SOLID226


3-D 20-Node Coupled-Field Solid

Compatible Products: – | – | – | Enterprise | Ent PP | Ent Solver | –

SOLID226 Element Description

SOLID226 supports the following physics combinations:

  • Structural-Thermal

  • Piezoresistive

  • Electrostatic-Structural

  • Piezoelectric

  • Thermal-Electric

  • Structural-Thermoelectric

  • Thermal-Piezoelectric

  • Structural-Diffusion

  • Thermal-Diffusion

  • Electric-Diffusion

  • Thermal-Electric-Diffusion

  • Structural-Thermal-Diffusion

  • Structural-Electric-Diffusion

  • Structural-Thermal-Electric-Diffusion

The element has twenty nodes with up to six degrees of freedom per node.

Structural capabilities include elasticity, plasticity, hyperelasticity, viscoelasticity, viscoplasticity, creep, large strain, large deflection, and stress stiffening effects. It also has mixed formulation capability for simulating deformations of nearly incompressible elastoplastic materials, and fully incompressible hyperelastic materials.

Piezoresistive capabilities include the piezoresistive effect. Piezoelectric capabilities include direct and converse piezoelectric effects. Electrostatic-structural capabilities include electrostatic force coupling. Thermoelectric capabilities include Seebeck, Peltier, and Thomson effects, as well as Joule heating. In addition to thermal expansion, structural-thermal capabilities include the piezocaloric effect in dynamic analyses. The Coriolis effect is available for analyses with structural degrees of freedom. The thermoplastic effect is available for analyses with structural and thermal degrees of freedom.

The diffusion expansion and hydrostatic stress-migration effects are available for analyses with structural and diffusion degrees of freedom. The thermo-migration effect (Soret effect) and the temperature-dependent saturated concentration effect are available for analyses with thermal and diffusion degrees of freedom. The electro-migration effect is available for analyses with electrical and diffusion degrees of freedom.

See SOLID226 in the Mechanical APDL Theory Reference for more details about this element.

Figure 226.1:  SOLID226 Geometry

SOLID226 Geometry

SOLID226 Input Data

The geometry, node locations, and the coordinate system for this element are shown in Figure 226.1: SOLID226 Geometry. The element input data includes twenty nodes and structural, thermal, and electrical material properties. The type of units (MKS or user defined) is specified through the EMUNIT command. EMUNIT also determines the value of free-space permittivity EPZRO. The EMUNIT defaults are MKS units and EPZRO = 8.85e-12 Farads/meter.

KEYOPT(1) determines the element DOF set and the corresponding force labels and reaction solution. KEYOPT(1) is set equal to the sum of the field keys shown in Table 226.1: SOLID226 Field Keys. For example, KEYOPT(1) is set to 11 for a structural-thermal analysis (structural field key + thermal field key = 1 + 10). For a structural-thermal analysis, UX, UY, and TEMP are the DOF labels and force and heat flow are the reaction solution.

Table 226.1:  SOLID226 Field Keys

FieldField KeyDOF LabelForce LabelReaction Solution
Structural1UX, UY, UZFX, FY, FZForce
Thermal 10TEMPHEATHeat Flow
Electric Conduction100VOLTAMPSElectric Current
Electrostatic1000VOLTCHRGElectric Charge
Diffusion100000CONCRATEDiffusion Flow Rate

The coupled-field analysis KEYOPT(1) settings, DOF labels, force labels, reaction solutions, and analysis types are shown in the following table.

Table 226.2:  SOLID226 Coupled-Field Analyses

Coupled-Field AnalysisKEYOPT(1)DOF LabelForce LabelReaction SolutionAnalysis Type
Structural-Thermal [1], [2]11
UX, UY, UZ,
TEMP
FX, FY, FZ,
HEAT
Force,
Heat Flow

Static

Full Harmonic

Full Transient

Piezoresistive101
UX, UY, UZ,
VOLT
FX, FY, FZ,
AMPS
Force,
Electric Current

Static

Full Transient

Electrostatic-Structural 1001 [3]
UX, UY, UZ,
VOLT
FX, FY, FZ,
CHRG
Force,
Electric Charge (negative)

Static

Full Transient

Linear Perturbation Static

Linear Perturbation Harmonic

Linear Perturbation Modal

Piezoelectric1001 [3]
UX, UY, UZ,
VOLT
FX, FY, FZ,
CHRG
Force,
Electric Charge (negative)

Static

Modal

Linear Perturbation Modal

Full, Linear Perturbation, or Mode Superposition Harmonic

Full or Mode Superposition Transient

Thermal-Electric110TEMP, VOLTHEAT, AMPSHeat Flow, Electric Current

Static

Full Transient

Structural-Thermoelectric [1]111
UX, UY, UZ,
TEMP,
VOLT
FX, FY, FZ,
HEAT,
AMPS
Force,
Heat Flow,
Electric Current

Static

Full Transient

Thermal-Piezoelectric [1], [2]1011
UX, UY, UZ,
TEMP,
VOLT
FX, FY, FZ,
HEAT,
CHRG
Force,
Heat Flow,
Electric Charge (negative)

Static

Full Harmonic

Full Transient

Structural-Diffusion [1]100001

UX, UY, UZ,

CONC

FX, FY, FZ,

RATE

Force,

Diffusion Flow Rate

Static

Full Transient

Thermal-Diffusion [1]100010

TEMP,

CONC

HEAT,

RATE

Heat Flow,

Diffusion Flow Rate

Static

Full Transient

Electric-Diffusion [1]100100

VOLT,

CONC

AMP,

RATE

Electric Current,

Diffusion Flow Rate

Static

Full Transient

Thermal-Electric Diffusion [1]100110

TEMP,

VOLT,

CONC

HEAT,

AMP,

RATE

Heat Flow,

Electric Current,

Diffusion Flow Rate

Static

Full Transient

Structural-Thermal-Diffusion [1]100011

UX, UY, UZ,

TEMP,

CONC

FX, FY, FZ,

HEAT,

RATE

Force,

Heat Flow,

Diffusion Flow Rate

Static

Full Transient

Structural-Electric-Diffusion [1]100101

UX, UY, UZ,

VOLT,

CONC

FX, FY, FZ,

AMPS,

RATE

Force,

Electric Current,

Diffusion Flow Rate

Static

Full Transient

Structural-Thermal-Electric-Diffusion [1]100111

UX, UY, UZ,

TEMP,

VOLT,

CONC

FX, FY, FZ,

HEAT,

AMPS,

RATE

Force,

Heat Flow,

Electric Current,

Diffusion Flow Rate

Static

Full Transient


  1. For static and full transient analyses, KEYOPT(2) can specify a strong (matrix) or weak (load vector) structural-thermal, structural-diffusion, thermal-diffusion, and electric-diffusion coupling.

  2. For harmonic analyses, only strong coupling (KEYOPT(2) = 0) applies.

  3. The electrostatic-structural analysis available with KEYOPT(1) = 1001 defaults to electrostatic force coupling, unless a piezoelectric matrix is specified on TB,PIEZ.

As shown in the following tables, material property requirements consist of those required for the individual fields (structural, thermal, electric conduction, electrostatic, or diffusion) and those required for field coupling. Individual material properties are defined via the MP and MPDATA commands. Nonlinear and multiphysics material models are defined via the TB command. (The nonlinear material models do not apply to piezoelectric analyses (TB,PIEZ) where KEYOPT(1) = 1001 or 1011).

Table 226.3:  Structural Material Properties

FieldField KeyMaterial Properties and Material Models
Structural1

EX, EY, EZ, PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ), GXY, GYZ, GXZ, DENS, ALPD, BETD, DMPR

ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ, or THSX, THSY, THSZ), REFT

---

Anisotropic hyperelasticity, Anisotropic elasticity, Bergstrom-Boyce, Bilinear isotropic hardening, Bilinear kinematic hardening, Cast iron, Chaboche nonlinear kinematic hardening, Creep, Elasticity, Extended Drucker-Prager, Gurson pressure-dependent plasticity, Hill anisotropy, Hyperelasticity, Mullins effect, Voce isotropic hardening law, Plasticity, Prony series constants for viscoelastic materials, Rate-dependent plasticity (viscoplasticity), Rate-independent plasticity, Material structural damping, Shift function for viscoelastic materials, Shape memory alloy, Uniaxial stress-strain relation


Table 226.4:  SOLID226 Material Properties and Material Models

Coupled-Field AnalysisKEYOPT(1)FieldMaterial Properties and Material Models
Structural-Thermal11StructuralSee Table 226.3: Structural Material Properties
Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Coupling

ALPX, ALPY, ALPZ, REFT, QRATE

Piezoresistive [1]101StructuralSee Table 226.3: Structural Material Properties
Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Coupling

Piezoresistivity

Electrostatic-structural1001StructuralSee Table 226.3: Structural Material Properties
Electric

PERX, PERY, PERZ

---

Anisotropic electric permittivity

Piezoelectric1001StructuralSee Table 226.3: Structural Material Properties
Electric

PERX, PERY, PERZ, LSST (and/or RSVX, RSVY, RSVZ)

---

Anisotropic electric permittivity

Coupling

Piezoelectric matrix

Thermal-Electric [1]110Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Coupling

SBKX, SBKY, SBKZ

Structural-Thermoelectric111StructuralSee Table 226.3: Structural Material Properties
Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Coupling

ALPX, ALPY, ALPZ, REFT, QRATE

---

SBKX, SBKY, SBKZ

---

Piezoresistivity

Thermal-Piezoelectric1011StructuralSee Table 226.3: Structural Material Properties
Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Electric

PERX, PERY, PERZ, LSST (and/or RSVX, RSVY, RSVZ)

---

Anisotropic electric permittivity

Coupling

ALPX, ALPY, ALPZ, REFT

---

Piezoelectric matrix

Structural-Diffusion [1]100001StructuralSee Table 226.3: Structural Material Properties
Diffusion

DXX, DYY, DZZ, CSAT

Coupling

BETX, BETY, BETZ, CREF

---

Migration Model

Thermal-Diffusion [1]100010Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

Temperature-dependent CSAT

---

Migration Model

Electric-Diffusion [1]100100Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

Migration Model

Thermal-Electric Diffusion [1]100110Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

SBKX, SBKY, SBKZ

---

Temperature-dependent CSAT

---

Migration Model

Structural-Thermal-Diffusion [1]100011StructuralSee Table 226.3: Structural Material Properties
Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

ALPX, ALPY, ALPZ, REFT, QRATE

---

BETX, BETY, BETZ, CREF

---

Temperature-dependent CSAT

---

Migration Model

Structural-Electric-Diffusion [1]100101StructuralSee Table 226.3: Structural Material Properties
Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

BETX, BETY, BETZ, CREF

---

Migration Model

Structural-Thermal-Electric-Diffusion [1]100111 StructuralSee Table 226.3: Structural Material Properties
Thermal

KXX, KYY, KZZ, DENS, C, ENTH, HF

Electric

RSVX, RSVY, RSVZ, PERX, PERY, PERZ

Diffusion

DXX, DYY, DZZ, CSAT

Coupling

ALPX, ALPY, ALPZ, REFT, QRATE

---

BETX, BETY, BETZ, CREF

---

SBKX, SBKY, SBKZ

---

Temperature-dependent CSAT

---

Migration Model


  1. For this analysis type, some of the material properties can be defined as a function of primary variables by using tabular input on the MP command. For more information, see Defining Materials Using TABLE Type Array Parameters in the Mechanical APDL Basic Analysis Guide.

Various combinations of nodal loading are available for this element (depending upon the KEYOPT(1) value). Nodal loads are defined with the D and the F commands.

Element loads are described in Nodal Loading. Loads may be input on the element faces indicated by the circled numbers in Figure 226.1: SOLID226 Geometry using the SF and SFE commands. Positive pressures act into the element. Body loads may be input at the element's nodes or as a single element value using the BF and BFE commands.

SOLID226 surface and body loads are given in the following table. CHRGS and CHRGD are interpreted as negative surface charge density and negative volume charge density, respectively.

Most surface and body loads can be defined as a function of primary variables by using tabular input. For more information, see Applying Loads Using TABLE Type Array Parameters in the Mechanical APDL Basic Analysis Guide and the individual surface or body load command description in the Command Reference.

Table 226.5:  SOLID226 Surface and Body Loads

Coupled-Field AnalysisKEYOPT(1)Load TypeLoadCommand Label
Structural-Thermal11Surface
Pressure
PRES
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Body
Force Density
FORC
Heat Generation --
Nodes I, J, ..., A, B
HGEN
Piezoresistive101Surface
Pressure
PRES
Body
Force Density
FORC
Temperature --
Nodes I, J, ..., A, B
TEMP
Electrostatic-Structural and Piezoelectric1001Surface
Pressure
Surface Charge Density
PRES
CHRGS[1]
Body
Force Density
FORC
Temperature --
Nodes I, J, ..., A, B
TEMP
Volume Charge Density --
Nodes I, J, ..., A, B
CHRGD[1]
Thermal-Electric110Surface
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Body
Heat Generation --
Nodes I, J, ..., A, B
HGEN
Structural-Thermoelectric111Surface
Pressure
PRES
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Body
Force Density
FORC
Heat Generation --
Nodes I, J, ..., A, B
HGEN
Thermal-Piezoelectric1011Surface
Pressure
Surface Charge Density
PRES
CHRGS[1]
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Body
Force Density
FORC
Heat Generation --
Nodes I, J, ..., A, B
HGEN
Volume Charge Density --
Nodes I, J, ..., A, B
CHRGD[1]
Structural-Diffusion 100001Surface
Pressure
PRES
Diffusion Flux
DFLUX
Body
Force Density
FORC
Temperature --
Nodes I, J, ..., A, B
TEMP
Diffusing Substance Generation --
Nodes I, J, ..., A, B
DGEN
Thermal-Diffusion100010Surface
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Diffusion Flux
DFLUX
Body
Heat Generation --
Nodes I, J, ..., A, B
HGEN
Diffusing Substance Generation --
Nodes I, J, ..., A, B
DGEN
Electric-Diffusion100100Surface
Diffusion Flux
DFLUX
Body
Diffusing Substance Generation --
Nodes I, J, ..., A, B
DGEN
Temperature --
Nodes I, J, ..., A, B
TEMP
Thermal-Electric-Diffusion100110Surface
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Diffusion Flux
DFLUX
Body
Heat Generation --
Nodes I, J, ..., A, B
HGEN
Diffusing Substance Generation --
Nodes I, J, ..., A, B
DGEN
Structural-Thermal-Diffusion100011Surface
Pressure
PRES
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Diffusion Flux
DFLUX
Body
Force Density
FORC
Heat Generation --
Nodes I, J, ..., A, B
HGEN
Diffusing Substance Generation --
Nodes I, J, ..., A, B
DGEN
Structural-Electric-Diffusion100101Surface
Pressure
PRES
Diffusion Flux
DFLUX
Body
Force Density
FORC
Diffusing Substance Generation --
Nodes I, J, ..., A, B
DGEN
Temperature --
Nodes I, J, ..., A, B
TEMP
Structural-Thermal-Electric-Diffusion100111Surface
Pressure
PRES
Convection
Heat Flux
Radiation
CONV
HFLUX
RDSF
Diffusion Flux
DFLUX
Body
Force Density
FORC
Heat Generation --
Nodes I, J, ..., A, B
HGEN
Diffusing Substance Generation --
Nodes I, J, ..., A, B
DGEN

  1. CHRGS and CHRGD are interpreted as negative surface charge density and negative volume charge density, respectively.

Automatic element technology selections are given in the following table.

Table 226.6:  Automatic Element Technology Selection

Coupled-Field AnalysisETCONTROL Command Suggestions/Resettings

Structural-Thermal (KEYOPT(1) = 11)

Structural-Thermoelectric (KEYOPT(1) = 111)

KEYOPT(2) =1 for nonlinear inelastic materials
All analyses with a structural fieldKEYOPT(6) =1 for linear elastic materials with Poisson's ratio >0.49 or nonlinear inelastic materials

A summary of the element input is given in "SOLID226 Input Summary". A general description of element input is given in Element Input.

SOLID226 Input Summary

Nodes

I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B

Degrees of Freedom

Set by KEYOPT(1). See Table 226.2: SOLID226 Coupled-Field Analyses.

Real Constants

None

Material Properties

See Table 226.4: SOLID226 Material Properties and Material Models.

Surface Loads

See Table 226.5: SOLID226 Surface and Body Loads.

Body Loads

See Table 226.5: SOLID226 Surface and Body Loads.

Special Features
Birth and death
Coriolis effect
Element technology autoselect
Large deflection
Large strain
Linear perturbation (electrostatic-structural and piezoelectric analyses only [KEYOPT(1) = 1001])
Nonlinear stabilization
Stress stiffening
KEYOPT(1)

Element degrees of freedom. See Table 226.2: SOLID226 Coupled-Field Analyses.

KEYOPT(2)

Coupling method between the DOFs for the following types of coupling: structural-thermal, structural-diffusion, thermal-diffusion, and electric-diffusion.

0 -- 

Strong (matrix) coupling. Produces an unsymmetric matrix. In a linear analysis, a coupled response is achieved after one iteration.

1 -- 

Weak (load vector) coupling. Produces a symmetric matrix and requires at least two iterations to achieve a coupled response.


Note:  The weak coupling option (KEYOPT(2) = 1) can be used in a coupled electrostatic-structural analysis (KEYOPT(1) = 1001) to produce legacy element behavior. In this case, the reaction solution for the VOLT degree of freedom is positive charge (CHRG), and the analysis types are limited to static and full transient analyses. Linear perturbation analyses are not supported.


KEYOPT(4)

Electrostatic force in electrostatic-structural analysis (KEYOPT(1) = 1001):

0 -- 

Applied to every element node.

1 -- 

Applied to the air-structure interface or to element nodes that have constrained structural degrees of freedom.

2 -- 

Not applied.

For more information, see Electrostatic-Structural Analysis in the Coupled-Field Analysis Guide.

KEYOPT(6)

Integration method (applicable to the brick-shaped elements with structural DOFs).

0 -- 

Full integration - uses 14 integrations points. This method can cause volumetric locking in the models with nearly incompressible materials. It is primary employed for purely linear analyses.

1 -- 

Uniform reduced integration - uses a 2 x 2 x 2 integration scheme. This method helps prevent volumetric mesh locking in the models with nearly incompressible materials. It is recommended for analyses with structural nonlinearities. To avoid the propagation of hourglass mode associated with the reduced integration, the model must have at least two layers of elements in each direction.

KEYOPT(9)

Thermoelastic damping (piezocaloric effect) in coupled-field analyses having structural and thermal DOFs. Applicable to harmonic and transient analyses only.

0 -- 

Active

1 -- 

Suppressed (required for frictional heating analyses)

KEYOPT(10)

Specific heat matrix in coupled-field analyses having the thermal DOF (TEMP), or damping matrix in coupled-field analyses having the diffusion DOF (CONC).

0 -- 

Consistent

1 -- 

Diagonalized

2 -- 

Diagonalized. Temperature-dependent specific heat or enthalpy is evaluated at the element centroid.

KEYOPT(11)

Element formulation in coupled-field analyses with structural DOFs:

0 -- 

Pure displacement formulation (default)

1 -- 

Mixed u-P formulation

SOLID226 Output Data

The solution output associated with the element is in two forms:

The element output directions are parallel to the element coordinate system. A general description of solution output is given in Solution Output. See the Basic Analysis Guide for ways to view results.

The Element Output Definitions table uses the following notation:

A colon (:) in the Name column indicates that the item can be accessed by the Component Name method (ETABLE, ESOL). The O column indicates the availability of the items in the file Jobname.OUT. The R column indicates the availability of the items in the results file.

In either the O or R columns, “Y” indicates that the item is always available, a number refers to a table footnote that describes when the item is conditionally available, and “-” indicates that the item is not available.

Table 226.7:  SOLID226 Element Output Definitions

NameDefinitionOR
ALL ANALYSES
ELElement Number-Y
NODESNodes - I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, A, B-Y
MATMaterial number-Y
VOLU:Volume-Y
XC, YC, ZCLocation where results are reported-2
ALL ANALYSES WITH A STRUCTURAL FIELD
S:X, Y, Z, XY, YZ, XZStresses (SZ = 0.0 for plane stress elements)-1
S:1, 2, 3Principal stresses-1
S:EQVEquivalent stress-1
EPEL:X, Y, Z, XY, YZ, XZElastic strains-1
EPEL:EQVEquivalent elastic strain [3]-1
EPTH:X, Y, Z, XY, YZ, XZThermal strains-1
EPTH:EQVEquivalent thermal strain [3]-1
EPPL:X, Y, Z, XY, YZ, XZPlastic strains-1
EPPL:EQVEquivalent plastic strain [3]-1
EPCR:X, Y, Z, XY, YZ, XZCreep strains-1
EPCR:EQVEquivalent creep strain [3]-1
EPTO:X, Y, Z, XY, YZ, XZTotal mechanical strains (EPEL + EPPL + EPCR)--
EPTO:EQVTotal equivalent mechanical strain (EPEL + EPPL + EPCR)--
NL:SEPLPlastic yield stress [10]-Y
NL:EPEQAccumulated equivalent plastic strain [10]-Y
NL:CREQAccumulated equivalent creep strain [10]-Y
NL:SRATPlastic yielding (1 = actively yielding, 0 = not yielding) [10]-Y
NL:HPRESHydrostatic pressure [10]-Y
SENE:Elastic strain energy-Y
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMAL ANALYSES (KEYOPT(1) = 11)
TG:X, Y, Z, SUMThermal gradient components and vector magnitude -1
TF:X, Y, Z, SUMThermal flux components and vector magnitude-1
UEElastic strain energy-1
UTTotal strain energy [8]-1
PHEAT Plastic heat generation rate per unit volume-1
ADDITIONAL OUTPUT FOR PIEZORESISTIVE ANALYSES (KEYOPT(1) = 101)
TEMPInput temperatures-Y
EF:X, Y, Z, SUMElectric field components (X, Y, Z) and vector magnitude-1
JC:X, Y, Z, SUMConduction current density components (X, Y, Z) and vector magnitude -1
JS:X, Y, Z, SUMCurrent density components

(in the global Cartesian coordinate system)

and vector magnitude [4]
-1
JHEATJoule heat generation per unit volume [5]-1
ADDITIONAL OUTPUT FOR ELECTROSTATIC-STRUCTURAL ANALYSES (KEYOPT(1) = 1001)
TEMPInput temperatures-Y
EF:X, Y, Z, SUMElectric field components (X, Y, Z) and vector magnitude-1
D:X, Y, Z, SUMElectric flux density components (X, Y, Z) and vector magnitude-1
FMAG:X, Y, Z, SUMElectrostatic force components (X, Y, Z) and vector magnitude-1
UE, UDStored elastic and dielectric energies-1
ADDITIONAL OUTPUT FOR PIEZOELECTRIC ANALYSES (KEYOPT(1) = 1001)
TEMPInput temperatures-Y
EF:X, Y, Z, SUMElectric field components (X, Y, Z) and vector magnitude-1
D:X, Y, Z, SUMElectric flux density components (X, Y, Z) and vector magnitude-1
JHEATJoule heat generation per unit volume [5], [6]-1
UE, UM, UDElastic, mutual, and dielectric energies [7]-1
UTTotal strain energy [8]-1
ADDITIONAL OUTPUT FOR STRUCTURAL-DIFFUSION ANALYSES (KEYOPT(1)=100001)
TEMPInput temperatures-Y
EPDI:X, Y, Z, XY, YZ, XZDiffusion strains-1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude-1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude-1
CONCElement concentration [9]-1
THERMAL-ELECTRIC ANALYSES (KEYOPT(1) = 110)
TG:X, Y, Z, SUMThermal gradient components and vector magnitude-1
TF:X, Y, Z, SUMThermal flux components and vector magnitude-1
EF:X, Y, Z, SUMElectric field components and vector magnitude-1
JC:X, Y, Z, SUMConduction current density components and vector magnitude-1
JS:X, Y, Z, SUMCurrent density components

(in the global Cartesian coordinate system)

and vector magnitude [4]
-1
JHEATJoule heat generation per unit volume [5], [6]-1
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMOELECTRIC ANALYSES (KEYOPT(1) = 111)
TG:X, Y, Z, SUMThermal gradient components and vector magnitude-1
TF:X, Y, Z, SUMThermal flux components and vector magnitude-1
EF:X, Y, Z, SUMElectric field components and vector magnitude-1
JC:X, Y, Z, SUMConduction current density components and vector magnitude-1
JS:X, Y, Z, SUMCurrent density components

components (in the global Cartesian coordinate system)

and vector magnitude [4]
-1
JHEATJoule heat generation per unit volume [5], [6]-1
UTTotal strain energy [8]-1
PHEAT Plastic heat generation rate per unit volume-1
ADDITIONAL OUTPUT FOR THERMAL-PIEZOELECTRIC ANALYSES (KEYOPT(1) = 1011)
TG:X, Y, Z, SUMThermal gradient components and vector magnitude-1
TF:X, Y, Z, SUMThermal flux components and vector magnitude-1
EF:X, Y, Z, SUMElectric field components and vector magnitude-1
D:X, Y, Z, SUMElectric flux density components and vector magnitude-1
JHEATJoule heat generation per unit volume [5], [6]-1
UE, UM, UDElastic, mutual, and dielectric energies [7]-1
UTTotal strain energy [8]-1
PHEAT Plastic heat generation rate per unit volume-1
THERMAL-DIFFUSION ANALYSES (KEYOPT(1) = 100010)
TG:X, Y, Z, SUMThermal gradient components and vector magnitude-1
TF:X, Y, Z, SUMThermal flux components and vector magnitude-1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude-1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude-1
CONCElement concentration [9]-1
ELECTRIC-DIFFUSION ANALYSES (KEYOPT(1) = 100100)
TEMPInput temperatures-Y
EF:X, Y, Z, SUMElectric field components and vector magnitude-1
JC:X, Y, Z, SUMConduction current density components and vector magnitude-1
JS:X, Y, Z, SUMCurrent density components (in the global Cartesian coordinate system) and vector magnitude [4]-1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude-1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude-1
CONCElement concentration [9]-1
THERMAL-ELECTRIC-DIFFUSION ANALYSES (KEYOPT(1) = 100110)
TG:X, Y, Z, SUMThermal gradient components and vector magnitude-1
TF:X, Y, Z, SUMThermal flux components and vector magnitude-1
EF:X, Y, Z, SUMElectric field components and vector magnitude-1
JC:X, Y, Z, SUMConduction current density components and vector magnitude-1
JS:X, Y, Z, SUMCurrent density components (in the global Cartesian coordinate system) and vector magnitude [4]-1
JHEATJoule heat generation per unit volume [5], [6]-1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude-1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude-1
CONCElement concentration [9]-1
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMAL-DIFFUSION ANALYSES (KEYOPT(1) = 100011)
EPDI:X, Y, Z, XY, YZ, XZDiffusion strains-1
TG:X, Y, Z, SUMThermal gradient components and vector magnitude-1
TF:X, Y, Z, SUMThermal flux components and vector magnitude-1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude-1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude-1
CONCElement concentration [9]-1
ADDITIONAL OUTPUT FOR STRUCTURAL-ELECTRIC-DIFFUSION ANALYSES (KEYOPT(1) = 100101)
TEMPInput temperatures-Y
EPDI:X, Y, Z, XY, YZ, XZDiffusion strains-1
EF:X, Y, Z, SUMElectric field components and vector magnitude-1
JC:X, Y, Z, SUMConduction current density components and vector magnitude-1
JS:X, Y, Z, SUMCurrent density components (in the global Cartesian coordinate system) and vector magnitude [4]-1
JHEATJoule heat generation per unit volume [5], [6]-1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude-1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude-1
CONCElement concentration [9]-1
ADDITIONAL OUTPUT FOR STRUCTURAL-THERMAL-ELECTRIC-DIFFUSION ANALYSES (KEYOPT(1) = 100111)
EPDI:X, Y, Z, XY, YZ, XZDiffusion strains-1
TG:X, Y, Z, SUMThermal gradient components and vector magnitude-1
TF:X, Y, Z, SUMThermal flux components and vector magnitude-1
EF:X, Y, Z, SUMElectric field components and vector magnitude-1
JC:X, Y, Z, SUMConduction current density components and vector magnitude-1
JS:X, Y, Z, SUMCurrent density components (in the global Cartesian coordinate system) and vector magnitude [4]-1
JHEATJoule heat generation per unit volume [5], [6]-1
CG:X, Y, Z, SUMConcentration gradient components and vector magnitude-1
DF:X, Y, Z, SUMDiffusion flux components and vector magnitude-1
CONCElement concentration [9]-1

  1. Solution values are output only if calculated (based on input values).

  2. Available only at centroid as a *GET item.

  3. The equivalent strains use an effective Poisson's ratio: for elastic and thermal this value is set by the user (MP,PRXY); for plastic and creep this value is set at 0.5.

  4. JS represents the sum of element conduction and displacement current densities.

  5. Calculated Joule heat generation rate per unit volume (JHEAT) may be made available for a subsequent thermal analysis with companion thermal elements.

  6. For a time-harmonic analysis, Joule losses (JHEAT) are time-averaged. These values are stored in both the real and imaginary data sets. For more information, see Quasistatic Electric Analysis in the Mechanical APDL Theory Reference.

  7. For a time-harmonic analysis, elastic (UE), mutual (UM), and dielectric (UD) energies are time-averaged. Their real part represents the average energy, while the imaginary part represents the average energy loss. For more information, see Piezoelectrics in the Mechanical APDL Theory Reference.

  8. For a time-harmonic analysis, total strain (UT) energy is time-averaged. The real part represents the average energy, while the imaginary part represents the average energy loss. For more information, see Thermoelasticity in the Mechanical APDL Theory Reference.

  9. With the normalized concentration approach, CONC is the actual concentration obtained by multiplying the saturated concentration (MP,CSAT) and the normalized concentration evaluated at the element centroid. For more information, see Normalized Concentration Approach in the Mechanical APDL Theory Reference.

  10. Nonlinear solution, output only if the element has a nonlinear material, or if large-deflection effects are enabled (NLGEOM,ON).

Table 226.7: SOLID226 Element Output Definitions lists output available through the ETABLE command using the Sequence Number method. See The General Postprocessor (POST1) of the Basic Analysis Guide and The Item and Sequence Number Table of this reference for more information. The following notation is used in Table 226.8: SOLID226 Item and Sequence Numbers:

Name

output quantity as defined in the Table 226.7: SOLID226 Element Output Definitions

Item

predetermined Item label for ETABLE command

E

sequence number for single-valued or constant element data

Table 226.8:  SOLID226 Item and Sequence Numbers

Output Quantity NameETABLE Command Input
ItemE
CONCSMISC1
UENMISC1
UDNMISC2
UMNMISC3
UTNMISC4
PHEATNMISC5

SOLID226 Assumptions and Restrictions

  • In a piezoelectric or electrostatic-structural analysis, electric charge loading is interpreted as negative electric charge or negative charge density.

  • Optimized nonlinear solution defaults are applied in coupled-field analyses with structural degrees of freedom using this element.

  • An edge with a removed midside node implies that the degrees-of-freedom varies linearly, rather than parabolically, along that edge. See Quadratic Elements (Midside Nodes) in the Modeling and Meshing Guide for more information about the use of midside nodes.

  • In an analysis with structural and diffusion degrees of freedom coupled by the stress migration effect (specified using TB,MIGR), the following are not supported:

    • midside nodes;

    • the weak coupling option (KEYOPT(2) = 1).

  • This element may not be compatible with other elements with the VOLT degree of freedom. To be compatible, the elements must have the same reaction solution for the VOLT DOF. Elements that have an electric charge reaction solution must all have the same electric charge reaction sign. For more information, see Element Compatibility in the Low-Frequency Electromagnetic Analysis Guide.

  • The model should have at least two layers of elements in each direction when uniform reduced integration (KEYOPT(6) = 1) is used.

  • When a coupled-field analysis with structural degrees of freedom uses mixed u-P formulation (KEYOPT(11) = 1), no midside nodes can be dropped. When using mixed formulation (KEYOPT(11) = 1), use the sparse solver (default).

  • Stress stiffening is always included in geometrically nonlinear (NLGEOM,ON) coupled-field analyses with structural degrees of freedom. Prestress effects can be activated via the PSTRES command.

  • Graphical Solution Tracking (/GST) is not supported with coupled-diffusion analyses (KEYOPT(1)=100001, 100010, and 100011).

  • Reaction forces are not available for an electrostatic-structural analysis (KEYOPT(1) = 1001) with the elastic air option (KEYOPT(4) = 1).

SOLID226 Product Restrictions

There are no product-specific restrictions for this element.


Release 18.2 - © ANSYS, Inc. All rights reserved.