PLESOL, Item
, Comp
, KUND
, Fact
Displays the solution results as discontinuous element
contours.
Item
Label identifying the item. Valid item labels are shown in the table below. Some items also require a component label.
Comp
Component of the item (if required). Valid component labels are shown in the table below.
KUND
Undisplaced shape key:
0 | — | Do not overlay undeformed structure display. |
1 | — | Overlay displaced contour plot with undeformed display (appearance is system-dependent). |
2 | — | Overlay displaced contour plot with undeformed edge display (appearance is system-dependent). |
Fact
Scale factor for 2-D display of contact items (defaults to 1). A negative scaling factor may be used to invert the display.
PLESOL displays the solution results as element contours discontinuous across element boundaries for the selected elements.
For example, PLESOL,S,X displays the X component of stress S (that is, the SX stress component). Various element results depend on the calculation method and the selected results location (AVPRIN, RSYS, and ESEL).
Contours are determined by linear interpolation within each element, unaffected by the surrounding elements; that is, no nodal averaging occurs. The discontinuity between contours of adjacent elements is an indication of the gradient across elements. Component results are displayed in the active results coordinate system (RSYS [default is global Cartesian]).
To display items not available via PLESOL (such as line element results), see ETABLE and PLETAB.
For PowerGraphics displays (/GRAPHICS,POWER), results are plotted only for the model exterior surface. Items marked [1] are not supported by PowerGraphics.
Table 209: PLESOL - Valid Item and Component Labels for Element Results
General Item and Component
Labels PLESOL, Lab, Item, Comp | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | Comp | Description | ||||||||||||
S | X, Y, Z, XY, YZ, XZ | Component stress. | ||||||||||||
1, 2, 3 | Principal stress. | |||||||||||||
INT | Stress intensity. | |||||||||||||
EQV | Equivalent stress. | |||||||||||||
EPEL | X, Y, Z, XY, YZ, XZ | Component elastic strain. | ||||||||||||
1, 2, 3 | Principal elastic strain. | |||||||||||||
INT | Elastic strain intensity. | |||||||||||||
EQV | Elastic equivalent strain. | |||||||||||||
EPPL | X, Y, Z, XY, YZ, XZ | Component plastic strain. | ||||||||||||
1, 2, 3 | Principal plastic strain. | |||||||||||||
INT | Plastic strain intensity. | |||||||||||||
EQV | Plastic equivalent strain. | |||||||||||||
EPCR | X, Y, Z, XY, YZ, XZ | Component creep strain. | ||||||||||||
1, 2, 3 | Principal creep strain. | |||||||||||||
INT | Creep strain intensity. | |||||||||||||
EQV | Creep equivalent strain. | |||||||||||||
EPTH | X, Y, Z, XY, YZ, XZ | Component thermal strain. | ||||||||||||
1, 2, 3 | Principal thermal strain. | |||||||||||||
INT | Thermal strain intensity. | |||||||||||||
EQV | Thermal equivalent strain. | |||||||||||||
EPSW | Swelling strain. | |||||||||||||
EPTO | X, Y, Z, XY, YZ, XZ | Component total mechanical strain (EPEL + EPPL + EPCR). | ||||||||||||
1, 2, 3 | Principal total mechanical strain. | |||||||||||||
INT | Total mechanical strain intensity. | |||||||||||||
EQV | Total mechanical equivalent strain. | |||||||||||||
EPTT | X, Y, Z, XY, YZ, XZ | Total mechanical and thermal and swelling strain (EPEL + EPPL + EPCR + EPTH + EPSW). [8] | ||||||||||||
1, 2, 3 | Principal total mechanical and thermal and swelling strain. | |||||||||||||
INT | Total mechanical and thermal and swelling strain intensity. | |||||||||||||
EQV | Total mechanical and thermal and swelling equivalent strain. | |||||||||||||
EPDI | X, Y, Z, XY, YZ, XZ | Component diffusion strain. [1] | ||||||||||||
1, 2, 3 | Principal diffusion strain. | |||||||||||||
INT | Diffusion strain intensity. | |||||||||||||
EQV | Diffusion equivalent strain. | |||||||||||||
NL | SEPL | Equivalent stress (from stress-strain curve). | ||||||||||||
SRAT | Stress state ratio. | |||||||||||||
HPRES | Hydrostatic pressure. | |||||||||||||
EPEQ | Accumulated equivalent plastic strain. | |||||||||||||
CREQ | Accumulated equivalent creep strain. | |||||||||||||
PSV | Plastic state variable. | |||||||||||||
PLWK | Plastic work/volume. | |||||||||||||
SEND | ELASTIC | Elastic strain energy density. | ||||||||||||
PLASTIC | Plastic strain energy density. | |||||||||||||
CREEP | Creep strain energy density. | |||||||||||||
DAMAGE | Damage strain energy density. | |||||||||||||
VDAM | Viscoelastic dissipation energy density. | |||||||||||||
VREG | Visco-regularization strain energy density. | |||||||||||||
ENTO | Total strain energy density. | |||||||||||||
CDM | DMG | Damage variable. | ||||||||||||
LM | Maximum previous strain energy for virgin material. | |||||||||||||
FAIL | MAX | Maximum of all active failure criteria defined at the current location. [1][3] (See FCTYP.) | ||||||||||||
EMAX | Maximum Strain Failure Criterion. [1][3] | |||||||||||||
SMAX | Maximum Stress Failure Criterion. [1][3] | |||||||||||||
TWSI | Tsai-Wu Strength Index Failure Criterion. [1][3] | |||||||||||||
TWSR | Inverse of Tsai-Wu Strength Ratio Index Failure Criterion. [1][3] | |||||||||||||
HFIB | Hashin Fiber Failure Criterion. [1][3][5] | |||||||||||||
HMAT | Hashin Matrix Failure Criterion. [1][3][5] | |||||||||||||
PFIB | Puck Fiber Failure Criterion. [1][3][5] | |||||||||||||
PMAT | Puck Matrix Failure Criterion. [1][3][5] | |||||||||||||
L3FB | LaRc03 Fiber Failure Criterion. [1][3][5] | |||||||||||||
L3MT | LaRc03 Matrix Failure Criterion. [1][3][5] | |||||||||||||
L4FB | LaRc04 Fiber Failure Criterion. [1][3][5] | |||||||||||||
L4MT | LaRc04 Matrix Failure Criterion. [1][3][5] | |||||||||||||
USR1, USR2, ..., USR9 | User-defined failure criteria. [1][3][4][5] | |||||||||||||
PFC | MAX [9] | Maximum of all failure criteria defined at current location. | ||||||||||||
FT [9] | Fiber tensile failure criteria. | |||||||||||||
FC [9] | Fiber compressive failure criteria. | |||||||||||||
MT [9] | Matrix tensile failure criteria. | |||||||||||||
MC [9] | Matrix compressive failure criteria. | |||||||||||||
PDMG | STAT | Damage status (0 = undamaged, 1 = damaged, 2 = completely damaged). | ||||||||||||
FT | Fiber tensile damage variable. | |||||||||||||
FC | Fiber compressive damage variable. | |||||||||||||
MT | Matrix tensile damage variable. | |||||||||||||
MC | Matrix compressive damage variable. | |||||||||||||
S | Shear damage variable (S). | |||||||||||||
SED | Energy dissipated per unit volume. | |||||||||||||
SEDV | Energy per unit volume due to viscous damping. | |||||||||||||
FCMX | LAY | Layer number where the maximum of all active failure criteria over the entire element occurs. [1][3] | ||||||||||||
FC | Number of the maximum-failure criterion over the entire element:
[1][3]
| |||||||||||||
VAL | Value of the maximum failure criterion over the entire element: [1][3] | |||||||||||||
SVAR | 1, 2, 3, ... N | State variable. [1] | ||||||||||||
GKS | X, XY, XZ | Gasket component stress. | ||||||||||||
GKD | X, XY, XZ | Gasket component total closure. | ||||||||||||
GKDI | X, XY, XZ | Gasket component total inelastic closure. | ||||||||||||
GKTH | X, XY, XZ | Gasket component thermal closure. | ||||||||||||
SS | X, XY, XZ | Interface traction (stress). | ||||||||||||
SD | X, XY, XZ | Interface separation. | ||||||||||||
CONT | STAT | Contact status: [2]
| ||||||||||||
PENE | Contact penetration. | |||||||||||||
PRES | Contact pressure. | |||||||||||||
SFRIC | Contact friction stress. | |||||||||||||
STOT | Contact total stress (pressure plus friction). | |||||||||||||
SLIDE | Contact sliding distance. | |||||||||||||
GAP | Contact gap distance. | |||||||||||||
FLUX | Total heat flux at contact surface. | |||||||||||||
CNOS | Total number of contact status changes during substep. | |||||||||||||
FPRS | Fluid penetration pressure. | |||||||||||||
TG | X, Y, Z, SUM | Component thermal gradient or vector sum. | ||||||||||||
TF | X, Y, Z, SUM | Component thermal flux or vector sum. | ||||||||||||
PG | X, Y, Z, SUM | Component pressure gradient or vector sum. | ||||||||||||
EF | X, Y, Z, SUM | Component electric field or vector sum. | ||||||||||||
D | X, Y, Z, SUM | Component electric flux density or vector sum. | ||||||||||||
H | X, Y, Z, SUM | Component magnetic field intensity or vector sum. | ||||||||||||
B | X, Y, Z, SUM | Component magnetic flux density or vector sum. | ||||||||||||
CG | X, Y, Z, SUM | Component concentration gradient or vector sum. [1] | ||||||||||||
DF | X, Y, Z, SUM | Component diffusion flux density or vector sum. [1] | ||||||||||||
FMAG | X, Y, Z, SUM | Component electromagnetic force or vector sum. [1] | ||||||||||||
P | X, Y, Z, SUM | Pointing vector component or sum. [1] | ||||||||||||
SERR[6] | Structural error energy. [1] | |||||||||||||
SDSG[6] | Absolute value of the maximum variation of any nodal stress component. [1] | |||||||||||||
TERR[6] | Thermal error energy. [1] | |||||||||||||
TDSG[6] | Absolute value of the maximum variation of any nodal thermal gradient component. [1] | |||||||||||||
F | X, Y, Z | X, Y, or Z structural force. [1][7] | ||||||||||||
M | X, Y, Z | X, Y, or Z structural moment. [1] | ||||||||||||
HEAT | Heat flow. [1] | |||||||||||||
FLOW | Fluid flow. [1] | |||||||||||||
AMPS | Current flow [1]. Use FORCE for type. | |||||||||||||
CHRG | Charge [1]. Use FORCE for type. | |||||||||||||
FLUX | Magnetic flux. [1] | |||||||||||||
CSG | X, Y, Z | X, Y, or Z magnetic current segment component. [1] | ||||||||||||
RATE | Diffusion flow rate. | |||||||||||||
SENE | "Stiffness" energy or thermal heat dissipation. [1] Same as TENE. | |||||||||||||
STEN | Elemental energy dissipation due to stabilization. [1] | |||||||||||||
TENE | Thermal heat dissipation or "stiffness" energy. [1] Same as SENE. | |||||||||||||
KENE | Kinetic energy. [1] | |||||||||||||
AENE | Artificial energy due to hourglass control/drill stiffness or due to contact stabilization. [1] | |||||||||||||
JHEAT | Element Joule heat generation. [1] | |||||||||||||
JS | X, Y, Z, SUM | Source current density for low-frequency magnetic analyses. Total current density (sum of conduction and displacement current densities) in low frequency electric analyses. Components (X, Y, Z) and vector sum (SUM). [1] | ||||||||||||
JT | X, Y, Z, SUM | Total measureable current density in low-frequency electromagnetic analyses. (Conduction current density in a low-frequency electric analysis.) Components (X, Y, Z) and vector sum (SUM). [1] | ||||||||||||
JC | X, Y, Z, SUM | Conduction current density for elements that support conduction current calculation. Components (X, Y, Z) and vector sum (SUM). [1]. | ||||||||||||
MRE | Magnetic Reynolds number. [1] | |||||||||||||
VOLU | Volume of volume element. [1] | |||||||||||||
CENT | X, Y, Z | Centroid X, Y, or Z location (based on shape function) in the active coordinate system. [1] | ||||||||||||
BFE | TEMP | Body temperatures (calculated from applied temperatures) as used in solution (area and volume elements only). [10] | ||||||||||||
SMISC | snum | Element summable miscellaneous data value at sequence number
snum (shown in the Output Data section of each
element description. | ||||||||||||
NMISC | snum | Element non-summable miscellaneous data value at sequence number
snum (shown in the Output Data section of each
element description. | ||||||||||||
CAP | C0,X0,K0,ZONE, DPLS,VPLS | Material cap plasticity model only: Cohesion; hydrostatic compaction yielding stress; I1 at the transition point at which the shear and compaction envelopes intersect; zone = 0: elastic state, zone = 1: compaction zone, zone = 2: shear zone, zone = 3: expansion zone; effective deviatoric plastic strain; volume plastic strain. | ||||||||||||
EDPC | CSIG,CSTR | Material EDP creep model only (not including the cap model): Equivalent creep stress; equivalent creep strain. | ||||||||||||
FICT | TEMP | Fictive temperature. | ||||||||||||
ESIG | X,Y,Z,XY,YZ,ZX | Components of Biot’s effective stress. | ||||||||||||
1, 2, 3 | Principal stresses of Biot’s effective stress. | |||||||||||||
INT | Stress intensity of Biot’s effective stress. | |||||||||||||
EQV | Equivalent stress of Biot’s effective stress. | |||||||||||||
DPAR | TPOR | Total porosity (Gurson material model). | ||||||||||||
GPOR | Porosity due to void growth. | |||||||||||||
NPOR | Porosity due to void nucleation. | |||||||||||||
FFLX | X,Y,Z | Fluid flow flux in poromechanics. | ||||||||||||
MENE | Acoustic potential energy. [1] | |||||||||||||
PMSV | VRAT, PPRE, DSAT, RPER | Void volume ratio, pore pressure, degree of saturation, and relative permeability for coupled pore-pressure CPT elements. | ||||||||||||
YSIDX | TENS,SHEA | Yield surface activity status for Mohr-Coloumb, soil, concrete, and joint rock material models: 1 = yielded, 0 = not yielded. | ||||||||||||
FPIDX | TF01,SF01, TF02,SF02, TF03,SF03, TF04,SF04 | Failure plane surface activity status for concrete and joint rock material models: 1 = yielded, 0 = not yielded. Tension and shear failure status are available for all four sets of failure planes. | ||||||||||||
NS | X, Y, Z, XY, YZ, XZ | Nominal strain for hyperelastic material, reported in the current configuration (unaffected by RSYS). | ||||||||||||
MPLA | DMAC, DMAX | Microplane damage, macroscopic and maximum values. |
For MPC-based contact definitions, the value of STAT can be negative, indicating that one or more contact constraints were intentionally removed to prevent overconstraint. STAT = -3 is used for MPC bonded contact; STAT = -2 is used for MPC no-separation contact.
Works only if failure criteria information is provided. (For more information, see FC and TB.)
Works only if user-defined failure criteria routine is provided.
Must be added via FCTYP first.
Some element- and material-type limitations apply. (See PRERR.)
Do not use PLESOL to obtain contact forces for contact elements, as the force values reported may not be accurate. Instead, use ETABLE to obtain contact force values.
Total mechanical, thermal, and diffusion strain (EPEL + EPPL + EPCR + EPTH + EPDI) in coupled-diffusion analyses.
Failure criteria are based on the effective stresses in the damaged material.
For SOLID278 and SOLID279 with KEYOPT(3) = 2, use PLESOL,BFE,TEMP to plot the temperature distribution through the thickness of the element. When other thermal elements are included in the model, deselect them to avoid plotting undefined information.