law (18), the stability of
the difference part of (19) also needs to be ensured (Mondié
et al., 2002)

_ A o
=Y KeMBu(t—6 )b (20)
=0
If 7 is large enough, then this condition can be ap-
proximated by the stability of

0
u(?) = K/ e “Bu(t + s)ds (1)
As the essential spectrum is not continuous in (9]~
(Michiels and Niculescu, 2007; Michiels et al., 2003), per-
turbations of the integral time step may also lead to in-
stability. Therefore, stability of the difference part (20) may
depend on the choice of integration scheme. To guarantee
robustness against perturbations of 6. o the strong stability
of (20) is required (Michiels et al., 2003) This can be

ensured if
S /
0

Following Michiels and Niculescu (2007), we are going
to refer to the stability of the closed-loop system with an
accurately implemented control law (17) as ideal stability. If
the functional differential equation (21) is also stable, it will
be referred to as theoretical stability. In addition, if ro-
bustness against perturbations of the integral time step is
also ensured based on (22), then we refer to it as robust
stability.

The instability mechanisms of theoretical and robust
stability are caused by unstable characteristic roots with
large imaginary parts. Therefore, these are high-frequency
phenomena that can be avoided by applying a low-pass
filter (Mondié and Michiels, 2003) or by using a digital
controller (Michiels and Niculescu, 2007).

Kef“fs’ds <1 22)

4.2. FSA based on the kinematic vehicle model

To apply the FSA controller to the vehicle position control
problem, we are going to include the two previously
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detailed vehicle models within the controller. First, the
linearized kinematic vehicle model is of the form

- e o

where tildes denote the model parameters used within the
controller. Using this model for predictions, the steering
angle according to (17) is generated as follows

1 77| ()
u(t) =[P, _Pv]qo 1“1//(0}

*/13 _ﬂ [v(}f]“““)“)

The solution of the system consisting of the linearized
dynamic vehicle model (10) and the control law (24) is
assumed to be in the form Ce (C € C). Substituting this
trial function leads to the system of equations

24

) -V -1 0 0
0 A 0 -1 0
0 0 A— A33 *A34 *336_12— C=0
0 0 —A43 A— A44 —B4e’h
P, P,+PVi 0 0 g(4)
Miin (4)
(25)

where the coefficient matrix My;,(4) includes the elements
of A and B from the system model (11), and the last row
corresponds to the control law with

L 2o & i =7 %
g(d) :ﬁ (f22 = Ve (P, (axV + V)

+P,) +P, Za AP,V)

(26)

Taking the determinant of My;,(4) leads to the charac-
teristic equation using the kinematic vehicle model for
predictions

Dkin (ﬂ) = det(Mkin (ﬂ)) =0 (27)

4.3. FSA based on the dynamic vehicle model

The linear form of the dynamic vehicle model is shown in
equations (10)—(13). The corresponding predictive matrices
Adyn and ﬁdyn are the same as in (11), but the parameter
values used for prediction are differentiated from their real
values with tildes. The FSA control law using the dynamic
vehicle model is

P, ! ¥(1)

=P, Aggn y (1)

u(t) = 0 e o (1)
O'Q(t)

(28)

0 - ~
+/ e*A“Y"‘Ydenu(t—i—s)ds

7

Note that the dynamic vehicle model also provides
predictions about the vehicle’s lateral velocity and yaw rate.
However, to directly compare the control performance of
the two predictive models, we are not feeding these addi-
tional predicted states back; hence, the corresponding
control gains are set to zero.

Substituting the exponential trial function Ce", the
system consisting of (10) and (28) can be written in the
matrix form similar to (25). Because only the control law is
changed, the resulting coefficient matrix Mgyn(4) only
differs from My;,(4) in its last row. This leads to the
characteristic equation

Ddyn (/1) = det (Mdyn (/1)) =0 (29)

4.4. Stability analysis

The characteristic equations Dyin(4) and Dgyn(4) are related
to the notion of ideal stability. Performing the D-subdivision
method on them leads to the stability curves shown in
Figure 2(b) and (c) in red.

For theoretical stability, which is related to the nu-
merical approximation of the FSA control law, the
characteristic equation of (21) needs to be analyzed. This
can be reached by substituting x(f) = 0 and d4(f) = ds o e
into the control law. In case of the kinematic FSA, this
leads to

1 - - 2
Dyinn. (1) =7 ((A(f2+P,V)+PV) 50

— e *V(P,(TV + V) +P,))
whereas the dynamic model leads to a very long expression
that we are not going to include here for the sake of brevity.
Robustness to changes in the integration time step can be
ensured based on (22), leading to

Skin = /
0

f/(*PySf/ - Pw)

ds<1 31)
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for the kinematic model, and the expression

den = /
0

for the dynamic model. The stability boundaries of theo-
retical and robust stability are plotted in dashed blue and
black dash—dot lines in Figure 2, respectively. Numerical
simulations demonstrating the significance of these addi-
tional stability regions can be found in Voros and Varszegi
(2018), Molnar and Insperger (2016) and in Voros et al.
(2019).

Because all the model parameters are assumed to be
known precisely, the region of ideal stability using the
dynamic vehicle model is the same as when using simple
state feedback with no time delay (see panels in Figure 2(a)
and (c)). When the kinematic model is used for prediction,
the delayed terms cannot be canceled out completely, which
leads to significantly smaller stable regions (Figure 2(b)).
Nevertheless, the stable areas of the kinematic FSA are still
considerably larger than in the case of delayed state feed-
back; therefore even though the predictions are not com-

pletely accurate, they still provide a great improvement over
direct state feedback.

(32)

Kebo By ds <1

5. Stability charts
5.1. Effects of vehicle steering characteristics

In the following, it is shown how the steering characteristics
of the vehicle affect the stable parameter domains. In the
three columns of Figure 3, the stability maps are plotted for
an oversteering, neutral, and understeering vehicle, re-
spectively. The cornering stiffness at the front wheels was
fixed at Cr = 45 kN, whereas the different steering char-
acteristics were achieved by varying the rear cornering
stiffness as follows: Cr = 15 kN (oversteer), Cr = 45 kN
(neutral), and Cr =75 kN (understeer). The (unrealistically)
strong understeer and oversteer parameters were chosen
intentionally, to accentuate the qualitative changes in the
stability maps. The rest of the vehicle parameters are shown
in Table 1 and no parameter mismatches were considered in
the control law.

An oversteering vehicle design is generally more prone
to instability. The vehicle parameters in cases (a) and (d) are
chosen such that the critical speed above which steady-state
cornering is unstable is exceeded (this was achieved by
setting the cornering stiffness at the rear axle unrealistically
low). Therefore, the origin of the stability maps, which
corresponds to no control action is not part of the stable
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Figure 3. Stability charts of the finite spectrum assignment controller for different steering characteristics using the kinematic (first row)
and dynamic (second row) vehicle model for prediction. Solid red lines indicate the stability boundaries of the ideal closed-loop system,
dashed blue lines indicate the stability boundaries of (21), and black dash-dot lines correspond to the boundary of the robust stability
condition (22). The ideally, theoretically, and robustly stable domains are shown in light gray, dark gray, and black, respectively.
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Table 1. Vehicle parameters used in stability maps and simu-
lations (unless noted otherwise).

Parameter Notation Value
Vehicle wheelbase f 27 m
Distance between rear axle and d 1.35m
center of gravity
Vehicle mass m 1430 kg
Yaw moment of inertia Jz 2500 kg-m?
Lateral stiffness of front tire G 45 kN
Lateral stiffness of rear tire Cr 45 kN
Longitudinal velocity % 20 m/s
Time delay T 05s

domain. In case of the kinematic FSA, stable (P, and P,)
parameter pairs exist only if the time delay is sufficiently
small so that modeling errors do not accumulate too much
during the integration. On the other hand, the dynamic FSA
can still stabilize the vehicle with appropriately chosen
control gains because it includes information about the
cornering behavior. However, as shown in Figure 3(d), it is
possible that there is no intersection of the ideally stable
domain and the theoretically or robustly stable regions.
An understeering vehicle characteristic does not seem to
change the ideally stable region much, although it benefits
the domains of theoretical and robust stability when using
the dynamic model in the controller. Because the kinematic
FSA does not include tire parameters, the theoretical and
robust stability curves remain the same in all three cases.

Effects of parameter mismatches in case of dynamic
FSA controller

Including tire dynamics in the predictive model is clearly
beneficial in terms of stability and performance because
only in this way can the delay be completely canceled out
from the characteristic equation. However, the dynamic
vehicle model needed for this includes a number of addi-
tional parameters that are hard to determine accurately (e.g.,
cornering stiffnesses and moment of inertia). If the pa-
rameter values used in the predictive model are inaccurate,
then delayed terms remain in the characteristic equation,
which leads to less than optimal performance and may even
cause loss of stability. Therefore, it is important to check the
robustness of the system against parameter mismatches.
In Figure 4, the ideally stable domains are plotted for
a neutrally steered vehicle with parameters in Table 1, when
the front and rear cornering stiffness values in the predictive
model are 0%, + 20% or + 60% inaccurate. The cornering
stiffness of the tires may change according to the vertical
load, inflation pressure, environmental conditions (tem-
perature, etc.), tire wear, or by changing tires on the vehicle
(Pacejka, 2006). Moreover, tire-related quantities are

generally only indirectly estimated based on the dynamics
of the whole vehicle; therefore, estimation errors are to be
expected.

The stability charts in Figure 4 show that inaccuracies in
the cornering stiffness can severely reduce the initially un-
bounded stable area, especially when very soft tires are
assumed. The analysis in the previous section showed that
the regions of theoretical and robust stability are concentrated
near the origin. Moreover, the optimal control parameters that
will be used in the following section are also located close to
the origin; therefore, this area of the stable domain has the
most significance in practice. This region is not affected
much by overestimating the tire parameters, but erring to the
other side might lead to instability because of the sudden
reduction of the stable area. Therefore, it is recommended to
round uncertainties to the upper side. As the estimated tire
stiffness in the dynamic FSA is increased further and further,
the stable region tends to the stable domain of the kinematic
FSA, which assumes infinitely stiff tires.

It also seems to be safer to assume an oversteering
vehicle characteristic instead of an understeering one. This
also makes physical sense because if an understeering
cornering behavior is assumed, then the controller might
overcompensate, leading to instabilities. On the other hand,
if the controller thinks that the vehicle is more sensitive than
in reality, then it will only lead to slower, less aggressive
control action.

The effects of inaccuracies in terms of vehicle mass and
moment of inertia are shown in Figure 5. In both cases, the
system proves to be more robust against overestimated
parameters than underestimates, as long as the errors are not
too large. It is also worth noting that the system is clearly
more sensitive to uncertainties in terms of moment of inertia
than to inaccuracies in the vehicle mass. Even if the esti-
mated mass is half or double the real value, the stable region
remains fairly large. On the other hand, 20% error in J,
already greatly reduces the stable area, regardless of the
direction of the inaccuracy.

6. Performance analysis

To assess the effects of the previously detailed parameter
errors on the actual control performance, a number of
numerical simulations were run. We used the nonlinear
dynamic vehicle model extended with the full, nonlinear
form of the brush tire model (Pacejka, 2006) for the sim-
ulations to capture the saturation of the lateral forces (the
coefficient of friction was set to 0.9). Moreover, the steering
angle was limited at = 40°. Although in most cases, the
vehicle stayed near the investigated equilibrium, these small
additions to the model help make it stay valid in a larger part
of the phase space. A higher degree of freedom vehicle
model could also be used for the simulations for added
accuracy (e.g., see the models in Mashadi et al. (2013) and
Mashadi et al. (2014)), but we wanted to make sure that the
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simulation results are directly comparable to the stability
maps. Moreover, the observed lateral accelerations remain
low enough so that the vehicle dynamics stay within the
limits of validity of the single-track model (Segel, 1956).

The initial conditions were set to model a lane change:
¥(0) =3.75 m and w(0) = 0. For ¢ € [—7, 0), both y and w

were set to zero, representing that a change in the reference
signal (i.e., the decision to change lanes) only occurs at = 0.
Because the different sources of time delay are not separated
in our model, this information only reaches the controllers at
¢t =7 and no control action is produced until that point. The
simulations were run with a time step of 0.001 s, whereas
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Table 2. Settling time and prediction root mean square error
values of numerical simulations.

Setting RMSE  RMSE

time (s) y(m) w (rad)
Delayed state feedback 11.79 — —
FSAin 9.50 0.036 0.0019
FSA4yn accurate model 454 0.008 0.0021
FSA4yn overestimated 432 0.026 0.0042

parameters

Note: FSA: finite spectrum assignment; RMSE: root mean square error.

the FSA controllers used an integration time step of 0.05 s.
The control gains were chosen to provide the most highly
damped system response: first, the system was converted to
its semi-discrete form (Insperger and Stépan, 2011); then, its
characteristic multipliers were evaluated point by point
along the stability maps. We chose the control gains where
the characteristic multipliers had the smallest modulus. For
delayed state feedback, these are P, = 0.00077 m~' and
P,, = 0.0805; for the kinematic FSA, P, = 0.0016 m~' and
P, = 0.1253; and for the dynamic FSA controller, P, =
0.0138 m~' and P, = 0.472.

Figure 6 shows a comparison of the three controllers in
the ideal case, when no parameter mismatches are present.
The time delay severely restricts the stable parameter do-
main of the simple feedback controller; therefore, the small
control gains lead to a rather slow system response with
negligible side slip angles and lateral acceleration ajy,.
Although using the kinematic vehicle model for predictions
allows the use of larger control gains, it only leads to a small
improvement in terms of settling time (see Table 2 for
numerical values; our definition of settling time was the
lowest time instant * for which [p(¢)] < 0.02 [}(0)| V¢ > ).
On the other hand, the dynamic FSA can handle even larger
control gains, which results in a significantly faster system

response. This is achieved through a more aggressive
turning of the steering wheel, which also leads to larger side
slip angles ar, ag, lateral acceleration a,, and jerk j,.. Note
that because the reference signal is zero up until # = 0, the
controllers assume zero tracking error during the first ¢
interval.

The simulation results in Figure 7 show that the dynamic
FSA outperforms the other two controllers even when the
cornering stiffness values are highly uncertain. There is no
significant change in the system response as long as the
predictive model is tuned to have a neutral or oversteering
cornering characteristic. On the other hand, choosing an
understeering behavior can lead to undesired oscillations
and even instability in extreme cases. As an illustrative
example, it is more preferable to overestimate both Cr and
Cr by 60% (leading to a neutral predictive model) than
knowing the exact value of Cg and having the 60% error
only in Cgr. Even though only one parameter is inaccurate,
the latter scenario leads to an understeering predictive
model, which results in the appearance of oscillations in the
system response.

Based on our analysis so far, if the precise value of Cp,
CR, m, or J, are not known, from a practical point of view, it
is generally more beneficial to overestimate them (as long
as the predictive model does not become understeered
as a result). In Figure 8(a), a sort of worst case scenario is
considered, where all additional physical parameters of the
dynamic vehicle model are highly uncertain: the front and
rear cornering stiffnesses are assumed to be double their real
value, while m and J, are overestimated by 50%. Despite
these large inaccuracies, the stable domain is still compa-
rable in size to the stable region of the kinematic FSA
controller, and the system response is still significantly
faster. The settling time value in Table 2 even improved
compared with using accurate model parameters but that
depends on the definition of settling time. If instead of 2% of
[»(0)], a tighter band is used around the equilibrium, then it
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eventually shows that the accurate model converges faster = Therefore, if these parameters are not known accurately,
toy=0. then overestimating them by a large margin still leads to

The negative effects of the parameter errors become a fast, highly damped system response that has a clear
more apparent when comparing the predicted and the real —advantage over the other two controllers. Note that the
trajectories. Nevertheless, the prediction errors remain small  control parameters P, and P, were not changed; they were
enough to not affect the overall system response much. set assuming no parameter errors in the predictive model.
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7. Conclusion

Because of the growing amount of sensor data and the
increasing complexity of the related algorithms (from
object detection to vehicle localization), time delay has
become a serious issue in autonomous driving. The use of
FSA in vehicle motion control can provide a real solution
to this problem, directly increasing the safety and effi-
ciency of the related driver assistance and autonomous
driving functions. We showed that the presence of feed-
back delay severely restricts the region of control pa-
rameters that can stabilize the vehicle using state feedback.
The FSA controller can alleviate this problem by using
a predictive model of the system. Even if this internal
model is overly simple with no considerations of tire—road
dynamics, the larger admissible control gains already lead
to a faster system response. However, extending the
predictive model with linear tire characteristics leads to
huge improvements both in terms of stable parameter
domains and system response, at the cost of approximately
four times as many operations. If the increased compu-
tational requirements can be handled, then the use of
this more detailed model is recommended even if exact
values of the additional vehicle parameters are not
known: the system’s robustness was demonstrated
against highly overestimated tire cornering stiffness,
vehicle mass, and moment of inertia values. As long as
the predictive model is not tuned to have an understeering
cornering characteristic, the system response is barely
affected by variations of these parameters. Although the
benefits of the FSA method were demonstrated through
the example of a simple feedback controller, similar
improvements can be expected in more advanced control
approaches as well by using the predicted states instead
of the delayed signal.
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