Table of Contents
- 1. Introduction
- 1.1. Overview of the Theory Reference
- 1.2. Understanding Theory Reference Notation
- 1.3. Applicable Products
- 2. Structures
- 2.1. Structural Fundamentals
- 2.1.1. Stress-Strain Relationships
- 2.1.2. Orthotropic Material Transformation for Axisymmetric Models
- 2.1.3. Temperature-Dependent Coefficient of Thermal Expansion
- 2.2. Derivation of Structural Matrices
- 2.3. Structural Strain and Stress Evaluations
- 2.3.1. Integration Point Strains and Stresses
- 2.3.2. Surface Stresses
- 2.3.3. Shell Element Output
- 2.4. Combined Stresses and Strains
- 2.4.1. Combined Strains
- 2.4.2. Combined Stresses
- 2.4.3. Failure Criteria
- 2.5. Perfectly Matched Layers (PML) in Elastic Media
- 3. Structures with Geometric Nonlinearities
- 3.1. Understanding Geometric Nonlinearities
- 3.2. Large Strain
- 3.2.1. Theory
- 3.2.2. Implementation
- 3.2.3. Definition of Thermal Strains
- 3.2.4. Element Formulation
- 3.2.5. Applicable Input
- 3.2.6. Applicable Output
- 3.3. Large Rotation
- 3.3.1. Theory
- 3.3.2. Implementation
- 3.3.3. Element Transformation
- 3.3.4. Deformational Displacements
- 3.3.5. Updating Rotations
- 3.3.6. Applicable Input
- 3.3.7. Applicable Output
- 3.3.8. Consistent Tangent Stiffness Matrix and Finite Rotation
- 3.4. Stress Stiffening
- 3.4.1. Overview and Usage
- 3.4.2. Theory
- 3.4.3. Implementation
- 3.4.4. Pressure Load Stiffness
- 3.4.5. Applicable Input
- 3.4.6. Applicable Output
- 3.5. Spin Softening
- 3.5.1. Spring-Mass System
- 3.5.2. General Equation
- 3.6. General Element Formulations
- 3.6.1. Fundamental Equations
- 3.6.2. Classical Pure Displacement Formulation
- 3.6.3. Mixed u-P Formulations
- 3.6.4. u-P Formulation I
- 3.6.5. u-P Formulation II
- 3.6.6. u-P Formulation III
- 3.6.7. Volumetric Constraint Equations in u-P Formulations
- 3.7. Constraints and Lagrange Multiplier Method
- 3.8. Steady State Rolling
- 3.8.1. General ALE Formulation
- 3.8.2. ALE Formulation for Steady State Rolling
- 3.8.3. Kinematics
- 4. Structures with Material Nonlinearities
- 4.1. Understanding Material Nonlinearities
- 4.2. Rate-Independent Plasticity
- 4.2.1. Theory
- 4.2.2. Yield Criterion
- 4.2.3. Flow Rule
- 4.2.4. Hardening Rule
- 4.2.5. Plastic Strain Increment
- 4.2.6. Implementation
- 4.2.7. Elastoplastic Stress-Strain Matrix
- 4.2.8. Specialization for Bilinear Isotropic Hardening
- 4.2.9. Specification for Nonlinear Isotropic Hardening
- 4.2.10. Specialization for Bilinear Kinematic Hardening
- 4.2.11. Specialization for Multilinear Kinematic Hardening
- 4.2.12. Specialization for Nonlinear Kinematic Hardening
- 4.2.13. Specialization for Anisotropic Plasticity (Hill Potential
Theory)
- 4.2.14. Specialization for Drucker-Prager
- 4.2.15. Extended Drucker-Prager Cap Model
- 4.2.16. Gurson's Model
- 4.2.17. Cast Iron Material Model
- 4.3. Rate-Dependent Plasticity (Including Creep and Viscoplasticity)
- 4.3.1. Creep
- 4.3.2. Rate-Dependent Plasticity
- 4.3.3. Extended Drucker-Prager (EDP) Creep Model
- 4.3.4. Cap Creep Model
- 4.4. Gasket Material
- 4.4.1. Stress and Deformation
- 4.4.2. Material Definition
- 4.4.3. Thermal Deformation
- 4.5. Nonlinear Elasticity
- 4.5.1. Overview and Guidelines for Use
- 4.6. Hyperelasticity
- 4.6.1. Finite Strain Elasticity
- 4.6.2. Deviatoric-Volumetric Multiplicative Split
- 4.6.3. Isotropic Hyperelasticity
- 4.6.4. Anisotropic Hyperelasticity
- 4.6.5. USER Subroutine
- 4.6.6. Output Quantities
- 4.6.7. Hyperelasticity Material Curve Fitting
- 4.6.8. Experimental Response Functions
- 4.6.9. Material Stability Check
- 4.7. Bergstrom-Boyce
- 4.8. Mullins Effect
- 4.8.1. The Pseudo-elastic Model
- 4.9. Viscoelasticity
- 4.9.1. Small Strain Viscoelasticity
- 4.9.2. Constitutive Equations
- 4.9.3. Numerical Integration
- 4.9.4. Thermorheological Simplicity
- 4.9.5. Large-Deformation Viscoelasticity
- 4.9.6. Visco-Hypoelasticity
- 4.9.7. Large-Strain Visco-Hyperelasticity
- 4.9.8. Large-Strain Visco-Anisotropic Hyperelasticity
- 4.9.9. Shift Functions
- 4.10. Concrete
- 4.10.1. The Domain (Compression - Compression - Compression)
- 4.10.2. The Domain (Tension - Compression - Compression)
- 4.10.3. The Domain (Tension - Tension - Compression)
- 4.10.4. The Domain (Tension - Tension - Tension)
- 4.11. Swelling
- 4.12. Cohesive Zone Material (CZM) Model
- 4.12.1. Interface Elements
- 4.12.2. Contact Elements
- 4.13. Fluid Material Models
- 4.13.1. Liquid
- 4.13.2. Gas
- 4.13.3. Pressure-Volume Data
- 5. Electromagnetics
- 5.1. Electromagnetic Field Fundamentals
- 5.1.1. Magnetic Scalar Potential
- 5.1.2. Solution Strategies
- 5.1.3. Magnetic Vector Potential
- 5.1.4. Edge-Based Magnetic Vector Potential
- 5.1.5. Harmonic Analysis Using Complex Formalism
- 5.1.6. Electric Scalar Potential
- 5.2. Derivation of Electromagnetic Matrices
- 5.2.1. Magnetic Scalar Potential
- 5.2.2. Magnetic Vector Potential
- 5.2.3. Edge-Based Magnetic Vector Potential
- 5.2.4. Electric Scalar Potential
- 5.3. Electromagnetic Field Evaluations
- 5.3.1. Magnetic Scalar Potential Results
- 5.3.2. Magnetic Vector Potential Results
- 5.3.3. Edge-Based Magnetic Vector Potential
- 5.3.4. Magnetic Forces
- 5.3.5. Joule Heat in a Magnetic Analysis
- 5.3.6. Electric Scalar Potential Results
- 5.3.7. Electrostatic Forces
- 5.4. Stranded Coil Analyses
- 5.4.1. Governing Equations
- 5.4.2. A-VOLT-EMF Formulation
- 5.5. Inductance, Flux and Energy Computation
- 5.5.1. Differential Inductance Definition
- 5.5.2. Review of Inductance Computation Methods
- 5.5.3. Inductance Computation Method Used
- 5.5.4. Transformer and Motion Induced Voltages
- 5.5.5. Absolute Flux Computation
- 5.5.6. Inductance Computations
- 5.5.7. Absolute Energy Computation
- 5.6. Electromagnetic Particle Tracing
- 5.7. Capacitance Computation
- 5.8. Conductance Computation
- 5.9. Hall Effect
- 6. Heat Flow
- 6.1. Heat Flow Fundamentals
- 6.1.1. Conduction and Convection
- 6.1.2. Radiation
- 6.2. Derivation of Heat Flow Matrices
- 6.3. Heat Flow Evaluations
- 6.3.1. Integration Point Output
- 6.3.2. Surface Output
- 6.4. Radiation Matrix Method
- 6.4.1. View Factor Calculation (2-D): Radiation Matrix Method
- 6.4.2. View Factors of Axisymmetric Bodies
- 6.4.3. Space Node
- 6.5. Radiosity Solution Method
- 6.5.1. View Factor Calculation (3-D): Hemicube Method
- 7. Thin Fluid Film Flow
- 7.1. Squeeze Film
- 7.1.1. Flow Between Flat Surfaces
- 7.1.2. Flow in Channels
- 7.2. Slide Film
- 7.3. Hydrodynamic Bearing
- 7.3.1. Finite Length Formulation for 2-D Elements
- 7.3.2. Finite Element Formulation for 3-D Element
- 8. Acoustics
- 8.1. Acoustic Fundamentals
- 8.1.1. Governing Equations
- 8.1.2. Finite Element Formulation of the Wave Equation
- 8.1.3. Governing Equations with Mean Flow Effect
- 8.1.4. Finite Element Formulation of the Convective Wave Equation
- 8.2. Derivation of Acoustic Matrices
- 8.3. Propagation, Radiation, and Scattering of Acoustic Pressure
Waves
- 8.3.1. Acoustic Boundary Conditions
- 8.3.2. Absorbing Boundary Condition (ABC)
- 8.3.3. Artificially Matched Layers
- 8.3.4. Acoustic Excitation Sources
- 8.3.5. Sophisticated Acoustic Media
- 8.4. Acoustic Fluid-Structural Interaction (FSI)
- 8.4.1. Coupled Acoustic Fluid-Structural System with an Unsymmetric
Matrix Equation
- 8.4.2. Coupled Acoustic Fluid-Structural System with Symmetric Matrix
Equation for Full Harmonic Analysis
- 8.5. Pure Scattered Pressure Formulation
- 8.6. Acoustic Output Quantities
- 8.6.1. Sound Pressure
- 8.6.2. Far-field Parameters
- 8.6.3. Sound Power
- 8.6.4. Acoustic Surface Quantities
- 8.6.5. Acoustic Volumetric Quantities
- 8.6.6. Band Sound Pressure Level
- 8.6.7. Equivalent Radiated Power
- 8.7. Transfer Admittance Matrix
- 8.7.1. Transfer Admittance Matrix Connected to Acoustic Domains
- 8.7.2. Transfer Admittance Matrix Connected to the Structural and
Acoustic Domain
- 8.8. Random Acoustics
- 8.8.1. Acoustic Diffuse Sound Field
- 8.8.2. Diffuse Sound Field Power Spectral Density
- 8.8.3. Diffuse Sound Field Physical Sampling
- 9. Diffusion
- 9.1. Diffusion Fundamentals
- 9.2. Normalized Concentration Approach
- 9.3. Derivation of Diffusion Matrices
- 9.4. Diffusion Analysis Results
- 10. Coupling
- 10.1. Coupled Effects
- 10.1.1. Elements
- 10.1.2. Coupling Methods
- 10.2. Thermoelasticity
- 10.3. Thermoplasticity
- 10.4. Piezoelectrics
- 10.5. Electroelasticity
- 10.6. Piezoresistivity
- 10.7. Thermoelectrics
- 10.8. Review of Coupled Electromechanical Methods
- 10.9. Porous Media Flow
- 10.10. Structural-Diffusion Coupling
- 10.11. Thermal-Diffusion Coupling
- 10.12. Electric-Diffusion Coupling
- 11. Shape Functions
- 11.1. Understanding Shape Function Labels
- 11.2. 2-D Lines
- 11.2.1. 2-D Lines without RDOF
- 11.2.2. 2-D Lines with RDOF
- 11.3. 3-D Lines
- 11.3.1. 3-D 2-Node Lines (Not Combining Translations and Rotations)
- 11.3.2. 3-D 2-Node Lines (Combining Translations and Rotations)
- 11.3.3. 3-D 3-Node Lines
- 11.3.4. 3-D 4-Node Lines
- 11.4. Axisymmetric Shells
- 11.4.1. Axisymmetric Shell without ESF
- 11.5. Axisymmetric Harmonic Shells and General Axisymmetric Surfaces
- 11.5.1. Axisymmetric Harmonic Shells
- 11.5.2. General Axisymmetric Surfaces
- 11.6. 3-D Shells
- 11.6.1. 3-D 3-Node Triangular Shells without RDOF (CST)
- 11.6.2. 3-D 6-Node Triangular Shells without RDOF (LST)
- 11.6.3. 3-D 3-Node Triangular Shells with RDOF but without SD
- 11.6.4. 3-D 4-Node Quadrilateral Shells without RDOF and without ESF
(Q4)
- 11.6.5. 3-D 4-Node Quadrilateral Shells without RDOF but with ESF (QM6)
- 11.6.6. 3-D 8-Node Quadrilateral Shells without RDOF
- 11.6.7. 3-D 4-Node Quadrilateral Shells with RDOF but without SD and
without ESF
- 11.6.8. 3-D 4-Node Quadrilateral Shells with RDOF but without SD and
with ESF
- 11.7. 2-D and Axisymmetric Solids
- 11.7.1. 2-D and Axisymmetric 3-Node Triangular Solids (CST)
- 11.7.2. 2-D and Axisymmetric 6-Node Triangular Solids (LST)
- 11.7.3. 2-D and Axisymmetric 4-node Quadrilateral Solid without ESF
(Q4)
- 11.7.4. 2-D and Axisymmetric 4-node Quadrilateral Solids with ESF (QM6)
- 11.7.5. 2-D and Axisymmetric 8-Node Quadrilateral Solids (Q8)
- 11.7.6. 2-D and Axisymmetric 4-Node Quadrilateral Infinite Solids
- 11.7.7. 2-D and Axisymmetric 8-Node Quadrilateral Infinite Solids
- 11.8. Axisymmetric Harmonic Solids
- 11.8.1. Axisymmetric Harmonic 3-Node Triangular Solids
- 11.8.2. Axisymmetric Harmonic 6-Node Triangular Solids
- 11.8.3. Axisymmetric Harmonic 4-Node Quadrilateral Solids without ESF
- 11.8.4. Axisymmetric Harmonic 4-Node Quadrilateral Solids with ESF
- 11.8.5. Axisymmetric Harmonic 8-Node Quadrilateral Solids
- 11.9. 3-D Solids
- 11.9.1. 4-Node Tetrahedra
- 11.9.2. 10-Node Tetrahedra
- 11.9.3. 5-Node Pyramids
- 11.9.4. 13-Node Pyramids
- 11.9.5. 6-Node Wedges without ESF
- 11.9.6. 6-Node Wedges with ESF
- 11.9.7. 15-Node Wedges
- 11.9.8. 8-Node Bricks without ESF
- 11.9.9. 8-Node Bricks with ESF
- 11.9.10. 20-Node Bricks
- 11.9.11. 8-Node Infinite Bricks
- 11.9.12. 20-Node Infinite Bricks
- 11.9.13. General Axisymmetric Solids
- 11.10. Electromagnetic Tangential Vector Elements
- 11.10.1. Tetrahedral Elements
- 11.10.2. Hexahedral Elements
- 12. Element Tools
- 12.1. Element Shape Testing
- 12.1.1. Overview
- 12.1.2. 3-D Solid Element Faces and Cross-Sections
- 12.1.3. Aspect Ratio
- 12.1.4. Aspect Ratio Calculation for Triangles
- 12.1.5. Aspect Ratio Calculation for Quadrilaterals
- 12.1.6. Parallel Deviation
- 12.1.7. Parallel Deviation Calculation
- 12.1.8. Maximum Corner Angle
- 12.1.9. Maximum Corner Angle Calculation
- 12.1.10. Jacobian Ratio
- 12.1.11. Warping Factor
- 12.2. Integration Point Locations
- 12.2.1. Lines (1, 2, or 3 Points)
- 12.2.2. Quadrilaterals (2 x 2 or 3 x 3 Points)
- 12.2.3. Bricks and Pyramids (2 x 2 x 2 Points)
- 12.2.4. Triangles (1, 3, or 6 Points)
- 12.2.5. Tetrahedra (1, 4, 5, or 11 Points)
- 12.2.6. Triangles and Tetrahedra (2 x 2 or 2 x 2 x 2 Points)
- 12.2.7. Wedges (3 x 2 or 3 x 3 Points)
- 12.2.8. Wedges (2 x 2 x 2 Points)
- 12.2.9. Bricks (14 Points)
- 12.2.10. Nonlinear Bending (5 Points)
- 12.2.11. General Axisymmetric Elements
- 12.3. Temperature-Dependent Material Properties
- 12.4. Positive Definite Matrices
- 12.4.1. Matrices Representing the Complete Structure
- 12.4.2. Element Matrices
- 12.5. Lumped Matrices
- 12.5.1. Diagonalization Procedure
- 12.5.2. Limitations of Lumped Mass Matrices
- 12.6. Reuse of Matrices
- 12.6.1. Element Matrices
- 12.6.2. Structure Matrices
- 12.6.3. Override Option
- 12.7. Hydrostatic Loads
- 12.7.1. Internal and External Pressures
- 12.7.2. Buoyancy
- 12.7.3. Effective Tension
- 12.7.4. Instability Checking
- 12.7.5. Effect of Water Pressure on Some Elements
- 12.8. Hydrodynamic Loads
- 12.8.1. Regular Waves on Line Elements
- 12.8.2. Irregular Waves on Line Elements (Kw = 5 through 7)
- 12.8.3. Diffracted Wave on Line and Surface Elements (Kw = 8)
- 12.8.4. Presence of Both Waves and Current
- 12.8.5. MacCamy-Fuchs Corrections
- 12.8.6. Morison's Equation
- 12.8.7. Dynamic Pressure Head
- 12.9. Nodal and Centroidal Data Evaluation
- 13. Element Library
- 13.1. Reserved for Future Use
- 13.2. Not Documented
- 13.3. Reserved for Future Use
- 13.4. Reserved for Future Use
- 13.5. SOLID5 - 3-D Coupled-Field Solid
- 13.5.1. Other Applicable Sections
- 13.6. Reserved for Future Use
- 13.7. Reserved for Future Use
- 13.8. Reserved for Future Use
- 13.9. Reserved for Future Use
- 13.10. Reserved for Future Use
- 13.11. LINK11 - Linear Actuator
- 13.11.1. Assumptions and Restrictions
- 13.11.2. Element Matrices and Load Vector
- 13.11.3. Force, Stroke, and Length
- 13.12. Reserved for Future Use
- 13.13. PLANE13 - 2-D Coupled-Field Solid
- 13.13.1. Other Applicable Sections
- 13.14. COMBIN14 - Spring-Damper
- 13.14.1. Types of Input
- 13.14.2. Stiffness Pass
- 13.14.3. Output Quantities
- 13.15. Reserved for Future Use
- 13.16. Reserved for Future Use
- 13.17. Reserved for Future Use
- 13.18. Reserved for Future Use
- 13.19. Reserved for Future Use
- 13.20. Reserved for Future Use
- 13.21. MASS21 - Structural Mass
- 13.22. Reserved for Future Use
- 13.23. Reserved for Future Use
- 13.24. Reserved for Future Use
- 13.25. PLANE25 - Axisymmetric-Harmonic 4-Node Structural Solid
- 13.25.1. Other Applicable Sections
- 13.25.2. Assumptions and Restrictions
- 13.25.3. Use of Temperature
- 13.26. Not Documented
- 13.27. MATRIX27 - Stiffness, Damping, or Mass Matrix
- 13.27.1. Assumptions and Restrictions
- 13.28. Reserved for Future Use
- 13.29. FLUID29 - 2-D Acoustic Fluid
- 13.29.1. Other Applicable Sections
- 13.30. FLUID30 - 3-D Acoustic Fluid
- 13.30.1. Other Applicable Sections
- 13.31. LINK31 - Radiation Link
- 13.31.1. Standard Radiation (KEYOPT(3) = 0)
- 13.31.2. Empirical Radiation (KEYOPT(3) = 1)
- 13.31.3. Solution
- 13.32. Reserved for Future Use
- 13.33. LINK33 - 3-D Conduction Bar
- 13.33.1. Other Applicable Sections
- 13.33.2. Matrices and Load Vectors
- 13.33.3. Output
- 13.34. LINK34 - Convection Link
- 13.34.1. Conductivity Matrix
- 13.34.2. Output
- 13.35. PLANE35 - 2-D 6-Node Triangular Thermal Solid
- 13.35.1. Other Applicable Sections
- 13.36. SOURC36 - Current Source
- 13.36.1. Description
- 13.37. COMBIN37 - Control
- 13.37.1. Element Characteristics
- 13.37.2. Element Matrices
- 13.37.3. Adjustment of Real Constants
- 13.37.4. Evaluation of Control Parameter
- 13.38. FLUID38 - Dynamic Fluid Coupling
- 13.38.1. Description
- 13.38.2. Assumptions and Restrictions
- 13.38.3. Mass Matrix Formulation
- 13.38.4. Damping Matrix Formulation
- 13.39. COMBIN39 - Nonlinear Spring
- 13.39.1. Input
- 13.39.2. Element Stiffness Matrix and Load Vector
- 13.39.3. Choices for Element Behavior
- 13.40. COMBIN40 - Combination
- 13.40.1. Characteristics of the Element
- 13.40.2. Element Matrices for Structural Applications
- 13.40.3. Determination of F1 and F2 for Structural Applications
- 13.40.4. Thermal Analysis
- 13.41. Reserved for Future Use
- 13.42. Reserved for Future Use
- 13.43. Reserved for Future Use
- 13.44. Reserved for Future Use
- 13.45. Reserved for Future Use
- 13.46. Reserved for Future Use
- 13.47. INFIN47 - 3-D Infinite Boundary
- 13.47.1. Introduction
- 13.47.2. Theory
- 13.47.3. Reduced Scalar Potential
- 13.47.4. Difference Scalar Potential
- 13.47.5. Generalized Scalar Potential
- 13.48. Not Documented
- 13.49. Not Documented
- 13.50. MATRIX50 - Superelement (or Substructure)
- 13.50.1. Other Applicable Sections
- 13.51. Not Documented
- 13.52. Reserved for Future Use
- 13.53. Reserved for Future Use
- 13.54. Reserved for Future Use
- 13.55. PLANE55 - 2-D Thermal Solid
- 13.55.1. Other Applicable Sections
- 13.55.2. Mass Transport Option
- 13.56. Not Documented
- 13.57. Reserved for Future Use
- 13.58. Not Documented
- 13.59. Reserved for Future Use
- 13.60. Reserved for Future Use
- 13.61. SHELL61 - Axisymmetric-Harmonic Structural Shell
- 13.61.1. Other Applicable Sections
- 13.61.2. Assumptions and Restrictions
- 13.61.3. Stress, Force, and Moment Calculations
- 13.62. Reserved for Future Use
- 13.63. Reserved for Future Use
- 13.64. Not Documented
- 13.65. SOLID65 - 3-D Reinforced Concrete Solid
- 13.65.1. Assumptions and Restrictions
- 13.65.2. Description
- 13.65.3. Linear Behavior - General
- 13.65.4. Linear Behavior - Concrete
- 13.65.5. Linear Behavior - Reinforcement
- 13.65.6. Nonlinear Behavior - Concrete
- 13.65.7. Modeling of a Crack
- 13.65.8. Modeling of Crushing
- 13.66. Reserved for Future Use
- 13.67. Reserved for Future Use
- 13.68. LINK68 - Coupled Thermal-Electric Line
- 13.68.1. Other Applicable Sections
- 13.69. Reserved for Future Use
- 13.70. SOLID70 - 3-D Thermal Solid
- 13.70.1. Other Applicable Sections
- 13.70.2. Fluid Flow in a Porous Medium
- 13.71. MASS71 - Thermal Mass
- 13.71.1. Specific Heat Matrix
- 13.71.2. Heat Generation Load Vector
- 13.72. Reserved for Future Use
- 13.73. Reserved for Future Use
- 13.74. Not Documented
- 13.75. PLANE75 - Axisymmetric-Harmonic 4-Node Thermal Solid
- 13.75.1. Other Applicable Sections
- 13.76. Reserved for Future Use
- 13.77. PLANE77 - 2-D 8-Node Thermal Solid
- 13.77.1. Other Applicable Sections
- 13.77.2. Assumptions and Restrictions
- 13.78. PLANE78 - Axisymmetric-Harmonic 8-Node Thermal Solid
- 13.78.1. Other Applicable Sections
- 13.78.2. Assumptions and Restrictions
- 13.79. Reserved for Future Use
- 13.80. Reserved for Future Use
- 13.81. Reserved for Future Use
- 13.82. Reserved for Future Use
- 13.83. PLANE83 - Axisymmetric-Harmonic 8-Node Structural Solid
- 13.83.1. Other Applicable Sections
- 13.83.2. Assumptions and Restrictions
- 13.84. Not Documented
- 13.85. Reserved for Future Use
- 13.86. Not Documented
- 13.87. SOLID87 - 3-D 10-Node Tetrahedral Thermal Solid
- 13.87.1. Other Applicable Sections
- 13.88. Reserved for Future Use
- 13.89. Reserved for Future Use
- 13.90. SOLID90 - 3-D 20-Node Thermal Solid
- 13.90.1. Other Applicable Sections
- 13.91. Reserved for Future Use
- 13.92. Reserved for Future Use
- 13.93. Reserved for Future Use
- 13.94. CIRCU94 - Piezoelectric Circuit
- 13.94.1. Electric Circuit Elements
- 13.94.2. Piezoelectric Circuit Element Matrices and Load Vectors
- 13.95. Reserved for Future Use
- 13.96. SOLID96 - 3-D Magnetic Scalar Solid
- 13.96.1. Other Applicable Sections
- 13.97. Reserved for Future Use
- 13.98. SOLID98 - Tetrahedral Coupled-Field Solid
- 13.98.1. Other Applicable Sections
- 13.99. Reserved for Future Use
- 13.100. Reserved for Future Use
- 13.101. Reserved for Future Use
- 13.102. Reserved for Future Use
- 13.103. Reserved for Future Use
- 13.104. Reserved for Future Use
- 13.105. Reserved for Future Use
- 13.106. Reserved for Future Use
- 13.107. Reserved for Future Use
- 13.108. Reserved for Future Use
- 13.109. Reserved for Future Use
- 13.110. INFIN110 - 2-D Infinite Solid
- 13.110.1. Mapping Functions
- 13.110.2. Matrices
- 13.111. INFIN111 - 3-D Infinite Solid
- 13.111.1. Other Applicable Sections
- 13.112. Reserved for Future Use
- 13.113. Reserved for Future Use
- 13.114. Reserved for Future Use
- 13.115. Reserved for Future Use
- 13.116. FLUID116 - Coupled Thermal-Fluid Pipe
- 13.116.1. Assumptions and Restrictions
- 13.116.2. Combined Equations
- 13.116.3. Thermal Matrix Definitions
- 13.116.4. Fluid Equations
- 13.117. Reserved for Future Use
- 13.118. Reserved for Future Use
- 13.119. Reserved for Future Use
- 13.120. Reserved for Future Use
- 13.121. PLANE121 - 2-D 8-Node Electrostatic Solid
- 13.121.1. Other Applicable Sections
- 13.121.2. Assumptions and Restrictions
- 13.122. SOLID122 - 3-D 20-Node Electrostatic Solid
- 13.122.1. Other Applicable Sections
- 13.123. SOLID123 - 3-D 10-Node Tetrahedral Electrostatic Solid
- 13.123.1. Other Applicable Sections
- 13.124. CIRCU124 - Electric Circuit
- 13.124.1. Electric Circuit Elements
- 13.124.2. Electric Circuit Element Matrices
- 13.125. CIRCU125 - Diode
- 13.125.1. Diode Elements
- 13.125.2. Norton Equivalents
- 13.125.3. Element Matrix and Load Vector
- 13.126. TRANS126 - Electromechanical Transducer
- 13.127. Reserved for Future Use
- 13.128. Reserved for Future Use
- 13.129. FLUID129 - 2-D Infinite Acoustic
- 13.129.1. Other Applicable Sections
- 13.130. FLUID130 - 3-D Infinite Acoustic
- 13.130.1. Mathematical Formulation and F.E. Discretization
- 13.130.2. Finite Element Discretization
- 13.131. SHELL131 - 4-Node Layered Thermal Shell
- 13.131.1. Other Applicable Sections
- 13.132. SHELL132 - 8-Node Layered Thermal Shell
- 13.132.1. Other Applicable Sections
- 13.133. Reserved for Future Use
- 13.134. Reserved for Future Use
- 13.135. Reserved for Future Use
- 13.136. FLUID136 - 3-D Squeeze Film Fluid Element
- 13.136.1. Other Applicable Sections
- 13.136.2. Assumptions and Restrictions
- 13.137. Reserved for Future Use
- 13.138. FLUID138 - 3-D Viscous Fluid Link Element
- 13.138.1. Other Applicable Sections
- 13.139. FLUID139 - 3-D Slide Film Fluid Element
- 13.139.1. Other Applicable Sections
- 13.140. Reserved for Future Use
- 13.141. Reserved for Future Use
- 13.142. Reserved for Future Use
- 13.143. Not Documented
- 13.144. ROM144 - Reduced Order Electrostatic-Structural
- 13.144.1. Element Matrices and Load Vectors
- 13.144.2. Combination of Modal Coordinates and Nodal Displacement at Master Nodes
- 13.144.3. Element Loads
- 13.145. Reserved for Future Use
- 13.146. Reserved for Future Use
- 13.147. Reserved for Future Use
- 13.148. Reserved for Future Use
- 13.149. Reserved for Future Use
- 13.150. Reserved for Future Use
- 13.151. SURF151 - 2-D Thermal Surface Effect
- 13.152. SURF152 - 3-D Thermal Surface Effect
- 13.152.1. Matrices and Load Vectors
- 13.152.2. Adiabatic Wall Temperature as Bulk Temperature
- 13.152.3. Film Coefficient Adjustment
- 13.152.4. Radiation Form Factor Calculation
- 13.153. SURF153 - 2-D Structural Surface Effect
- 13.154. SURF154 - 3-D Structural Surface Effect
- 13.155. SURF155 - 3-D Thermal Surface Line Load
- 13.156. SURF156 - 3-D Structural Surface Line Load Effect
- 13.157. SHELL157 - Thermal-Electric Shell
- 13.157.1. Other Applicable Sections
- 13.158. Not Documented
- 13.159. SURF159 - General Axisymmetric Surface with 2 or 3 Nodes
- 13.159.1. Other Applicable Sections
- 13.159.2. Assumptions and Restrictions
- 13.160. LINK160 - Explicit 3-D Spar (or Truss)
- 13.161. BEAM161 - Explicit 3-D Beam
- 13.162. PLANE162 - Explicit 2-D Structural Solid
- 13.163. SHELL163 - Explicit Thin Structural Shell
- 13.164. SOLID164 - Explicit 3-D Structural Solid
- 13.165. COMBI165 - Explicit Spring-Damper
- 13.166. MASS166 - Explicit 3-D Structural Mass
- 13.167. LINK167 - Explicit Tension-Only Spar
- 13.168. SOLID168 - Explicit 3-D 10-Node Tetrahedral Structural Solid
- 13.169. TARGE169 - 2-D Target Segment
- 13.169.1. Other
Applicable Sections
- 13.169.2. Segment
Types
- 13.170. TARGE170 - 3-D Target Segment
- 13.170.1. Introduction
- 13.170.2. Segment Types
- 13.170.3. Reaction Forces
- 13.171. CONTA171 - 2-D 2-Node Surface-to-Surface Contact
- 13.171.1. Other Applicable Sections
- 13.172. CONTA172 - 2-D 3-Node Surface-to-Surface Contact
- 13.172.1. Other Applicable Sections
- 13.173. CONTA173 - 3-D 4-Node Surface-to-Surface Contact
- 13.173.1. Other Applicable Sections
- 13.174. CONTA174 - 3-D 8-Node Surface-to-Surface Contact
- 13.174.1. Introduction
- 13.174.2. Contact Kinematics
- 13.174.3. Frictional Model
- 13.174.4. Contact Algorithm
- 13.174.5. Viscous Damping
- 13.174.6. Energy and Momentum Conserving Contact
- 13.174.7. Debonding
- 13.174.8. Contact Surface Wear
- 13.174.9. Thermal/Structural Contact
- 13.174.10. Electric Contact
- 13.174.11. Magnetic Contact
- 13.174.12. Pore Fluid Contact
- 13.174.13. Diffusive Contact
- 13.175. CONTA175 - 2-D/3-D Node-to-Surface Contact
- 13.175.1. Other Applicable Sections
- 13.175.2. Contact Models
- 13.175.3. Contact Forces
- 13.176. CONTA176 - 3-D Line-to-Line Contact
- 13.176.1. Other Applicable Sections
- 13.176.2. Contact Kinematics
- 13.176.3. Contact Models
- 13.176.4. Contact Forces
- 13.177. CONTA177 - 3-D Line-to-Surface Contact
- 13.177.1. Other Applicable Sections
- 13.177.2. Contact Kinematics
- 13.177.3. Contact Model
- 13.177.4. Contact Forces
- 13.178. CONTA178 - 3-D Node-to-Node Contact
- 13.178.1. Introduction
- 13.178.2. Contact Algorithms
- 13.178.3. Element Damper
- 13.178.4. Rigid Coulomb Friction
- 13.179. PRETS179 - Pretension
- 13.179.1. Introduction
- 13.179.2. Assumptions and Restrictions
- 13.180. LINK180 - 3-D Spar (or Truss)
- 13.180.1. Assumptions and Restrictions
- 13.181. SHELL181 - 4-Node Shell
- 13.181.1. Other Applicable Sections
- 13.181.2. Assumptions and Restrictions
- 13.181.3. Assumed Displacement Shape Functions
- 13.181.4. Membrane Option
- 13.181.5. Warping
- 13.181.6. Shear Correction
- 13.182. PLANE182 - 2-D 4-Node Structural Solid
- 13.182.1. Other Applicable Sections
- 13.182.2. Theory
- 13.183. PLANE183 - 2-D 8-Node Structural Solid
- 13.183.1. Other Applicable Sections
- 13.183.2. Assumptions and Restrictions
- 13.184. MPC184 - Multipoint Constraint
- 13.184.1. Slider Element
- 13.184.2. Joint Elements
- 13.185. SOLID185 - 3-D 8-Node Structural Solid
- 13.185.1. SOLID185 - 3-D 8-Node Structural Solid
- 13.185.2. SOLID185 - 3-D 8-Node Layered Solid
- 13.185.3. Other Applicable Sections
- 13.185.4. Theory
- 13.185.5. Shear Correction
- 13.186. SOLID186 - 3-D 20-Node homogeneous/Layered Structural Solid
- 13.186.1. SOLID186 - 3-D 20-Node homogeneous Structural Solid
- 13.186.2. SOLID186 - 3-D 20-Node Layered Structural Solid
- 13.186.3. Other Applicable Sections
- 13.186.4. Shear Correction
- 13.187. SOLID187 - 3-D 10-Node Tetrahedral Structural Solid
- 13.187.1. Other Applicable Sections
- 13.188. BEAM188 - 3-D 2-Node Beam
- 13.188.1. Assumptions and Restrictions
- 13.188.2. Ocean Effects
- 13.188.3. Stress Evaluation
- 13.189. BEAM189 - 3-D 3-Node Beam
- 13.190. SOLSH190 - 3-D 8-Node Layered Solid Shell
- 13.190.1. Other Applicable Sections
- 13.190.2. Theory
- 13.190.3. Shear Correction
- 13.191. Reserved for Future Use
- 13.192. INTER192 - 2-D 4-Node Gasket
- 13.192.1. Other Applicable Sections
- 13.193. INTER193 - 2-D 6-Node Gasket
- 13.193.1. Other Applicable Sections
- 13.194. INTER194 - 3-D 16-Node Gasket
- 13.194.1. Element Technology
- 13.195. INTER195 - 3-D 8-Node Gasket
- 13.195.1. Other Applicable Sections
- 13.196. Reserved for Future Use
- 13.197. Reserved for Future Use
- 13.198. Reserved for Future Use
- 13.199. Reserved for Future Use
- 13.200. Reserved for Future Use
- 13.201. Reserved for Future Use
- 13.202. INTER202 - 2-D 4-Node Cohesive
- 13.202.1. Other Applicable Sections
- 13.203. INTER203 - 2-D 6-Node Cohesive
- 13.203.1. Other Applicable Sections
- 13.204. INTER204 - 3-D 16-Node Cohesive
- 13.204.1. Element Technology
- 13.205. INTER205 - 3-D 8-Node Cohesive
- 13.205.1. Other Applicable Sections
- 13.206. Reserved for Future Use
- 13.207. Reserved for Future Use
- 13.208. SHELL208 - 2-Node Axisymmetric Shell
- 13.208.1. Other Applicable Sections
- 13.208.2. Assumptions and Restrictions
- 13.208.3. Shear Correction
- 13.209. SHELL209 - 3-Node Axisymmetric Shell
- 13.209.1. Other Applicable Sections
- 13.209.2. Assumptions and Restrictions
- 13.209.3. Shear Correction
- 13.210. Reserved for Future Use
- 13.211. Reserved for Future Use
- 13.212. CPT212 - 2-D 4-Node Coupled Pore-Pressure-Thermal Mechanical Solid
- 13.212.1. Other Applicable Sections
- 13.213. CPT213 - 2-D 8-Node Coupled Pore-Pressure-Thermal Mechanical Solid
- 13.213.1. Other Applicable Sections
- 13.213.2. Assumptions and Restrictions
- 13.214. COMBI214 - 2-D Spring-Damper Bearing
- 13.214.1. Matrices
- 13.214.2. Output Quantities
- 13.215. CPT215 - 3-D 8-Node Coupled Pore-Pressure-Thermal Mechanical
Solid
- 13.215.1. Other Applicable Sections
- 13.216. CPT216 - 3-D 20-Node Coupled Pore-Pressure-Thermal Mechanical
Solid
- 13.216.1. Other Applicable Sections
- 13.217. CPT217 - 3-D 10-Node Coupled Pore-Pressure-Thermal Mechanical
Solid
- 13.217.1. Other Applicable Sections
- 13.218. FLUID218 - 3-D Hydrodynamic Bearing Element
- 13.218.1. Other Applicable Sections
- 13.218.2. Assumptions and Restrictions
- 13.219. Reserved for Future Use
- 13.220. Reserved for Future Use
- 13.221. Reserved for Future Use
- 13.222. PLANE222 - 2-D 4-Node Coupled-Field Solid
- 13.222.1. Other Applicable Sections
- 13.222.2. Theory
- 13.223. PLANE223 - 2-D 8-Node Coupled-Field Solid
- 13.223.1. Other Applicable Sections
- 13.224. Reserved for Future Use
- 13.225. Reserved for Future Use
- 13.226. SOLID226 - 3-D 20-Node Coupled-Field Solid
- 13.226.1. Other Applicable Sections
- 13.227. SOLID227 - 3-D 10-Node Coupled-Field Solid
- 13.227.1. Other Applicable Sections
- 13.228. Reserved for Future Use
- 13.229. Reserved for Future Use
- 13.230. PLANE230 - 2-D 8-Node Electric Solid
- 13.230.1. Other Applicable Sections
- 13.230.2. Assumptions and Restrictions
- 13.231. SOLID231 - 3-D 20-Node Electric Solid
- 13.231.1. Other Applicable Sections
- 13.232. SOLID232 - 3-D 10-Node Tetrahedral Electric Solid
- 13.232.1. Other Applicable Sections
- 13.233. PLANE233 - 2-D 8-Node Electromagnetic Solid
- 13.233.1. Other Applicable Sections
- 13.233.2. Assumptions and Restrictions
- 13.234. Reserved for Future Use
- 13.235. Reserved for Future Use
- 13.236. SOLID236 - 3-D 20-Node Electromagnetic Solid
- 13.236.1. Other Applicable Sections
- 13.237. SOLID237 - 3-D 10-Node Electromagnetic Solid
- 13.237.1. Other Applicable Sections
- 13.238. PLANE238 - 2-D 8-Node Diffusion Solid
- 13.238.1. Other Applicable Sections
- 13.238.2. Assumptions and Restrictions
- 13.239. SOLID239 - 3-D 20-Node Diffusion Solid
- 13.239.1. Other Applicable Sections
- 13.240. SOLID240 - 3-D 10-Node Tetrahedral Diffusion Solid
- 13.240.1. Other Applicable Sections
- 13.241. HSFLD241 - 2-D Hydrostatic Fluid
- 13.242. HSFLD242 - 3-D Hydrostatic Fluid
- 13.242.1. Introduction
- 13.242.2. Element Matrices and Load Vectors
- 13.243. Reserved for Future Use
- 13.244. Reserved for Future Use
- 13.245. Reserved for Future Use
- 13.246. Reserved for Future Use
- 13.247. Reserved for Future Use
- 13.248. Reserved for Future Use
- 13.249. Reserved for Future Use
- 13.250. Reserved for Future Use
- 13.251. SURF251 - 2-D Radiosity Surface
- 13.252. SURF252 - 3-D Thermal Radiosity Surface
- 13.253. Reserved for Future Use
- 13.254. Reserved for Future Use
- 13.255. Reserved for Future Use
- 13.256. Reserved for Future Use
- 13.257. INFIN257 - Structural Infinite Solid
- 13.257.1. Structural Infinite Element for Static Analysis
- 13.257.2. Structural Infinite Element for Dynamic Analysis
- 13.258. Reserved for Future Use
- 13.259. Reserved for Future Use
- 13.260. Reserved for Future Use
- 13.261. Reserved for Future Use
- 13.262. Reserved for Future Use
- 13.263. REINF263 - 2-D Smeared Reinforcing
- 13.263.1. Other Applicable Sections
- 13.264. REINF264 - 3-D Discrete Reinforcing
- 13.264.1. Other Applicable Sections
- 13.265. REINF265 - 3-D Smeared Reinforcing
- 13.265.1. Other Applicable Sections
- 13.265.2. Stiffness and Mass Matrices of a Reinforcing Layer
- 13.266. Reserved for Future Use
- 13.267. Reserved for Future Use
- 13.268. Reserved for Future Use
- 13.269. Reserved for Future Use
- 13.270. Reserved for Future Use
- 13.271. Reserved for Future Use
- 13.272. SOLID272 - General Axisymmetric Solid with 4 Base Nodes
- 13.272.1. Other Applicable Sections
- 13.272.2. Assumptions and Restrictions
- 13.273. SOLID273 - General Axisymmetric Solid with 8 Base Nodes
- 13.273.1. Other Applicable Sections
- 13.273.2. Assumptions and Restrictions
- 13.274. Reserved for Future Use
- 13.275. Reserved for Future Use
- 13.276. Reserved for Future Use
- 13.277. Reserved for Future Use
- 13.278. SOLID278 - 3-D 8-Node homogeneous/Layered Thermal Solid
- 13.278.1. SOLID278 - 3-D 8-Node homogeneous Thermal Solid
- 13.278.2. SOLID278 - 3-D 8-Node Layered Thermal Solid
- 13.279. SOLID279 - 3-D 20-Node Homogeneous/Layered Thermal Solid
- 13.279.1. SOLID279 - 3-D 20-Node Homogeneous Thermal Solid
- 13.279.2. SOLID279 - 3-D 20-Node Layered Thermal Solid
- 13.280. Reserved for Future Use
- 13.281. SHELL281 - 8-Node Shell
- 13.281.1. Other Applicable Sections
- 13.281.2. Assumptions and Restrictions
- 13.281.3. Membrane Option
- 13.281.4. Shear Correction
- 13.282. Reserved for Future Use
- 13.283. Reserved for Future Use
- 13.284. Reserved for Future Use
- 13.285. SOLID285 - 3-D 4-Node Tetrahedral Structural Solid with Nodal
Pressures
- 13.285.1. Other Applicable Sections
- 13.285.2. Theory
- 13.286. Reserved for Future Use
- 13.287. Reserved for Future Use
- 13.288. PIPE288 - 3-D 2-Node Pipe
- 13.288.1. Assumptions and Restrictions
- 13.288.2. Ocean Effects
- 13.288.3. Stress Evaluation
- 13.289. PIPE289 - 3-D 3-Node Pipe
- 13.290. ELBOW290 - 3-D 3-Node Elbow
- 13.290.1. Other Applicable Sections
- 13.290.2. Assumptions and Restrictions
- 13.290.3. Shear Correction
- 14. Analysis Tools
- 14.1. Acceleration Effect
- 14.1.1. Acceleration Due to One Rotation
- 14.1.2. Acceleration Due to Two Rotations
- 14.2. Inertia Relief
- 14.2.1. Mass-Related Information Calculation
- 14.3. Damping Matrices
- 14.3.1. Transient (FULL) Analysis
- 14.3.2. Damped Modal Analysis
- 14.3.3. Harmonic (FULL) Analysis
- 14.3.4. Mode-Superposition Analysis
- 14.4. Rotating Structures
- 14.4.1. Rotating Reference Frame Equations
- 14.4.2. Stationary Reference Frame Equations
- 14.5. Automatic Time Stepping
- 14.5.1. Time Step Prediction
- 14.5.2. Time Step Bisection
- 14.5.3. The Response Eigenvalue for 1st Order Transients
- 14.5.4. The Response Frequency for Structural Dynamics
- 14.5.5. Creep Time Increment
- 14.5.6. Plasticity Time Increment
- 14.5.7. Midstep Residual for Structural Dynamic Analysis
- 14.6. Solving for Unknowns and Reactions
- 14.6.1. Reaction Forces
- 14.6.2. Disequilibrium
- 14.7. Equation Solvers
- 14.7.1. Direct Solvers
- 14.7.2. Sparse Direct Solver
- 14.7.3. Iterative Solver
- 14.8. Mode-Superposition Method
- 14.8.1. General Equations
- 14.8.2. Equations for QR Damped Eigensolver Based Analysis
- 14.8.3. Equations for Unsymmetric Eigensolver Based Analysis
- 14.8.4. Modal Damping
- 14.8.5. Residual Vector Method
- 14.8.6. Residual Response Method
- 14.9. Extraction of Modal Damping Parameter for Squeeze Film Problems
- 14.10. Reduced Order Modeling of Coupled Domains
- 14.10.1. Selection of Modal Basis Functions
- 14.10.2. Element Loads
- 14.10.3. Mode Combinations for Finite Element Data Acquisition and Energy
Computation
- 14.10.4. Function Fit Methods for Strain Energy
- 14.10.5. Coupled Electrostatic-Structural Systems
- 14.10.6. Computation of Capacitance Data and Function Fit
- 14.11. Newton-Raphson Procedure
- 14.11.1. Overview
- 14.11.2. Convergence
- 14.11.3. Predictor
- 14.11.4. Adaptive Descent
- 14.11.5. Line Search
- 14.11.6. Arc-Length Method
- 14.12. Constraint Equations
- 14.12.1. Derivation of Matrix and Load Vector Operations
- 14.12.2. Constraints: Automatic Selection of Slave DOFs
- 14.13. Eigenvalue and Eigenvector Extraction
- 14.13.1. Supernode Method
- 14.13.2. Block Lanczos
- 14.13.3. PCG Lanczos
- 14.13.4. Unsymmetric Method
- 14.13.5. Subspace Method
- 14.13.6. Damped Method
- 14.13.7. QR Damped Method
- 14.13.8. Shifting
- 14.13.9. Repeated Eigenvalues
- 14.13.10. Complex Eigensolutions
- 14.14. Analysis of Cyclically Symmetric Structures
- 14.14.1. Modal Analysis
- 14.14.2. Complete Mode Shape Derivation
- 14.14.3. Mode-Superposition Harmonic Analysis
- 14.14.4. Aerodynamic Coupling
- 14.14.5. Expansion to Output Quantities
- 14.14.6. Mistuning
- 14.14.7. Cyclic Symmetry Transformations
- 14.15. Mass Related Information
- 14.15.1. Precise Calculation of Mass Related Information
- 14.15.2. Lumped Calculation of Mass Related Information
- 14.16. Energies
- 14.17. Reduced-Order Modeling for State-Space Matrices Export
- 14.18. Enforced Motion in Structural Analysis
- 14.18.1. Full Method for Transient and Harmonic Analyses
- 14.18.2. Enforced Motion Method for Transient and Harmonic Analyses
- 14.18.3. Large Mass Method
- 15. Analysis Procedures
- 15.1. Static Analysis
- 15.1.1. Assumptions and Restrictions
- 15.1.2. Description of Structural Systems
- 15.1.3. Description of Thermal, Magnetic and Other First Order Systems
- 15.2. Transient Analysis
- 15.2.1. Assumptions and Restrictions
- 15.2.2. Description of Structural and Other Second Order Systems
- 15.2.3. Description of Thermal, Magnetic and Other First Order Systems
- 15.3. Mode-Frequency Analysis
- 15.3.1. Assumptions and Restrictions
- 15.3.2. Description of Analysis
- 15.4. Harmonic Analysis
- 15.4.1. Harmonic Analysis Assumptions and Restrictions
- 15.4.2. Description of Harmonic Analysis
- 15.4.3. Harmonic Analysis Complex Displacement Output
- 15.4.4. Nodal and Reaction Load Computation in a Harmonic Analysis
- 15.4.5. Harmonic Analysis Solution
- 15.4.6. Variational Technology Method
- 15.4.7. Automatic Frequency Spacing in a Harmonic Analysis
- 15.4.8. Logarithm Frequency Spacing in a Harmonic Analysis
- 15.4.9. Harmonic Analysis with Rotating Forces on Rotating Structures
- 15.4.10. Harmonic Ocean Wave Procedure (HOWP)
- 15.5. Buckling Analysis
- 15.5.1. Assumptions and Restrictions
- 15.5.2. Description of Analysis
- 15.6. Substructuring Analysis
- 15.6.1. Assumptions and Restrictions (within Superelement)
- 15.6.2. Description of Analysis
- 15.6.3. Statics
- 15.6.4. Transients
- 15.6.5. Component Mode Synthesis (CMS)
- 15.7. Spectrum Analysis
- 15.7.1. Assumptions and Restrictions
- 15.7.2. Description of Analysis
- 15.7.3. Single-Point Response Spectrum
- 15.7.4. Damping
- 15.7.5. Participation Factors and Mode Coefficients
- 15.7.6. Combination of Modes
- 15.7.7. Effective Mass and Cumulative Mass Fraction
- 15.7.8. Dynamic Design Analysis Method
- 15.7.9. Random Vibration Method
- 15.7.10. Description of Method
- 15.7.11. Response Power Spectral Densities and Mean Square Response
- 15.7.12. Cross Spectral Terms for Partially Correlated Input PSDs
- 15.7.13. Spatial Correlation
- 15.7.14. Wave Propagation
- 15.7.15. Multi-Point Response Spectrum Method
- 15.7.16. Missing-Mass Response
- 15.7.17. Rigid Responses
- 15.8. Linear Perturbation Analysis
- 15.8.1. Assumptions and Restrictions
- 15.8.2. Description of Analysis
- 15.8.3. Static Analysis Based on Linear Perturbation
- 15.8.4. Modal Analysis Based on Linear Perturbation
- 15.8.5. Eigenvalue Buckling Analysis Based on Linear Perturbation
- 15.8.6. Full Harmonic Analysis Based on Linear Perturbation
- 15.8.7. Substructure or CMS Generation Based on Linear Perturbation
- 15.8.8. Application of Perturbation Loads
- 15.8.9. Downstream Analysis Using the Solution of a Linear Perturbation Analysis
- 16. Preprocessing and Postprocessing Tools
- 16.1. Integration and Differentiation Procedures
- 16.1.1. Single Integration Procedure
- 16.1.2. Double Integration Procedure
- 16.1.3. Differentiation Procedure
- 16.1.4. Double Differentiation Procedure
- 16.2. Fourier Coefficient Evaluation
- 16.3. Statistical Procedures
- 16.3.1. Mean, Covariance, Correlation Coefficient
- 16.3.2. Random Samples of a Uniform Distribution
- 16.3.3. Random Samples of a Gaussian Distribution
- 16.3.4. Random Samples of a Triangular Distribution
- 16.3.5. Random Samples of a Beta Distribution
- 16.3.6. Random Samples of a Gamma Distribution
- 17. Postprocessing
- 17.1. POST1 - Derived Nodal Data Processing
- 17.1.1. Derived Nodal Data Computation
- 17.2. POST1 - Vector and Surface Operations
- 17.2.1. Vector Operations
- 17.2.2. Surface Operations
- 17.3. POST1 - Path Operations
- 17.3.1. Defining the Path
- 17.3.2. Defining Orientation Vectors of the Path
- 17.3.3. Mapping Nodal and Element Data onto the Path
- 17.3.4. Operating on Path Data
- 17.4. POST1 - Stress Linearization
- 17.4.1. Cartesian Case
- 17.4.2. Axisymmetric Case (General)
- 17.4.3. Axisymmetric Case
- 17.5. POST1 - Electromagnetic Macros
- 17.5.1. Flux Passing Thru a Closed Contour
- 17.5.2. Magnetomotive Forces
- 17.5.3. Power Loss
- 17.5.4. Energy Supplied
- 17.5.5. Terminal Inductance
- 17.5.6. Flux Linkage
- 17.5.7. Terminal Voltage
- 17.5.8. Energy in a Magnetic Field
- 17.5.9. Relative Error in Electrostatic or Electromagnetic Field Analysis
- 17.5.10. Electromotive Force
- 17.5.11. Computation of Equivalent Transmission-line Parameters
- 17.6. POST1 - Error Approximation Technique
- 17.6.1. Error Approximation Technique for Displacement-Based Problems
- 17.6.2. Error Approximation Technique for Temperature-Based Problems
- 17.6.3. Error Approximation Technique for Magnetics-Based Problems
- 17.7. POST1 - Crack Analysis
- 17.8. POST1 - Harmonic Solid and Shell Element Postprocessing
- 17.8.1. Thermal Solid Elements (PLANE75, PLANE78)
- 17.8.2. Structural Solid Elements (PLANE25, PLANE83)
- 17.8.3. Structural Shell Element (SHELL61)
- 17.9. POST26 - Data Operations
- 17.10. POST26 - Response Spectrum Generator (RESP)
- 17.10.1. Time Step Size
- 17.11. POST1 and POST26 - Interpretation of Equivalent Strains
- 17.11.1. Physical Interpretation of Equivalent Strain
- 17.11.2. Elastic Strain
- 17.11.3. Plastic Strain
- 17.11.4. Creep Strain
- 17.11.5. Total Strain
- 17.12. POST26 - Response Power Spectral Density
- 17.13. POST26 - Computation of Covariance
- 17.14. POST1 and POST26 – Complex Results Postprocessing
- 17.15. POST1 - Modal Assurance Criterion (MAC)
- Bibliography