ETABLE, Lab
, Item
, Comp
, Option
Fills a table of element values for further processing.
Lab
Any unique user-defined label for use in subsequent commands and output headings. A valid
label has a maximum of eight characters and is not a general predefined
Item
label. Default: An eight-character label formed by
concatenating the first four characters of the Item
and
Comp
labels.
If the same as a previous user label, the result item is included under the same label. Up to 200 different labels can be defined.
The following predefined labels are reserved:
REFL | — | Refills all tables previously defined with the ETABLE commands (not the CALC module commands) according to the latest ETABLE specifications. It is convenient for refilling tables after the load step (SET) has changed. Remaining fields are ignored. |
STAT | — | Displays stored table values. |
ERAS | — | Erases the entire table. |
Item
Label identifying the item. General item labels are shown in the table below. Some items also
require a component label. Character parameters are valid.
Item
= ERAS erases a Lab
column.
Comp
Component of the item (if required). General component labels are shown in the table below. Character parameters can be used.
Option
Option for storing element table data:
MIN | — | Store minimum element nodal value of the specified item component. |
MAX | — | Store maximum element nodal value of the specified item component. |
AVG | — | Store averaged element centroid value of the specified item component (default). |
ETABLE defines a table of values per element (the element table) for use in
further processing. The element table is organized similar to a spreadsheet, with rows
representing all selected elements and columns consisting of result items which have been
moved into the table (Item
,Comp
) via
ETABLE. Each column of data is identified by a user-defined label
(Lab
) for listings and displays.
After entering the data into the element table, you are not limited to merely listing or displaying your data (PLESOL, PRESOL, etc.). You can also perform many types of operations on your data, such as adding or multiplying columns (SADD, SMULT), defining allowable stresses for safety calculations (SALLOW), or multiplying one column by another (SMULT). See Getting Started in the Mechanical APDL Basic Analysis Guide for more information.
Various results data can be stored in the element table. For example, many items for an element are inherently single-valued (one value per element). The single-valued items include: SERR, SDSG, TERR, TDSG, SENE, SEDN, TENE, KENE, AENE, JHEAT, JS, VOLU, and CENT. All other items are multivalued (varying over the element, such that there is a different value at each node). Because only one value is stored in the element table per element, an average value (based on the number of contributing nodes) is calculated for multivalued items. Exceptions to this averaging procedure are FMAG and all element force items, which represent the sum only of the contributing nodal values.
Two methods of data access can be used with the ETABLE command. The method you select depends upon the type of data that you want to store. Some results can be accessed via a generic label (Component Name method), while others require a label and number (Sequence Number method).
The component name method is used to access the general element data (that is, element data which is generally available to most element types or groups of element types). All of the single-valued items and some of the more general multivalued items are accessible with the Component Name method. Various element results depend on the calculation method and the selected results location (AVPRIN, RSYS, LAYER, SHELL, and ESEL).
Although nodal data is readily available for listings and displays (PRNSOL,
PLNSOL) without using the element table, you can also use the Component
Name method to enter these results into the element table for further "worksheet"
manipulation. (See Getting Started in the Mechanical APDL Basic Analysis Guide for more
information.) A listing of the General Item
and
Comp
labels for the component name method is shown below.
The sequence number method enables you to view results for data that is not averaged (such as
pressures at nodes, temperatures at integration points, etc.), or data that is not easily
described in a generic fashion (such as all derived data for structural line elements and
contact elements, all derived data for thermal line elements, layer data for layered elements,
etc.). A table illustrating the Items
(such as LS, LEPEL, LEPTH,
SMISC, NMISC, SURF, etc.) and corresponding sequence numbers for each element is shown in the
Output Data section of each element description.
Some element table data are reported in the results coordinate system. These include all component results (for example, UX, UY, etc.; SX, SY, etc.). The solution writes component results in the database and on the results file in the solution coordinate system. When you issue the ETABLE command, these results are then transformed into the results coordinate system (RSYS) before being stored in the element table. The default results coordinate system is global Cartesian (RSYS,0). All other data are retrieved from the database and stored in the element table with no coordinate transformation.
To display the stored table values, issue the PRETAB,
PLETAB, or ETABLE,STAT command. To erase the entire
table, issue ETABLE,ERAS. To erase a Lab
column,
issue ETABLE,Lab
,ERAS.
When the GUI is enabled, if a Delete operation in a
Define Element Table Data dialog box writes this command to a log
file (Jobname.LOG or Jobname.LGW), the program sets
Lab
= blank, Item
= ERASE, and
Comp
= an integer number. In this case, the program has assigned
a value of Comp
that corresponds to the location of a chosen
variable name in the dialog list. It is not intended that
you type in such a location value for Comp
in a session; however, a
file that contains a GUI-generated ETABLE command of this form can be used
for batch input or the /INPUT command.
The MIN and MAX options are not available for thermal elements.
The element table data option (Option
) is not available for all output items. See the table below for
supported items.
Table 125: ETABLE - General Item and Component Labels
General Item and Component
Labels ETABLE, Lab, Item, Comp | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Item | Comp | Description | ||||||||||||
Valid Item Labels for Degree of Freedom Results | ||||||||||||||
U | X, Y, Z | X, Y, or Z structural displacement. | ||||||||||||
ROT | X, Y, Z | X, Y, or Z structural rotation. | ||||||||||||
TEMP [1] | Temperature. | |||||||||||||
PRES | Pressure. | |||||||||||||
VOLT | Electric potential. | |||||||||||||
MAG | Magnetic scalar potential. | |||||||||||||
V | X, Y, Z | X, Y, or Z fluid velocity. | ||||||||||||
A | X, Y, Z | X, Y, or Z magnetic vector potential. | ||||||||||||
CONC | Concentration. | |||||||||||||
CURR | Current. | |||||||||||||
EMF | Electromotive force drop. | |||||||||||||
Valid Item and Component Labels for Element Results | ||||||||||||||
S [2] | X, Y, Z, XY, YZ, XZ | Component stress. | ||||||||||||
1, 2, 3 | Principal stress. | |||||||||||||
INT | Stress intensity. | |||||||||||||
EQV | Equivalent stress. | |||||||||||||
EPEL [2] | X, Y, Z, XY, YZ, XZ | Component elastic strain. | ||||||||||||
1, 2, 3 | Principal elastic strain. | |||||||||||||
INT | Elastic strain intensity. | |||||||||||||
EQV | Elastic equivalent strain. | |||||||||||||
EPTH [2] | X, Y, Z, XY, YZ, XZ | Component thermal strain. | ||||||||||||
1, 2, 3 | Principal thermal strain. | |||||||||||||
INT | Thermal strain intensity. | |||||||||||||
EQV | Thermal equivalent strain. | |||||||||||||
EPPL [2] | X, Y, Z, XY, YZ, XZ | Component plastic strain. | ||||||||||||
1, 2, 3 | Principal plastic strain. | |||||||||||||
INT | Plastic strain intensity. | |||||||||||||
EQV | Plastic equivalent strain. | |||||||||||||
EPCR [2] | X, Y, Z, XY, YZ, XZ | Component creep strain. | ||||||||||||
1, 2, 3 | Principal creep strain. | |||||||||||||
INT | Creep strain intensity. | |||||||||||||
EQV | Creep equivalent strain. | |||||||||||||
EPSW [2] | Swelling strain. | |||||||||||||
EPTO [2] | X, Y, Z, XY, YZ, XZ | Component total mechanical strain (excluding thermal) (EPEL + EPPL + EPCR). | ||||||||||||
1, 2, 3 | Principal total mechanical strain. | |||||||||||||
INT | Total mechanical strain intensity. | |||||||||||||
EQV | Total equivalent mechanical strain. | |||||||||||||
EPTT [2] | X, Y, Z, XY, YZ, XZ | Component total strain including thermal and swelling (EPEL + EPTH + EPPL + EPCR + EPSW). | ||||||||||||
1, 2, 3 | Principal total strain. | |||||||||||||
INT | Total strain intensity. | |||||||||||||
EQV | Total equivalent strain. | |||||||||||||
NL [2] | SEPL | Equivalent stress (from stress-strain curve). | ||||||||||||
SRAT | Stress state ratio. | |||||||||||||
HPRES | Hydrostatic pressure. | |||||||||||||
EPEQ | Accumulated equivalent plastic strain. | |||||||||||||
SEND [2] | ELASTIC | Elastic strain energy density. | ||||||||||||
PLASTIC | Plastic strain energy density. | |||||||||||||
CREEP | Creep strain energy density. | |||||||||||||
DAMAGE | Damage strain energy density. | |||||||||||||
VDAM | Viscoelastic dissipation energy density. | |||||||||||||
VREG | Visco-regularization strain energy density. | |||||||||||||
ENTO | Total strain energy density. | |||||||||||||
SVAR | 1 to MAX | State variable. | ||||||||||||
CDM | DMG | Damage variable. | ||||||||||||
LM | Maximum previous strain energy for virgin material. | |||||||||||||
FAIL | MAX [1][4] | Maximum of all active failure criteria defined at the current location (FCTYP) . | ||||||||||||
EMAX [1][4] | Maximum Strain Failure Criterion. | |||||||||||||
SMAX [1][4] | Maximum Stress Failure Criterion. | |||||||||||||
TWSI [1][4] | Tsai-Wu Strength Index Failure Criterion. | |||||||||||||
TWSR [1][4] | Inverse of Tsai-Wu Strength Ratio Index Failure Criterion. | |||||||||||||
HFIB [1][4][6] | Hashin Fiber Failure Criterion. | |||||||||||||
HMAT [1][4][6] | Hashin Matrix Failure Criterion. | |||||||||||||
PFIB [1][4][6] | Puck Fiber Failure Criterion. | |||||||||||||
PMAT [1][4][6] | Puck Matrix Failure Criterion. | |||||||||||||
L3FB [1][4][6] | LaRc03 Fiber Failure Criterion. | |||||||||||||
L3MT [1][4][6] | LaRc03 Matrix Failure Criterion. | |||||||||||||
L4FB [1][4][6] | LaRc04 Fiber Failure Criterion. | |||||||||||||
L4MT [1][4][6] | LaRc04 Matrix Failure Criterion. | |||||||||||||
USR1, USR2, ..., USR9 [1][4][5][6] | User-defined failure criteria. | |||||||||||||
PFC | MAX [7] | Maximum of all failure criteria defined at current location | ||||||||||||
FT [7] | Fiber tensile failure criteria | |||||||||||||
FC [7] | Fiber compressive failure criteria | |||||||||||||
MT [7] | Matrix tensile failure criteria | |||||||||||||
MC [7] | Matrix compressive failure criteria | |||||||||||||
PDMG | STAT | Damage status (0 - undamaged, 1 - damaged, 2 - completely damaged) | ||||||||||||
FT | Fiber tensile damage variable | |||||||||||||
FC | Fiber compressive damage variable | |||||||||||||
MT | Matrix tensile damage variable | |||||||||||||
MC | Matrix compressive damage variable | |||||||||||||
S | Shear damage variable (S) | |||||||||||||
SED | Energy dissipated per unit volume | |||||||||||||
SEDV | Energy per unit volume due to viscous damping | |||||||||||||
FCMX [1][4] | LAY | Layer number where the maximum of all active failure criteria over the entire element occurs. | ||||||||||||
FC |
Number of the maximum-failure criterion over the entire element:
| |||||||||||||
VAL | Value of the maximum failure criterion over the entire element. | |||||||||||||
TG | X, Y, Z, SUM | Component thermal gradient or vector sum. | ||||||||||||
TF | X, Y, Z, SUM | Component thermal flux or vector sum. | ||||||||||||
PG | X, Y, Z, SUM | Component pressure gradient or vector sum. | ||||||||||||
EF | X, Y, Z, SUM | Component electric field or vector sum. | ||||||||||||
D | X, Y, Z, SUM | Component electric flux density or vector sum. | ||||||||||||
H | X, Y, Z, SUM | Component magnetic field intensity or vector sum. | ||||||||||||
B | X, Y, Z, SUM | Component magnetic flux density or vector sum. | ||||||||||||
CG | X, Y, Z, SUM | Component concentration gradient or vector sum. | ||||||||||||
DF | X, Y, Z, SUM | Component diffusion flux density or vector sum. | ||||||||||||
FMAG [5] | X, Y, Z, SUM | Component electromagnetic forces or vector sum. | ||||||||||||
SERR [6] | Structural error energy. | |||||||||||||
SDSG [6] | Absolute value of maximum variation of any nodal stress component. | |||||||||||||
TERR [6] | Thermal error energy. | |||||||||||||
TDSG [6] | Absolute value of the maximum variation of any nodal thermal gradient component. | |||||||||||||
F | X, Y, Z | Component structural force. Sum of element nodal values. | ||||||||||||
M | X, Y, Z | Component structural moment. Sum of element nodal values. | ||||||||||||
HEAT | Heat flow. Sum of element nodal values. | |||||||||||||
FLOW | Fluid flow. Sum of element nodal values. | |||||||||||||
AMPS | Current flow. Sum of element nodal values. | |||||||||||||
FLUX | Magnetic flux. Sum of element nodal values. | |||||||||||||
CSG | X, Y, Z | Component magnetic current segment. | ||||||||||||
RATE | Diffusion flow rate. Sum of element nodal values. | |||||||||||||
SENE | "Stiffness" energy or thermal heat dissipation (applies to all elements where meaningful). Same as TENE. | |||||||||||||
SEDN | Strain energy density. | |||||||||||||
AENE | Artificial energy of the element. This includes the sum of hourglass control energy and energy generated by in-plane drilling stiffness from shell elements (applies to all elements where meaningful). It also includes artificial energy due to contact stabilization. The energy is used for comparisons to SENE energy to predict the solution error due to artificial stiffness. See the Mechanical APDL Theory Reference. | |||||||||||||
TENE | Thermal heat dissipation or "stiffness" energy (applies to all elements where meaningful). Same as SENE. | |||||||||||||
KENE | Kinetic energy (applies to all elements where meaningful). | |||||||||||||
STEN | Elemental energy dissipation due to stabilization. | |||||||||||||
JHEAT | Element Joule heat generation. | |||||||||||||
JS | X, Y, Z, SUM | Source current density for low-frequency magnetic analyses. Total current density (sum of conduction and displacement current densities) in low frequency electric analyses. Components (X, Y, Z) and vector sum (SUM). | ||||||||||||
JT | X, Y, Z, SUM | Total measureable current density in low-frequency electromagnetic analyses. (Conduction current density in a low-frequency electric analysis.) Components (X, Y, Z) and vector sum (SUM). | ||||||||||||
JC | X, Y, Z, SUM | Conduction current density for elements that support conduction current calculation. Components (X, Y, Z) and vector sum (SUM). | ||||||||||||
MRE | Magnetics Reynolds number | |||||||||||||
VOLU | Element volume. Based on unit thickness for 2-D plane elements (unless the thickness option is used) and on the full 360 degrees for 2-D axisymmetric elements. | |||||||||||||
CENT | X, Y, Z | Undeformed X, Y, or Z location (based on shape function) of the element centroid in the active coordinate system. | ||||||||||||
BFE [2] | TEMP | Body temperatures (calculated from applied temperatures) as used in solution (area and volume elements only). | ||||||||||||
SMISC | snum | Element summable miscellaneous data value at sequence number snum (shown in the Output Data section of each applicable element description in the Element Reference). | ||||||||||||
NMISC | snum | Element non-summable miscellaneous data value at sequence number snum (shown in the Output Data section of each applicable element description found in the Element Reference). | ||||||||||||
SURF | snum | Element surface data value at sequence number snum. | ||||||||||||
CONT | STAT [4] | Contact status:
| ||||||||||||
PENE | Contact penetration (zero or positive). | |||||||||||||
PRES | Contact pressure. | |||||||||||||
SFRIC | Contact friction stress. | |||||||||||||
STOT | Contact total stress (pressure plus friction). | |||||||||||||
SLIDE | Contact sliding distance. | |||||||||||||
GAP | Contact gap distance (0 or negative). | |||||||||||||
FLUX | Total heat flux at contact surface. | |||||||||||||
CNOS | Total number of contact status changes during substep. | |||||||||||||
FPRS | Fluid penetration pressure | |||||||||||||
TOPO | Densities used for topological optimization. | |||||||||||||
CAP | C0,X0,K0,ZONE, DPLS,VPLS | Material cap plasticity model only: Cohesion; hydrostatic compaction yielding stress; I1 at the transition point at which the shear and compaction envelopes intersect; zone = 0: elastic state, zone = 1: compaction zone, zone = 2: shear zone, zone = 3: expansion zone; effective deviatoric plastic strain; volume plastic strain. | ||||||||||||
EDPC | CSIG,CSTR | Material EDP creep model only (not including the cap model): Equivalent creep stress; equivalent creep strain. | ||||||||||||
ESIG [2] | X,Y,Z,XY,YZ,ZX | Components of Biot’s effective stress. | ||||||||||||
1, 2, 3 | Principal stresses of Biot’s effective stress. | |||||||||||||
INT | Stress intensity of Biot’s effective stress. | |||||||||||||
EQV | Equivalent stress of Biot’s effective stress. | |||||||||||||
DPAR | TPOR | Total porosity (Gurson material model). | ||||||||||||
GPOR | Porosity due to void growth. | |||||||||||||
NPOR | Porosity due to void nucleation. | |||||||||||||
FFLX | X,Y,Z | Fluid flow flux in poromechanics. | ||||||||||||
FICT [2] | TEMP | Fictive temperature. | ||||||||||||
PMSV | VRAT, PPRE, DSAT, RPER | Void volume ratio, pore pressure, degree of saturation, and relative permeability for coupled pore-pressure CPT elements. | ||||||||||||
YSIDX | TENS,SHEA | Yield surface activity status for Mohr-Coloumb, soil, concrete, and joint rock material models: 1 = yielded, 0 = not yielded. | ||||||||||||
FPIDX | TF01,SF01, TF02,SF02, TF03,SF03, TF04,SF04 | Failure plane surface activity status for concrete and joint rock material models: 1 = yielded, 0 = not yielded. Tension and shear failure status are available for all four sets of failure planes. | ||||||||||||
NS | X, Y, Z, XY, YZ, XZ | Nominal strain for hyperelastic material, reported in the current configuration (unaffected by RSYS). | ||||||||||||
MPLA | DMAC, DMAX | Microplane damage, macroscopic and maximum values. |
For SHELL131 and SHELL132 elements with KEYOPT(3) = 0 or 1, use labels TBOT, TE2, TE3, . . ., TTOP instead of TEMP.
Element table option (Option
) is available for this element output data item.
For the CONT items for elements CONTA171 through CONTA177, the reported data is averaged across the element.
For MPC-based contact definitions, the value of STAT can be negative, indicating that one or more contact constraints were intentionally removed to prevent overconstraint. STAT = -3 is used for MPC bonded contact; STAT = -2 is used for MPC no-separation contact.
When using the EMFT procedure to calculate electromagnetic force (PLANE121, SOLID122, SOLID123, PLANE233, SOLID236 or SOLID237 elements only), the FMAG sum will be zero or near zero.
Some element- and material-type limitations apply. For more information, see PRERR.
Failure criteria are based on the effective stresses in the damaged material.